最新人教版中考数学专题训练试题全套

合集下载

2022-2023学年新人教版中考专题数学中考真卷(含解析)

2022-2023学年新人教版中考专题数学中考真卷(含解析)

2022-2023学年初中中考专题数学中考真卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:115 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. 的绝对值是( )A.B.C.D.2. 下列计算正确的是( )A.B.C.D.3. 据新华社北京年月日电国家统计局日发布数据,初步核算,年我国国内生产总值约万亿元,若将万亿用科学记数法表示为( )A.B.C.D.4. 如图,由个完全相同的小正方体组合成一个立体图形,它的俯视图是( )A.B.−1212−122−22+3=5a 2a 2a 4=+ab +(a +b)2a 2b 2=−8(−2)a 23a 6−2⋅3=−6a 2a 2a 22017120202016(GDP)74747.4×10137.4×101274×10130.74×10125C. D.5. 在中考体育测试时,有六个男生引体向上的成绩分别是:、、、、、,对于这组数据,下列说法不正确的是( )A.平均数是B.众数是C.中位数是D.方差是6. 已知、、为常数,点在第二象限,则关于的方程根的情况是( )A.有两个相等的实数根B.有两个不等的实数根C.没有实数根D.无法判断7.某班同学在研究弹簧的长度跟外力的变化关系时,实验记录得到相应的数据如下表:则下列图象中,能表示与的函数关系的图象大致是 砝码的质量指针位置 A. B. C.11101317102314101522a b c P(a,c)x a +bx+c =x 20y x ()x/g050100150200250300400500y/cm 2345677.57.57.5D.8. 星期天,王军去朋友家借书,如图是他离家的距离(千米)与时间(分钟)的函数图象,根据图象信息,下列说法正确的是( )A.王军去时的速度大于回家的速度B.王军在朋友家停留了分钟C.王军去时所花的时间少于回家所花的时间D.王军去时走上坡路,回家时走下坡路9. 如图,在中,,把放在如图的平面直角坐标系中,将 绕点旋转后再绕点顺时针旋转得到,使得点 在轴上,则点 的坐标为( )A.B.C. D.10. 如图,二次函数的图象与轴交于,两点,与轴正半轴交于点,它的对称轴为直线.则下列选项中正确的是( )A.B.10Rt △ABC ∠ACB =,AC =,BC =190∘3–√△ABC Rt △ABC C 90∘B Rt △A ′′B ′C ′,B ′A ′′x C ′(,1)32(+1,1)3–√2(,)323–√2(,)3–√232y =a +bx+c(a >0)x 2x A B y C x =−1abc <04ac −>0b 2C.D.当(为实数)时,卷II (非选择题)二、 填空题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )11. 的平方根是________.12. 函数的自变量的取值范围是________.13. 计算:_______.14. 如图,为菱形内一动点,连接,,,,,则的最大值为________.15. 一只蚂蚁从长、宽都是,高是的长方体纸箱的点沿纸箱爬到点,那么它所行的最短路线的长是________.16. 如图,在平面直角坐标系中,函数和的图像分别为直线,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点……依次进行下去,则点的横坐标为________,(为偶数)的横坐标为________.三、 解答题 (本题共计 10 小题 ,共计67分 )17. (5分) 计算:.18. (5分) 先化简,再求值:,其中从、、中任意取一个数求值.c −a >0x =−−2n 2n y ≥c81−−√y =2x+1x+2x ×=827−−−√316−−√4P ABCD PA PB PD ∠APD =∠BAD =60∘AB =10PB+PD 38A B y =x y =−x 12,l 1l 2(1,−)A 112x l 1A 2A 2y l 2A 3A 3x l 1A 4A 4y l 2A 5A 2018A n n (−1+2sin −|1−|+)201660∘3–√π0x 01219. (5分) 如图,▱中,分别是对角线上的两点,且,连接.求证:四边形是平行四边形.20.(5分) 如图,平面直角坐标系中,反比例函数的图象经过点,点是反比例函数的图象上一动点,记点坐标为,连接,,.若,求的取值范围;当时,求的面积.21.(7分) 九年级班针对“垃圾分类”知晓情况对全班学生进行专题调查活动,对“垃圾分类”的知晓情况分为,,,四类.其中,类表示“非常了解”,类表示“比较了解”,类表示“基本了解”,类表示“不太了解”,每名学生可根据自己的情况任选其中一类,班长根据调查结果进行了统计,并绘制成了不完整的条形统计图和扇形统计图.“垃圾分类”知晓情况各类别人数条形统计图 “垃圾分类”知晓情况各类别人数扇形统计图根据以上信息解决下列问题:该班参加这次调查的学生有________人,扇形统计图中类别所对应扇形的圆心角度数为________;求出类别的学生数,并补全条形统计图;类别的名学生中有名男生和名女生,现从这名学生中随机选取名学生参加学校“垃圾分类”知识竞赛,请用列举法(画树状图或列表)求所选取的名学生中恰好有名男生、名女生的概率. 22.(7分) 在购买某场足球赛门票时,设购买门票数为(张),总费用为(元).现有两种购买方案:方案一:若单位赞助广告费元,则该单位所购门票的价格为每张元;(总费用广告赞助费门票费)方案二:购买门票方式如图所示.解答下列问题:方案一中,与的函数关系式为________;方案二中,当时,与的函数关系式为________;当时,与的函数关系式为________;甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共张,花去总费用计元,求甲、乙两单位各购买门票多少张?AECF B,D EF BE =DF AB,BC,CD,DA ABCD y =(x >0)k x A(6,1)B B (m,n)OB OA AB (1)1≤m≤4n (2)m=2△OBA (6)A B C D A B C D (1)C (2)B (3)A 42242211x y 1000060=+(1)y x 0≤x ≤100y x x >100y x (2)7005800023. (7分)如图,河流两岸,互相平行,,是河岸上间隔的两个电线杆.某人在河岸上的处测得,然后沿河岸走了到达处,测得,求河流的宽度的值.(结果精确到个位)24.(7分) 如图,纸上有五个边长为的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形如图.能在方格图(图)中,连接四个格点(网格线的交点)组成面积为的正方形吗?若能,请用虚线画出.在数轴上找到该正方形边长的这个数(保留画图痕迹).25.(9分) 在 的外接圆中,的外角平分线交于点,为上一点,且连接,并延长 交 的延长线于点.判断与的数量关系,并说明理由;求证:若的半径为,,求的长. 26.(10分) 如图①,已知抛物线=与轴交于点、,与轴交于点,直线经过、两点.抛物线的顶点为.(1)求抛物线和直线的解析式;(2)判断的形状并说明理由.(3)如图②,若点是线段上方的抛物线上的一个动点,过点作轴于点,交线段于点,当是直角三角形时,求点的坐标.a b C D a 50m b A ∠DAB =30∘100m B ∠CBF =60∘CF 112(1)3×335(2)△ABC ⊙O △ABC CD ⊙O D F AD AF =BCˆDF DF BA E (1)DB DA (2)△BCD ≅△AFD(3)∠ACM =,⊙O 120∘5DC =6DE y −+bx+c x 2x A B(3,0)y C(0,3)l B C D l △BCD E BC E EF ⊥x F EF BC G △ECG E参考答案与试题解析2022-2023学年初中中考专题数学中考真卷一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】A【考点】绝对值【解析】根据负数的绝对值等于它的相反数即可求解.【解答】解:的绝对值等于.故选.2.【答案】C【考点】幂的乘方与积的乘方合并同类项完全平方公式单项式乘单项式【解析】分别根据同底数幂的乘法和除法,幂的乘方和积的乘方以及合并同类项的法则计算即可判断正误.【解答】解:应为,故本选项错误;,应为,故本选项错误;,,正确;,应为,故本选项错误.故选.3.【答案】A【考点】科学记数法--表示较大的数【解析】−1212A A 2+3a 2a 2=5a 2B (a +b =+2ab +)2a 2b 2C =−8(−2)a 23a 6D −2⋅3=−6a 3a 2a 5C科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【解答】将万亿用科学记数法表示为,4.【答案】A【考点】简单组合体的三视图【解析】根据俯视图的定义分析即可解答.【解答】解:根据俯视图的定义可知,该几何体从上面看应该是四个小正方形,故正确.故选.5.【答案】C【考点】方差众数中位数算术平均数【解析】分别计算该组数据的众数、平均数、方差及中位数后找到正确答案即可.【解答】解:平均数是,众数是,中位数是,方差是.故选.6.【答案】B【考点】根的判别式点的坐标【解析】先利用第二象限点的坐标特征得到,则判断,然后根据判别式的意义判断方程根的情况.【解答】a ×10n 1≤|a |<10n n a n >1n <1n 747.4×1013A A =1411+10+13+17+10+236101222C ac <0△>0解:∵点在第二象限,∴,,∴,∴,∴方程有两个不相等的实数根.故选.7.【答案】B【考点】函数的图象【解析】从到,指针的位置增加了,这说明在砝码增加到少于时,已经到达的位置.【解答】解:根据图表可以知道,在没有砝码时指针的位置是,以后砝码每增加,指针位置增加,则当是时,弹簧指针位置应是,以后,指针位置不随砝码的增加而伸长,都是.故选.8.【答案】B【考点】函数的图象【解析】根据图象上特殊点的坐标和实际意义即可求出答案.【解答】解:王军去时的速度为:千米/分,回家的速度为:千米/分,所以,均错;小王在朋友家呆的时间为:(分钟),所以对;而无法判断正误.故选.9.【答案】C【考点】扇形面积的计算旋转的性质坐标与图形性质【解析】P(a,c)a <0c >0ac <0Δ=−4ac >0b 2B 250g 300g 0.5cm 300g 7.5cm 2cm 50g 1cm 275g 7.5cm 7.5cm B 2÷20=0.12÷(40−30)=0.2A C 30−20=10B D B此题暂无解析【解答】此题暂无解答10.【答案】D【考点】二次函数图象与系数的关系抛物线与x 轴的交点二次函数图象上点的坐标特征【解析】由图象开口向上,可知,与轴的交点在轴的上方,可知,根据对称轴方程得到,于是得到,故错误;根据一次函数=的图象与轴的交点,得到,求得,故错误;根据对称轴方程得到=,当=时,=,于是得到,故错误;当=(为实数)时,代入解析式得到===,于是得到=,故正确.【解答】解:,由抛物线与轴交于正半轴,可知,∵对称轴为直线,,∴,∴,∴,故错误;,二次函数的图象与轴交于,两点,∴,∴,故错误;,∵,∴,∵当时,,∴,∴,故错误;,当(为实数)时,,,,,∴,故正确.故选.二、 填空题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )11.【答案】【考点】算术平方根平方根【解析】a >0y x c >0b >0abc >0A y a +bx+c(a >0)x 2x −4ac >0b 24ac −<0b 2B b 2a x −1y a −b +c <0c −a <0C x −−2n 2n y a +bx+c x 2a(−−2+b(−−2)n 2)2n 2a (+2)+c n 2n 2y a (+2)+c ≥c n 2n 2D A y c >0x =−1a >0−=−1<0b 2a b >0abc >0A B y =a +bx+c(a >0)x 2x A B Δ=−4ac >0b 24ac −<0b 2B C −=−1b 2a b =2a x =−1y =a −b +c <0a −2a +c <0c −a <0C D x =−−2n 2n y =a +bx+cx 2=a +b(−−2)+c(−−2)n 22n 2=a +2a(−−2)+c(−−2)n 22n 2=a (+2)+c n 2n 2∵a >0≥0n 2+2>0n 2y =a (+2)+c ≥c n 2n 2D D ±3根据平方根、立方根、算术平方根的概念求解.【解答】解:,故的平方根是,故答案为:.12.【答案】【考点】函数自变量的取值范围【解析】根据分母不能为零,可得答案.【解答】解:由题意,得,解得.故答案为:.13.【答案】【考点】实数的运算【解析】此题暂无解析【解答】解:.故答案为:.14.【答案】【考点】菱形的性质全等三角形的性质与判定三角形的外接圆与外心【解析】根据四边形为菱形,再结合可构建四点共圆模型,可得是等边三角形,再利用全等得到 ,所以,求得最大值,即求的最大值,当为圆的直径时最大,最后利用三角函数即可求出最大值.=981−−√9±3±3x ≠−2x+2≠0x ≠−2x ≠−243×=×=×2=827−−−√316−−√4(23)3−−−−√324−−√42343432033–√ABCD ∠APD =∠BAD =60∘△ABD AE =BP PE =PD PB+PD =AP PB+PD AP AP【解答】解:如图,连接.在菱形中,,又∵∴是等边三角形,∴,又∵,∴动点一定在的外接圆的劣弧上,∵,在上取,连接.∵ ,,,∴,∴,,∴,∴为等边三角形,∴,∴,当为的直径时,的值最大,此时,,又∵,∴,又,∴,∴的最大值为.故答案为:.15.【答案】【考点】平面展开-最短路径问题【解析】根据”两点之间线段最短”,将点和点所在的两个面进行展开,展开为矩形,则为矩形的对角线,即蚂蚁所行的最短路线为.【解答】解:如图所示:;如图所示:.由于,所以最短路径为.BD ABCD AB =AD ∠BAD =60∘△ABD DA =DB ∠ABD =60∘∠APD =∠BAD =60∘P △ABD ⊙O BD ∠BPD =∠APD+∠APB =∠APD+∠ADB =120∘AP AE =BP DE AE =BP ∠DAE =∠DBP DA =DB △AED ≅△BPD DE =DP ∠AED =∠BPD =120∘∠DEP =60∘△PDE PE =PD AP =AE+EP =BP +PD AP ⊙O PB+PD ∠ABP =90∘∠PAB =30∘AB =10A =A −B =100B 2P 2P 2AP =2BP AP =2033–√PB+PD 2033–√2033–√10A B AB AB (1)AB =+(8+332)2−−−−−−−−−−√=130−−−√(2)AB =+6282−−−−−−√=10>10130−−−√10故答案为:.16.【答案】,【考点】规律型:点的坐标一次函数图象上点的坐标特点【解析】【解答】解:由题意可得,,,,,,,,,可以发现的横坐标,故的横坐标为,(为偶数)的横坐标为.故答案为:;.三、 解答题 (本题共计 10 小题 ,共计67分 )17.【答案】原式=.【考点】零指数幂实数的运算特殊角的三角函数值【解析】先计算乘方、代入三角函数值、去绝对值符号、计算零指数幂,再去括号,最后计算加减可得.【解答】原式=.18.【答案】1021008(−2)−1n 2(1,−)A 112(1,1)A 2(−2,1)A 3(−2,−2)A 4(4,−2)A 5(4,4)A 6(−8,4)A 7(−8,−8)A 8⋯A 2n =(−2)n−1A 2018(−2=)100821008A n n (−2)−1n 221008(−2)−1n 2=1+2×−(−1)+13–√23–√=1+−+1+13–√3–√3=1+2×−(−1)+13–√23–√=1+−+1+13–√3–√3原式=[-]•=(-)•=•=•=,∵且,∴当=时,原式=.【考点】分式的化简求值【解析】先把第一个分式化简,再把括号内通分和除法运算化为乘法运算,然后利用分式有意义的条件,把=代入计算即可.【解答】原式=[-]•=(-)•=•=•=,∵且,∴当=时,原式=.19.【答案】解:连接交于点,如图:在平行四边形中,∵∴即∴四边形为平行四边形.【考点】平行四边形的判定【解析】此题暂无解析x ≠±2x ≠7x 1x 1x ≠±2x ≠7x 1AC BD G AECF AG =CG,FG =EGBE =DFBE+EG =DF +FGBG =DGABCD【解答】解:连接交于点,如图:在平行四边形中,∵∴即∴四边形为平行四边形.20.【答案】解:把代入得:,当时,;当时,,,;作轴,垂足为,作轴,垂足为,的延长线交于点,则四边形是矩形,把代入中,得,则,则,,,则.【考点】反比例函数综合题【解析】由打定系数法求出反比例函数的解析式,再由的取值范围确定的取值范围.作轴,垂足为,作轴,垂足为,的延长线交于点,则四边形是矩形,求出的坐标,再用割补法求出 的面积.【解答】解:把代入得:,当时,;当时,,,;作轴,垂足为,作轴,垂足为,的延长线交于点,AC BD G AECF AG =CG,FG =EGBE =DFBE+EG =DF +FGBG =DGABCD (1)A(6,1)y =k x k =6m=1n =6m=4n =1.5∵1≤m≤4∴1.5≤n ≤6(2)AH ⊥x H BF ⊥y F FB,HA G OHGF m=2y =6x n =3OF =3,OH =6,AH =1,BF =2,BG =4,AG =2=3×6=18S 矩形OFG H =2×4÷2=4S △BG A =1×6÷2=3,=2×3÷2=3S △AOH S △BOF =−−−=18−4−3−3=8S △BOA S 矩形OFG H S △BG A S △HOA S △BOF m n AH ⊥x H BF ⊥y F FB,HA G OHGF B △OBA (1)A(6,1)y =k xk =6m=1n =6m=4n =1.5∵1≤m≤4∴1.5≤n ≤6(2)AH ⊥x H BF ⊥y F FB,HA G则四边形是矩形,把代入中,得,则,则,,,则.21.【答案】,类别的学生数人,补全条形统计图如图.列表如下:第二次第一次男男女女男_______(男,男)(女,男)(女,男)男(男,男)_______(女,男)(女,男)女(男,女)(男,女)_______(女,女)女(男,女)(男,女)(女,女)_______∴(选取的名学生中恰好有名男生、名女生)【考点】条形统计图扇形统计图列表法与树状图法【解析】()由类人数及其所占百分比可得总人数;再由类人数所占百分比求出类别所对应扇形的圆心角度数;()总人数减去、、的人数求得类别人数,据此即可补全图形;()列表得出所有等可能结果,再根据概率公式求解可得.OHGF m=2y =6xn =3OF =3,OH =6,AH =1,BF =2,BG =4,AG =2=3×6=18S 矩形OFG H =2×4÷2=4S △BG A =1×6÷2=3,=2×3÷2=3S △AOH S △BOF =−−−=18−4−3−3=8S △BOA S 矩形OFG H S △BG A S △HOA S △BOF 40144∘(2)B =40−4−16−40×5%=18(3)12121211121212122211121212122212P 211==.812231A C C 2A C D B 3【解答】解:调查学生总数(人);类别所对应扇形的圆心角度数.故答案为:,.类别的学生数人,补全条形统计图如图.列表如下:第二次第一次男男女女男_______(男,男)(女,男)(女,男)男(男,男)_______(女,男)(女,男)女(男,女)(男,女)_______(女,女)女(男,女)(男,女)(女,女)_______∴(选取的名学生中恰好有名男生、名女生)22.【答案】,,设甲、乙单位购买本次足球赛门票数分别为张、张;∵甲、乙单位分别采用方案一和方案二购买本次足球比赛门票,∴乙公司购买本次足球赛门票有两种情况:或.当时,乙公司购买本次足球赛门票费为,解得不符合题意,舍去;当时,乙公司购买本次足球赛门票费为,解得符合题意.答:甲、乙单位购买本次足球赛门票分别为张、张.【考点】二元一次方程组的应用——优化方案问题一次函数的应用【解析】(1)依题意可得与的函数关系式=;本题考查了分段函数的有关知识;;(2)设,可用方案二买;当=时,两种方案均可选择;当时,可选择方案一;(1)=4÷10%=40C =×=360∘1640144∘40144∘(2)B =40−4−16−40×5%=18(3)12121211121212122211121212122212P 211==.81223y =60x+10000y =100x y =80x+2000(2)a b b ≤100b >100b ≤100100b { a +b =700,60a +10000+100b =58000,{ a =550,b =150b >10080b +2000{ a +b =700,60a +10000+80b +2000=58000,{ a =500,b =200500200y x y 60x+10000(0≤x ≤100x >100)60x+10000>80x+200060x+100080x+200060x+1000<80x+200(3)设甲、乙单位购买本次足球赛门票数分别为张、张,分别可采用方案一或方案二购买.【解答】解:方案一:;方案二:当时,;当时,设函数关系式为,将和代入,得解得所以函数关系式为.故答案为:;;.设甲、乙单位购买本次足球赛门票数分别为张、张;∵甲、乙单位分别采用方案一和方案二购买本次足球比赛门票,∴乙公司购买本次足球赛门票有两种情况:或.当时,乙公司购买本次足球赛门票费为,解得不符合题意,舍去;当时,乙公司购买本次足球赛门票费为,解得符合题意.答:甲、乙单位购买本次足球赛门票分别为张、张.23.【答案】解:过点作,交于.∵,,∴四边形是平行四边形.∴,,.又∵,故.∴.∴在中,.【考点】解直角三角形的应用-方向角问题【解析】本题可将已知的条件构建到直角三角形中进行计算,过点作,交于,那么且,根据观察发现,,而,那么,那么,直角三角形中,有了的长,有锐角的度数,的值便可求出来了.【解答】解:过点作,交于.∵,,∴四边形是平行四边形.∴,,.又∵,故.a b (1)y =60x+100000≤x ≤100y =100x x >100y =kx+b (100,10000)(150,14000){100k +b =10000,150k +b =14000,{k =80,b =2000,y =80x+2000y =60x+10000y =100x y =80x+2000(2)a b b ≤100b >100b ≤100100b { a +b =700,60a +10000+100b =58000,{ a =550,b =150b >10080b +2000{ a +b =700,60a +10000+80b +2000=58000,{ a =500,b =200500200C CE//AD AB E CD//AE CE//AD AECD AE =CD =50m EB =AB−AE =50m ∠CEB =∠DAB =30∘∠CBF =60∘∠ECB =30∘CB =EB =50m Rt △CFB CF =CB ⋅sin ∠CBF =50⋅sin ≈43m60∘C CE//AD AB E ∠CEF =∠DAB =30∘AE =CD =50∠CBF =∠CEB+∠ECB =60∘∠CEB =30∘∠ECB =∠CEB CB =BE CBF CB CF C CE//AD AB E CD//AE CE//AD AECD AE =CD =50m EB =AB−AE =50m∠CEB =∠DAB =30∘∠CBF =60∘∠ECB =30∘∴.∴在中,.24.【答案】解:因为图的面积为,要得到一个正方形的面积为,则需要减去个面积为的直角三角形,且顶点在格点上,则如图正方形即为所求;该正方形的边长为,如图,点即为该数.【考点】图形的剪拼在数轴上表示实数【解析】(2)求出正方形的边长,再由勾股定理画出图形即可;(3)根据勾股定理在数轴上找出此数即可.【解答】解:因为图的面积为,要得到一个正方形的面积为,则需要减去个面积为的直角三角形,且顶点在格点上,则如图正方形即为所求;该正方形的边长为,如图,点即为该数.25.【答案】()解:.理由:∵是的外角平分线,∵ .∵,∴,∴.∴,∴.∴.证明:∵,∴ ,∴∴,在和 中,,∴;解:连接并延长,交于点,连接,CB =EB =50m Rt △CFB CF =CB ⋅sin ∠CBF =50⋅sin ≈43m 60∘(1)33×3=9541ABCD (2)5–√A (1)33×3=9541ABCD (2)5–√A 1DB =DA CD △ABC ∠MCD =∠ACD ∠MCD+∠BCD =,∠BCD+∠BAD =180∘180∘∠MCD =∠BAD ∠ACD =∠BAD ∠ACD =∠ABD ∠ABD =∠BAD DB =DA (2)DB =DA =,DB DA =AF BC AF =BC,CD =FD,CD =FD △BCD △AFD BC =AFCD =FD DB =DA△BCD ≅△AFD(SSS)(3)DO AB N OB∵,∴,∴,,∴.∵,∴是等边三角形,∴,∴,∴,∴,∴.∵,∴,∴,∵ ,∴,∴,∴,∴【考点】圆的综合题【解析】此题暂无解析【解答】()解:.理由:∵是的外角平分线,∵ .∵,∴,∴.∴,∴.∴.证明:∵,∴ ,∴∴,在和 中,,∴;解:连接并延长,交于点,连接,∵,∴,∴,,∴.∵,∴是等边三角形,∴,∴,∴,∴,∴.∵,∴,∴,∵ ,∴,∴,DB =DA =DB DA DN ⊥AB ∠ACM =120∘∠ABD =∠ACD =60∘DB =DA △ABD ∠OBA =30∘ON =OB =×5=2.51212DN =ON +OD =7.5BD ==5DN sin60∘3–√AD =BD =53–√=BC AF =AC BF ∠ADC =∠BDF ∠ABD =∠ACD △ACD ∼△EBD =CD BD AD DE =653–√53–√DE DE =12.5.1DB =DA CD △ABC ∠MCD =∠ACD ∠MCD+∠BCD =,∠BCD+∠BAD =180∘180∘∠MCD =∠BAD ∠ACD =∠BAD ∠ACD =∠ABD ∠ABD =∠BAD DB =DA (2)DB =DA =,DB DA =AF BC AF =BC,CD =FD,CD =FD △BCD △AFD BC =AFCD =FD DB =DA△BCD ≅△AFD(SSS)(3)DO AB N OB DB =DA =DB DA DN ⊥AB ∠ACM =120∘∠ABD =∠ACD =60∘DB =DA △ABD ∠OBA =30∘ON =OB =×5=2.51212DN =ON +OD =7.5BD ==5DN sin60∘3–√AD =BD =53–√=BC AF =AC BF ∠ADC =∠BDF ∠ABD =∠ACD △ACD ∼△EBD =CD BD AD DE 5–√∴,∴26.【答案】解:(1)∵抛物线=与轴交于点、,与轴交于点,∴=,将点代入=,得=,∴=,∴抛物线的解析式为=;∵直线经过,,∴可设直线的解析式为=,将点代入,得=,∴=,∴直线的解析式为=;(2)是直角三角形,理由如下:如图,过点作轴于点,∵==,∴顶点,∵,,∴==,==,∴和是等腰直角三角形,∴==,∴==,∴是直角三角形;(3)∵轴,=,∴==,∴=,∴若是直角三角形,只可能存在=或=,①如图,当=时,∵轴,∴轴,∴===,∴四边形为矩形,∴==,在=中,当=时,=,=,∴;②如图,当=时,由(2)知,=,∴此时点与点重合,∵,∴,综上所述,当是直角三角形时,点的坐标为或.BD DE =653–√53–√DEDE =12.5.y −+bx+c x 2x A B(3,0)y C(0,3)y −+bx+3x 2B(3,0)y −+bx+3x 20−9+3b +3b 2y −+2x+3x 2l B(3,0)C(0,3)l y kx+3B(3,0)03k +3k −1l y −x+3△BCD 1D DH ⊥y H y −+2x+3x 2−(x−1+4)2D(1,4)C(0,3)B(3,0)HD HC 1OC OB 3△DHC △OCB ∠HCD ∠OCB 45∘∠DCB −∠HCD−∠OCB 180∘90∘△BCD EF ⊥x ∠OBC 45∘∠FGB −∠OBC 90∘45∘∠EGC 45∘△ECG ∠CEG 90∘∠ECG 90∘2−1∠CEG 90∘EF ⊥x EF //y ∠ECO ∠COF ∠CEF 90∘OFEC y E y C 3y −+2x+3x 2y 3x 10x 22E(2,3)2−2∠ECG 90∘∠DCB 90∘E D D(1,4)E(1,4)△ECG E (2,3)(1,4)【考点】二次函数综合题【解析】此题暂无解析【解答】解:(1)∵抛物线=与轴交于点、,与轴交于点,∴=,将点代入=,得=,∴=,∴抛物线的解析式为=;∵直线经过,,∴可设直线的解析式为=,将点代入,得=,∴=,∴直线的解析式为=;(2)是直角三角形,理由如下:如图,过点作轴于点,∵==,∴顶点,∵,,∴==,==,∴和是等腰直角三角形,∴==,∴==,∴是直角三角形;(3)∵轴,=,∴==,∴=,∴若是直角三角形,只可能存在=或=,①如图,当=时,∵轴,∴轴,∴===,∴四边形为矩形,∴==,y −+bx+c x 2x A B(3,0)y C(0,3)y −+bx+3x 2B(3,0)y −+bx+3x 20−9+3b +3b 2y −+2x+3x 2l B(3,0)C(0,3)l y kx+3B(3,0)03k +3k −1l y −x+3△BCD 1D DH ⊥y H y −+2x+3x 2−(x−1+4)2D(1,4)C(0,3)B(3,0)HD HC 1OC OB 3△DHC △OCB ∠HCD ∠OCB 45∘∠DCB −∠HCD−∠OCB 180∘90∘△BCD EF ⊥x ∠OBC 45∘∠FGB −∠OBC 90∘45∘∠EGC 45∘△ECG ∠CEG 90∘∠ECG 90∘2−1∠CEG 90∘EF ⊥x EF //y ∠ECO ∠COF ∠CEF 90∘OFEC y E y C 3−+2x+32在=中,当=时,=,=,∴;②如图,当=时,由(2)知,=,∴此时点与点重合,∵,∴,综上所述,当是直角三角形时,点的坐标为或.y −+2x+3x 2y 3x 10x 22E(2,3)2−2∠ECG 90∘∠DCB 90∘E D D(1,4)E(1,4)△ECG E (2,3)(1,4)。

