山东省淄博市2014二模数学理含答案
【2014淄博二模纯Word版】山东省淄博市2014届高三复习阶段性诊断考试 理科4份(语数英理综) Word版含答案

高三复习阶段性诊断考试试题语文本试卷分第I卷和第Ⅱ卷两部分,共8页。
满分150分。
考试用时150分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、区县、学校和科类填写在答题卡和试卷规定的位置上。
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案不能答在试卷上。
3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第I卷(共36分)一、(15分,每小题3分)1.下列词语中加点的字,读音全都正确的一组是A.青睐.(lài) 箴.言(jiān) 擎.天柱(qíng) 返璞.归真(pú)B.孝悌.(dì) 奇葩.(pā) 口头禅.(chán) 顺藤摸.瓜(mō)C.粗犷.(guǎng) 针砭.(biān) 独角.戏(jiǎo) 昝.由自取(jiǔ)D.笃.信(dǔ) 睿.智(ruì) 打擂.台(1âi) 纵横捭.阖(bǎi)2.下列词语中,没有错别字的一组是A.劝诫风向标语重心长闻过饰非B.搏弈和事老披肝沥胆众志成城C.装潢耍花腔推波助澜源远流长D.悖论连珠炮再接再励革故鼎新3.下列语句中,加点的词语使用不恰当的一句是A.近年来,国内许多风景名胜区实行“一票制”,将景区内多个景点门票捆绑搭售,这种做法引起了人们的质疑..和不满。
B.焦裕禄的一生贯穿..了抗日战争、解放战争、土地改革和新中国建设的重要历程,留下了许多可歌可泣的事迹。
C.广告传播既是一种商业行为,也是一种文化传播,它潜移默化....地影响着人们的价值观念和生活方式。
D.当前的互联网空间江河日下....、鱼龙混杂,一些有害信息和违法行为时常兴风作浪,成为阻碍网络健康发展的负能量。
最新2014年全国高考理科数学二模试题及答案-山东卷

最新2014年全国高考理科数学二模试题及答案-山东卷解析:C对于f(x)=ax,当a1时,f(x)在R上是增函数。
对于g(x)=(2-a)x,当2-a>0时,g(x)在R上是增函数;当2-a<0时,g(x)在R上是减函数。
所以当a>2时,f(x)是减函数,g(x)是增函数,两者同时成立,为充分必要条件。
答案选C。
4在平面直角坐标系内,点A(0,0),点B(3,4),点C(4,3),则△ABC的面积为A5B6C7D8解析:BABC的面积可以用向量叉积求解,设向量BA=(3,-4),向量CA=(4,-3),则ABC的面积为1/2|BA×CA|=1/2|3×(-3)-4×4|=6.答案选B。
5已知集合A={x|x2-2x-3<0},则A的取值范围是A(-∞,1)∪(3,∞)B(-∞,1)∪(3,∞)C(-∞,-1)∪(3,∞)D(-∞,-1)∪(1,3)∪(3,∞)解析:Dx2-2x-3=(x-3)(x+1)<0,解得x∈(-∞,-1)∪(3,∞)。
答案选D。
6已知函数f(x)=x3-3x2+5x-1,则f(x)的单调递减区间为A(-∞,1)B(1,2)C(2,+∞)D(1,+∞)解析:Af'(x)=3x2-6x+5,判别式△=6-4×3×5=-560的解不存在,f(x)在R上单调递减。
答案选A。
7已知集合A={x|x2+px+q>0},其中p,q∈R,若A中至少有一个元素,则下列说法正确的是A p2-4q≤0B p2-4q>0C p2+4q≤0D p2+4q>0解析:B当A中至少有一个元素时,x2+px+q>0,即判别式△=p2-4q0.答案选B。
8已知函数f(x)=x2-2ax+a2+3a-1,若对于任意实数x,都有f(x)≥0,则a的取值范围是A(-∞,-2]∪[1,2]B(-∞,-2]∪[2,+∞)C[-1,2]D(-∞,-1]∪[2,+∞)解析:Bf(x)=x2-2ax+a2+3a-1=(x-a)2+(3a-1),当a≥2或a≤-2时,(3a-1)≤0,所以f(x)≤0,不符合条件。
数学_2014年山东省某校高考数学二模试卷(理科)_(含答案)

2014年山东省某校高考数学二模试卷(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分).1. 已知集合A ={x ∈R||x|≤2},B ={x ∈R|x ≤1},则A ∩B =( ) A (−∞, 2] B [1, 2] C [−2, 2] D [−2, 1]2. 函数f(x)是R 上的增函数且f(a)+f(b)>f(−a)+f(−b)则( ) A a >b >0 B a −b >0 C a +b >0 D a >0,b >03. 过点(1, 0)且与直线x −2y −2=0平行的直线方程是( )A x −2y −1=0B x −2y +1=0C 2x +y −2=0D x +2y −1=04. 阅读如图所示的程序框图,如果输出i =4,那么空白的判断框中应填入的条件是( )A S <8B S <9C S <10D S <115. 样本中共有五个个体,其值分别为a ,0,1,2,3.若该样本的平均值为1,则样本方差为( )A √65 B 65C √2D 26. 设定义在R 上的函数f(x)满足f(x)⋅f(x +2)=13,若f(1)=2,则f(99)=( ) A 13 B 2 C 132D 2137. 