中考数学考点总复习 第13节 反比例函数 新人教版

合集下载

人教版数学中考知识点梳理-反比例函数

人教版数学中考知识点梳理-反比例函数

第11讲反比例函数的图象和性质一、知识清单梳理知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3xm+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按从小大的顺序排列为:S△AOC=S△OPE>S△BOD.知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;【素材积累1、一个房产经人死后和上帝的对话一个房产经纪人死后,和上帝喝茶。

九年级数学下册《反比例函数》知识学习总结要点人教版

九年级数学下册《反比例函数》知识学习总结要点人教版

九年级数学下册《反比例函数》知识点人教版知识点一、反比例函数的概念形如y=k/x的函数,叫做反比例函数。

反比例函数属于奇函数,有f=-f,图像关于原点对称。

反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

反比例函数的图像为双曲线。

二、反比例函数的性质函数y=k/x称为反比例函数,其中k≠0,其中X是自变量,1.当k&gt;0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k&lt;0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

2.k&gt;0时,函数在x&lt;0上同为减函数、在x&gt;0上同为减函数;k&lt;0时,函数在x&lt;0上为增函数、在x&gt;0上同为增函数。

3.x的取值范围是:x≠0;y的取值范围是:y≠0。

4..因为在y=k/x中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

但随着x无限增大或是无限减少,函数值无限趋近于0,故图像无限接近于x轴5.反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=xy=-x,对称中心是坐标原点。

课后习题1.已知点P在反比例函数y=kx的图象上,则k的值是A.3B.-3c.13D.-132.对于反比例函数y=3x,下列说法正确的是A.图象经过点B.图象在第二、四象限c.x&gt;0时,y随x的增大而增大D.x&lt;0时,y随x增大而减小3.在同一直角坐标系下,直线y=x+1与双曲线y=1x的交点的个数为A.0个B.1个c.2个D.不能确定4.已知反比例函数y=bx,当x&gt;0时,y随x的增大而增大,则一次函数y=x+b的图象不经过A.第一象限B.第二象限c.第三象限D.第四象限答案:1.B2.D3.c4.B。

人教版九年级数学反比例函数知识点归纳

人教版九年级数学反比例函数知识点归纳

例如,在矩形面积一定的情况下,长与宽成反比。
工程技术和科学研究领域应用举例
电路设计
在电子工程中,电阻、电容等元 件的参数之间往往存在反比关系 。利用反比例函数可以优化电路
设计,提高电路性能。
经济学研究
在经济学中,价格与需求之间通 常存在反比关系。价格越高,需 求量越低;反之亦然。反比例函
数可用于描述这种经济现象。
转化思想
将复杂问题转化为简单问题,如将非标准形式的一元二次方程转化为 标准形式,再利用反比例函数的性质进行求解。
05
拓展延伸:反比例函数在 高等数学中地位和作用
高等数学中反比例函数概念引入
01
在高等数学中,反比例函数 作为一种基本的函数类型被 引入,它描述了两个变量之
间的反比关系。
02
反比例函数的一般形式为 y=k/x(k≠0),其中k是常
一元二次方程求解方法回顾
01
配方法
通过配方将一元二次方程转化 为完全平方形式,进而求解。
02
公式法
利用一元二次方程的求根公式 进行求解。
03
因式分解法
将一元二次方程进行因式分解 ,得到两个一元一次方程,分
别求解。
反比例函数在一元二次方程中应用
01
02
03
判别式应用
利用反比例函数的性质, 判断一元二次方程的根的 情况,如判别式的正负等 。
物理学应用
在物理学中,许多物理量之间存 在反比关系。例如,万有引力定 律中两物体之间的引力与它们质 量的乘积成正比,与它们距离的
平方成反比。
跨学科综合问题挑战
环境科学
在研究环境污染问题时,污染物的排放量与治理成本之间 往往存在反比关系。利用反比例函数可以制定合理的治理 方案,实现经济效益和环境效益的平衡。

人教版初三数学反比例函数全章复习与巩固(提高)知识讲解

人教版初三数学反比例函数全章复习与巩固(提高)知识讲解

反比例函数定义及表达式
反比例函数定义
形如 $y = frac{k}{x}$ (其中 $k$ 是 常数,且 $k neq 0$) 的函数称为反 比例函数。
反比例函数表达式
反比例函数的一般表达式为 $y = frac{k}{x}$,其中 $x$ 是自变量,$y$ 是因变量,$k$ 是比例系数。
反比例函数图像与性质
反比例函数性质 当 $k < 0$ 时,双曲线的两支分别位于第二、第四 象限,在每一象限内,$y$ 随 $x$ 的增大而增大。
反比例函数图像:反比例函数的图像是一条双 曲线,该曲线以坐标原点为中心,分布在第二 和第四象限。
当 $k > 0$ 时,双曲线的两支分别位于第一、第 三象限,在每一象限内,$y$ 随 $x$ 的增大而 减小;
竞赛辅导内容引入和选拔性考试准备
竞赛知识点梳理
系统梳理反比例函数在竞赛中的 常考知识点和题型,帮助学生明
确复习方向和重点。
竞赛真题解析
选取历年竞赛中的反比例函数真 题进行解析,让学生了解竞赛难 度和出题规律,提高学生的应试
能力。
选拔性考试准备
针对选拔性考试的要求和特点, 设计针对性的复习计划和训练内
专题复习法
针对重点难点和常见错误类型,进行 专题复习,强化理解和记忆
有效复习方法推荐和备考建议
• 练习巩固法:通过大量的练习题,巩固所学知识 ,提高解题能力和应试水平
有效复习方法推荐和备考建议
01
备考建议
02
03
04
制定合理的复习计划,明确复 习目标和时间安排,确保复习
有序进行
注重课堂听讲和笔记整理,及 时消化和吸收所学知识
反比例函数中k值意义
$k$ 值决定双曲线位置