2024-2025学年人教版中考数学试题及答案

2024-2025学年人教版中考数学试题及答案

2024-2025学年人教版中考数学试题一、单选题(每题3分)1.函数:已知函数(y=2x+1),当(x=2)时,函数的值为多少?A)3 B) 4 C) 5 D) 6答案:C) 52.几何:在一个直角三角形中,如果一个锐角为30°,那么这个角所对的直角边与斜边的比是多少?A)1:1 B) 1:2 C) 1:√3 D) √3:1答案:C) 1:√33.概率:一个不透明的袋子中有5个红球和3个蓝球,从中随机抽取一个球,抽到红球的概率是多少?A)3/8 B) 5/8 C) 3/5 D) 5/3答案:B) 5/84.代数:解方程(2x2−5x+2=0),其中一个根为?A)1/2 B) 1 C) 2 D) -1答案:A) 1/25.统计:在一组数据中,众数是出现次数最多的数。

若一组数据{2, 5, 5, 8, 8, 8, 9}的众数是8,则这组数据的中位数是?A)2 B) 5 C) 8 D) 9二、多选题(每题4分)1. 下列哪些数是无理数?A.(√2))B.(34C.(π)D.(e)E.(√9)【答案】 ACD2. 设函数(f(x)=x3−6x2+9x),则下列哪些陈述是正确的?A. 函数在(x=1)处取得极大值B. 函数在(x=3)处取得极小值C. 函数在(x=3)处取得极大值D. 函数在(x=1)处取得极小值E. 函数在(x=0)处有拐点【答案】 BE3. 下列哪些图形具有旋转对称性?A. 等边三角形C. 长方形(长宽比不是1)D. 圆E. 平行四边形【答案】 ABD4. 在直角坐标系中,直线(y=mx+b)经过点(1, 2),且与(y)轴交于点(0, 1),下列哪些结论是正确的?A. 斜率(m=1)B. 直线方程为(y=x+1)C. 直线与(x)轴交于点(-1, 0)D. 直线平行于(y=x)E. 直线垂直于(y=−x)【答案】 ABCD5. 若集合A={1, 2, 3},集合B={2, 3, 4},下列哪些集合表示的是(A∪B)和(A∩B)?A.(A∪B={1,2,3,4})B.(A∩B={2,3})C.(A∪B={1,2,2,3,3,4})D.(A∩B={1,2,3,4})E.(A∪B={1,3,4})【答案】 AB三、填空题(每题3分)第1题若(ab =34),且(a+b=14),则(a)的值为______。

(人教版)中考数学复习(全部)专题练习汇总

(人教版)中考数学复习(全部)专题练习汇总
(人教版)中考数学复习(全部)专题练习汇总
第1讲:实数概念与运算
一、夯实基础
1、绝对值是6的数是________
2、 的倒数是________________。
3、2的平方根是_________.
4、下列四个实数中,比-1小的数是( )
A.-2B.0C.1D.2
5、在下列实数中,无理数是( )
A.2 B.0 C. D.
A.①×3-②×2,消去x
B.①×2-②×3,消去y
C.①×(-3)+②×2,消去x
D.①×2-②×(-3),消去y
4.与方程3x+4y=1 6联立组成方程组的解是 的方程是( ).
A. +3y=7B.3x-5y=7
C. -7y=8D.2(x-y)= 3y
5.给方程 去分母,得().
A.1-2(2x-4)=-(x-7)
10.① ;②56;
11.8;
四、中考链接
12.(1)-3x2+18x-5,19;
(2)m9,-512;
13.(1)45;(2)57
14.(1)9;(2)1
15.
第3讲:分式检测
一、夯实基础
1.下列式子是分式的是( )
A. B. C. +yD.
2.如果把分式 中的x和y都扩大3倍,那么分式的值( )
三、课外拓展
8.若 +(y-2 012)2=0,则xy =__________.
9.当-1<x<3时,化简: + =__________.
10. 如果代数式 有意义,则x的取值范围是________.
11、比较大小:⑴3 2 ⑵ - -
12、若最简根式 与 是同类二次根式,则m=.
13、若 的整数部分是a,小数部分是b,则a- =。

初升高人教版数学题库及答案

初升高人教版数学题库及答案

初升高人教版数学题库及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -1答案:B2. 已知一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 如果一个数的平方等于16,那么这个数可能是?A. 4B. -4C. 4或-4D. 以上都不是答案:C4. 一个数的绝对值是其本身,那么这个数是什么?A. 正数B. 负数C. 非负数D. 非正数答案:C5. 一个圆的半径是5,那么这个圆的面积是多少?A. 25πB. 50πC. 100πD. 200π答案:B6. 一个多项式f(x) = x^2 - 5x + 6,它的根是什么?A. x = 1, 6B. x = 2, 3C. x = -2, 3D. x = 3, 2答案:D7. 如果一个函数f(x) = 2x - 3,那么f(5)的值是多少?A. 7B. 8C. 9D. 10答案:A8. 一个等差数列的首项是2,公差是3,那么第5项是多少?A. 14B. 17C. 20D. 23答案:B少?A. -1B. 0C. 1D. 2答案:C10. 一个二次方程x^2 - 4x + 4 = 0的判别式是多少?A. -12B. -8C. 0D. 8答案:C二、填空题(每题2分,共20分)11. 一个三角形的内角和为______。

答案:180°12. 如果一个数的平方根是4,那么这个数是______。

答案:1613. 一个数的对数函数log_a(x)的底数a的取值范围是______。

答案:a > 0且a ≠ 114. 一个圆的周长是2πr,其中r是圆的______。

答案:半径15. 一个函数f(x) = ax^2 + bx + c的顶点坐标是(-b/2a, ______)。

答案:c - b^2/4a______。

答案:-217. 一个数列{an}的通项公式是an = 2n + 1,那么第10项a10是______。

最新人教版中考数学专题训练(共11个专题 共108页 附解析)

最新人教版中考数学专题训练(共11个专题 共108页 附解析)