由0,1,2,3,4这5个数字组成没有重复数字且个位上的数字不能为1的3位数共有( )A 28个B 36个C 39个D 42个8. 实数x ,y 满足{y ≥1y ≤2x −1x +y ≤b ,如果目标函数z =x −y 的最小值为−2,则实数b 的值为( )A 0B 6C 7D 89. 在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且角A =60∘,若S △ABC =15√34,且5sinB =3sinC ,则ABC 的周长等于( )A 8+√19B 14C 10+3√5D 1810. 设互不相等的平面向量组a i (i =1, 2, 3,…),满足①|a i |=1;②a i ⋅a i+1=0.若T m =a 1+a 2+...+a m (m ≥2),则|T m |的取值集合为( )A {0, √2}B {1, √3}C {1, √2, √3}D {0, 1, √2}二、填空题:把答案填在答题卷中的横线上(本大题共4小题,每小题5分,共25分). 11. 双曲线x 24−y 2m =1的焦距为4√2,则m =________. 12. 二项式(ax 2√x)5的展开式中常数项为160,则a 的值为________.13. 已知√2+23=2√23,√3+38=3√38,√4+415=4√415…,照此规律,第五个等式为________.14. 某制冷设备厂设计生产一种长方形薄板,如图所示,长方形ABCD(AB>AD)的周长为4米,沿AC折叠使B到B′位置,AB′交DC于P.研究发现当ADP的面积最大时最节能,则最节能时长方形ABCD的面积为________.二、请在下列三题中任选一题作答,如果多做,则按所做的第一题评分。
山东省淄博市2014届下学期高三年级二模考试数学试卷(文科)

山东省淄博市2014届下学期高三年级二模考试数学试卷(文科)本试卷,分第I 卷和第Ⅱ卷两部分.共5页,满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、区县和科类填写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}{}{},,,,,,,,,U U a b c d e M a d N a c e M C N ===⋃,则为 A.{},,,a c d eB.{},,a b dC.{},b dD.{}d2.已知i 是虚数单位,则32ii-+等于 A.1i -+B.1i --C.1i +D.1i -3.“a b c d a >>>且是“c bd ”成立的 A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件4.某程序框图如图所示,若输出的S=57,则判断框内填 A.4k >B. k >5C. k >6D. k >75.设,a b 是两个非零向量,则下列命题为真命题的是 A.若a b a b a b +=-⊥,则 B.若a b a b a b ⊥+=-,则C.若a b a b +=-,则存在实数λ,使得a b λ=D. 若存在实数λ,使得a b λ=,则a b a b +=-6.某几何体正视图与侧视图相同,其正视图与俯视图如图所示,且图中的四边形都是边长为2的正方形,正视图中两条虚线互相垂直,则该几何体的体积是A.203B.6C.4D.437.下列函数是偶函数,且在[]0,1上单调递增的是 A.cos 2y x π⎛⎫=+ ⎪⎝⎭B.212cos 2y x =- C.2y x =-D.()sin y x π=+8.已知()()()34,1log ,1aa x a x f x x x --<⎧⎪=-∞+∞⎨≥⎪⎩是,上的增函数,那么a 的取值范围是 A.()1,+∞B.(),3-∞C.()1,3D.3,35⎡⎫⎪⎢⎣⎭9.函数()f x 的部分图象如图所示,则()f x 的解析式可以是A.()sin f x x x =+B.()cos xf x x=C.()cos f x x x =D.()322f x x x x ππ⎛⎫⎛⎫=-- ⎪⎪⎝⎭⎝⎭10.如图,已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1212,,4F F F F =,P是双曲线右支上的一点,2F P y 与轴交于点A ,1APF ∆的内切圆在1PF 上的切点为Q ,若1PQ =,则双曲线的离心率是A.3B.2D.第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.已知3sin ,tan 25παπαα⎛⎫∈==⎪⎝⎭,,则________.12.已知等比数列{}3481298n a a a a a a a =⋅⋅⋅=若,则________. 13.若log 41,a b a b =+则的最小值为_________.14.已知x ,y 满足2211,0x y x y z x y y ⎧+≤⎪+≤=-⎨⎪≥⎩则的取值范围是________.15.对任意正整数()[]51,,,i k m f m k a ==∑记表示不大于a 的最大整数,则()2,2f =_________.三、解答题:本大题共6小题,共75分 16.(本题满分12分)在ABC ∆中,角A,B,C 的对边分别为a,b,c ,若()(),2,1,2cos ,//m b c a n A m n =-=且. (I )求B ;(II )设函数()211sin 2cos cos sin cos 222f x x B x B B π⎛⎫=+++ ⎪⎝⎭,求函数()04f x π⎡⎤⎢⎥⎣⎦在,上的取值范围.17.