反比例函数专项复习 初中九年级数学教学课件PPT 人教版

反比例函数专项复习 初中九年级数学教学课件PPT 人教版

OA
AP
1 | m | • | n | 1 mn 1 | k |
2
2
2
面积性质(一):
y
P(m,n)
oA
x
(2)过P分别作x轴, y轴的垂线,垂足分别为A, B,
则S矩形OAPB=OA• AP m • n mn k
y
面积性质(二)
B
P(m,n)
oA
x
反比例函数的概念问题
1、在下列函数中,是反比例函数的有 .
x
求(1)x=-3时反比例函数y的值;
(2)当-3<x<-1时,反比例函数y的取值范围.
实际问题与 反比例函数
1.某蓄电池的电压为定值。右图表示的是该蓄电池
电流I 与电阻R之间的函数关系。如图,则函数的
解析式为_____A_______.
I
(A)I=36/R (B)I =18/R
A(2,18)
(C)I=9/R (D)I=72/R
R
小结
1.研究反比例函数及其图像时要注意:
(1)易漏隐含条件(k≠0);
(2)研究函数增减性时不分象限,即错误的说: “当k>0时,y随x的增大而减小;当k<0时, y随x的增大而增大.” 应将两个分支分别讨论.
2.过双曲线上任一点作x轴、y轴的垂线,所得 矩形的面积等于|k|.所得三角形的面积等
双曲线两分支分别在 第一、第三象限
增减性 在每一个象限内y随x的增大而减小;
位置
k<0
双曲线两分支分别在 第二、第四象限
增减性 在每一个象限内y随x的增大而增大
3、与面积有关的问题:
设P(m, n)是双曲线 y k (k 0)上任意一点, x