中考数学二轮复习专题训练汇总(共11个专题共108页附解析)目录专题一数与式专题二方程(组)与不等式(组)专题三三角函数专题四:函数及其图像专题五:三角形专题六:四边形专题七:圆专题八:第二轮专题复习《视图与变换》检测卷专题九:统计与概率专题十:《几何探究》检测卷专题十一:代数综合(二次函数综合)专题一 数与式一、选择题 1.12007-的相反数是( ) A .12007 B .12007- C .2017 D .2017- 2.下列各数中比1大的数是( )A .2B .0C .-1D .-33.计算5)3(+-的结果等于( )A .2B .2-C .8D .8-4.下列实数中,为有理数的是( )A .3B .πC .32D .15.据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为( )A .610826.0⨯B .71026.8⨯C .6106.82⨯D .81026.8⨯6. 下列计算正确的是( )A .B .C.D.7.化简2111x x x +--的结果是( ) A .x+1 B .x ﹣1 C .21x - D .211x x +- 8.实数,,,a b c d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .4a >-B .0bd > C. a b >D .0b c +>()()2222a a a +-=-()()2122a a a a +-=+-()222a b a b +=+()2222a b a ab b -=-+9.+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间10.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则193211111a a a a ++++ 的值为( )A .2120B .8461C .840589D .760421 二、填空题11.某微生物的直径为0.000 005 035m ,用科学记数法表示该数12.分解因式:x 3﹣9x= .13.计算:__________ 14.比较大小:0.5.(填“>”、“=”、“<”) 15.已知x 2y+xy 2的值为 .16.已知,则 .17.如果m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式m 2015+2016n+c 2017的值为三、解答题18.计算:6011cos 4520173--+-+=+-++1112x x xx 12-10,8a b a b +=-=22a b -=19.先化简,再求值:(2+x )(2-x)+(x-1)(x+5),其中23=x .20.化简:;21.先化简,再求值:211()a 22a a a -+÷++,其中a=2.22.先化简,在求值:,其中a=.23.先化简,再求值:223211(1)131x x x x x x -++⋅-+---,其中2cos603x =︒- 222442342a a a a a a-+-÷--+72专题一 数与式一、选择题 1.12007-的相反数是( ) A .12007 B .12007- C .2017 D .2017- 2.下列各数中比1大的数是( )A .2B .0C .-1D .-33.计算5)3(+-的结果等于( )A .2B .2-C .8D .8-4.下列实数中,为有理数的是( )A .3B .πC .32D .15.据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为( )A .610826.0⨯B .71026.8⨯C .6106.82⨯D .81026.8⨯6. 下列计算正确的是( )A .B .C.D.7.化简2111x x x +--的结果是( ) A .x+1 B .x ﹣1 C .21x - D .211x x +- 8.实数,,,a b c d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .4a >-B .0bd > C. a b >D .0b c +>()()2222a a a +-=-()()2122a a a a +-=+-()222a b a b +=+()2222a b a ab b -=-+9.+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间10.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则193211111a a a a ++++ 的值为( )A .2120B .8461C .840589D .760421 二、填空题11.某微生物的直径为0.000 005 035m ,用科学记数法表示该数12.分解因式:x 3﹣9x= .13.计算:__________ 14.比较大小:0.5.(填“>”、“=”、“<”) 15.已知x 2y+xy 2的值为 .16.已知,则 .17.如果m 是最大的负整数,n 是绝对值最小的有理数,c 是倒数等于它本身的自然数,那么代数式m 2015+2016n+c 2017的值为三、解答题18.计算:6011cos 4520173--+-+=+-++1112x x xx 12-10,8a b a b +=-=22a b -=19.先化简,再求值:(2+x )(2-x)+(x-1)(x+5),其中23=x .20.化简:;21.先化简,再求值:211()a 22a a a -+÷++,其中a=2.22.先化简,在求值:,其中a=.23.先化简,再求值:223211(1)131x x x x x x -++⋅-+---,其中2cos603x =︒- 222442342a a a a a a-+-÷--+72专题一一、 选择题1.A2.A3.A4.D5.B6.D7.A8.C9.B 10.C二、填空题11.610035.5-⨯ 12.x(x+3)(x-3) 13.1 14.> 15.23 16.80 17.0三、解答题 18.3119.化简为:4x-3 值为3 20.b a a+ 21. 化简为:12-+a a 值为:422.化简为:a-3 值为:2123.化简为:1-x x 值为:32专题二 方程(组)与不等式(组)一、选择题1.不等式6﹣4x≥3x﹣8的非负整数解为( )A .2个B .3个C .4个D .5个2.已知实数a ,b 满足a+1>b+1,则下列选项错误的为( )A .a >bB .a+2>b+2C .﹣a <﹣bD .2a >3b3.解分式方程13211x x -=--,去分母得( )A .12(1)3x --=-B .12(1)3x --=C.1223x --=- D .1223x -+=4.用配方法解方程0122=-+x x 时,配方结果正确的是( )A .2)2(2=+xB .2)1(2=+xC. 3)2(2=+x D .3)1(2=+x5.方程组⎩⎨⎧=+=1532y x x y 的解是( )A .⎩⎨⎧==32y xB .⎩⎨⎧==34y x C. ⎩⎨⎧==84y x D .⎩⎨⎧==63y x 6.一元二次方程22520x x --=的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C. 只有一个实数根 D .没有实数根7.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x 个,那么所列方程是( ) A.90606x x =+ B.90606x x=+ C.90606x x =- D.90606x x =- 8.已知45m <<,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( )A .1个B .2个 C.3个 D .4个9.若关于x 的方程x 2+mx+1=0有两个不相等的实数根,则m 的值可以是( )A .0B .﹣1C .2D .﹣310.关于x 的不等式组0230x a x a -≤⎧⎨+>⎩的解集中至少有5个整数解,则正数a 的最小值是( ) A .3 B .2 C. 1 D .23 二、填空题11.方程3x(x -1)=2(x -1)的根是12.关于x 的一元二次方06)1(22=-++-k k x x k 的一个根式0,则k 的值是_______.13.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少定为 元/千克14.关于x 的分式方程2322x m m x x++=--的解为正实数,则实数m 的取值范围是 .15.一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是 元.16.若关于x 、y 的二元一次方程组的解满足x+y >0,则m 的取值范围是 .三、解答题17.解不等式组:()21571023x x x x ⎧+>-⎪⎨+>⎪⎩18.小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?19.某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低元,每天可多售出2个.已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?2m 133x y x y ⎧-=+⎨+=⎩20.甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的43倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.21.某种为打造书香校园,计划购进甲乙两种规格的书柜放置新购置的图书,调查发现,若购买甲种书柜3个,乙种书柜2个,共需要资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多提供资金4320元,请设计几种购买方案供这个学校选择.专题二一、 选择题1.B2.D3.A4.B5.D6.B7.B8.B9.D 10.B二、填空题 11.32,121==x x 12.0 13.1014.m<6且m ≠2 15.1000 16.m>-2三、解答题17.x<218.解:设小明答对x 道题,则6x-2(25-x)>90 解得:2117>x因为x 为非负整数所以x 至少为18答:小明至少答对18道题才能获得奖品19.解:设玩具的销售单价为x 元时,厂家每天可获利润20000元,则(x-360)[160+2(480-x)]=20000解得46021==x x答:这种玩具的销售单价为460元时,厂家每天可获利润20000元.20.(1)解:公里)(803460=⨯(2) 解:设甲对平均每天筑路5x 公里,乙队平均每天筑路8x 公里,则20880560=-⨯x x解得:x=0.1经检验x=0.1是原方程的解答:乙队平均每天筑路0.1公里21.(1)解:甲种书柜每个的价格为x 元, 乙种书柜每个的价格为y 元,则⎩⎨⎧=+=+144034102023y x y x 解得:⎩⎨⎧==240180y x 答:甲种书柜每个的价格为180元, 乙种书柜每个的价格为240元。