(本题满分12分)某学校高一、高二、高三的三个年级学生人数如下表:按年级分层抽样的方法评选优秀学生50人,其中高三有10人. (I )求z 的值;(II )用分层抽样的方法在高一学生中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1名女生的概率. 18.(本题满分12分)如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,AD//BC ,BC=2AD ,PB ⊥AC ,Q 是线段PB 的中点.(I )求证:AB ⊥平面PAC ; (II )求证:AQ//平面PCD. 19.(本题满分12分)某市为控制大气PM2.5的浓度,环境部门规定:该市每年的大气主要污染物排放总量不能超过55万吨,否则将采取紧急限排措施.已知该市2013年的大气主要污染物排放总量为40万吨,通过技术改造和倡导绿色低碳生活等措施,此后每年的原大气主要污染物排放最比上一年的排放总量减少10%.同时,因为经济发展和人口增加等因素,每年又新增加大气主要污染物排放量()0m m >万吨.(I )从2014年起,该市每年大气主要污染物排放总量(万吨)依次构成数列{}n a ,求相邻两年主要污染物排放总量的关系式; (II )证明:数列{}10n a m -是等比数列;(III )若该市始终不需要采取紧急限排措施,求m 的取值范围. 20.(本题满分13分)设椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为12,F F ,上顶点为A ,在x 轴负半轴上有一点B ,满足11222,,,BF F F AB AF A B F =⊥,且过三点的圆与直线30x -=相切.(I )求椭圆C 的方程;(II )过右焦点2F 作斜率为k 的直线l 与椭圆C 交于M ,N 两点,线段MN 的垂直平分线与x 轴相交于点P (m ,0),求实数m 的取值范围. 21.(本题满分14分) 已知函数()()1 1.xf x x e =--(I )求函数()f x 的最大值;(II )若()()200x g x f x x λλ≥=+≤时,,求的取值范围.高三复习阶段性诊断考试数学试题参考答案1-10.BDDAC ADCCB 11.34-12.512 13.1 14.⎡⎤⎣⎦ 15.716.解:(Ⅰ)解法一:因为//m n ,所以 2cos 2b A c a =- ………………2分由余弦定理得222222b c a b c a bc+-⋅=-,整理得222=+ac a c b -所以222+1cos =22a cb B ac -= ……4分又因为0B π<<,所以3B π=. ………………………………………6分解法二:因为//m n ,所以2cos 2b A c a =- ………………………………2分 由正弦定理得 2sin cos 2sin sin B A C A =- 所以()2sin cos 2sin sin B A A B A =+- 整理得2sin cos sin 0A B A -=因为0A π<<,所以sin 0A ≠,所以1cos 2B =……………………4分 又因为0B π<<,所以3B π=. …………………………………………6分(Ⅱ)211()sin 2cos cos sin cos()222f x x B x B B π=+++11cos 2sin 242x x +=1sin 224x x =+1sin(2)23x π=+ ………………8分因为 04x π≤≤,则52+336x πππ≤≤, ………………………10分 所以1sin 2+23x π≤≤()1,即()f x 在[0,]4π上取值范围是11[,]42.……12分 17. 解:(Ⅰ)设该校总人数为n 人,由题意,得5010100300n =+,所以2000n = ………………3分 故2000(100300150450600)400z =-++++=. …………5分 (Ⅱ)设所抽样本中有m 个女生.因为用分层抽样的方法在高一学生中抽取一个容量为5的样本,所以40010005m=,解得2m =. ………………………7分也就是抽取了2名女生,3名男生,分别记作12123,,,,A A B B B ,则从中任取2个的所有基本事件为(12,A A ),(11,A B ),(12,A B ),(13,A B ),(21,A B ),(22,A B ),(23,A B ),(12,B B ),(13,B B ),(23,B B ),共10个; …………………9分其中至少有1名女生的基本事件有7个: (12,A A ),(11,A B ),(12,A B ),(13,A B ), (21,A B ),(22,A B ),(23,A B ) …………………………11分 所以从中任取2人,至少有1名女生的概率为710P =. …………………12分 18. 证明:(Ⅰ)因为PA ⊥平面ABCD ,,AC AB ⊂平面ABCD所以 PA AC ⊥,PA AB ⊥ …………………………………2分 又因为PB AC ⊥,PA AC ⊥,,PA PB ⊂平面PAB ,PAPB P =,所以AC ⊥平面PAB …………………………………3分 又因为AC ⊥平面PAB ,AB ⊂平面PAB ,所以AC ⊥AB …………………………………4分 因为AC ⊥AB ,PA AB ⊥,,PA AC ⊂平面PAC ,PAAC A =,所以 AB ⊥平面PAC ………………………6分 (Ⅱ)方法一:取PC 中点E ,连接QE 、ED . 