人教版初中数学反比例函数知识点总复习含解析

人教版初中数学反比例函数知识点总复习含解析

人教版初中数学反比例函数知识点总复习含解析一、选择题1.如图,正方形OABC 的边长为6,D 为AB 中点,OB 交CD 于点Q ,Q 是y =k x上一点,k 的值是( )A .4B .8C .16D .24【答案】C【解析】【分析】 延长根据相似三角形得到:1:2BQ OQ =,再过点Q 作垂线,利用相似三角形的性质求出QF 、OF ,进而确定点Q 的坐标,确定k 的值.【详解】解:过点Q 作QF OA ⊥,垂足为F ,OABC Q 是正方形,6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=︒=∠,D Q 是AB 的中点,12BD AB ∴=, //BD OC Q , OCQ BDQ ∴∆∆∽,∴12BQ BD OQ OC ==, 又//QF AB Q ,OFQ OAB ∴∆∆∽,∴22213QF OF OQ AB OA OB ====+, 6AB =Q ,2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,Q 点Q 在反比例函数的图象上,4416k ∴=⨯=,故选:C .【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键.2.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数k y x=(x>0)的图象经过顶点B ,则k 的值为A .12B .20C .24D .32【答案】D【解析】【分析】【详解】 如图,过点C 作CD ⊥x 轴于点D ,∵点C 的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC 是菱形,∴点B 的坐标为(8,4).∵点B 在反比例函数(x>0)的图象上, ∴. 故选D.3.已知点A (﹣2,y 1),B (a ,y 2),C (3,y 3)都在反比例函数4y x =的图象上,且﹣2<a <0,则( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3 【答案】D【解析】【分析】根据k >0,在图象的每一支上,y 随x 的增大而减小,双曲线在第一三象限,逐一分析即可.【详解】∵反比例函数y=4x中的k=4>0, ∴在图象的每一支上,y 随x 的增大而减小,双曲线在第一三象限,∵-2<a <0,∴0>y 1>y 2,∵C (3,y 3)在第一象限,∴y 3>0,∴213y y y <<,故选D .【点睛】本题考查了反比例函数的性质,熟练地应用反比例函数的性质是解题的关键.4.在同一直角坐标系中,函数y=k(x -1)与y=(0)k k x<的大致图象是 A . B . C . D .【答案】B【解析】【分析】【详解】解:k<0时,y=(0)k k x的图象位于二、四象限, y=k(x -1)的图象经过第一、二、四象限,观察可知B 选项符合题意,故选B.5.如图,点A 是反比例函数y =k x(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上.已知平行四边形ABCD 的面积为8,则k 的值为( )A .8B .﹣8C .4D .﹣4【答案】B【解析】【分析】 作AE ⊥BC 于E ,由四边形ABCD 为平行四边形得AD ∥x 轴,则可判断四边形ADOE 为矩形,所以S 平行四边形ABCD =S 矩形ADOE ,根据反比例函数k 的几何意义得到S 矩形ADOE =|k|.【详解】 解:作AE ⊥BC 于E ,如图,∵四边形ABCD 为平行四边形,∴AD ∥x 轴,∴四边形ADOE 为矩形,∴S 平行四边形ABCD =S 矩形ADOE ,而S 矩形ADOE =|k|,∴|k|=8,而k <0∴k=-8.故选:B .【点睛】本题考查了反比例函数y=k x (k≠0)系数k 的几何意义:从反比例函数y=k x(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.6.如图,点A 、B 在函数k y x=(0x >,0k >且k 是常数)的图像上,且点A 在点B 的左侧过点A 作AM x ⊥轴,垂足为M ,过点B 作BN y ⊥轴,垂足为N ,AM 与BN 的交点为C ,连结AB 、MN .若CMN ∆和ABC ∆的面积分别为1和4,则k 的值为( )A .4B .2C 522D .6【答案】D【解析】 【分析】 设点M (a ,0),N (0,b ),然后可表示出点A 、B 、C 的坐标,根据CMN ∆的面积为1可求出ab =2,根据ABC ∆的面积为4列方程整理,可求出k .【详解】解:设点M (a ,0),N (0,b ),∵AM ⊥x 轴,且点A 在反比例函数k y x =的图象上, ∴点A 的坐标为(a ,k a ), ∵BN ⊥y 轴,同理可得:B (k b ,b ),则点C (a ,b ), ∵S △CMN =12NC•MC =12ab =1, ∴ab =2,∵AC =k a −b ,BC =k b−a , ∴S △ABC =12AC•BC =12(k a −b)•(k b −a)=4,即8k ab k ab a b--⋅=, ∴()2216k -=,解得:k =6或k =−2(舍去),故选:D .本题考查反比例函数图象上点的坐标特征、三角形的面积计算等,解答本题的关键是明确题意,利用三角形的面积列方程求解.7.如图直线y=mx与双曲线y=kx交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=2S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=2S△AOM=2,S△AOM=12|k|=1,则k=±2.又由于反比例函数图象位于一三象限,k>0,所以k=2.故选B.【点睛】本题主要考查了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.8.如图,直线y1=x+b与x轴、y轴分别交于A,B两点,与反比例函数y2=﹣5x(x<0)的图象交于C,D两点,点C的横坐标为﹣1,过点C作CE⊥y轴于点E,过点D作DF ⊥x轴于点F.下列说法正确的是()A.b=5C .五边形CDFOE 的面积为35D .当x <﹣2时,y 1>y 2【答案】B【解析】【分析】根据函数值与相应自变量的关系,可得C 点坐标,根据待定系数法,可得一次函数解析式,可判断A 选项;根据解方程组,可得C 、D 点的坐标,根据全等三角形的判定与性质,可判断B 选项; 根据图形的分割,可得梯形、矩形,根据面积的和差,可判断C 选项;根据函数与不等式的关系:函数图象在上方的函数值大,可判断D 选项.