2022-2023学年全国初中中考专题数学新人教版中考真卷(含答案解析考点)050237

2022-2023学年全国初中中考专题数学新人教版中考真卷(含答案解析考点)050237

2022-2023学年全国初中中考专题数学新人教版中考真卷考试总分:144 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. 一个数的相反数是3,则这个数是( )A.−13B.−3C.13D.3 2. 下列运算正确的是( )A.x 8÷x 4=x 2B.x +x 2=x 3C.x 3⋅x 5=x 15D.(−x 3y)2=x 6y 23. 已知一个正棱柱的俯视图和左视图如图,则其主视图为( )A.B.C.D.4. 某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是( )3−13−3133÷x 8x 4=x 2x +x 2=x 3⋅x 3x 5=x 15(−y x 3)2=x 6y 25劳动时间(小时)33.544.5人数1121A.中位数是4,平均数是3.75B.众数是4,平均数是3.75C.中位数是4,平均数是3.8D.众数是2,平均数是3.85. 方程x 2−4x =3的根的情况是( )A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个实数根6. 如图,点A ,B ,C ,D 在⊙O 上,∠AOC =120∘ ,点B 是弧AC 的中点,则∠D 的度数是( )A.60∘B.35∘C.30.5∘D.30∘7. 已知扇形AOB 的半径为6cm ,圆心角的度数为120∘,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为( )A.4πcm 2B.6πcm 2C.9πcm 2D.12πcm 28. 匀速地向一个容器内注水,最后把容器注满.在注水的过程中,水面高度h 随时间t 的变化规律如3 3.54 4.511214 3.754 3.754 3.82 3.8−4x =3x 2()A B C D ⊙O ∠AOC =120∘B AC ∠D 60∘35∘30.5∘30∘AOB6cm 120∘4πcm 26πcm 29πcm 212πcm 2h t图所示(图中OEFG 为一折线),那么这个容器的形状可能是下列图中的() A. B. C.D.9. 某校八年级学生乘车前往某景点旅游,现有两条路线可供选择:线路一全程30km ,线路二全程25km ;若走线路一平均车速是走线路二的1.5倍,所花时间比走线路二少用10min ,求走线路二的平均车速?设走线路二的平均车速为xkm/h ,则依题意所列方程正确的是( )A.25x −301.5x =10B.25x −301.5x =16C.30x −251.5x =10D.30x −251.5x =16 10. 抛物线y =−x 2+x +7与坐标轴的交点个数为( )A.3B.2C.1D.0二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )h tOEFG30km 25km 1.510min x km/h−=1025x 301.5x −=25x 301.5x 16−=1030x 251.5x −=30x 251.5x 16y =−+x +7x 232111. 使代数式√3−4xx −2有意义的x 的取值范围是________.12. 一粒纽扣式电池能够污染60升水,某市每年报废的纽扣式电池有近1200 000粒,如果废旧电池不回收,一年报废的电池所污染的水约有________升(用科学记数法表示).13. 如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若DE =2,CE =3,则矩形的对角线AC 的长为________.14. 古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2…,第n 个三角形数记为x n ,则x 10=________;x n +x n+1=________.15. 如图,点A(2,m)在第一象限,OA 与x 轴所夹的锐角为α,如果tanα=32.那么m =________.16. 如图,PA ,PB 分别与⊙O 相切于点A ,点B ,∠P =58∘ ,C 是⊙O 上异于A ,B 的点,则∠ACB 的度数为________.三、 解答题 (本题共计 10 小题 ,每题 9 分 ,共计90分 )17. 计算:√18−|1−√2|−(−12)0 3−4x −−−−−√x −2x 601200000()ABCD A C AC 12M N MN CD E DE =2CE =3AC 136101521x 1x 2n x n x 10+x n x n+1A(2,m)OAx αtan α=32m PA PB ⊙O A B ∠P =58∘C ⊙O A B ∠ACB−|1−|−(−18−−√2–√12)018. 先化简,再求值:(1−1x −2)÷x 2−6x +92x −4,其中x 的值从2,3,4中选取. 19. 在△ABC 中,沿着中位线DE 剪切后,用得到的△ADE 和四边形DBCE 可以拼成平行四边形DBCF ,剪切线与拼图如图1所示.仿照上述的方法,按要求完成下列操作设计,并在规定位置画出图示.(画图工具不限,剪切线用实线表示,拼接线用虚线表示,要求写出简要的说明)(1)将平行四边形ABCD 剪切成两个图形,再将它们拼成一个矩形,剪切线与拼图画在图2的位置;(2)将梯形ABCD 剪切成两个图形,再将它们拼成一个平行四边形,剪切线与拼图画在图3的位置. 20. 鸡西市体育考试已经纳入中考,学校为了解本届男学生的体育考试准备情况,随机抽取了部分男同学进行了1000米跑步测试.按照成绩分为“优秀”“良好”“合格”“不合格”四个等级,学校绘制了如下两幅尚不完整的统计图.请结合图中的信息,解答下列问题:(1)请补全两幅统计图;(2)学校初四有600名男生,请估计成绩未达到良好的有多少名?(3)某班甲、乙两名成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛,预赛分别在A ,B ,C 三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少? 21. 某中学九年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB 的高度.如图,他们先在点C 处测得建筑物AB 的顶点A 的仰角为30∘,然后向建筑物AB 前进20m 到达点D 处,又测得点A 的仰角为60∘,则建筑物AB 的高度是多少m ?(结果用根式表示) 22. 某健身馆普通票价为40元/张,6∼9月为了促销,新推出两种优惠卡:①金卡售价1200元/张,每次凭卡不再收费.②银卡售价300元/张,每次凭卡另收10元.普通票正常出售,两种优惠卡仅限6∼9月使用,不限次数.设健身x 次时,所需总费用为y 元.(1−)÷1x −2−6x +9x 22x −4x 234△ABC DE △ADE DBCE DBCF 1ABCD 2ABCD 31000(1)(2)600(3)1000A B CAB C AB A 30∘AB 20m D A 60∘AB m406∼91200300106∼9x y(1)分别写出选择银卡、普通票消费时,y 与x 之间的函数关系式;(2)在同一平面直角坐标系中,若三种消费方式对应的函数图象如图所示,请求出A ,B ,C 的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算. 23. 若函数y =3x 与y =x +2图象的一个交点坐标为(a,b),则1a −1b 的值是________. 24. 如图,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,过点B 的切线交OP 于点C .(1)求证:∠CBP =∠ADB ;(2)若OA =6,AB =4,求线段BP 的长. 25. 已知,△ABC 中,AB =AC ,∠BAC =2α∘,点D 为BC 边中点,连接AD ,点E 为AD 的中点,线段CE 绕点E 顺时针旋转2α∘得到线段EF ,连接FG ,FD .(1)如图1,当∠BAC =60∘时,请直接写出DFDC 的值;(2)如图2,当∠BAC =90∘时,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请写出正确的结论,并说明理由;(3)如图3,当∠BAC =2α∘时,请直接写出DFDC 的值.(用含α的三角函数表示) 26. 在平面直角坐标系中,抛物线y =ax 2−4ax +4a −1与x 轴交于点A 、B ,与y 轴变于点C,AB =2.(1)y x(2)A B C(3)y =3x y =x +2(a,b)−1a 1b AD ⊙O AB ⊙O OP ⊥AD OP AB P B OP C(1)∠CBP =∠ADB(2)OA =6AB =4BP△ABC AB AC ∠BAC 2α∘D BC AD E AD CE E 2α∘EF FG FD1∠BAC 60∘DF DC 2∠BAC 90∘3∠BAC 2α∘DF DC αy =a −4ax +4a −1x 2x A B y C ,AB =2(1)如图1,求抛物线的解析式;(2)如图2,点P 为第一象限的抛物线上一点,连接PA 并延长交y 轴于点D ,设点P 的横坐标为t(t >3),CD 的长为d ,求d 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)如图3,在(2)的条件下,连接CB ,过点P 作x 轴的垂线,交x 轴于点H ,交CB 的延长线于点G ,连接DC ,点F 为抛物线上一点,点E 为DG 的中点,分别连接DF 、EF 、CF ,若∠EFD +∠CDF=90∘,CF:DF =√5:2,求点F 的坐标.(1)1(2)2P PA y D P t (t >3)CD d d t t(3)32CB P x x H CB G DC F E DG DF EF CF ∠EFD +∠CDF =,CF :DF =:290∘5–√F参考答案与试题解析2022-2023学年全国初中中考专题数学新人教版中考真卷一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】相反数【解析】依据绝对值、相反数的定义求解即可.【解答】解:−3的相反数是3.故选B.2.【答案】D【考点】整式的混合运算【解析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【解答】解:∵x 8÷x4=x4,故选项A错误;∵x+x 2不能合并,故选项B错误;∵x 3⋅x5=x8,故选项C错误;∵(−x 3y)2=x6y2,故选项D正确.故选D.3.【答案】D【考点】简单组合体的三视图由三视图判断几何体【解析】首先根据俯视图和左视图判断该几何体,然后确定其主视图即可;【解答】根据此正棱柱的俯视图和左视图得到该几何体是正五棱柱,其主视图应该是矩形,而且有看到两条棱,背面的棱用虚线表示,4.【答案】C【考点】中位数众数算术平均数【解析】根据众数、平均数和中位数的概念求解.【解答】解:这组数据中4出现的次数最多,∴众数为4,∵共有5个人,∴第3个人的劳动时间为中位数,∴中位数为4,平均数为:3+3.5+2×4+4.55=3.8.故选C.5.【答案】A【考点】根的判别式【解析】判断上述方程的根的情况,只要看根的判别式△=b 2−4ac的值的符号就可以了.【解答】解:由题意,方程变形为x 2−4x −3=0,∵a =1,b =−4,c =−3,∴Δ=b 2−4ac =(−4)2−4×1×(−3)=28>0,∴方程有两个不相等的实数根.故选A .6.【答案】D【考点】圆周角定理圆心角、弧、弦的关系【解析】由点B 是弧AC 的中点,根据等弧所对的圆心角相等,可得∠AOB =∠BOC =60∘,根据在同圆或等圆中,同弧所对的圆周角等于圆心角的一半,即可求得答案.【解答】解:如图,连结OB ,∵点B 是弧AC 的中点,∴^AB =^BC ,∴∠AOB =∠BOC.∵∠AOC =120∘,∴∠AOB =∠BOC =12×120∘=60∘.∵^AB 所对的圆周角是^AB 所对圆心角的一半,∴∠D =12∠AOB =30∘.故选D .7.【答案】D【考点】扇形面积的计算【解析】根据扇形的面积公式,再把相应数值代入求解即可.【解答】解:扇形的面积计算公式为:nπr 2360,故圆锥的侧面积=nπr 2360=12πcm2.故选D.8.【答案】B【考点】函数的图象【解析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:由折线图判断每一段函数图象的倾斜程度,可判断水面上升的速度,水面上升越快,容器越细,反之,水面上升越慢,容器就越粗.由图象可知,OE段水面上升最快,EF段水面上升最慢,FG段水面上升较快,所以容器的底端最细,中间最粗,只有B符合题意.故选B.9.【答案】B【考点】由实际问题抽象出分式方程【解析】走线路二的平均车速为x千米/小时,则走线路二的平均车速为1.5x千米/时;路程都是30千米;由时间=路程速度,时间差为10分钟,再建立等量关系,列方程.【解答】解:设走线路二的平均车速为xkm/h,则走线路一的平均车速为是1.5xkm/h,根据题意得出:301.5x=25x−1060,即:25x−301.5x=16.故选B.10.【答案】A【考点】抛物线与x 轴的交点【解析】此题暂无解析【解答】解:当x =0时,y =7,则与y 轴的交点坐标为(0,7),当y =0时,−x 2+x +7=0,Δ=12−4×(−1)×7=29>0,所以,该方程有两个不相等的实数根,即抛物线y =−x 2+x +7与x 轴有两个交点.综上所述,抛物线y =−x 2+x +7与坐标轴的交点个数是3个.故选A .二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )11.【答案】x ≤34【考点】分式有意义、无意义的条件二次根式有意义的条件【解析】要让代数式有意义,则分母不为零且根号下的式子大于等于零,两者结合求解即可.【解答】解:依题意可知{3−4x ≥0,x −2≠0,解得x ≤34.故答案为:x ≤34.12.【答案】7.2×107【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将60×1200000用科学记数法表示为7.2×107.故答案为:7.2×107.13.【答案】√30【考点】作图—基本作图矩形的性质勾股定理线段垂直平分线的性质【解析】连接AE,如图,利用基本作图得到MN垂直平分AC,则EA=EC=3,然后利用勾股定理先计算出AD,再计算出AC.【解答】解:连接AE,如图所示,由作法得MN垂直平分AC,∴EA=EC=3,在Rt△ADE中,AD=√32−22=√5,在Rt△ADC中,AC=√(√5)2+52=√30.故答案为:√30.14.【答案】55,(n+1)2【考点】数学常识规律型:图形的变化类规律型:点的坐标规律型:数字的变化类【解析】根据三角形数得到x1=1,x2=3=1+2,x3=6=1+2+3,x4=10=1+2+3+4,x5=15=1+2+3+4+5,即三角形数为从1到它的顺号数之间所有整数的和,据此求解可得.【解答】∵x1=1,x2=3=1+2,x3=6=1+2+3,x4=10=1+2+3+4,x5=15=1+2+3+4+5,…∴x10=1+2+3+4+5+6+7+8+9+10=55,x n=1+2+3+...+n=n(n+1)2,x n+1=(n+1)(n+2)2,则x n+x n+1=n(n+1)2+(n+1)(n+2)2=(n+1)2,15.【答案】3【考点】坐标与图形性质解直角三角形【解析】如图,作AE⊥x轴于E.根据正切函数的定义构建关系式即可解决问题.【解答】如图,作AE⊥x轴于E.∵A(2,m),∴OE=2,AE=m,∵tanα=AEOE=32,∴m2=32,∴m=3,61∘或119∘【考点】圆的综合题切线的性质圆周角定理【解析】根据切线的性质、圆周角定理及四边形的内角和来解答即可.【解答】解:如图(1),连接OA,OB.在四边形PAOB中,由于PA,PB分别切⊙O于点A,B,则∠OAP=∠OBP=90∘.由四边形的内角和定理,得∠APB+∠AOB=180∘.∵∠P=58∘,∴∠AOB=122∘.又∵∠ACB=12∠AOB,∴∠ACB=61∘;如图(2),连接OA,OB,作圆周角∠ADB,在四边形PAOB中,由于PA,PB分别切⊙O于点A,B,则∠OAP=∠OBP=90∘.由四边形的内角和定理,得∠P+∠AOB=180∘.∵∠P=58∘,∴∠AOB=122∘,∴∠ADB=12∠AOB=61∘,∴∠ACB=180∘−∠ADB=119∘,综上所述,∠ACB=61∘或119∘.