因为Q 是线段PB 的中点,E 是PC 的中点,所以 QE ∥BC ,12QE BC =………8分 因为 AD ∥BC ,2BC AD =所以 QE ∥AD ,QE AD =所以 四边形AQED 是平行四边形,………………………………9分所以 AQ ∥ED , ………………………………10分因为AQ ∥ED ,AQ ⊄平面PCD ,ED ⊂平面PCD所以 AQ ∥平面PCD . …………………………………………12分 方法二:取BC 的中点E ,连接AE 、QE . 因为 2BC AD = 所以AD EC = 又 AD ∥EC ,所以 四边形ADCE 是平行四边形,所以AE ∥CD因为AE ⊄平面PCD ,CD ⊂平面PCD ,所以AE ∥平面PCD ……………8分 因为Q ,E 分别是线段PB ,BC 的中点,所以QE ∥PC ,所以QE ∥平面PCD ……………………………10分 因为QEAE E =,所以平面AEQ ∥平面PCD ……………………11分因为AQ ⊂平面AEQ ,所以AQ ∥平面PCD . ………………………12分 19.解:(Ⅰ)由已知,1400.9a m =⨯+,10.9n n a a m +=+(1n ≥).………4分(Ⅱ)由(Ⅰ)得:()1100.990.910n n n a m a m a m +-=-=-,所以数列{}10n a m -是以110369a m m -=-为首项、0.9为公比的等比数列.………6分 (Ⅲ)由(Ⅱ)得:()1103690.9n n a m m --=-⋅ ,即()13690.910n n a m m -=-⋅+ . ……………………8分由()13690.91055n m m --⋅+≤ ,得1155360.9 5.540.9 1.541090.910.910.9n n n n nm ---⨯-⨯≤==+-⨯--恒成立(*n N ∈) …11分 解得: 5.5m ≤;又0m > ,综上,可得(]0,5.5m ∈. ………12分 20.解:(Ⅰ)连接1AF ,因为2AF AB ⊥,211F F =,所以211F F AF=,即c a 2=,则)0,21(2a F ,)0,23(a B -. ……………… 3分 ABC Rt ∆的外接圆圆心为)0,21(1a F -,半径a B F r ==221………4分由已知圆心到直线的距离为a ,所以a a =--2321,解得2=a ,所以1=c ,3=b ,所求椭圆方程为13422=+y x . ………………6分 (Ⅱ)因为)0,1(2F ,设直线l 的方程为:)1(-=x k y ,),,(11y x M ),(22y x N . 联立方程组:⎪⎩⎪⎨⎧=+-=134)1(22y x x k y ,消去y 得01248)43(2222=-+-+k x k x k .…… 7分则2221438kk x x +=+,22121436)2(k k x x k y y +-=-+=+, MN 的中点为)433,434(222kkk k +-+. ………………8分 当0=k 时,MN 为长轴,中点为原点,则0=m . ………………9分 当0≠k 时,MN 垂直平分线方程).434(1433222kk x k k k y +--=++ 令0=y ,所以43143222+=+=k kk m 因为032>k,所以2344k +>,可得410<<m , …………12分 综上可得,实数m 的取值范围是).41,0[ ………………13分 21.解:(Ⅰ)()x f x xe '=-, ……………………………………1分当0x =时,()0f x '=;当0x <时,()0f x '>;当0x >时,()0f x '<; 所以函数()f x 在区间(,0)-∞上单调递增,在区间(0,)+∞上单调递减;…3分 故max ()(0)0f x f ==. ………………………………………………4分 (Ⅱ)由2()(1)1xg x x e x λ=-+-,得()(2)xg x x e λ'=--.…………6分当0λ≤时,由(Ⅰ)得2()()()0g x f x x f x λ=+≤≤成立; …………8分当12λ<≤时,因为(0,)x∈+∞时()0g x'<,所以0x≥时,()(0)0g x g≤=成立;……………………………………………………10分当12λ>时,因为(0,ln2)xλ∈时()0g x'>,所以()(0)0g x g>=.…13分综上,知λ的取值范围是1(,]2-∞.……………………………………14分11。
2014-2015年山东省淄博市高二(下)期中数学试卷(理科)和答案