【详解】解:由反比例函数y 2=﹣5x (x <0)经过C ,点C 的横坐标为﹣1,得 y =﹣51-=5,即C (﹣1,5). 反比例函数与一次函数交于C 、D 点,5=﹣1+b ,解得b =6,故A 错误;CE ⊥y 轴于E 点,E (0,﹣5),BE =6﹣5=1.反比例函数与一次函数交于C 、D 点,联立65y x y x =+⎧⎪⎨=-⎪⎩, x 2+6x +5=0解得x 1=﹣5,x 2=﹣1,当x =﹣5时,y =﹣5+6=1,即D (﹣5,1),即DF =1,在△ADF 和△CBE 中,DAF BCE AFD CEB DF BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,△ADF ≌△CBE (AAS ),AD =BC ,故B 正确;作CG ⊥x 轴,S△CDFOE=S梯形DFGC+S矩形CGOE=()(15)422DF CG FGOG CG++⨯+g+1×5=17,故C错误;由一次函数图象在反比例函数图象上方的部分,得﹣5<x<﹣1,即当﹣5<x<﹣1时,y1>y2,故D错误;故选:B.【点睛】本题考查了反比例函数综合题,利用了自变量与函数值的对应关系,点的坐标与函数解析式的关系,全等三角形的判定与性质,图形分割法求图形的面积,函数图象与不等式的关系.9.如图,点P是反比例函数y=kx(x<0)图象上一点,过P向x轴作垂线,垂足为M,连接OP.若Rt△POM的面积为2,则k的值为()A.4 B.2 C.-4 D.-2【答案】C【解析】【分析】根据反比例函数的比例系数k的几何意义得到S△POD=12|k|=2,然后去绝对值确定满足条件的k的值.【详解】解:根据题意得S△POD=12|k|,所以12|k||=2,而k<0,所以k=-4.故选:C .【点睛】本题考查了反比例函数的比例系数k 的几何意义:在反比例函数y=k x图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.10.在函数2y x=,3y x =+,2y x =的图象中,是中心对称图形,且对称中心是原点的图象共有( )A .0个B .1个C .2个D .3个【答案】B【解析】【分析】根据中心对称图形的定义与函数的图象即可求解.【详解】 y=x+3的图象是中心对称图形,但对称中心不是原点;y=x 2图象不是中心对称图形;只有函数2y x=符合条件. 故选:B .【点睛】 本题考查函数的图象性质与中心对称图形的性质,熟练掌握相关知识是解题的关键.11.若点()11,A y -,()22,B y -,()33,C y 在反比例函数8y x=-的图象上,则y 1,y 2,y 3的大小关系是( )A .123y y y <<B .213y y y <<C .132y y y <<D .321y y y << 【答案】D【解析】【分析】由于反比例函数的系数是-8,故把点A 、B 、C 的坐标依次代入反比例函数的解析式,求出123,,y y y 的值即可进行比较.【详解】解:∵点()11,A y -、()22,B y -、()33,C y 在反比例函数8y x =-的图象上, ∴1881y =-=-,2842y =-=-,383y =-, 又∵8483-<<, ∴321y y y <<.故选:D .【点睛】本题考查的是反比例函数的图象和性质,难度不大,理解点的坐标与函数图象的关系是解题的关键.12.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax 2+bx+c 的图象开口向下,∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点,∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧,∴a ,b 同号,∴b <0,∴一次函数y=ax+c ,图象经过第二、四象限,反比例函数y=b x 图象分布在第二、四象限, 故选D .【点睛】 此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.13.如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D 在反比例函数(0)k y k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( )A .4B .3C .2D .32【答案】B 【解析】【分析】 首先根据A,B 两点的横坐标,求出A,B 两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D 两点的坐标,从而得出AC,BD 的长,根据三角形的面积公式表示出S △OAC ,S △ABD 的面积,再根据△OAC 与△ABD 的面积之和为32,列出方程,求解得出答案.【详解】把x=1代入1y x=得:y=1, ∴A(1,1),把x=2代入1y x =得:y=12, ∴B(2, 12), ∵AC//BD// y 轴, ∴C(1,K),D(2,k 2)∴AC=k-1,BD=k 2-12, ∴S △OAC=12(k-1)×1, S △ABD =12 (k 2-12)×1, 又∵△OAC 与△ABD 的面积之和为32, ∴12(k-1)×1+12 (k 2-12)×1=32,解得:k=3; 故答案为B.【点睛】:此题考查了反比例函数系数k 的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k 的几何意义是解本题的关键.14.如图,点A ,B 是双曲线18y x=图象上的两点,连接AB ,线段AB 经过点O ,点C 为双曲线k y x=在第二象限的分支上一点,当ABC V 满足AC BC =且:13:24AC AB =时,k 的值为( ).A .2516-B .258-C .254-D .25-【答案】B【解析】【分析】如图作AE ⊥x 轴于E ,CF ⊥x 轴于F .连接OC .首先证明△CFO ∽△OEA ,推出2()COF AOE S OC S OA∆∆=,因为CA :AB =13:24,AO =OB ,推出CA :OA =13:12,推出CO :OA =5:12,可得出2()COF AOE S OC S OA ∆∆==25144,因为S △AOE =9,可得S △COF =2516,再根据反比例函数的几何意义即可解决问题.【详解】解:如图作AE ⊥x 轴于E ,CF ⊥x 轴于F .连接OC .