故答案为:61∘或119∘.三、解答题(本题共计 10 小题,每题 9 分,共计90分)原式=3√2−(√2−1)−1=3√2−√2+1−1=2√2.【考点】实数的运算零指数幂【解析】直接利用二次根式的性质以及绝对值的性质、零指数幂的性质分别化简得出答案.【解答】原式=3√2−(√2−1)−1=3√2−√2+1−1=2√2.18.【答案】解:原式=x−3x−2⋅2(x−2)(x−3)2=2x−3.∵分式的分母不能为0,∴x取4,原式=2.【考点】分式的化简求值【解析】【解答】解:原式=x−3x−2⋅2(x−2)(x−3)2=2x−3.∵分式的分母不能为0,∴x取4,原式=2.19.【答案】解:(1)如图:过点A作AE⊥BC,再把△ABC剪切,然后移到△DCF的位置即可;(2)如图:过AB的中点作GF//DC,再把△BGF剪切,然后旋转到△AEG的位置即可;【考点】图形的剪拼【解析】(1)过点A作AE⊥BC,再把△ABC剪切,然后移到△DCF的位置即可;(2)过AB的中点作GF//DC,再把△BGF剪切,然后旋转到△AEG的位置即可;【解答】解:(1)如图:过点A作AE⊥BC,再把△ABC剪切,然后移到△DCF的位置即可;(2)如图:过AB的中点作GF//DC,再把△BGF剪切,然后旋转到△AEG的位置即可;20.【答案】解:(1)抽取的学生数为16÷40%=40(人).抽取的学生中合格的人数为40−12−16−2=10(人)合格人数所占百分比为10÷40×100%=25%,优秀人数所占百分比为12÷40×100%=30%条形统计图补图如图所示.扇形统计图补图如图所示.(3)成绩未达到良好的男生所占比例为25%+5%=30%所以600名初四男生中成绩未达到良好的有600×30%=180(名)(3)如图由树状图可知,一共有9种等可能的结果,甲、乙两人恰好分在同一组的可能有3种,所以甲、乙两人恰好分在同一组的概率为P=13.【考点】列表法与树状图法频数(率)分布直方图扇形统计图用样本估计总体【解析】此题暂无解析【解答】解:(1)抽取的学生数为16÷40%=40(人).抽取的学生中合格的人数为40−12−16−2=10(人)合格人数所占百分比为10÷40×100%=25%,优秀人数所占百分比为12÷40×100%=30%条形统计图补图如图所示.扇形统计图补图如图所示.(3)成绩未达到良好的男生所占比例为25%+5%=30%所以600名初四男生中成绩未达到良好的有600×30%=180(名)(3)如图由树状图可知,一共有9种等可能的结果,甲、乙两人恰好分在同一组的可能有3种,所以甲、乙两人恰好分在同一组的概率为P=13.21.【答案】解:设DB=xm,在Rt△ABD中,AB=xtan60∘=√3xm,√3xx+20=tan30∘,即√3xx+20=√33,在Rt△ABC中,整理得3x=x+20,解得x=10,则AB=10√3m.故建筑物AB的高度是10√3m.【考点】解直角三角形的应用-仰角俯角问题【解析】设DB=xm,在Rt△ADB中,得到AB=xtan60∘=√3xm,再在Rt△ACB中,得到√3xx+20=tan30∘,据此即可解答.【解答】解:设DB=xm,在Rt△ABD中,AB=xtan60∘=√3xm,√3xx+20=tan30∘,即√3xx+20=√33,在Rt△ABC中,整理得3x=x+20,解得x=10,则AB=10√3m.故建筑物AB的高度是10√3m.22.【答案】解:(1)根据题意可得:银卡消费:y=10x+300,普通消费:y=40x.(2)令y=10x+300中的x=0,则y=300,故点A的坐标为(0,300),联立{y=40x,y=10x+300,解得:{x=10,y=400,故点B的坐标为(10,400).令y=1200代入y=10x+300,则x=90,故点C的坐标为(90,1200).综上所述:点A的坐标为(0,300),点B的坐标为(10,400),点C的坐标为(90,1200).(3)根据函数图象,可知:当0<x<10时,选择购买普通票更合算;当x=10时,选择购买银卡、普通票更合算;当10<x<90时,选择购买银卡更合算;当x=90时,选择购买银卡、金卡更合算;当x>90时,选择购买金卡更合算.【考点】一次函数的应用一元一次不等式的实际应用【解析】(1)理解题目意思:健身馆普通票价为40元/张,没有其他费用了,健身的次数是x次,那么普通的消费就可以列出来;而银卡售价300元/张,每次凭卡另收10元,健身的次数是x次,那么银卡票消费也可以用一元一次方程列出来;(2)能够根据图象,用二次一方程组的知识求交点坐标,理解一次函数的特征,看图求坐标;(3)根据一次函数的特征来比较数的大小;当x的值为交点时,它们的费用是相同的;当小于交点的x值时,位于下面的函数图象,其y值最小;当大于交点的x值时,位于下面的函数图象,其y值最小.【解答】解:(1)根据题意可得:银卡消费:y=10x+300,普通消费:y=40x.(2)令y=10x+300中的x=0,则y=300,故点A的坐标为(0,300),联立{y=40x,y=10x+300,解得:{x=10,y=400,故点B的坐标为(10,400).令y=1200代入y=10x+300,则x=90,故点C的坐标为(90,1200).综上所述:点A的坐标为(0,300),点B的坐标为(10,400),点C的坐标为(90,1200).(3)根据函数图象,可知:当0<x<10时,选择购买普通票更合算;当x=10时,选择购买银卡、普通票更合算;当10<x<90时,选择购买银卡更合算;当x=90时,选择购买银卡、金卡更合算;当x>90时,选择购买金卡更合算.23.【答案】23【考点】反比例函数与一次函数的综合【解析】此题暂无解析【解答】解:∵函数y=3x与y=x+2的交点坐标为(a,b),∴b=3a,b=a+2,即ab=3,b−a=2,∴1a−1b=b−aab=23.故答案为:23.24.【答案】(1)证明:连接OB,∵AD是⊙O的直径,∴∠ABD=90∘,∴∠A+∠ADB=90∘.∵CB是⊙O的切线,∴OB⊥BC,∴∠OBA+∠CBP=90∘,∵OA=OB,∴∠OBA=∠OAB,∴∠CBP=∠ADB.(2)解:∵∠ABD=90∘,OP⊥AD,∴∠ABD=∠AOP=90∘,∴∠D=90∘−∠A,∠P=90∘−∠A,∴∠D=∠P,∴△ABD∽△AOP,∴ADAP=ABAO,即124+BP=46,解得:BP=14.【考点】切线的性质相似三角形的性质与判定【解析】无无【解答】(1)证明:连接OB,∵AD是⊙O的直径,∴∠ABD=90∘,∴∠A+∠ADB=90∘.∵CB是⊙O的切线,∴OB⊥BC,∴∠OBA+∠CBP=90∘,∵OA=OB,∴∠OBA=∠OAB,∴∠CBP=∠ADB.(2)解:∵∠ABD=90∘,OP⊥AD,∴∠ABD=∠AOP=90∘,∴∠D=90∘−∠A,∠P=90∘−∠A,∴∠D=∠P,∴△ABD∽△AOP,∴ADAP=ABAO,即124+BP=46,解得:BP=14.25.【答案】取AC的中点M,连接EM,BF,∵AB =AC ,∠BAC =60∘,∴△ABC 为等边三角形,∵线段CE 绕点E 顺时针旋转60∘得到线段EF ,∴EC =EF ,∠CEF =60∘,∴△EFC 都是等边三角形,∴AC =BC ,EC =CF ,∠ACB =∠ECF =60∘,∴∠ACE =∠BCF ,∴△ACE ≅△BCF(SAS),∵D 是BC 的中点,M 是AC 的中点,∴DF =EM ,∵E 是AD 的中点,M 是AC 的中点,∴EM =12CD ,∴DFDC =12;不成立,DFDC =√22.证明:连接BF ,取AC 的中点M ,连接EM ,∵E 是AD 的中点,∴EM//BC ,∴∠AEM =∠ADC ,∵AB =AC ,D 是BC 中点,∴AD ⊥BC ,∴∠ADC =90∘,∴∠AEM =90∘,当∠BAM =∠CEF =90∘时,△ABC 和△CEF 为等腰直角三角形,∴∠ACB =∠ECF =45∘,∴∠ACE =∠BCF ,∴ACBC =CECF =√22,∴△ACE ∽△BCF ,∴∠CBF =∠CAE =α,∴AEBF =ACBC =√22,∵AMBD =12AC 12BC =√22,∴AEBF =AMBD∴△BDF ∽△AME ,∴∠BFD =∠AEM =90∘,在Rt △BFD 中∴BFBD =sinα=sin45=√22,∴DFBD =DFDC =√22;DFDC =sinα.连接BF ,取AC 的中点M ,连接EM ,同(2)可知EC =EF ,∠BAC =∠FEC =2α,∵ABAC =EFEC ,∴△BAC ∽△FEC ,∴∠ACB =∠BCF ,ACBC =ECCF ,∴∠ACE =∠BCF ,∴△ACE ∽△BCF ,∵D 为BC 的中点,M 为AC 的中点,∴DFEM =BCAC =2DC2AM =DCAM ,∴DFDC =EMAM ,∵E 为AD 中点,M 为AC 的中点,∴EM//DC ,∵AB =AC ,D 为BC 的中点,∴AD ⊥BC ,∴AE ⊥EM ,∴sinα=EMAM ,∴DFDC =sinα.【考点】几何变换综合题【解析】(1)取AC 的中点M ,连接EM ,BF ,可知△ABC 和△EFC 都是等边三角形,证明△ACE ≅△BCF(SAS),可得DF =EM ,由中位线定理得出EM =12CD ,则DFDC =12;(2)连接BF ,取AC 的中点M ,连接EM ,证明△ACE ∽△BCF ,可得∠CBF =∠CAE =α,证明△BDF ∽△AME ,可得出∠BFD =∠AEM =90∘,得出DFDC =√22.(3)连接BF ,取AC 的中点M ,连接EM ,证明△BAC ∽△FEC ,得出∠ACB =∠BCF ,ACBC =ECCF ,证明△ACE ∽△BCF ,得出sinα=EMAM ,则得出DFDC =sinα.【解答】取AC 的中点M ,连接EM ,BF ,∵AB =AC ,∠BAC =60∘,∴△ABC 为等边三角形,∵线段CE 绕点E 顺时针旋转60∘得到线段EF ,∴EC =EF ,∠CEF =60∘,∴△EFC 都是等边三角形,∴AC =BC ,EC =CF ,∠ACB =∠ECF =60∘,∴∠ACE =∠BCF ,∴△ACE ≅△BCF(SAS),∵D 是BC 的中点,M 是AC 的中点,∴DF =EM ,∵E 是AD 的中点,M 是AC 的中点,∴EM =12CD ,∴DFDC =12;不成立,DFDC =√22.证明:连接BF ,取AC 的中点M ,连接EM ,∵E 是AD 的中点,∴EM//BC ,∴∠AEM =∠ADC ,∵AB =AC ,D 是BC 中点,∴AD ⊥BC ,∴∠ADC =90∘,∴∠AEM =90∘,当∠BAM =∠CEF =90∘时,△ABC 和△CEF 为等腰直角三角形,∴∠ACB =∠ECF =45∘,∴∠ACE =∠BCF ,∴ACBC =CECF =√22,∴△ACE ∽△BCF ,∴∠CBF =∠CAE =α,∴AEBF =ACBC =√22,∵AMBD =12AC 12BC =√22,∴AEBF =AMBD∴△BDF ∽△AME ,∴∠BFD =∠AEM =90∘,在Rt △BFD 中∴BFBD =sinα=sin45=√22,∴DFBD =DFDC =√22;DFDC =sinα.连接BF ,取AC 的中点M ,连接EM ,同(2)可知EC =EF ,∠BAC =∠FEC =2α,∵ABAC =EFEC ,∴△BAC ∽△FEC ,∴∠ACB =∠BCF ,ACBC =ECCF ,∴∠ACE =∠BCF ,∴△ACE ∽△BCF ,∵D 为BC 的中点,M 为AC 的中点,∴DFEM =BCAC =2DC2AM =DCAM ,∴DFDC =EMAM ,∵E 为AD 中点,M 为AC 的中点,∴EM//DC ,∵AB =AC ,D 为BC 的中点,∴AD ⊥BC ,∴AE ⊥EM ,∴sinα=EMAM ,∴DFDC =sinα.26.【答案】(1)解:y =ax 2−4ax +4a −1配方得y =a(x −2)2−1∴抛物线的对称轴为直线x =2∵AB =2,点A 、B 关于直线x =2对称,∴A(1,0),B(3,0).将点A(1,0)代人抛物线解析式得a =1,∴抛物线的解析式为y =x 2−4x +3.(2)过点P 作PH ⊥x 轴于点H .∵点P 在抛物线y =x 2−4x +3上,∴点P 的坐标为(t,t 2−4t +3)∴PH =t 2−4t +3,OH =t∴AH =t −1.∵∠PAH =∠OAD ,∴tan ∠PAH =tan ∠OAD .∴PHAH =ODOA .∴t 2−4t +3t −1=OD1.∴OD =t −3.当x =0时,y =3.∴OC =3.∴CD =3+t −3=t .∴d =t.(3)设直线BC 解析式为y =kx +b(k ≠0)∵B(3,0),C(0,3)∴{0=3k +b,b =3.∴y =−x +3.∵PH ⊥x 轴,∴点G 横坐标为t .∵点G 在直线BC 上,∴点G 纵坐标为3−t .∴GH =t −3=OD .∵∠DOH +∠GHO =180∘,∴OD//GH .∴四边形ODGH 为平行四边形,∵ ∠DOH =90∘∴.四边形ODCH 为矩形.∴∠CDG =90∘,DG =OH =t.∵CD =t ,∴CD =DG.连接FG ,过点C 作CM ⊥DF 于点M .∵∠FDC +∠EFD =90∘,∠FDC +∠FDE =90∘,∴∠EDF =∠EFD. ∴DE =EF.∵DE =EG ,∴EF =EG.∴∠EFG =∠EGF.∵∠EDF +∠EFD +∠EFG +∠EGF =180∘,∴∠EFD +∠EFG =90∘即∠DFG =90∘.∴∠FDG +∠FGD =90∘∵∠FDG +∠MDC =90∘,∴.∠FGD =∠MDC.∵∠DFG =∠DMC =90∘,∴△CMD ≅△DFG(AAS)∴CM =DF,DM =FG.设CM =DF =2m,CF =√5m 勾股定理得FM =m.∴DM =FG =m.∴DC =DG =√5m.过点F 作FQ ⊥DG 于点Q .∵tan ∠FDQ =FQDQ =FGFD =12,DF =2m,FQ 2+DQ 2=FD 2,∴FQ =2√55m,FN =DQ =4√55m.∴DN =FQ =2√55m.∴CN =3√55m.∴点F 的坐标为(4√55m,3−3√55m )将点F 坐标代入抛物线y =x 2−4x +3中,解得m 1=0(舍去),m 2=13√516.∴点F (134,916)【考点】二次函数综合题【解析】此题暂无解析【解答】(1)解:y =ax 2−4ax +4a −1配方得y =a(x −2)2−1∴抛物线的对称轴为直线x =2∵AB =2,点A 、B 关于直线x =2对称,∴A(1,0),B(3,0).将点A(1,0)代人抛物线解析式得a =1,∴抛物线的解析式为y =x 2−4x +3.(2)过点P 作PH ⊥x 轴于点H .∵点P 在抛物线y =x 2−4x +3上,∴点P 的坐标为(t,t 2−4t +3)∴PH =t 2−4t +3,OH =t∴AH =t −1.∵∠PAH =∠OAD ,∴tan ∠PAH =tan ∠OAD .∴PHAH =ODOA .∴t 2−4t +3t −1=OD1.∴OD =t −3.当x =0时,y =3.∴OC =3.∴CD =3+t −3=t .∴d =t .(3)设直线BC 解析式为y =kx +b(k ≠0)∵B(3,0),C(0,3)∴{0=3k +b,b =3.∴y =−x +3.∵PH ⊥x 轴,∴点G 横坐标为t .∵点G 在直线BC 上,∴点G 纵坐标为3−t .∴GH =t −3=OD .∵∠DOH +∠GHO =180∘,∴OD//GH .∴四边形ODGH 为平行四边形,∵ ∠DOH =90∘∴.四边形ODCH 为矩形.∴∠CDG =90∘,DG =OH =t.∵CD =t ,∴CD =DG.连接FG ,过点C 作CM ⊥DF 于点M .∵∠FDC +∠EFD =90∘,∠FDC +∠FDE =90∘,∴∠EDF =∠EFD. ∴DE =EF.∵DE =EG ,∴EF =EG.∴∠EFG =∠EGF.∵∠EDF +∠EFD +∠EFG +∠EGF =180∘,∴∠EFD +∠EFG =90∘即∠DFG =90∘.∴∠FDG +∠FGD =90∘∵∠FDG +∠MDC =90∘,∴.∠FGD =∠MDC.∵∠DFG =∠DMC =90∘,∴△CMD ≅△DFG(AAS)∴CM =DF,DM =FG.设CM =DF =2m,CF =√5m 勾股定理得FM =m.∴DM =FG =m.∴DC =DG =√5m.过点F 作FQ ⊥DG 于点Q .∵tan ∠FDQ =FQDQ =FGFD =12,DF =2m,FQ 2+DQ 2=FD 2,∴FQ =2√55m,FN =DQ =4√55m.∴DN =FQ =2√55m.∴CN =3√55m.∴点F 的坐标为(4√55m,3−3√55m )将点F 坐标代入抛物线y =x 2−4x +3中,解得m 1=0(舍去),m 2=13√516.∴点F (134,916)。