2014-2015学年山东省淄博市高二(下)期中数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)如果复数的实部和虚部互为相反数,那么实数a等于()A.B.2C.﹣D.2.(5分)用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为()A.a,b,c中至少有两个偶数B.a,b,c中至少有两个偶数或都是奇数C.a,b,c都是奇数D.a,b,c都是偶数3.(5分)已知在处有极值,则()A.a=﹣2B.a=2C.a=D.a=04.(5分)若,则a的值是()A.2B.3C.4D.65.(5分)已知f(n)=+++…+,则()A.f(n)中共有n项,当n=2时,f(2)=+B.f(n)中共有n+1项,当n=2时,f(2)=++C.f(n)中共有n2﹣n项,当n=2时,f(2)=++D.f(n)中共有n2﹣n+1项,当n=2时,f(2)=++6.(5分)设f0(x)=sin x+cos x,f1(x)=f0′(x),f2(x)=f1′(x),…,f n+1(x)=f n′(x).则f2016(x)=()A.sin x+cos x B.sin x﹣cos x C.﹣sin x﹣cos x D.﹣sin x+cos x 7.(5分)设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能是()A.B.C.D.8.(5分)曲线y=x2和曲线y2=x围成的图形面积是()A.B.C.1D.9.(5分)在R上可导的函数f(x)=x3+ax2+2bx+c,当x∈(0,1)时取得极大值.当x∈(1,2)时取得极小值,则的取值范围是()A.B.C.D.10.(5分)已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时,f′(x)+>0,若a=f(),b=﹣2f(﹣2),c=(ln)f(ln),则a,b,c的大小关系正确的是()A.a<b<c B.b<c<a C.a<c<b D.c<a<b二、填空题(共5小题,每小题5分,满分25分)11.(5分)半径为r的圆的面积S(r)πr2,周长C(r)=2πr,若将r看作(0,+∞)上的变量,则(πr2)′=2πr;对于半径为R的球,若将R看作(0,+∞)上的变量,请你写出类似于上述的式子:.12.(5分)已知f(x)=2|x|,则∫f(x)dx=.13.(5分)若曲线f(x)=x•sin x+1在x=处的切线与直线ax+2y+1=0互相垂直,则实数a等于.14.(5分)已知R上的可导函数f(x)的图象如图所示,则不等式xf′(x)>0的解集为.15.(5分)在对于实数x,[x]表示不超过的最大整数,观察下列等式:[]+[]+[]=3[]+[]+[]+[]+[]=10[]+[]+[]+[]=21按照此规律第n个等式为.三、解答题(共6小题,满分75分)16.(12分)已知复数z=(2+i)m2﹣﹣2(1﹣i),当实数m取什么值时,(1)复数z是实数;(2)复数z是纯虚数;(3)复数z对应的点位于第一、三象限的角平分线上.17.(12分)已知复数,且,求倾斜角为θ并经过点(﹣6,0)的直线l与曲线y=x2所围成的图形的面积.18.(12分)设数列{a n}满足a1=2,a n+1=a n2﹣na n+1,n=1,2,3,…,(1)求a2,a3,a4;(2)猜想出{a n}的一个通项公式并证明你的结论.19.(12分)统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:y=x3﹣x+8(0<x≤120)已知甲、乙两地相距100千米.(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?20.(12分)已知函数f(x)=ln(1+x)﹣x+x2(k≥0).(Ⅰ)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)的单调区间.21.(15分)已知函数f(x)=x2+aln(x+1)+b(a,b∈R)在点(0,f(0))的切线方程为y=﹣x.(1)求a,b的值;(2)当时,f(x)的图象与直线y=﹣x+m有两个不同的交点,求实数m的取值范围;(3)证明对任意的正整数n,不等式都成立.2014-2015学年山东省淄博市高二(下)期中数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)如果复数的实部和虚部互为相反数,那么实数a等于()A.B.2C.﹣D.【解答】解:==由解得a=.故选:D.2.(5分)用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为()A.a,b,c中至少有两个偶数B.a,b,c中至少有两个偶数或都是奇数C.a,b,c都是奇数D.a,b,c都是偶数【解答】解:∵结论:“自然数a,b,c中恰有一个偶数”可得题设为:a,b,c中恰有一个偶数∴反设的内容是假设a,b,c中至少有两个偶数或都是奇数.故选:B.3.(5分)已知在处有极值,则()A.a=﹣2B.a=2C.a=D.a=0【解答】解:求导函数,可得y′=a cos x+cos3x∵在处有极值,∴时,y′=a cos+cosπ=0∴a=2故选:B.4.(5分)若,则a的值是()A.2B.3C.4D.6【解答】解:∵(x2)′=2x,,∴==(a2﹣1)+lna由,所以(a2﹣1)+lna=3+ln2,所以a=2.故选:A.5.(5分)已知f(n)=+++…+,则()A.f(n)中共有n项,当n=2时,f(2)=+B.f(n)中共有n+1项,当n=2时,f(2)=++C.f(n)中共有n2﹣n项,当n=2时,f(2)=++D.f(n)中共有n2﹣n+1项,当n=2时,f(2)=++【解答】解:分母n,n+1,n+2…n2构成以n为首项,以1为公差的等差数列项数为n2﹣n+1故选:D.6.(5分)设f0(x)=sin x+cos x,f1(x)=f0′(x),f2(x)=f1′(x),…,f n+1(x)=f n′(x).