∵A 、B 关于原点对称,∴OA =OB ,∵AC =BC ,OA =OB ,∴OC ⊥AB ,∴∠CFO =∠COA =∠AEO =90°,∴∠COF +∠AOE =90°,∠AOE +∠EAO =90°,∴∠COF =∠OAE ,∴△CFO ∽△OEA , ∴2()COF AOE S OC S OA∆∆=, ∵CA :AB =13:24,AO =OB ,∴CA :OA =13:12,∴CO :OA =5:12, ∴2()COF AOE S OC S OA ∆∆==25144, ∵S △AOE =9,∴S △COF =2516, ∴||25216k =, ∵k <0, ∴258k =- 故选:B .【点睛】本题主要考查反比例函数图象上的点的特征、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,根据相似三角形解决问题,属于中考选择题中的压轴题.15.已知反比例函数2y x =-,下列结论不正确的是 A .图象必经过点(-1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-2【答案】B【解析】【分析】此题可根据反比例函数的性质,即函数所在的象限和增减性对各选项作出判断.【详解】解: A、把(-1,2)代入函数解析式得:2=-21-成立,故点(-1,2)在函数图象上,故选项正确;B、由k=-2<0,因此在每一个象限内,y随x的增大而增大,故选项不正确;C、由k=-2<0,因此函数图象在二、四象限内,故选项正确;D、当x=1,则y=-2,又因为k=-2<0,所以y随x的增大而增大,因此x>1时,-2<y<0,故选项正确;故选B.【点睛】本题考查反比例函数的图像与性质.16.如图,点A在反比例函数3(0)y xx=-<的图象上,点B在反比例函数3(0)y xx=>的图象上,点C在x轴的正半轴上,则平行四边形ABCO的面积是()A.6 B.5 C.4 D.3【答案】A【解析】【分析】因为四边形ABCO是平行四边形,所以点A、B纵坐标相等,即可求得A、B横坐标,则AB 的长度即可求得,然后利用平行四边形面积公式即可求解.【详解】解:∵四边形ABCO是平行四边形∴点A、B纵坐标相等设纵坐标为b,将y=b带入3(0)y xx=-<和3(0)y xx=>中,则A点横坐标为3b-,B点横坐标为3b∴AB=336()b b b --=∴66ABCO S b b=⨯=Y 故选:A .【点睛】 本题考查了反比例函数以及平行四边形面积公式,本题关键在于两点间距离的求法.17.已知反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限,该交点横坐标为1,抛物线2y ax bx c =++与x 轴只有一个交点,则一次函数b c y x a a=+的图象可能是( ) A . B . C . D .【答案】B【解析】【分析】根据题意得b <0,a+c <0,240b ac =>,可得a <0,c <0,进而即可判断一次函数b c y x a a=+的图象所经过的象限. 【详解】 ∵反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限, ∴反比例函数的图象在二、四象限,即b <0,∵该交点横坐标为1,∴y=a+c <0,∵抛物线2y ax bx c =++与x 轴只有一个交点, ∴240b ac -=,即:240b ac =>,∴a <0,c <0,∴0b a>,0c a >, ∴b c y x a a=+的图象过一、二、三象限. 故选B .【点睛】 本题主要考查反比例函数与一次函数的图象和性质,掌握函数图象上点的坐标特征以及函数解析式的系数的几何意义,是解题的关键.18.如图,Rt ABO ∆中,90AOB ∠=︒,3AO BO =,点B 在反比例函数2yx =的图象上,OA 交反比例函数()0k y k x=≠的图象于点C ,且2OC CA =,则k 的值为( )A .2-B .4-C .6-D .8-【答案】D【解析】 【分析】 过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴,利用AA 定理和平行证得△COE ∽△OBF ∽△AOD ,然后根据相似三角形的性质求得21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ,根据反比例函数比例系数的几何意义求得212BOF S ==V ,从而求得4COE S =V ,从而求得k 的值.【详解】解:过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴∴CE ∥AD ,∠CEO=∠BFO=90°∵90AOB ∠=︒∴∠COE+∠FOB=90°,∠ECO+∠COE=90°∴∠ECO=∠FOB∴△COE ∽△OBF ∽△AOD 又∵3AO BO =,2OC CA =∴13OB OA =,23OC OA = ∴21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ∴4COE BOFS S =V V∵点B 在反比例函数2y x =的图象上 ∴212BOF S ==V ∴4COE S =V∴42k =,解得k=±8 又∵反比例函数位于第二象限,∴k=-8故选:D .【点睛】本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.19.已知反比例函数y=﹣8x,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y 随x 的增大而增大;④当x >﹣1时,则y >8.其中错误的结论有( )个 A .3 B .2 C .1 D .0【答案】B【解析】【分析】根据反比例函数的性质,逐一进行判断即可得答案.【详解】①当x=﹣2时,y=4,即图象必经过点(﹣2,4);②k=﹣8<0,图象在第二、四象限内;③k=﹣8<0,每一象限内,y 随x 的增大而增大,错误;④k=﹣8<0,每一象限内,y 随x 的增大而增大,若0>x >﹣1,﹣y >8,故④错误, 故选B .【点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是解题关键.20.如图,一次函数1y ax b =+和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >【答案】B【解析】【分析】 根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方, ∴使12y y >成立的x 取值范围是2x <-或04x <<,故选B .【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.。