2022-2023学年新人教版中考专题数学中考真卷(含解析)

2022-2023学年新人教版中考专题数学中考真卷(含解析)

2022-2023学年初中中考专题数学中考真卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:107 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 9 小题 ,每题 3 分 ,共计27分 )1. 下列运算正确的是A.B.C.D.2.如图,,于点,,则的度数为( )A. B.C.D. 3. 在四张完全相同的卡片上,分別画有等腰三角形、平行四边形、矩形、圆,现从中随机抽取一张,卡片上的图形既是轴对称图形又是中心对称图形的概率是( ) A.B.C.( )+a 2a 3=a 52⋅3a 3a 3=6a 3(3ab 2)2=6a 2b 4(a +b)(a −b)=−a 2b 2AB//CD GH ⊥EF G ∠1=28∘∠2128∘152∘108∘118∘4. 某校八年级学生乘车前往某景点旅游,现有两条路线可供选择:线路一全程,线路二全程;若走线路一平均车速是走线路二的倍,所花时间比走线路二少用,求走线路二的平均车速?设走线路二的平均车速为,则依题意所列方程正确的是( )A.B.C.D.5. 已知圆锥的底面半径为,母线长为,则圆锥的侧面展开图的圆心角为( )A.B.C.D.6. 如图,在中,中线,交于点,过点作,则与的面积比为( )A.B.C.D.7. 在菱形中,,,则对角线的长等于 30km 25km 1.510min xkm/h −=1025x 301.5x −=25x 301.5x 16−=1030x 251.5x −=30x 251.5x 1641260∘90∘120∘216∘△ABC AE CD G G FG//BC △AFG △AEC 23493459ABCD AB =5∠B :∠BCD =1:2AC ()B.C.D.8. 已知二次函数,关于此函数的图象及性质,下列结论中不一定成立的是()A.该图象的顶点坐标为B.该图象与轴的交点为,C.若该图象经过点,则一定经过点D.当时,随的增大而增大9. 如图,在平面直角坐标系中,直线分别与轴轴交于点和点,将直线绕点顺时针旋转后,所得直线与轴的交点坐标为( )A.B.C.D.卷II (非选择题)二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )10. 精确到万位用科学记数法表示为________.101520y=a −2ax −3a(a ≠0)x 2(1,−4a)x (−1,0)(3,0)(−2,5)(4,5)x >1y x xOy y =−x +332x y A B AB A 90∘y (0,−1)(0,−)23(0,−)43(0,−)326326000−2x +12xm −18x211. 因式分解:=________.12. 如图,在平面直角坐标系中,将各顶点的横、纵坐标都乘以一个相同的数得到,若,,,则点的坐标为________.13. 某篮球队准备选拔一名队员,教练对甲、乙两名同学进行次分投篮测试,每人每次投个球.甲次投篮所投中的个数分别为,乙次投篮所投中的次数分别为,则甲,乙二人投篮水平较整齐的是________(填“甲”或“乙”).14. 我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?”大意:“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有尺,牵索沿地面退行,在离木柱根部尺处时,绳索用尽.问绳索长是多少?”示意图如图所示,若设绳索长为尺,根据题意,可列方程为________.15. 在半径为 的圆内有两条平行弦,一条弦长为,另一条弦长为,则两条平行弦之间的距离为________.16. 如图,在中,,.按以下步骤作图:①以点为圆心,小于的长为半径画弧,分别交,于点,;②分别以点,为圆心,大于的长为半径画弧,两弧相交于点;③作射线交边于点.则的度数为________.17. 方程组的解是________;直线与直线的交点是________.三、 解答题 (本题共计 7 小题 ,每题 8 分 ,共计56分 )18.−2x +12xm −18x m 2△OBC △OED B (1,2)C (2,0)D(4,0)E 531056,7,8,7,653,7,7,8,938x 5cm 6cm 8cm △ABC ∠C =90∘∠CAB =50∘A AC AB AC E F E F EF 12G AG BC D ∠ADC {y =3x −1,y =x +3y =3x −1y =x +3(1)−+4x −3=02解方程:;计算:. 19. 某中学采用随机的方式对学生掌握安全知识的情况进行测评,并按成绩高低分成优、良、中、差四个等级进行统计,绘制了下面两幅尚不完整的统计图. 请根据有关信息解答:接受测评的学生共有________人,扇形统计图中“优”部分所对应扇形的圆心角为________°,并补全条形统计图;若该校共有学生人,请估计该校对安全知识达到“良”及“良”以上程度的人数;测评成绩前五名的学生恰好个女生和个男生,现从中随机抽取人参加市安全知识竞赛,请用树状图或列表法求出抽到个女生的概率. 20. 如图,矩形接于半径为的,=,延长到,使,连接.(1)求证:直线是的切线;(2)连接交于,求的长.21. 如图,一次函数=与反比例函数的图象交于点和.(1)求一次函数和反比例函数的解析式;(2)点是直线上在第一象限内的一个点,过点作轴于点,连接,令的面积为,当时,直接写出点横坐标的取值范围. 22. 某楼盘准备以每平方米元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米元的均价开盘销售.求平均每次下调的百分率.(1)−+4x −3=0x 2(2)3tan +cos −(+1+30∘60∘2–√)02−2(1)(2)2000(3)3222ABCD 2.5⊙O AB 4BA E AE =94ED ED ⊙O EO AD F FO y −x +b y =(x >0)k xA(m,3)B(3,1)P(x,y)AB P PD ⊥x D OP △POD S S >k 2P x 60004860(1)(2)某人准备以开盘价均价购买一套平方米的住房,开发商给予以下两种优惠方案以供选择:①打折销售;②不打折,一次性送装修费(每平方米元),试问哪种方案更优惠? 23. 如图,在矩形中,,,点从点出发,以秒的速度沿向终点运动,设点的运动时间为秒.(1)当时,求证:.(2)当点从点开始运动的同时,点从点出发,以秒的速度沿向终点运动,是否存在这样的值,使得与全等?若存在,请求出的值;若不存在,请说明理由.24. 如图,抛物线与直线相交于,两点,与轴相交于点 ,其中点的横坐标为.计算,的值;求出抛物线与轴的交点坐标.(2)1009.880ABCD AB =8cm BC =12cm P B 2cm/BC C P t t =3△ABP ≅△DCP P B Q C v cm/CD D v △ABP △PQC v y =a +c (a ≠0)x 2y =3A B y C(0,−1)A −4(1)a c (2)y =a +c x 2x参考答案与试题解析2022-2023学年初中中考专题数学中考真卷一、 选择题 (本题共计 9 小题 ,每题 3 分 ,共计27分 )1.【答案】D【考点】平方差公式合并同类项幂的乘方与积的乘方同底数幂的乘法【解析】根据合并同类项法则,单项式乘以单项式,幂的乘方和积的乘方,平方差公式逐个判断即可.【解答】解:,和不能合并,故本选项不符合题意;,,故本选项不符合题意;, ,故本选项不符合题意;, ,故本选项符合题意.故选.2.【答案】D【考点】平行线的性质三角形的外角性质【解析】设直线与相交于点,首先根据三角形外角的性质求出的度数,然后根据两直线平行同位角相等即可求出的度数.【解答】A a 2a 3B 2⋅3=6a 3a 3a 6C =9(3a )b 22a 2b 4D (a +b)(a −b)=−a 2b 2D AB CD M ∠AMF ∠2AB解:如图,设直线与相交于点.∵,∴,∴.∵,∴.故选.3.【答案】B【考点】中心对称图形概率公式轴对称图形【解析】由等腰三角形、平行四边形、矩形、圆中是轴对称图形和中心对称图形的有矩形、圆,直接利用概率公式求解即可求得答案.【解答】解:等腰三角形、平行四边形、矩形、圆中是中心对称图形的有平行四边形、矩形、圆,是轴对称图形的有等腰三角形、矩形、圆,…既是轴对称又是中心对称图形的有矩形、圆,.现从中随机抽取一张,卡片上画的图形恰好是中心对称图形的概率是故选:.4.【答案】B【考点】由实际问题抽象出分式方程【解析】AB EF M GH ⊥EF ∠HGM =90∘∠AMF =+∠1=+=90∘90∘28∘118∘AB//CD ∠2=∠AMF =118∘D 12B走线路二的平均车速为千米/小时,则走线路二的平均车速为千米/时;路程都是千米;由时间,时间差为分钟,再建立等量关系,列方程.【解答】解:设走线路二的平均车速为/,则走线路一的平均车速为是/,根据题意得出:,即:.故选.5.【答案】C【考点】圆锥的计算【解析】根据弧长圆锥底面周长,圆心角弧长母线长计算.【解答】解:由题意知:弧长圆锥底面周长,扇形的圆心角弧长母线长.故选.6.【答案】B【考点】三角形的面积相似三角形的判定与性质三角形的重心相似三角形的性质与判定【解析】先得出点是重心,再根据相似三角形的判定和性质得出,即可解答.【解答】x 1.5x 30=路程速度10xkm h 1.5xkm h =−301.5x 25x 1060−=25x 301.5x 16B ==8π=×180÷÷π==2×4π=8π(cm)=×180÷÷π=8π×180÷12π=120∘C G =S △AFG S △ABE 49AE CD △ABC解:∵线段,是的中线,是的重心,,.,∴,∴ .是的中点,,,∴ .故选.7.【答案】A【考点】等边三角形的性质与判定菱形的性质【解析】根据题意可得出,结合菱形的性质可得,判断出是等边三角形即可得到的长.【解答】解:如图,∵四边形是菱形,∴,.∵,∴,∴是等边三角形,∴.故选.8.【答案】D【考点】AE CD △ABC ∴G △ABC =S △ABE S △ACE ∴=AG AE 23∵FG//BE △AFG ∼△ABE ==S △AFG S △ABE ()AG AE249∵E BC ∴BE =CE ∴S △ABE =S △AEC =S △AFG S △AEC 49B ∠B =60∘BA =BC △ABC AC ABCD ∠B +∠BCD =180∘AB =BC ∠B :∠BCD =1:2∠B =60∘△ABC AB =BC =AC =5A抛物线与x 轴的交点二次函数图象上点的坐标特征二次函数图象与系数的关系【解析】根据二次函数的图象与性质即可求出答案.【解答】解:,令,解得或,∴抛物线与轴的交点坐标为与,故成立;∴抛物线的对称轴为:,令,代入,∴,∴顶点坐标为,故成立;由于点与关于直线对称,∴若该图象经过点,则一定经过点,故成立;当,时,随着的增大而增大,当,时,随着的增大而减小,故不一定成立.故选.9.【答案】C【考点】一次函数图象上点的坐标特点相似三角形的性质与判定一次函数图象与几何变换【解析】先求得直线分别与轴轴交于点,的坐标,即可求得,,然后根据三角形相似即可求得,即可求得新直线与轴的交点坐标.【解答】解:如图,设旋转后的直线与轴的交点为,y=a(−2x −3)x 2=a(x −3)(x +1)y=0x=3x=−1x (3,0)(−1,0)B x=1x=1y=a −2ax −3a x 2y=a −2a −3a =−4a (1,−4a)A (−2,5)(4,5)x=1(−2,5)(4,5)C x >1a >0y x x >1a <0y x D D y=−x+332x y A B OA=2OB=3OC y y C =−x +33直线分别与轴轴交于点和点,,,,,,,,,,,即,,.故选.二、 填空题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )10.【答案】【考点】科学记数法与有效数字【解析】根据科学记数法的表示形式为的形式,其中,为整数数位减,有效数字的计算方法是:从左边第一个不是的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的有关,与的多少次方无关.【解答】解:精确到万位用科学记数法表示为,故答案为:.11.【答案】【考点】提公因式法与公式法的综合运用【解析】首先提公因式,再利用完全平方进行二次分解即可.【解答】∵y =−x +332x y A B ∴A(2,0)B(0,3)∴OA =2OB =3∵AB ⊥AC ∴∠OAB +∠OAC ==∠OAB +∠OBA 90∘∴∠OAC =∠OBA ∵∠AOC =∠BOA =90∘∴△AOB ∽△COA ∴O =OB ⋅OC A 2=3OC 22∴OC =43∴C(0,−)43C 6.33×106a ×10n 1≤|a |<10n 10a 106326000 6.33×1066.33×106−2x(m −3)2−2x −2x(−6m +9)2−2x(m −3)2原式==.12.【答案】【考点】点的坐标【解析】直接利用位似图形的性质得出位似比进而得出答案.【解答】解:∵将各顶点的横、纵坐标都乘以一个相同的数得到, ,∴对应点坐标同乘以即可,故,对称点的坐标为: .故答案为: .13.【答案】甲【考点】方差算术平均数【解析】此题暂无解析【解答】解:甲的平均数为,方差为,乙的平均数,方差为.甲、乙的平均数相同,甲的方差小于乙的方差.故甲的投篮水平比较整齐.故答案为:甲.14.−2x(−6m +9)m 2−2x(m −3)2(2,4)△OBC △OED C (2,0),D (4,0)2B (1,2)E (2,4)(2,4)×(6+7+8+7+6)=6.815×[(6−6.8+(7−6.8+15)2)2(8−6.8+(7−6.8+(6−6.8])2)2)2=0.56×(3+7+7+8+9)=6.815×[(3−6.8+(7−6.8+15)2)2(7−6.8+(8−6.8+(9−6.8])2)2)2=4.16【考点】勾股定理的应用【解析】设绳索长为尺,根据勾股定理即可列出方程.【解答】解:设绳索长为尺,则木柱长为尺,根据勾股定理可列方程:.故答案为:.15.【答案】或【考点】勾股定理的应用垂径定理的应用【解析】【解答】解:令=,=,过点作⊥于,交于.当、在圆心同旁时,∵,∴.∵过圆心,⊥,∴==.∵=,∴由勾股定理可知 =.同理 =,∴=-=.当、在圆心两旁时,同理可知=+=,故答案为:或.16.−=x 2(x −3)282x x (x −3)−=x 2(x −3)282−=x 2(x −3)2821cm 7 cmAB 6 cm CD 8 cm O OE AB E CD F AB CD AB//CD OF ⊥CD OE OE AB EB 12AB 3cm OB 5cm EO 4cm OF 4cm EF OE OF 1 cm AB CD EF OE OF 7cm 1 cm 7 cm【考点】作图—基本作图角平分线的性质【解析】此题暂无解析【解答】解:根据作图方法可得,是的角平分线,∵,∴,∵,∴.故答案为:.17.【答案】,【考点】一次函数与二元一次方程(组)一次函数图象上点的坐标特征一次函数的图象【解析】此题暂无解析【解答】解:对原方程组使用加减消元法,两式相减得,解得,带入原方程得.所以方程组的解为所以直线与直线的交点为.故答案为:.三、 解答题 (本题共计 7 小题 ,每题 8 分 ,共计56分 )65∘AG ∠CAB ∠CAB =50∘∠CAD =∠CAB =1225∘∠C =90∘∠ADC =−=90∘25∘65∘65∘{x =2,y =5(2,5)2x −4=0x =2y =5{x =2,y =5,y =3x −1y =x +3(2,5){x =2,y =5;(2,5)18.【答案】解:,即,,解得,.原式.【考点】解一元二次方程-因式分解法特殊角的三角函数值零指数幂、负整数指数幂【解析】(1)移项,系数化成,配方,开方,即可得出两个一元一次方程,求出方程的解即可;(2)把各个特殊角的三角函数值代入,再求出即可.【解答】解:,即,,解得,.原式.19.【答案】解:接受测评的总人数为:(人).扇形统计图中“优”部分所对应的扇形的圆心角为:.故答案为:;.“良”部分的学生人数为:(人).补全条形图如下:(1)−+4x −3=0x 2−4x +3=0x 2(x −3)(x −1)=0=1x 1=3x 2(2)=3×+−1+3–√31214=−3–√141(1)−+4x −3=0x 2−4x +3=0x 2(x −3)(x −1)=0=1x 1=3x 2(2)=3×+−1+3–√31214=−3–√14(1)40÷25%=160×=360∘60160135∘160135160−60−40−10=50该校对安全知识达到“良”及“良”以上程度的人数约为:(人).(记为事件)包含种结果,所以.【考点】扇形统计图条形统计图用样本估计总体列表法与树状图法【解析】(1)根据“中”部分的人数和其所占的百分比即可求出接受调查的总人数,求出“优”部分所占的百分比再乘以即可求出“优”部分所对应扇形的圆心角,再求出“良”部分的学生数即可补全条形图.(2)用该校学生的总数乘以样本中对安全知识达到“良”及“良”以上程度的人数所占的百分比即可.(3)首先列表法求出抽取两人共有多少种可能的结果,再求出恰好抽到两个女生包含的结果数,最后根据概率公式计算即可.【解答】解:接受测评的总人数为:(人).扇形统计图中“优”部分所对应的扇形的圆心角为:.故答案为:;.“良”部分的学生人数为:(人).补全条形图如下:(2)2000×=137560+50160A 6P (A)==620310360∘(1)40÷25%=160×=360∘60160135∘160135160−60−40−10=50该校对安全知识达到“良”及“良”以上程度的人数约为:(人).(记为事件)包含种结果,所以.20.【答案】证明:连结,∵是矩形,∴=,∴是直径,∴=,在中,,==,在中,=,在中,=,=,∴=,∴=,又∵是直径,∴是的切线;过点作于,(2)2000×=137560+50160A6 P(A)==620310BDABCD∠BAD90∘BDBD5Rt△ABD AD==3B−AD2B2−−−−−−−−−−√∠EAD−∠BAD180∘90∘Rt△AED ED2A+A=D2E222516△BED BE2(4+=94)262516BD225B−E=−=25E2D26251622516BD2B−EE2D2∠BDE90∘BDED⊙OO OH⊥AB HH=AB1则==,又∵=,∴=,在中,,∵==,∴.∴,∴,∴.【考点】矩形的性质切线的判定与性质【解析】(1)根据勾股定理求出,求出,根据勾股定理的逆定理求出=,根据切线的判定得出即可;(2)过点作于,求出和,根据平行线分线段成比例定理得出比例式,代入求出即可.【解答】证明:连结,∵是矩形,∴=,∴是直径,∴=,在中,,==,在中,=,在中,=,=,∴=,∴=,又∵是直径,∴是的切线;AH BH =AB 122OB OD OH =AD 12 1.5Rt △EHO EO ==E +O H 2H 2−−−−−−−−−−√513−−√4∠OHB ∠DAB 90∘OH //AD =OF OE AH EH =OF 513−−√42+294OF =1013−−√17AD DE ∠EDB 90∘O OH ⊥AB H OH AH BD ABCD ∠BAD 90∘BD BD 5Rt △ABD AD ==3B −A D 2B 2−−−−−−−−−−√∠EAD −∠BAD 180∘90∘Rt △AED ED 2A +A =D 2E 222516△BED BE 2(4+=94)262516BD 225B −E =−=25E 2D 26251622516BD 2B −E E 2D 2∠BDE 90∘BD ED ⊙O过点作于,则==,又∵=,∴=,在中,,∵==,∴.∴,∴,∴.21.【答案】把代入中,得=.∴反比例函数解析式为;把代入中,得=.则,把代入=得=,解得=.∴一次函数解析式为=;交反比例函数图象于,连接,如图,∵,∴当点在线段上时(不含端点),∴自变量的范围为.【考点】反比例函数与一次函数的综合【解析】O OH ⊥AB H AH BH =AB 122OB OD OH =AD 12 1.5Rt △EHO EO ==E +O H 2H 2−−−−−−−−−−√513−−√4∠OHB ∠DAB 90∘OH //AD =OF OE AH EH =OF 513−−√42+294OF =1013−−√17B(3,1)y =k x k 3y =3x A(m,3)y =3x m 1A(3,1)B(3,1)y −x +b −3+b 1b 4y −x +4PD E OE =|k |S △ODE 12P AB x 1<x <3=k(1)先把代入中求出得到反比例函数解析式;然后把代入=中求出得到一次函数解析式;(2)结合函数图象,根据反比例函数的几何意义可判断点在线段上(不含端点),从而得到的范围.【解答】把代入中,得=.∴反比例函数解析式为;把代入中,得=.则,把代入=得=,解得=.∴一次函数解析式为=;交反比例函数图象于,连接,如图,∵,∴当点在线段上时(不含端点),∴自变量的范围为.22.【答案】解:设平均每次下调的百分率为,由题意,得,解得:,(舍去)答:平均每次下调的百分率为;由题意,得方案①优惠:元,方案②优惠:元.∵∴方案①更优惠.【考点】一元二次方程的应用【解析】(1)设求平均每次下调的百分率为,由降低率问题的数量关系建立方程求出其解即可;(2)分别求出两种优惠方法的费用,比较大小就可以得出结论.【解答】B(3,1)y =k xk B(3,1)y −x +b b k P AB x B(3,1)y =k x k 3y =3x A(m,3)y =3x m 1A(3,1)B(3,1)y −x +b −3+b 1b 4y −x +4PD E OE =|k |S △ODE 12P AB x 1<x <3(1)x 6000(1−x =4860)2=0.1x 1=1.9x 210%(2)4860×100×(1−0.98)=972080×100=80009720>8000x (1)解:设平均每次下调的百分率为,由题意,得,解得:,(舍去)答:平均每次下调的百分率为;由题意,得方案①优惠:元,方案②优惠:元.∵∴方案①更优惠.23.【答案】(1)证明:如图解,当时,,∴,∴,∵四边形为矩形,∴,,在与中,,∴;(2)①当=,=时,,∵=,∴=,∴==,∴=,解得:=,∴==,=,解得:=;②当=,=时,,∵=,∴==,∴=,解得:=,∴==,=,解得:,综上所述,当=或时,与全等.【考点】四边形综合题【解析】(1)x 6000(1−x =4860)2=0.1x 1=1.9x 210%(2)4860×100×(1−0.98)=972080×100=80009720>8000t =3BP =2×3=6PC =12−6=6cm BP =PC ABCD AB =CD ∠B =∠C =90∘△ABP △DCP BP =PC∠B =∠C AB =CD△ABP ≅△DCP (SAS )BP CQ AB PC △ABP ≅△PCQ AB 8PC 8BP 12−842t 4y 2CQ BP 4v ×24v 2BA CQ PB PC △ABP ≅△QCP PB PC BP PC 62t 6t 3CQ AB 8v ×38v =83v 2v =83△ABP △PQC本题是四边形综合题,主要考查了全等三角形的性质,矩形的性质,解本题的关键是全等三角形性质的掌握.【解答】(1)证明:如图解,当时,,∴,∴,∵四边形为矩形,∴,,在与中,,∴;(2)①当=,=时,,∵=,∴=,∴==,∴=,解得:=,∴==,=,解得:=;②当=,=时,,∵=,∴==,∴=,解得:=,∴==,=,解得:,综上所述,当=或时,与全等.24.【答案】解:(1)由题意,得抛物线过点,点,∴解得即的值为,的值为.(2)由(1)知,当时,,t =3BP =2×3=6cm PC =12−6=6cm BP =PC ABCD AB =CD ∠B =∠C =90∘△ABP △DCP BP =PC∠B =∠C AB =CD△ABP ≅△DCP (SAS )BP CQ AB PC △ABP ≅△PCQ AB 8PC 8BP 12−842t 4y 2CQ BP 4v ×24v 2BA CQ PB PC △ABP ≅△QCP PB PC BP PC 62t 6t 3CQ AB 8v ×38v =83v 2v =83△ABP △PQC y =a +c x 2A (−4,3)C (0,−1){16a +c =3,c =−1,a =,14c =−1,a 14c −1y =−114x 2y =00=−114x 2解得,即抛物线与轴的交点坐标为.【考点】二次函数综合题【解析】此题暂无解析【解答】解:(1)由题意,得抛物线过点,点,∴解得即的值为,的值为.(2)由(1)知,当时,,解得,即抛物线与轴的交点坐标为.=−2,=2x 1x 2y =a +c x 2x (−2,0),(2,0)y =a +c x 2A (−4,3)C (0,−1){16a +c =3,c =−1,a =,14c =−1,a 14c −1y =−114x 2y =00=−114x 2=−2,=2x 1x 2y =a +c x 2x (−2,0),(2,0)。