则f2016(x)=()A.sin x+cos x B.sin x﹣cos x C.﹣sin x﹣cos x D.﹣sin x+cos x 【解答】解:∵f0(x)=sin x+cos x,∴f1(x)=f0′(x)=cos x﹣sin x,f2(x)=f1′(x)=﹣sin x﹣cos x,f3(x)=﹣cos x+sin x,f4(x)=sin x+cos x,以此类推,可得出f n(x)=f n+4(x)∴f2016(x)=f504(x)=f0(x)=sin x+cos x×4故选:A.7.(5分)设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能是()A.B.C.D.【解答】解:根据y=f(x)的图象可得,原函数的单调性是:当x<0时,增;当x>0时,单调性变化依次为减、增、减,故当x<0时,f′(x)>0;当x>0时,f′(x)的符号变化依次为﹣、+、﹣,结合所给的选项,故选:A.8.(5分)曲线y=x2和曲线y2=x围成的图形面积是()A.B.C.1D.【解答】解:联立得x1=0,x2=1,所以曲线y=x2和曲线y2=x围成的图形面积S===﹣=.故选:A.9.(5分)在R上可导的函数f(x)=x3+ax2+2bx+c,当x∈(0,1)时取得极大值.当x∈(1,2)时取得极小值,则的取值范围是()A.B.C.D.【解答】解:∵f(x)=,∴f′(x)=x2+ax+2b,设x2+ax+2b=(x﹣x1)(x﹣x2),(x1<x2)则x1+x2=﹣a,x1x2=2b,因为函数f(x)当x∈(0,1)时取得极大值,x∈(1,2)时取得极小值∴0<x1<1,1<x2<2,∴1<﹣a<3,0<2b<2,﹣3<a<﹣1,0<b<1.∴﹣2<b﹣2<﹣1,﹣4<a ﹣1<﹣2,∴,故选:A.10.(5分)已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时,f′(x)+>0,若a=f(),b=﹣2f(﹣2),c=(ln)f(ln),则a,b,c的大小关系正确的是()A.a<b<c B.b<c<a C.a<c<b D.c<a<b【解答】解:设h(x)=xf(x),∴h′(x)=f(x)+x•f′(x),∵y=f(x)是定义在实数集R上的奇函数,∴h(x)是定义在实数集R上的偶函数,当x>0时,h'(x)=f(x)+x•f′(x)>0,∴此时函数h(x)单调递增.∵a=f()=h(),b=﹣2f(﹣2)=2f(2)=h(2),c=(ln)f(ln)=h(ln)=h(﹣ln2)=h(ln2),又2>ln2>,∴b>c>a.故选:C.二、填空题(共5小题,每小题5分,满分25分)11.(5分)半径为r的圆的面积S(r)πr2,周长C(r)=2πr,若将r看作(0,+∞)上的变量,则(πr2)′=2πr;对于半径为R的球,若将R看作(0,+∞)上的变量,请你写出类似于上述的式子:.【解答】解:V球=,S球=4πR2,所以.故答案为:.12.(5分)已知f(x)=2|x|,则∫f(x)dx=.【解答】解:f(x)=2|x|=,∴∫f(x)dx=()x dx+2x dx=|+|=+=,故答案为:.13.(5分)若曲线f(x)=x•sin x+1在x=处的切线与直线ax+2y+1=0互相垂直,则实数a等于2.【解答】解:f'(x)=sin x+x cos x,,即函数f(x)=x sin x+1在点处的切线的斜率是1,直线ax+2y+1=0的斜率是,所以,解得a=2.故答案为:2.14.(5分)已知R上的可导函数f(x)的图象如图所示,则不等式xf′(x)>0的解集为(﹣1,0)∪(1,+∞).【解答】解:由图可知函数f(x)在(﹣∞,﹣1),(1,+∞)单调递增,∴在(﹣∞,﹣1),(1,+∞)区间f′(x)>0,在(﹣1,1)函数f(x)单调递减,∴f′(x)<0,所以x与f′(x)同正负的区间有:(﹣1,0 ),(1,+∞),故不等式xf′(x)>0的解集为:(﹣1,0 )∪(1,+∞),故答案为:(﹣1,0 )∪(1,+∞)15.(5分)在对于实数x,[x]表示不超过的最大整数,观察下列等式:[]+[]+[]=3[]+[]+[]+[]+[]=10[]+[]+[]+[]=21按照此规律第n个等式为[]+[]+…+[]=2n2+n.【解答】解:因为[x]表示不超过x的最大整数,所以[]=[]=[]=1,[]=[]=[]=[]=[]=2,…,因为等式:[]+[]+[]=3[]+[]+[]+[]+[]=10[]+[]+[]+[]=21,…,所以第1个式子的左边有3项、右边1+1+1=1×3=3,第2个式子的左边有5项、右边2+2+2+2+2=2×5=10,第3个式子的左边有7项、右边3×7=21,则第n个式子的左边有(2n+1)项、右边=n(2n+1)=2n2+n,即[]+[]+…+[]=2n2+n.故答案为:[]+[]+…+[]=2n2+n.三、解答题(共6小题,满分75分)16.(12分)已知复数z=(2+i)m2﹣﹣2(1﹣i),当实数m取什么值时,(1)复数z是实数;(2)复数z是纯虚数;(3)复数z对应的点位于第一、三象限的角平分线上.【解答】解:复数z=(2+i)m2﹣﹣2(1﹣i)=(2+i)m2﹣﹣2(1﹣i)=(2m2﹣3m﹣2)+(m2﹣3m+2)i,(1)若复数z是实数,则由m2﹣3m+2=0,得m=1或m=2.(2)若复数z是纯虚数,则由,得m=﹣.(3)若复数z对应的点位于第一、三象限的角平分线上.