人教版初三数学:反比例函数全章复习与巩固(提高)知识讲解

人教版初三数学:反比例函数全章复习与巩固(提高)知识讲解

反比例函数全章复习与巩固(提高)【学习目标】1.使学生理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式()0ky k x=≠,能判断一个给定函数是否为反比例函数; 2.能描点画出反比例函数的图象,会用待定系数法求反比例函数的解析式; 3.能根据图象数形结合地分析并掌握反比例函数()0ky k x=≠的性质,能利用这些性质分析和解决一些简单的实际问题. 【知识网络】【要点梳理】【高清课堂406878 反比例函数全章复习 知识要点】 要点一、反比例函数的概念一般地,形如ky x=(k 为常数,0k ≠)的函数称为反比例函数,其中x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.要点诠释:在ky x=中,自变量x 的取值范围是,k y x=()可以写成()的形式,也可以写成的形式.要点二、反比例函数解析式的确定反比例函数解析式的确定方法是待定系数法.由于反比例函数ky x=中,只有一个待定系数k ,因此只需要知道一对x y 、的对应值或图象上的一个点的坐标,即可求出k 的值,从而确定其解析式.要点三、反比例函数的图象和性质 1.反比例函数的图象反比例函数()0ky k x=≠的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限.它们关于原点对称,反比例函数的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交. 要点诠释:观察反比例函数的图象可得:x 和y 的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.①)0(≠=k x ky 的图象是轴对称图形,对称轴为x y x y -==和两条直线; ②)0(≠=k x ky 的图象是中心对称图形,对称中心为原点(0,0);③xky x k y -==和(k ≠0)在同一坐标系中的图象关于x 轴对称,也关于y 轴对称.注:正比例函数x k y 1=与反比例函数xk y 2=, 当021<⋅k k 时,两图象没有交点;当021>⋅k k 时,两图象必有两个交点,且这两个交点关于原点成中心对称.2.反比例函数的性质(1)图象位置与反比例函数性质当0k >时,x y 、同号,图象在第一、三象限,且在每个象限内,y 随x 的增大而减小;当0k <时,x y 、异号,图象在第二、四象限,且在每个象限内,y 随x 的增大而增大.(2)若点(a b ,)在反比例函数ky x=的图象上,则点(a b --,)也在此图象上,故反比例函数的图象关于原点对称.(3)正比例函数与反比例函数的性质比较 正比例函数反比例函数解析式图 像 直线 有两个分支组成的曲线(双曲线)位 置0k >,一、三象限; 0k >,一、三象限0k <,二、四象限 0k <,二、四象限增减性0k >,y 随x 的增大而增大 0k <,y 随x 的增大而减小 0k >,在每个象限,y 随x 的增大而减小 0k <,在每个象限,y 随x 的增大而增大(4)反比例函数y =中k 的意义①过双曲线x ky =(k ≠0) 上任意一点作x 轴、y 轴的垂线,所得矩形的面积为k . ②过双曲线x ky =(k ≠0) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为2k.要点四、应用反比例函数解决实际问题须注意以下几点1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题.2.列出函数关系式后,要注意自变量的取值范围. 【典型例题】类型一、确定反比例函数的解析式【高清课堂406878 反比例函数全章复习 例1】1、(2015•上城区一模)在平面直角坐标系中,反比例函数y=(x >0,k >0)的图象经过点A (m ,n ),B (2,1),且n >1,过点B 作y 轴的垂线,垂足为C ,若△ABC 的面积为2,求点A 的坐标.【思路点拨】根据图象和△ABC 的面积求出n 的值,根据B (2,1),求出反比例函数的解析式,把n 代入解析式求出m 即可. 【答案与解析】 解:∵B (2,1), ∴BC=2,∵△ABC 的面积为2, ∴×2×(n ﹣1)=2,解得:n=3, ∵B (2,1),∴k=2, 反比例函数解析式为:y=, ∴n=3时,m=,∴点A 的坐标为(,3).【总结升华】本题考查的是反比例函数系数k 的几何意义,用待定系数法求出k 、根据三角形的面积求出n 的值是解题的关键,解答时,注意数形结合思想的准确运用. 举一反三:【高清课堂406878 反比例函数全章复习 例2】 【变式】已知反比例函数ky x=与一次函数y ax b =+的图象都经过点P(2,-1),且当1x = 时,这两个函数值互为相反数,求这两个函数的关系式.【答案】因为双曲线ky x=经过点P(2,-1),所以2(1)2k xy ==⨯-=-. 所以反比例函数的关系式为2y x-=,所以当1x =时,2y =-.当1x =时,由题意知2y ax b =+=,所以直线y ax b =+经过点(2,-1)和(1,2),所以有21,2,a b a b +=-⎧⎨+=⎩ 解得3,5.a b =-⎧⎨=⎩所以一次函数解析式为35y x =-+. 类型二、反比例函数的图象及性质2、已知反比例函数ky x=(k <0)的图象上有两点A(11x y ,),B(22x y ,),且12x x <,则12y y -的值是( ).A .正数B .负数C .非负数D .不能确定【思路点拨】一定要确定了A 点和B 点所在的象限,才能够判定12y y -的值. 【答案】D ;【解析】分三种情形作图求解.(1)若120x x <<,如图①,有12y y <,12y y -<0,即12y y -是负数; (2)若120x x <<,如图②,有12y y >,12y y ->0,即12y y -是正数;(3)若120x x <<,如图③,有12y y <,12y y -<0,即12y y -是负数. 所以12y y -的值不确定,故选D 项.【总结升华】根据反比例函数的性质,比较函数值的大小时,要注意相应点所在的象限,不能一概而论. 举一反三:【变式】已知0a b ⋅<,点P (a b ,)在反比例函数xay =的图象上,则直线b ax y +=不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】C ;提示:由0a b ⋅<,点P (a b ,)在反比例函数xay =的图象上,知反比例函数经过二、四象限,所以00a b <>,,直线b ax y +=经过一、二、四象限.3、(2016•淄博)反比例函数y=(a >0,a 为常数)和y=在第一象限内的图象如图所示,点M 在y=的图象上,MC ⊥x 轴于点C ,交y=的图象于点A ;MD ⊥y 轴于点D ,交y=的图象于点B ,当点M 在y=的图象上运动时,以下结论: ①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点. 其中正确结论的个数是( )A .0B .1C .2D .3【思路点拨】①由反比例系数的几何意义可得答案;②由四边形OAMB 的面积=矩形OCMD 面积﹣(三角形ODB 面积+面积三角形OCA ),解答可知;③连接OM ,点A 是MC 的中点可得△OAM 和△OAC 的面积相等,根据△ODM 的面积=△OCM 的面积、△ODB 与△OCA 的面积相等解答可得. 【答案】D .【解析】解:①由于A 、B 在同一反比例函数y=图象上,则△ODB 与△OCA 的面积相等,都为×2=1,正确;②由于矩形OCMD 、三角形ODB 、三角形OCA 为定值,则四边形MAOB 的面积不会发生变化,正确;③连接OM ,点A 是MC 的中点,则△OAM 和△OAC 的面积相等,∵△ODM 的面积=△OCM 的面积=,△ODB 与△OCA 的面积相等, ∴△OBM 与△OAM 的面积相等, ∴△OBD 和△OBM 面积相等, ∴点B 一定是MD 的中点.正确; 故选:D .【总结升华】本题考查了反比例函数y=(k ≠0)中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k |,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.4、反比例函数xmy =与一次函数)0(≠-=m m mx y 在同一平面直角坐标系中的图象可能是( )【答案】C ;【解析】一次函数()1y mx m m x =-=-是经过定点(1,0),排除掉B 、D 答案;选项A 中m 的符号自相矛盾,选项C 符合要求.