2022-2023学年新人教版中考专题数学中考真卷(含解析)

2022-2023学年新人教版中考专题数学中考真卷(含解析)

2022-2023学年初中中考专题数学中考真卷学校:____________ 班级:____________ 姓名:____________ 考号:____________考试总分:111 分 考试时间: 120 分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 16 小题 ,每题 2 分 ,共计32分 )1. 七班男生有人,女生人数比男生人数的一半多人,则女生人数是( )A.B.C.D.2. 在灯塔处观测到轮船位于北偏西的方向,同时轮船在南偏东的方向,那么的大小为( )A.B.C.D.3. 化简的结果为( )A.B.(1)a 4(a +4)12(a −4)12a +412a −412O A 55∘B 15∘∠AOB 69∘111∘140∘159∘x ÷⋅x y 1xx y yxC.D.4. 在中考体育的项目中,小明和其他四名考生参加米游泳测试,考场共设,,,,五条泳道,考生以随机抽签的方式决定各自的泳道.若小明首先抽签,则小明抽到泳道的概率是( )A.B.C.D.5. 等腰三角形的一边长等于,一边长等于,则它的周长是( )A.B.C.D.或6. 如图,边长为,的矩形的周长为,面积为,则的值为( )A.B.C.D.7. 已知,,则代数式的值为( )A.B.C.xy1100A B C D E C 125451514731013171314a b 1410b +a a 2b 2140703524a =2+3–√b =2−3–√b −a a 2b 26443–√23–√D.8. 已知(如图),按图所示的尺规作图痕迹不需借助三角形全等就能推出四边形是平行四边形的依据( )A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形9. 如图,正六边形内接于,的半径为,则的长为( )A.B.C.D.10. 某大学为提倡“厉行节约,反对浪费”的社会风尚,制止餐饮浪费行为,深入推进“光盘行动”,对校园浪费现象进行调查.调查后发现,有的学生表示每天大概会吃剩的饭菜,的学生每天大概会吃剩的饭菜,只有的学生大概吃剩的饭菜.若该校有一万人,平均每天每个人浪费粮食,则该校学生一学期(按天)浪费的粮食用科学记数法可表示为( )A.B.23–√12ABCDEF ⊙O ⊙O 2AC2π4π32π3π348.29%50g −100g 33.86%100g −150g 4.86%0g −50g 50g 1206.0×kg1036.0×kg1076.0×kg4C.D.11. 如图,正方形和正方形中,点在上,,,是的中点,那么的长是( )A.B.C.D.12. 一个几何体的三视图如图所示,则这个几何体是( )A.B.C.D.13. 如图,中,==,=,平分交于点,的垂直平分线交于点,连接,则的周长为( )6.0×kg1046.0×kg105ABCD CEFG D CG BC =1CE =3H AF CH 5–√10−−√32–√22△ABC AB AC 13BC 10AD ∠BAC BC D AD AC E DE △CDEA.B.C.D.14. 如图所示,边长都为的正方形和正三角形如图放置,与在一条直线上,点与点重合.现将沿方向以每秒个单位的速度匀速运动,当点与重合时停止,在这个运动过程中,正方形和重叠部分的面积与运动时间的函数图象大致是( ) A.B.C.232618154ABCD EFG AB EF A F △EFG AB 1F B ABCD △EFG S tD.15. 如图,在菱形中,,,点,同时由,两点出发,分别沿,方向向点匀速移动(到点为止),点的速度为,点的速度为,经过秒为等边三角形,则的值为( )A.B.C.D.16. 如图,二次函数的图象与轴交于点,与轴的交点在与之间(不包括这两点),对称轴为直线.下列结论:①;②;③若点,点是函数图象上的两点,则;④.其中正确结论有( A.个B.个C.个D.个卷II (非选择题)二、 填空题 (本题共计 3 小题 ,每题 3 分 ,共计9分 )ABCD AB =4cm ∠ADC =120∘E F A C AB CB B B E 1cm/s F 2cm/s t △DEF t 1ss 34s 432sy =a +bx +c x 2x A(−1,0)y B (0,2)(0,3)x =2abc <09a +3b +c >0M(,)12y 1N(,)52y 2<y 1y 2−<a <−3525)123417. 点在反比例函数的图象上,点与点关于轴对称,则反比例函数的解析式为________.18. 若=,则=________.19. 如图,的半径为,正八边形内接于,对角线、相交于点,则的面积是________.三、 解答题 (本题共计 7 小题 ,每题 10 分 ,共计70分 )20. 列方程解应用题:为提高学生的计算能力,我县某学校八年级在元旦之前组织了一次数学速算比赛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题训练试题1 巧解选择、填空题一、选择题1.下列运算结果正确的是( D )A .m 2+m 2=m 4B .(m +1m )2=m 2+1m 2C .(3mn 2)2=6m 2n 4D .2m 2n ÷m n=2mn 2 2.(·齐齐哈尔)下列算式: ①9=±3;②(-13)-2=9;③26÷23=4;④(-2016)2=;⑤a +a =a 2. 运算结果正确的概率是( A )A .15B .25C .35D .453.有3个正方形如图所示放置,阴影部分的面积依次记为S 1,S 2,则S 1∶S 2等于( D )A .1∶ 2B .1∶2C .2∶3D .4∶94.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( C )A .x ≥11B .11≤x <23C .11<x ≤23D .x ≤235.如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点(点P 与点B ,C 都不重合),现将△PCD 沿直线PD 折叠,使点C 落到点F 处;过点P 作∠BPF 的角平分线交AB 于点E.设BP =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( C ),A ) ,B ),C ) ,D )6.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA 和折线OBCD ,则下列说法正确的是( D )A .甲的速度随时间的增加而增大B .乙的平均速度比甲的平均速度大C .在起跑后第180秒时,两人相遇D .在起跑后第50秒时,乙在甲的前面,第6题图) ,第7题图)7.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1∶ 3 ,则大楼AB 的高度约为( D )(精确到0.1米,参考数据:2≈1.41,3≈1.73,6≈2.45)A .30.6B .32.1C .37.9D .39.48.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O ,三角尺的直角顶点C 落在直尺的10 cm 处,铁片与直尺的唯一公共点A 落在直尺的14 cm 处,铁片与三角尺的唯一公共点为B ,下列说法错误的是( C )A .圆形铁片的半径是4 cmB .四边形AOBC 为正方形C .弧AB 的长度为4π cmD .扇形OAB 的面积是4π cm 2,第8题图) ,第10题图)9.已知两点A(5,6),B(7,2),先将线段AB 向左平移一个单位,再以原点O 为位似中心,在第一象限内将其缩小为原来的12得到线段CD ,则点A 的对应点C 的坐标为( A ) A .(2,3) B .(3,1) C .(2,1) D .(3,3)10. 如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF ∥AD ,与AC ,DC 分别交于点G ,F ,H 为CG 的中点,连接DE ,EH ,DH ,FH.下列结论:①EG =DF ;②∠AEH +∠ADH =180°;③△EHF ≌△DHC ;④若AE AB =23,则3S △EDH =13S △DHC ,其中结论正确的有( D )A .1个B .2个C .3个D .4个点拨:①∵四边形ABCD 为正方形,EF ∥AD ,∴EF =AD =CD ,∠ACD =45°,∠GFC =90°,∴△CFG 为等腰直角三角形,∴GF =FC ,∵EG =EF -GF ,DF =CD -FC ,∴EG =DF ,故①正确②∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH =CH ,∠GFH =12∠GFC =45°=∠HCD ,在△EHF 和△DHC 中,⎩⎨⎧EF =CD ,∠EFH =∠DCH ,FH =CH ,∴△EHF ≌△DHC(SAS ),∴∠HEF =∠HDC ,∴∠AEH +∠ADH =∠AEF +∠HEF +∠ADF -∠HDC =∠AEF +∠ADF =180°,故②正确③∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH =CH ,∠GFH =12∠GFC =45°=∠HCD ,在△EHF 和△DHC 中,⎩⎨⎧EF =CD ,∠EFH =∠DCH ,FH =CH ,∴△EHF ≌△DHC(SAS ),故③正确 ④∵AE AB =23,∴AE =2BE ,∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH =GH ,∠FHG =90°,∵∠EGH =∠FHG +∠HFG =90°+∠HFG =∠HFD ,在△EGH 和△DFH 中,⎩⎨⎧EG =DF ,∠EGH =∠DFH ,GH =FH ,∴△EGH ≌△DFH(SAS ),∴∠EHG =∠DHF ,EH =DH ,∠DHE =∠EHG +∠DHG =∠DHF +∠DHG =∠FHG =90°,∴△EHD 为等腰直角三角形,过H 点作HM 垂直CD 于M 点,如图所示,设HM =x ,则DM =5x ,DH =26x ,CD=6x ,则S △DHC =12²HM ²CD =3x 2,S △EDH =12²DH 2=13x 2,∴3S △EDH =13S △DHC ,故④正确;故选D二、填空题11.化简:(a -2a -1a )÷a 2-1a =__a -1a +1__. 12.若ab =2,a -b =-1,则代数式a 2b -ab 2的值等于___-2__.13.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品的数量是国画作品数量的2倍多7幅,则展出的油画作品有__69__幅.14.若m ,n 是方程x 2+x -1=0的两个实数根,则m 2+2m +n 的值为__0__.15.如图,在平面直角坐标系中,点A 的坐标为(0,4),△OAB 沿x 轴向右平移后得到△O ′A ′B ′,点A 的对应点A ′是直线y =45x 上一点,则点B 与其对应点B ′间的距离为__5__.16.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD 的面积为__25__.17.)如图,四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD =32,CD =22,点P 是四边形ABCD 四条边上的一个动点,若P 到BD 的距离为52,则满足条件的点P 有__2__个.,第17题图) ,第18题图)18.如图,分别以Rt △ABC 的直角边AC 及斜边AB 为边向外作等边△ACD 、等边△ABE ,EF ⊥AB ,垂足为F ,连接DF ,当AC AB =2时,四边形ADFE 是平行四边形. 19.)如图,在边长为4的正方形ABCD 中,先以点A 为圆心,AD 的长为半径画弧,再以AB 边的中点为圆心,AB 长的一半为半径画弧,则两弧之间的阴影部分面积是__2π__.(结果保留π),第19题图) ,第20题图)20. 如图,点A ,B 在反比例函数y =k x(k >0)的图象上,AC ⊥x 轴,BD ⊥x 轴,垂足C ,D 分别在x 轴的正、负半轴上,CD =k ,已知AB =2AC ,E 是AB 的中点,且△BCE的面积是△ADE 的面积的2倍,则k 的值是2. 点拨:∵E 是AB 的中点,∴S △ABD =2S △ADE ,S △BAC =2S △BCE ,又∵△BCE 的面积是△ADE 的面积的2倍,∴2S △ABD =S △BAC .设点A 的坐标为(m ,k m ),点B 的坐标为(n ,k n),则有⎩⎨⎧m -n =k ,k m =-2k n ,(m -n )2+(k m -k n )2=2k m ,解得⎩⎨⎧k =372,m =72,n =-7,或⎩⎨⎧k =-372,m =-72(舍去),n =7.故答案为372专题训练试题2 选择填空压轴题之规律探索问题一、选择题1.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2 187,…解答下列问题:3+32+33+34+…+32 017的末位数字是( C )A .0B .1C .3D .7点拨:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2 187…∴末尾数每4个一循环,∵2 017÷4=504…1,∴3+32+33+34+…+32 017的末位数字为32.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中点的个数是( B )A .31B .46C .51D .66点拨:第1个图中共有1+1³3=4个点,第2个图中共有1+1³3+2³3=10个点,第3个图中共有1+1³3+2³3+3³3=19个点,…第n 个图有1+1³3+2³3+3³3+…+3n 个点.所以第5个图中共有点的个数是1+1³3+2³3+3³3+4³3+5³3=46.故选B3.根据如图中箭头的指向规律,从2 013到2 014再到2 015,箭头的方向是以下图示中的( D )A .B .C .D .点拨:由图可知,每4个数为一个循环组依次循环,(2 013+1)÷4=503…2,∴2 013是第504个循环组的第2个数,∴从2 013到2 014再到2 015,箭头的方向是.故选D4.(·邵阳)如图,在矩形ABCD 中,已知AB =4,BC =3,矩形在直线l 上绕其右下角的顶点B 向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转次后,顶点A 在整个旋转过程中所经过的路程之和是( D )A .πB .3019.5πC .3018πD .3024π,第4题图),第5题图)5.(·宜宾)如图,以点O 为圆心的20个同心圆,它们的半径从小到大依次是1,2,3,4,…,20,阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为( B )A .231πB .210πC .190πD .171π6.(·达州)如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是( B )A .25B .33C .34D .50二、填空题7.观察下列一组数:14,39,516,725,936,…,它们是按一定规律排列的,那么这一组数的第n 个数是__2n -1(n +1)2__. 8.(·泉州)找出下列各图形中数的规律,依此,a 的值为__226__.9.(·资阳)设一列数中相邻的三个数依次为m ,n ,p ,且满足p =m 2-n ,若这列数为-1,3,-2,a ,-7,b …,则b =__128__.10.(·甘孜州)如图,正方形A 1A 2A 3A 4,A 5A 6A 7A 8,A 9A 10A 11A 12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A 1,A 2,A 3,A 4;A 5,A 6,A 7,A 8;A 9,A 10,A 11,A 12;…)的中心均在坐标原点O ,各边均与x 轴或y 轴平行,若它们的边长依次是2,4,6…,则顶点A 20的坐标为__(5,-5)__.,第10题图),第12题图)11.下面是一个按照某种规律排列的数阵:根据数阵的规律,第n(n 是整数,且n ≥3)行从左到右数第n -2个数是.(用含n 的代数式表示)点拨:前(n -1)行的数据的个数为2+4+6+…+2(n -1)=n(n -1),所以,第n(n 是整数,且n ≥3)行从左到右数第n -2个数的被开方数是n(n -1)+n -2=n 2-2,所以,第n(n 是整数,且n ≥3)行从左到右数第n -2个数是n 2-2.故答案为n 2-212.(·德州)如图,在平面直角坐标系中,函数y =2x 和y =-x 的图象分别为直线l 1,l 2,过点(1,0)作x 轴的垂线交l 1于点A 1,过点A 1作y 轴的垂线交l 2于点A 2,过点A 2作x 轴的垂线交l 2于点A 3,过点A 3作y 轴的垂线交l 2于点A 4,…依次进行下去,则点A 2 017的坐标为__(21_008,21_009)__.13. (·北海)如图,直线y =-2x +2与两坐标轴分别交于A ,B 两点,将线段OA 分成n 等份,分点分别为P 1,P 2,P 3,…,P n -1,过每个分点作x 轴的垂线分别交直线AB 于点T 1,T 2,T 3,…,T n -1,用S 1,S 2,S 3,…,S n -1分别表示Rt △T 1OP 1,Rt △T 2P 1P 2,…,Rt △T n -1P n -2P n -1的面积,则当n =2 015时,S 1+S 2+S 3+…+S n -1=__1 0072 015__.14. (·龙岩)如图1~4,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S 1,S 2,S 3,…,S 10,则S 1+S 2+S 3+…+S 10=__π__.点拨:(1)图①,过点O 做OE ⊥AC ,OF ⊥BC ,垂足为E ,F ,则∠OEC =∠OFC =90°,∵∠C =90°,∴四边形OECF 为矩形,∵OE =OF ,∴矩形OECF 为正方形,设圆O 的半径为r ,则OE =OF =r ,AD =AE =3-r ,BD =4-r ,∴3-r +4-r =5,r =3+4-52=1,∴S 1=π³12=π(2)图②,由S △ABC =12³3³4=12³5³CD ,∴CD =125,由勾股定理得:AD =32-(125)2=95,BD =5-95=165,由(1)得:⊙O 的半径=95+125-32=35,⊙E 的半径=125+165-42=45,∴S 1+S 2=π³(35)2+π³(45)2=π(3)图③,由S △CDB =12³125³165=12³4³MD ,∴MD =4825,由勾股定理得:CM =(125)2-(4825)2=3625,MB =4-3625=6425,由(1)得:⊙O 的半径=35;⊙E 的半径=4825+3625-1252=1225;⊙F 的半径=4825+6425-1652=1625,∴S 1+S 2+S 3=π³(35)2 +π³(1225)2+π³(1625)2=π,∴图4中的S 1+S 2+S 3+S 4=π,则S 1+S 2+S 3+…+S 10=π.故答案为π专题训练试题3 选择填空压轴题之函数图象问题一、选择题1.(·贵州)为了加强爱国主义教育,每周一学校都要举行庄严的升旗仪式,同学们凝视着冉冉上升的国旗,下列哪个函数图象能近似地刻画上升的国旗离旗杆顶端的距离与时间的关系( A ),A ) ,B ),C ) ,D )2.(·菏泽)小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s 关于时间t 的函数图象,那么符合小明行驶情况的图象大致是( D )3.(·衡阳)如图,已知A ,B 是反比例函数y = k x(k >0,x >0)图象上的两点,BC ∥x 轴,交y 轴于点C ,动点P 从坐标原点O 出发,沿O →A →B →C(图中“→”所示路线)匀速运动,终点为C ,过P 作PM ⊥x 轴,垂足为M.设三角形OMP 的面积为S ,P 点运动时间为t ,则S 关于x 的函数图象大致为( A )点拨:设∠AOM =α,点P 运动的速度为a ,当点P 从点O 运动到点A 的过程中,S =(at ²cos α)²(at ²sin α)2=12a 2²cos α²sin α²t 2,由于α及a 均为常量,从而可知本段图象应为抛物线,且S 随着t 的增大而增大;当点P 从A 运动到B 时,由反比例函数性质可知△OPM 的面积为12k ,保持不变,故本段图象应为与横轴平行的线段;当点P 从B 运动到C 过程中,OM 的长在减少,△OPM 的高与在B 点时相同,故本段图象应该为一段下降的线段;故选A,第3题图) ,第4题图)4.(·鄂州)如图,O 是边长为4 cm 的正方形ABCD 的中心,M 是BC 的中点,动点P 由A 开始沿折线A -B -M 方向匀速运动,到M 时停止运动,速度为1 cm /s .设P 点的运动时间为t(s ),点P 的运动路径与OA ,OP 所围成的图形面积为S(cm 2),则描述面积S(cm 2)与时间t(s )的关系的图象可以是( A )点拨:分两种情况:,图1) ,图2)①当0≤t <4时,作OM ⊥AB 于M ,如图1所示:∵四边形ABCD 是正方形,∴∠B=90°,AD =AB =BC =4 cm ,∵O 是正方形ABCD 的中心,∴AM =BM =OM =12AB =2 cm ,∴S =12AP ²OM =12³t ³2=t(cm 2) ②当4≤t ≤6时,作OM ⊥AB 于M ,如图2所示:S =△OAM 的面积+梯形OMBP 的面积=12³2³2+12(2+t -4)³2=t(cm 2);综上所述,面积S(cm 2)与时间t(s )的关系的图象是过原点的线段,故选A5. (·黑龙江)如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t ,正方形与三角形不重合部分的面积为S(阴影部分),则S 与t 的大致图象为( A )6. (·随州)二次函数y =ax 2+bx +c(a ≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x =2,下列结论:①4a +b =0;②9a +c >3b ;③8a +7b +2c >0;④若点A(-3,y 1),点B(-12,y 2),点C(72,y 3)在该函数图象上,则y 1<y 3<y 2;⑤若方程a(x +1)(x -5)=-3的两根为x 1和x 2,且x 1<x 2,则x 1<-1<5<x 2.其中正确的结论有( B )A .2个B .3个C .4个D .5个点拨:①正确.∵-b2a=2,∴4a +b =0.故①正确②错误.∵x =-3时,y <0,∴9a -3b +c <0,∴9a +c <3b ,故②错误③正确.由图象可知抛物线经过(-1,0)和(5,0),∴ 解得⎩⎨⎧a -b +c =0,25a +5b +c =0,解得⎩⎨⎧b =-4a ,c =-5a ,∴8a +7b +2c =8a -28a -10a =-30a ,∵a <0,∴8a +7b +2c >0,故③正确 ④错误,∵点A(-3,y 1)、点B(-12,y 2),点C(72,y 3),∵72-2=32,2-(-12)=52,∴32<52,∴点C 离对称轴的距离近,∴y 3>y 2,∵a <0,-3<-12<2,∴y 1<y 2,∴y 1<y 2<y 3,故④错误⑤正确.∵a <0,∴(x +1)(x -5)=-3a >0,即(x +1)(x -5)>0,故x <-1或x >5,故⑤正确.∴正确的有三个,故选B二、填空题7. (·黄冈)如图,是小明从学校到家里行进的路程s(米)与时间t(分)的函数图象.观察图象,从中得到如下信息:①学校离小明家1 000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快,其中正确的有___①②④__.(填序号)8. (·南充)已知抛物线y =ax 2+bx +c 开口向上且经过点(1,1),双曲线y =12x 经过点(a ,bc),给出下列结论:①bc >0;②b +c >0;③b ,c 是关于x 的一元二次方程x 2+(a -1)x +12a=0的两个实数根;④a -b -c ≥3.其中正确的结论是__①③④__.(填写序号) 点拨:∵抛物线y =ax 2+bx +c 开口向上且经过点(1,1),双曲线y =12x经过点(a ,bc),∴⎩⎪⎨⎪⎧a>0,a +b +c =1,bc =12a ,∴bc >0,故①正确;∴a >1时,则b ,c 均小于0,此时b +c <0,当a=1时,b +c =0,则与题意矛盾,当0<a <1时,则b ,c 均大于0,此时b +c >0,故②错误;∴x 2+(a -1)x +12a =0可以转化为x 2+(b +c)x +bc =0,得x =b 或x =c ,故③正确;∵b ,c 是关于x 的一元二次方程x 2+(a -1)x +12a =0的两个实数根,∴a -b -c =a -(b +c)=a+(a -1)=2a -1,a +b +c =1故b +c =1-a <1,当1>1-a >-1,即2>a >0时,有(b +c)2<1,即4bc <1,bc <14,从而得出a >2,与题设矛盾,故a ≥2,即2a -1≥3,故④正确;故答案为①③④专题训练试题4 选择填空压轴题之图形变化问题一、选择题1.(·海南)如图,AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿着直线AD 对折,点C 落在点E 的位置.如果BC =6,那么线段BE 的长度为( D )A .6B .6 2C .2 3D .3 2,第1题图) ,第2题图)2. (·莆田)如图,在△ABC 中,∠ACB =90°,AC =BC =4,将△ABC 折叠,使点A 落在BC 边上的点D 处,EF 为折痕,若AE =3,则sin ∠BFD 的值为( A )A .13B .223C .24D .35点拨:易得∠A =∠B =45°,通过折叠易得∠A =∠EDF =45°,过点D 作DG ⊥AB 交AB 于点G ,则∠B =∠BDG =45°,∴∠BDG =∠EDF =45°,∴∠FDG +∠EDC =90°,∴∠FDG 与∠EDC 互为余角,∴易得∠BFD =∠EDC ,ED =3,CE =AC -AE =1,sin ∠BFD =133.