所以2m2﹣3m﹣2=m2﹣3m+2,解得m=±2.17.(12分)已知复数,且,求倾斜角为θ并经过点(﹣6,0)的直线l与曲线y=x2所围成的图形的面积.【解答】解:∵z=sinθ+2i,∴,有∵,∴,∴,∴,∵,∴,∴直线l的斜率k=tan=1,又∵直线l过点(﹣6,0),∴直线l的方程为y=x+6.联立,解之得x=﹣2,或x=3.所要求的面积S=(x+6﹣x2)dx=(=.18.(12分)设数列{a n}满足a1=2,a n+1=a n2﹣na n+1,n=1,2,3,…,(1)求a2,a3,a4;(2)猜想出{a n}的一个通项公式并证明你的结论.【解答】解:(1)由a1=2,得a2=a12﹣a1+1=3由a2=3,得a3=a22﹣2a2+1=4由a3=4,得a4=a32﹣3a3+1=5(1)用数学归纳法证明①由a1=2=1+1知n=1时,a n=n+1成立设n=k(k属于正整数)时a n=n+1成立,即a k=k+1则当n=k+1时,因为a n+1=a n2﹣na n+1,所以a k+1=a k2﹣k(k+1)+1=(k+1)2﹣k(k+1)+1=k2+2k+1﹣k2﹣k+1=k+2综上,a n=n+1成立19.(12分)统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:y=x3﹣x+8(0<x≤120)已知甲、乙两地相距100千米.(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?【解答】解:(I)当x=40时,汽车从甲地到乙地行驶了小时,要耗油(升).答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升.(II)当速度为x千米/小时时,汽车从甲地到乙地行驶了小时,设耗油量为h(x)升,依题意得,.令h'(x)=0,得x=80.当x∈(0,80)时,h'(x)<0,h(x)是减函数;当x∈(80,120)时,h'(x)>0,h(x)是增函数.∴当x=80时,h(x)取到极小值h(80)=11.25.因为h(x)在(0,120]上只有一个极值,所以它是最小值.答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.20.(12分)已知函数f(x)=ln(1+x)﹣x+x2(k≥0).(Ⅰ)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)的单调区间.【解答】解:(I)当k=2时,由于所以曲线y=f(x)在点(1,f(1))处的切线方程为.即3x﹣2y+2ln2﹣3=0(II)f'(x)=﹣1+kx(x>﹣1)当k=0时,因此在区间(﹣1,0)上,f'(x)>0;在区间(0,+∞)上,f'(x)<0;所以f(x)的单调递增区间为(﹣1,0),单调递减区间为(0,+∞);当0<k<1时,,得;因此,在区间(﹣1,0)和上,f'(x)>0;在区间上,f'(x)<0;即函数f(x)的单调递增区间为(﹣1,0)和,单调递减区间为(0,);当k=1时,.f(x)的递增区间为(﹣1,+∞)当k>1时,由,得;因此,在区间和(0,+∞)上,f'(x)>0,在区间上,f'(x)<0;即函数f(x)的单调递增区间为和(0,+∞),单调递减区间为.21.(15分)已知函数f(x)=x2+aln(x+1)+b(a,b∈R)在点(0,f(0))的切线方程为y=﹣x.(1)求a,b的值;(2)当时,f(x)的图象与直线y=﹣x+m有两个不同的交点,求实数m的取值范围;(3)证明对任意的正整数n,不等式都成立.【解答】解:(1)∵f(x)=x2+aln(x+1)+b(a,b∈R),∴,∵函数f(x)=x2+aln(x+1)+b(a,b∈R)在点(0,f(0))的切线方程为y =﹣x,∴,∴…(4分)(2)由(1)知f(x)=x2﹣ln(x+1)(x>﹣1)∵当x∈[﹣,1]时,f(x)的图象与直线y=﹣x+m有两个不同的交点,∴关于x的方程x2﹣ln(x+1)+x=m在[﹣,1]上有两个不相等的实根.…(5分)令F(x)=x2﹣ln(x+1)+x,(x>﹣1),==,由F′(x)=0,得x=0或x=﹣(舍去).当﹣1<x<0时,F′(x)<0;当x>0时,F′(x)>0.∴F(x)在x=0处取得极小值,∴F(x)min=F(0)=0,又F(﹣)==﹣,F(1)=2﹣ln2,由F(1)﹣F(﹣)==,知F(1)>F(﹣),∴…(9分)(3)令g(x)=f(x)﹣x3=x2﹣ln(x+1)﹣x3(0<x≤1),∵0<x≤1,∴g'(x)<0,∴g(x)在(0,1]上为减函数,∴g(x)<g(0)=0,∵,∴g()=f()﹣<0,∴对任意的正整数n,不等式都成立.…(14分)。
山东省2014届理科数学一轮复习试题选编12:正余弦定理的问题(学生版)