【总结升华】还可以按照m >0,m <0分别画出函数图象,看哪一个选项符合要求. 举一反三:【高清课堂406878 反比例函数全章复习 例7】【变式】已知>b a ,且,0,0,0≠+≠≠b a b a 则函数b ax y +=与xba y +=在同一坐标系中的图象不可能是( ) .【答案】B ;提示:因为从B 的图像上分析,对于直线来说是<0,0a b <,则0a b +<,对于反比例函数来说,0a b +>,所以相互之间是矛盾的,不可能存在这样的图形. 类型三、反比例函数与一次函数综合5、如图所示,在平面直角坐标系中,一次函数y kx b =+(k ≠0)的图象与反比例函数my x=(m ≠0)的图象相交于A 、B 两点.求:(1)根据图象写出A 、B 两点的坐标并分别求出反比例函数和一次函数的解析式;(2)根据图象写出:当x 为何值时,一次函数值大于反比例函数值. 【答案与解析】解:(1)由图象可知:点A 的坐标为(2,12),点B 的坐标为(-1,-1). ∵ 反比例函数(0)m y m x =≠的图象经过点A(2,12),∴ m =1.∴ 反比例函数的解析式为:1y x=.∵ 一次函数y kx b =+的图象经过点A 12,2⎛⎫⎪⎝⎭,点B(-1,-1), ∴ 12,21,k b k b ⎧+=⎪⎨⎪-+=-⎩ 解得:1,21.2k b ⎧=⎪⎪⎨⎪=-⎪⎩∴ 一次函数的解析式为1122y x =-. (2)由图象可知:当x >2或-l <x <0时一次函数值大于反比例函数值.【总结升华】一次函数值大于反比例函数值从图象上看就是一次函数的图象在反比例函数的图象上方的部分,这部分图象的横坐标的范围为所求. 举一反三:【变式】如图所示,一次函数3y kx =+的图象与反比例函数(0)my x x=>的图象交于点P ,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,一次函数的图象分别交x 轴、y 轴于点C 、点D ,且27DBP S =△,12OC CA =.(1)求点D 的坐标;(2)求一次函数与反比例函数的表达式;(3)根据图象写出当x 取何值时,一次函数的值小于反比例函数的值? 【答案】解:(1)由一次函数3y kx =+可知:D(0,3)(2)设P(a ,b ),则OA =a ,13OC a =,得1,03C a ⎛⎫ ⎪⎝⎭. 由点C 在直线3y kx =+上,得1303ka +=,ka =-9, DB =3-b =3-(ka +3)=-ka =9,BP =a . 由1192722DBP S DB BP a ===△, ∴ a =6,∴ 32k =-,b =-6,m =-36. ∴ 一次函数的表达式为332y x =-+,反比例函数的表达式为36y x=-.(3)根据图象可知:当x >6时,一次函数的值小于反比例函数的值.类型四、反比例函数的实际应用6、制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y (℃),从加热开始计算的时间为()min x .据了解,设该材料加热时,温度y 与时间x 成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5min 后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?【思路点拨】(1)首先根据题意,材料加热时,温度y 与时间x 成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例关系;将题中数据代入用待定系数法可得两个函数的关系式;(2)把y =15代入300y x=中,进一步求解可得答案. 【答案与解析】解:依题意知两函数图象的交点为(5,60) (1)设材料加热时,函数解析式为y kx b =+.有15956015b k k b b ==⎧⎧⎨⎨+==⎩⎩∴915y x =+(0≤x ≤5). 设进行制作时函数解析式为1k y x=. 则1300k =,∴300y x= (x ≥5). (2)依题意知300x=15,x =20. ∴从开始加热到停止操作共经历了20min .【总结升华】把握住图象的关键点,根据反比例函数与一次函数的定义,用待定系数法求解析式,并利用解析式解决实际问题.附录资料:弧长和扇形面积、圆锥的侧面展开图—知识讲解(基础)【学习目标】1.通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,会应用公式解决问题;3. 能准确计算组合图形的面积.【要点梳理】要点一、弧长公式半径为R的圆中360°的圆心角所对的弧长(圆的周长)公式:n°的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.2.扇形面积公式半径为R的圆中360°的圆心角所对的扇形面积(圆面积)公式:n°的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.要点三、圆锥的侧面积和全面积连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.圆锥的母线长为,底面半径为r,侧面展开图中的扇形圆心角为n°,则圆锥的侧面积2360l S rl ππ=扇n =, 圆锥的全面积.要点诠释:扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.【典型例题】类型一、弧长和扇形的有关计算1.如图(1),AB 切⊙O 于点B ,OA=23,AB=3,弦BC∥OA,则劣弧BC 的弧长为( ).A .33πB .32π C .π D .32π图(1)【答案】A.【解析】连结OB 、OC ,如图(2)则0OBA ∠︒=9,OB=3,0A ∠︒=3,0AOB ∠︒=6,由弦BC ∥OA 得60OBC AOB ∠∠=︒=,所以△OBC 为等边三角形,0BOC ∠︒=6.则劣弧BC 的弧长为6033=1803ππ,故选A. 图(2) 【总结升华】主要考查弧长公式:.举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)CB AO【答案】R=40mm ,n=110∴的长==≈76.8(mm)因此,管道的展直长度约为76.8mm .【高清ID 号:359387 高清课程名称: 弧长 扇形 圆柱 圆锥关联的位置名称(播放点名称):经典例题1-2】2.如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)【答案与解析】∵弦AB 和半径OC 互相平分,∴OC ⊥AB ,OM=MC=OC=OA .∴∠B=∠A=30°,∴∠AOB=120°∴S 扇形=.【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【高清ID 号:359387 高清课程名称:弧长 扇形 圆柱 圆锥关联的位置名称(播放点名称):经典例题1-2】【变式】如图(1),在△ABC 中,BC=4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上的一点,且∠EPF=40°,则图中阴影部分的面积是( ). A .449-π B .849-π C .489-π D .889-π图(1)A EBC F P【答案】连结AD,则AD⊥BC,△ABC的面积是:BC•AD=×4×2=4,∠A=2∠EPF=80°.则扇形EAF的面积是:2 8028=. 3609ππ⨯故阴影部分的面积=△ABC的面积-扇形EAF的面积=84-9π.图(2)故选B.类型二、圆锥面积的计算3.(2014秋•广东期末)如图,一个圆锥的高为cm,侧面展开图是半圆,求:(1)圆锥的底面半径r与母线R之比;(2)圆锥的全面积.【思路点拨】(1)设出圆锥的底面半径及圆锥的母线长,利用底面周长等于圆锥的弧长得到圆锥的母线与底面的半径之比即可;(2)首先求得圆锥的底面半径和圆锥的母线长,然后利用圆锥的侧面积的计算方法求得其侧面积即可.【答案与解析】解:(1)由题意可知∴,R=2r(3分)r:R=r:2r=1:2;(2)在Rt△AOC中,∵R2=r2+h2∴,4r2=r2+27r2=9,r=±3∵r>0∴r=3,R=6.∴S侧=πRr=18π(cm2)(cm2)∴S全=S侧+S底=18π+9π=27π(cm2).【总结升华】本题考查了圆锥的计算,解题的关键是牢记有关的公式.类型三、组合图形面积的计算4.(2015•槐荫区三模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC==2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S扇形OBC=π×OC2=π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。