如图,矩形ABCD 的外接圆O 与水平地面相切于A 点,圆O 半径为2,且BC ︵=2AB ︵,若在没有滑动的情况下,将圆O 向右滚动,使得O 点向右移动了75π,则此时哪一弧与地面相切?( C )A .BC ︵B .CD ︵C .DA ︵D .AB ︵,第3题图) ,第4题图)4.如图,在△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A ′B ′C ,并把△ABC 的边长放大到原来的2倍.设点A ′的对应点A 的纵坐标是1.5,则点A ′的纵坐标是( B )A .3B .-3C .-4D .45.(·滨州)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线y =x 2+5x +6,则原抛物线的解析式是( A )A .y =-(x -52)2-114B .y =-(x +52)2-114C .y =-(x -52)2-14D .y =-(x -52)2+146. (·黑龙江)如图,在正方形ABCD 中,E ,F 分别为BC ,CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 的延长线于点Q ,下列结论正确的个数是( B )①AE =BF ;②AE ⊥BF ;③sin ∠BQP =45;④S 四边形ECFG =2S △BGE .A .4B .3C .2D .1 点拨:∵E ,F 分别是正方形ABCD 边BC ,CD 的中点,∴CF =BE ,在△ABE 和△BCF中,⎩⎨⎧AB =BC ,∠ABE =∠BCF ,BE =CF ,∴Rt △ABE ≌Rt △BCF(SAS ),∴∠BAE =∠CBF ,AE =BF ,故①正确;又∵∠BAE +∠BEA =90°,∴∠CBF +∠BEA =90°,∴∠BGE =90°,∴AE ⊥BF ,故②正确;根据题意得,FP =FC ,∠PFB =∠BFC ,∠FPB =90°,∵CD ∥AB ,∴∠CFB =∠ABF ,∴∠ABF =∠PFB ,∴QF =QB ,令PF =k(k >0),则PB =2k ,在Rt △BPQ 中,设QB =x ,∴x 2=(x -k)2+4k 2,∴x =5k 2,∴sin ∠BQP =BP QB =45,故③正确;∵∠BGE=∠BCF ,∠GBE =∠CBF ,∴△BGE ∽△BCF ,∵BE =12BC ,BF =52BC ,∴BE ∶BF =1∶5,∴△BGE 的面积∶△BCF 的面积=1∶5,∴S 四边形ECFG =4S △BGE ,故④错误.故选B7.(·深圳)如图,四边形ABCO 是平行四边形,OA =2,AB =6,点C 在x 轴的负半轴上,将▱ABCO 绕点A 逆时针旋转得到▱ADEF ,AD 经过点O ,点F 恰好落在x 轴的正半轴上,若点D 在反比例函数y =kx(x <0)的图象上,则k 的值为.,第7题图) ,第8题图)8.(·菏泽)如图,一段抛物线:y =-x(x -2)(0≤x ≤2)记为C 1,它与x 轴交于两点O ,A 1;将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3;…如此进行下去,直至得到C 6,若点P(11,m)在第6段抛物线C 6上,则m =__-1__.9.(·乐山)如图,在Rt △ABC 中,∠ACB =90°,AC =2 3 ,以点C 为圆心,CB 的长为半径画弧,与AB 边交于点D ,将BD ︵绕点D 旋转180°后点B 与点A 恰好重合,则图中阴影部分的面积为3,第9题图) ,第10题图)10. (·黄冈)如图,在矩形ABCD 中,点E ,F 分别在边CD ,BC 上,且DC =3DE =3a.将矩形沿直线EF 折叠,使点C 恰好落在AD 边上的点P 处,则FP =.点拨:作FM ⊥AD 于M ,如图所示,则MF =DC =3a ,∵四边形ABCD 是矩形,∴∠C =∠D =90°.∵DC =3DE =3a ,∴CE =2a ,由折叠的性质得:PE =CE =2a =2DE ,∠EPF =∠C =90°,∴∠DPE =30°,∴∠MPF =180°-90°-30°=60°,在Rt △MPF 中,∵sin∠MPF=MFFP,∴FP=MFsin60°=3a32=23a11.(·绍兴)如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,则DF的长为.点拨:如图,当直线l在直线CE上方时,连接DE交直线l于M,∵四边形ABCD是矩形,∴∠A=∠B=90°,AD=BC,∵AB=4,AD=BC=2,∴AD=AE=EB=BC=2,∴△ADE,△ECB是等腰直角三角形,∴∠AED=∠BEC=45°,∴∠DEC=90°,∵l∥EC,∴ED⊥l,∴EM=2=AE,∴点A,点M关于直线EF对称,∵∠MDF=∠MFD=45°,∴DM=MF=DE-EM=22-2,∴DF=2DM=4-2 2.当直线l在直线EC下方时,∵∠DEF1=∠BEF1=∠DF1E,∴DF1=DE=22,综上所述,DF的长为22或4-2 2.故答案为22或4-2 2专题训练试题5选择填空压轴题之动点或最值问题一、选择题1.(·百色)如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是( C )A.1 B.3 2C.2 3 D.2+ 32.(·包头)如图,直线y=23x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( C )A .(-3,0)B .(-6,0)C .(-32,0)D .(-52,0),第2题图) ,第4题图)3.(·呼和浩特)已知a ≥2,m 2-2am +2=0,n 2-2an +2=0,则(m -1)2+(n -1)2的最小值是( A )A .6B .3C .-3D .0点拨:∵m 2-2am +2=0,n 2-2an +2=0,∴m ,n 是关于x 的方程x 2-2ax +2=0的两个根,∴m +n =2a ,mn =2,∴(m -1)2+(n -1)2=m 2-2m +1+n 2-2n +1=(m +n)2-2mn -2(m +n)+2=4a 2-4-4a +2=4(a -12)2-3,∵a ≥2,∴当a =2时,(m -1)2+(n -1)2有最小值,∴(m -1)2+(n -1)2的最小值=4(a -12)2-3=4(2-12)2-3=6,故选A4.(·苏州)矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( B )A .(3,1)B .(3,43)C .(3,53) D .(3,2)5.(·西宁)如图,在△ABC 中,∠B =90°,tan C =34,AB =6 cm .动点P 从点A 开始沿边AB 向点B 以1 cm /s 的速度移动,动点Q 从点B 开始沿边BC 向点C 以2 cm /s 的速度移动.若P ,Q 两点分别从A ,B 两点同时出发,在运动过程中,△PBQ 的最大面积是( C )A .18 cm 2B .12 cm 2C .9 cm 2D .3 cm 2,第5题图) ,第6题图)6. (·温州)如图,在△ABC 中,∠ACB =90°,AC =4,BC =2.P 是AB 边上一动点,PD ⊥AC 于点D ,点E 在P 的右侧,且PE =1,连接CE.P 从点A 出发,沿AB 方向运动,当E 到达点B 时,P 停止运动.在整个运动过程中,图中阴影部分面积S 1+S 2的大小变化情况是( C )A .一直减小B .一直不变C .先减小后增大D .先增大后减小点拨:在Rt △ABC 中,∵∠ACB =90°,AC =4,BC =2,∴AB =AC 2+BC 2=42+22=25,设PD =x ,AB 边上的高为h ,h =AC·BC AB =455,∵PD ∥BC ,∴PD BC =AD AC ,∴AD=2x ,AP =5x ,∴S 1+S 2=12·2x·x +12(25-1-5x)·455=x 2-2x +4-255=(x -1)2+3-255,∴当0<x <1时,S 1+S 2的值随x 的增大而减小,当1≤x ≤2时,S 1+S 2的值随x的增大而增大.故选C二、填空题7.如图,正方形ABCD 的边长是8,P 是CD 上的一点,且PD 的长为2,M 是其对角线AC 上的一个动点,则DM +MP 的最小值是___10__.8. (·眉山)如图,已知点A 是双曲线y =6x在第三象限分支上的一个动点,连接AO 并延长交另一分支于点B ,以AB 为边作等边三角形ABC ,点C 在第四象限内,且随着点A 的运动,点C 的位置也在不断变化,但点C 始终在双曲线y =kx 上运动,则k 的值是__-点拨:∵双曲线y =6x的图象关于原点对称,∴点A 与点B 关于原点对称,∴OA =OB ,连接OC ,如图所示,∵△ABC 是等边三角形,OA =OB ,∴OC ⊥AB ,∠BAC =60°,∴tan ∠OAC =OCOA=3,∴OC =3OA ,过点A 作AE ⊥y 轴,垂足为E ,过点C 作CF ⊥y 轴,垂足为F ,∵AE ⊥OE ,CF ⊥OF ,OC ⊥OA ,∴∠AEO =∠OFC ,∠AOE =90°-∠FOC =∠OCF ,∴△OFC ∽△AEO ,相似比OCOA =3,∴面积比S △OFC S △AEO =3,∵点A 在第一象限,设点A 坐标为(a ,b),∵点A 在双曲线y =6x 上,∴S △AEO =12ab =62,∴S △OFC =12FC ²OF =362,∴设点C 坐标为(x ,y),∵点C 在双曲线y =kx 上,∴k =xy ,∵点C 在第四象限,∴FC =x ,OF =-y.∴FC ²OF =x ²(-y)=-xy =-36,故答案为-3 6,第8题图) ,第9题图)9.(·沈阳)如图,在Rt △ABC 中,∠A =90°,AB =AC ,BC =20,DE 是△ABC 的中位线,点M 是边BC 上一点,BM =3,点N 是线段MC 上的一个动点,连接DN ,ME ,DN 与ME 相交于点O.若△OMN 是直角三角形,则DO 的长是__256或5013__.点拨:如图,作EF ⊥BC 于F ,DN ′⊥BC 于N ′交EM 于点O ′,此时∠MN ′O ′=90°,∵DE 是△ABC 中位线,∴DE ∥BC ,DE =12BC =10,∵DN ′∥EF ,∴四边形DEFN ′是平行四边形,∵∠EFN ′=90°,∴四边形DEFN ′是矩形,∴EF =DN ′,DE =FN ′=10,∵AB =AC ,∠A =90°,∴∠B =∠C =45°,∴BN ′=DN ′=EF =FC =5,∴ED MN ′=DO ′O ′N ′,∴102=DO ′5-DO ′,∴DO ′=256.当∠MON =90°时,∵△DOE ∽△EFM ,∴DOEF =DE EM ,∵EM =EF 2+MF 2=13,∴DO =5013,故答案为256或501310. (·咸宁)如图,边长为4的正方形ABCD 内接于点O ,点E 是AB ︵上的一动点(不与A ,B 重合),点F 是BC ︵上的一点,连接OE ,OF ,分别与AB ,BC 交于点G ,H ,且∠EOF =90°,有以下结论:①AE ︵=BF ︵;②△OGH 是等腰直角三角形;③四边形OGBH 的面积随着点E 位置的变化而变化; ④△GBH 周长的最小值为4+ 2.其中正确的是__①②__.(把你认为正确结论的序号都填上),答图1) ,答图2)点拨:①如答图1所示, ∵∠BOE +∠BOF =90°,∠COF +∠BOF =90°,∴∠BOE=∠COF ,在△BOE 与△COF 中,⎩⎨⎧OB =OC ,∠BOE =∠COF ,OE =OF ,∴△BOE ≌△COF(SAS ),∴BE =CF ,∴AE ︵=BF ︵,①正确②∵BE =CF ,∴∠BOG =∠COH ,∴△BOG ≌△COH(ASA ),∴OG =OH ,∠COH +∠BOF =90°,∴∠GOH =90°,OG =OH ,∴△OGH 是等腰直角三角形,②正确③如答图2所示, ∵△HOM ≌△GON ,∴四边形OGBH 的面积始终等于正方形ONBM 的面积,③错误;④∵△BOG ≌△COH ,∴BG =CH ,∴BG +BH =BC =4,设BG =x ,则BH =4-x ,则GH =BG 2+BH 2=x 2+(4-x )2,∴其最小值为22,④错误.故答案为①②三、解答题11.如图,抛物线y =12x 2+bx -2与x 轴交于A ,B 两点,与y 轴交于C 点,且A(-1,0).(1)求抛物线的解析式及顶点D 的坐标;(2)点M 是x 轴上的一个动点,当△DCM 的周长最小时,求点M 的坐标.解:(1)∵点A(-1,0)在抛物线y =12x 2+bx -2上,∴12³(-1)2+b ³(-1)-2=0,解得b =-32,∴抛物线的解析式为y =12x 2-32x -2,∵y =12x 2-32x -2=12(x -32)2-258,∴顶点D 的坐标为(32,-258)(2)作出点C 关于x 轴的对称点C ′,则C ′(0,2),连接C ′D 交x 轴于点M ,根据轴对称性及两点之间线段最短可知,CD 一定,当MC +MD 的值最小时,△CDM 的周长最小,设直线C ′D 的解析式为y =ax +b(a ≠0),则⎩⎪⎨⎪⎧b =2,32a +b =-258,解得a =-4112,b =2,∴y C ′D =-4112x +2,当y =0时,-4112x +2=0,则x =2441,∴M(2441,0)专题训练试题6 实数混合运算、分式化简求值1.(·自贡)计算:(12)-1+(sin 60°-1)0-2cos 30°+|3-1|.解:原式=2+1-3+3-1=22.(·菏泽)计算:2-2-2cos 60°+|-12|+(13)0.解:原式=14-2³12+23+1=14+2 33.(·随州)计算:-|-1|+12²cos 30°-(-12)-2+(π-3.14)0.解:原式=-1+23³32-4+1=-1+3-4+1=-14.(·东营)计算:(12 016)-1+(π-3)0-2sin 60°-12+|1-33|.解:原式=2 016+1-3-23+33-1=2 0165.(·凉山州)计算:|1-3|-3tan 60°+12+(π+1)0+(-1)2 016. 解: 原式=3-1-33+23+1+1=16.(·滨州)先化简,再求值:a -4a ÷(a +2a 2-2a -a -1a 2-4a +4),其中a = 2.解:原式=a -4a ÷[a 2-4a (a -2)2-a 2-a a (a -2)2]=a -4a ÷a -4a (a -2)2=a -4a ²a (a -2)2a -4 =(a -2)2,∵a =2,∴原式=(2-2)2=6-4 27.(·广东)先化简,再求值:a +3a ²6a 2+6a +9+2a -6a 2-9,其中a =3-1.解:原式=a +3a ²6(a +3)2+2(a -3)(a +3)(a -3)=6a (a +3)+2aa (a +3)=2(a +3)a (a +3)=2a ,当a =3-1时,原式=23-1=2(3+1)(3-1)(3+1)=3+18.(·东营)先化简,再求值:(a +1-4a -5a -1)÷(1a -1a 2-a ),其中a =2+ 3.解: 原式=a 2-1-4a +5a -1÷a -1-1a (a -1)=a 2-4a +4a -1÷a -2a (a -1)=(a -2)2a -1²a (a -1)a -2=a(a -2).当a =2+3时,原式=(2+3)(2+3-2)=3+2 39.(·黔东南州)先化简:x 2-1x 2-2x +1÷x +1x ²(x -1x ),然后x 在-1,0,1,2四个数中选一个你认为合适的数代入求值.解:原式=(x +1)(x -1)(x -1)2²x x +1²x 2-1x =xx -1²(x +1)(x -1)x =x +1.∵在-1,0,1,2四个数中,使原式有意义的值只有2,∴当x =2时,原式=2+1=310.(·哈尔滨)先化简,再求代数式(2a +1-2a -3a 2-1)÷1a +1的值,其中a =2sin 60°+tan 45°.解:原式=[2a +1-2a -3(a +1)(a -1)]²(a +1)=2(a -1)-2a +3(a +1)(a -1)²(a +1)=2a -2-2a +3(a +1)(a -1)²(a +1)=1(a +1)(a -1)²(a +1)=1a -1,当a =2sin 60°+tan 45°=2³32+1=3+1时,原式=13+1-1=3311.(·枣庄)先化简,再求值:a 2+a a 2-2a +1÷(2a -1-1a),其中a 是方程2x 2+x -3=0的解. 解:原式=a (a +1)(a -1)2÷2a -(a -1)a (a -1)=a (a +1)(a -1)2²a (a -1)a +1=a 2a -1.由2x 2+x -3=0得到:x 1=1,x 2=-32 ,又a -1≠0即a ≠1,所以a =-32,所以原式=(-32)2-32-1=-91012.(·凉山州)先化简,再求值:(1x -y +2x 2-xy )÷x +22x ,其中实数x ,y 满足y =x -2-4-2x +1.解:原式=x +2x (x -y )²2x x +2=2x -y,∵y =x -2-2(2-x ) +1,∴x -2≥0,2-x ≥0,即x -2=0,解得x =2,y =1,则原式=2专题训练试题7 简单的全等、相似及特殊四边形1.(·怀化)如图,已知AD =BC ,AC =BD. (1)求证:△ADB ≌△BCA ;(2)OA 与OB 相等吗?若相等,请说明理由.(1)证明:∵在△ADB 和△BCA 中, ⎩⎨⎧AD =BC ,AB =BA ,BD =AC ,∴△ADB ≌△BCA(SSS )(2)解:OA =OB ,理由是:∵△ADB ≌△BCA ,∴∠ABD =∠BAC ,∴OA =OB (·黄冈)如图,在▱ABCD 中,E ,F 分别为边AD ,BC 的中点,对角线AC 分别交BE ,DF 于点G ,H.求证:AG =CH.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠ADF =∠CFH ,∠EAG =∠FCH ,∵E ,F 分别为AD ,BC 边的中点,∴AE =DE =12AD ,CF =BF =12BC ,∴DE ∥BF ,DE =BF ,∴四边形BFDE 是平行四边形,∴BE ∥DF ,∴∠AEG =∠ADF ,∴∠AEG =∠CFH ,在△AEG 和△CFH 中,⎩⎨⎧∠EAG =∠FCH ,AE =CF ,∠AEG =∠CFH ,∴△AEG ≌△CFH(ASA ),∴AG =CH3. (·长春)如图,在▱ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE ,BF 与CD 交于点G . (1)求证:BD ∥EF ;(2)若DG GC =23,BE =4,求EC 的长.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC.∵DF =BE ,∴四边形BEFD 是平行四边形,∴BD ∥EF(2)解:∵四边形BEFD 是平行四边形,∴DF =BE =4.∵DF ∥EC ,∴△DFG ∽△CEG ,∴DG CG =DF CE ,∴CE =DF ²CG DG =4³32=6 4. (·北京)如图,在四边形ABCD 中,∠ABC =90°,AC =AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN.(1)求证:BM =MN ;(2)∠BAD =60°,AC 平分∠BAD ,AC =2,求BN 的长.(1)证明:在△CAD 中,∵M ,N 分别是AC ,CD 的中点,∴MN ∥AD ,MN =12AD ,在Rt △ABC 中,∵M 是AC 中点,∴BM =12AC ,∵AC =AD ,∴MN =BM(2)解:∵∠BAD =60°,AC 平分∠BAD ,∴∠BAC =∠DAC =30°,由(1)可知,BM =12AC =AM =MC ,∴∠BMC =∠BAM +∠ABM =2∠BAM =60°,∵MN ∥AD ,∴∠NMC =∠DAC =30°,∴∠BMN =∠BMC +∠NMC =90°,∴BN 2=BM 2+MN 2,由(1)可知MN =BM =12AC =1,∴BN = 25. (·大庆)如图,在菱形ABCD 中,G 是BD 上一点,连接CG 并延长交BA 的延长线于点F ,交AD 于点E.(1)求证:AG =CG ; (2)求证:AG 2=GE ²GF.证明:(1)∵四边形ABCD 是菱形,∴AB ∥CD ,AD =CD ,∠ADB =∠CDB ,∴∠F =∠FCD ,在△ADG 与△CDG 中,⎩⎨⎧AD =CD ,∠ADG =∠CDG ,DG =DG ,∴△ADG ≌△CDG(SAS ),∴∠EAG=∠DCG ,∴AG =CG(2)∵△ADG ≌△CDG ,∴∠EAG =∠F ,∵∠AGE =∠AGE ,∴△AEG ∽△FGA ,∴AGFG =EGAG,∴AG 2=GE ²GF6. (·内江)如图所示,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线交CE 的延长线于F ,且AF =BD ,连接BF.(1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.(1)证明:∵AF ∥BC ,∴∠AFE =∠DCE ,∵点E 为AD 的中点,∴AE =DE ,在△AEF和△DEC 中,⎩⎨⎧∠AFE =∠DCE ,∠AEF =∠DEC ,AE =DE ,∴△AEF ≌△DEC(AAS ),∴AF =CD ,∴BD =CD ,∴D是BC 中点(2)解:若AB =AC ,则四边形AFBD 是矩形.理由如下:∵△AEF ≌△DEC ,∴AF =CD ,∵AF =BD ,∴CD =BD ;∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形,∵AB =AC ,BD =CD ,∴∠ADB =90°,∴平行四边形AFBD 是矩形7 (·威海)如图,在△ABC 和△BCD 中,∠BAC =∠BCD =90°,AB =AC ,CB =CD.延长CA 至点E ,使AE =AC ;延长CB 至点F ,使BF =BC.连接AD ,AF ,DF ,EF.延长DB 交EF 于点N.(1)求证:AD =AF ; (2)求证:BD =EF ;(3)试判断四边形ABNE 的形状,并说明理由.(1)证明:∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∴∠ABF =135°,∵∠BCD =90°,∴∠ABF =∠ACD ,∵CB =CD ,CB =BF ,∴BF =CD ,在△ABF 和△ACD 中,⎩⎨⎧AB =AC ,∠ABF =∠ACD ,BF =CD ,∴△ABF ≌△ACD(SAS ),∴AD =AF(2)证明:由(1)知,AF =AD ,△ABF ≌△ACD ,∴∠FAB =∠DAC ,∵∠BAC =90°,∴∠EAB =∠BAC =90°,∴∠EAF =∠BAD ,在△AEF 和△ABD 中,⎩⎨⎧AE =AB ,∠EAF =∠BAD ,AF =AD ,∴△AEF ≌△ABD(SAS ),∴BD =EF(3)解:四边形ABNE 是正方形;理由如下:∵CD =CB ,∠BCD =90°,∴∠CBD =45°,由(2)知,∠EAB =90°,△AEF ≌△ABD ,∴∠AEF =∠ABD =90°,∴四边形ABNE 是矩形,又∵AE =AB ,∴四边形ABNE 是正方形8. (·泰安)如图,在四边形ABCD 中,AC 平分∠BCD ,AC ⊥AB ,E 是BC 的中点,AD ⊥AE.(1)求证:AC 2=CD ²BC ;(2)过E 作EG ⊥AB ,并延长EG 至点K ,使EK =EB.①若点H 是点D 关于AC 的对称点,点F 为AC 的中点,求证:FH ⊥GH ; ②若∠B =30°,求证:四边形AKEC 是菱形.证明:(1)∵AC 平分∠BCD ,∴∠DCA =∠ACB.又∵AC ⊥AB ,AD ⊥AE ,∴∠DAC +∠CAE =90°,∠CAE +∠EAB =90°,∴∠DAC =∠EAB.又∵E 是BC 的中点,∴AE =BE ,∴∠EAB =∠ABC ,∴∠DAC =∠ABC ,∴△ACD ∽△BCA ,∴AC BC =CDAC ,∴AC 2=CD ²BC(2)①连接AH.∵∠ADC =∠BAC =90°,点H ,D 关于AC 对称,∴AH ⊥BC.∵EG ⊥AB ,AE =BE ,∴点G 是AB 的中点,∴HG =AG ,∴∠GAH =∠GHA.∵点F 为AC 的中点,∴AF =FH ,∴∠HAF =∠FHA ,∴∠FHG =∠AHF +∠AHG =∠FAH +∠HAG =∠CAB =90°,∴FH ⊥GH②∵EK ⊥AB ,AC ⊥AB ,∴EK ∥AC ,又∵∠B =30°,∴AC =12BC =EB =EC.又EK=EB ,∴EK =AC ,即AK =KE =EC =CA ,∴四边形AKEC 是菱形专题训练试题8 方程(组)、不等式(组)的实际应用1. (·绥化)某商场计划购机A ,B 两种商品,若购进A 种商品20件和B 种商品15件需380元;若购进A 种商品15件和B 种商品10件需280元.(1)求A ,B 两种商品的进价分别是多少元?(2)若购进A ,B 两种商品共100件,总费用不超过900元,问最多能购进A 种商品多少件?解:(1)设A 种商品的进价是a 元,B 种商品的进价是b 元,根据题意得:⎩⎨⎧20a +15b =380,15a +10b =280,解得⎩⎨⎧a =16,b =4,答:A 种商品的进价是16元,B 种商品的进价是4元(2)设购进A 种商品x 件,则购进B 种商品(100-x)件,根据题意得:16x +4(100-x)≤900,解得x ≤4123,∵x 为整数,∴x 的最大整数解为41,∴最多能购进A 种商品41件(·哈尔滨)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?解:(1)设小明步行的速度是x 米/分,由题意得:900x =9003x +10,解得x =60,经检验x=60是原分式方程的解,答:小明步行的速度是60米/分。

相关文档
最新文档