新人教版九年级数学下册一轮复习第13课时反比例函数

新人教版九年级数学下册一轮复习第13课时反比例函数

第13课时反比例函数(1)反比例函数图象及其性质、解析式的求法一、基础知识梳理(课前完成)1.一般地,如果两个变量x、y之间的关系可以表示成y=或(k为常数,k≠0)的形式,那么称y是x的反比例函数.2.反比例函数的图象和性质3.的几何含义:(1)反比例函数y = (k≠0)中比例系数k的几何意义,即过双曲线y = (k≠0)上任意一点P作x轴、y轴垂线,设垂足分别为A、B,则所得矩形OAPB的面积为.(2)如图,M为反比例函数y=的图象上的一点,MA垂直y轴,垂足为A,则△MAO的面积为为.二、基础诊断题1.(2013•温州)已知点P(1,﹣3)在反比例函数y=(k≠0)的图象上,则k的值是().2.(2014广州)已知反比例函数()的图象上两点(,)、(,),且<0,则下列不等式中恒成立的是().(A)(B)(C)(D)三、典型例题例1 下面函数中是反比例函数的有.(填入序号即可)①;②;③;④;⑤;⑥y =;⑦;⑧;⑨;⑩y =1+x2.例2:k为何值时,函数y =是反比例函数?例3 (2014•菏泽)(2)如图,在平面直角坐标系xOy中,已知一次函数y=kx+b的图象经过点A(1,0),与反比例函数y= (x>0)的图象相交于点B(2,1).①求m的值和一次函数的解析式;②结合图象直接写出:当x>0时,不等式kx+b >的解集.四、达标检测题(一)基础检测一、选择题(每小题有四个选项,只有一个选项是正确的.)1.(2014•兰州)若反比例函数的图象位于第二、四象限,则k的取值可以是()2.(2013•牡丹江)如图,反比例函数的图象上有一点A,AB平行于x轴交y轴于点B,△ABO,如果,则的值为()A.B.C.D..NMy。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档