山东省2014届理科数学一轮复习试题选编12:正余弦定理的问题一、选择题 1 .(山东省淄博市2013届高三复习阶段性检测(二模)数学(理)试题)已知ABC ∆中,三个内角A,B,C 的对边分别为a,b,c,若ABC ∆的面积为S,且()222,tan S a b c C =+-则等于( )A .34B .43C .43-D .34-2 .(山东省枣庄三中2013届高三上学期1月阶段测试理科数学)一等腰三角形的周长是底边长的5倍,那么顶角的余弦值为 ( )A .518 B .34 C D .783 .(山东省潍坊市四县一校2013届高三11月期中联考(数学理))在ABC ∆中,角A,B,C 所对边分别为a,b,c,且4524==B c ,,面积2=S ,则b 等于 ( )A .2113 B .5 C .41 D .254 .(山东省济宁邹城市2013届高三上学期期中考试数学(理)试题)在AABC 中,若sinA =2 sinBcosC,222sin sin sin A B C =+,则△ABC 的形状是 ( ) A .等边三角形 B .等腰三角形 C .直角三角形 D.等腰直角三角形 5 .(山东省烟台市莱州一中2013届高三第三次质量检测数学(理)试题)已知∆ABC 中,a 、b 、c 分别为A,B,C的对边, a=4,b=30∠=A ,则∠B 等于( )A .30B .30 或150C .60D .60 或1206 .(山东师大附中2013届级高三12月第三次模拟检测理科数学)在,,ABC A B C ∆中,的对边分别为,,a b c ,若cos ,cos ,cos a C b B c A 成等差数列则B = ( )A .6π B .4π C .3π D .23π 7 .(山东省莱芜五中2013届高三4月模拟数学(理)试题)在△ABC 中,内角A,B,C 的对边分别是a ,b ,c ,若22245b c b c +=+-且222a b c bc =+-,则△ABC 的面积为( )A B .2 C .2D8 .(山东省德州市乐陵一中2013届高三十月月考数学(理)试题)由下列条件解ABC ∆,其中有两解的是( )A .︒===80,45,20C A b oB . 60,28,30===B c aC . 45,16,14===A c aD . 120,15,12===A c a9 .(山东省实验中学2013届高三第一次诊断性测试数学(理)试题)在△ABC 中,内角A . B .C 的对边分别为a 、b 、c,且222222c a b ab =++,则△ABC 是 ( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .等边三角形 10.(山东省济南市2013届高三4月巩固性训练数学(理)试题)△ABC 的内角A . B .C 的对边分别为a 、b 、c ,且a sin A +c sin C a sin C =b sinB .则B ∠= ( )A .6πB .4π C.3π D .34π 11.(山东省泰安市2013届高三第一轮复习质量检测数学(理)试题)在,2ABC AB ∆∠=中,A=60,且ABC∆,则BC 的长为 ( )A B .3C D .7二、填空题 12.(山东省德州市乐陵一中2013届高三十月月考数学(理)试题)如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D,测得015,30BCD BDC ∠=∠=,CD=30,并在点C 测得塔顶A 的仰角为60.则塔高AB=__________.13.(山东省潍坊市2013届高三第二次模拟考试理科数学)在ABC ∆中,角A,B,C 新对的边分别为a,b,c,若cos sin a B b c C +,222b c a +-=,则角B=________.14.(山东省潍坊市2013届高三上学期期末考试数学理(A ))已知三角形的一边长为4,所对角为60°,则另两边长之积的最大值等于.15.(山东师大附中2013届级高三12月第三次模拟检测理科数学)在ABC ∆中,sin ,sin ,sin A B C 依次成等比数列,则B 的取值范围是_____________16.(山东省烟台市莱州一中2013届高三第二次质量检测数学(理)试题)2009年北京庆阅兵式上举行升旗仪式,如图,在坡度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,且第一排和最后一排的距离为米,则旗杆的高度为______米.17.(山东省泰安市2013届高三第二次模拟考试数学(理)试题)在ABC ∆中,角A 、B 、C 的对边分别是a,b,c,若223sin 2sin ,2B C a b bc =-=,则角A 等于____. 18.(山东省实验中学2013届高三第一次诊断性测试数学(理)试题)在△ABC 中,角A,B,C 的对边为a,b,c,若45a b B ===︒,则角A=_______.19.(2010年高考(山东理))在△ABC 中,角A,B,C 所对的边分别为a,b,c,若a=2,b=2,sinB+cosB=2,则角A 的大小为______________.三、解答题 20.(山东省德州市2013届高三3月模拟检测理科数学)在△ABC 中,角A,B,C 的对边分别为a,b,c,已知角,sin 3sin .3A B C π==(1)求tan C 的值;(2)若a =求△ABC 的面积.21.(山东济南外国语学校2012—2013学年度第一学期高三质量检测数学试题(理科))在△ABC 中,角,,A B C 所对的边分别为,,a b c 且满足sin cos .c A a C = (I)求角C 的大小;(II)cos()4A B π-+的最大值,并求取得最大值时角,A B 的大小22.(山东省2013届高三高考模拟卷(一)理科数学)在△ABC 中,三个内角分别为A,B,C,已知4π=A ,54cos =B . (1)求cosC 的值;(2)若BC=10,D 为AB 的中点,求CD 的长.23.(山东省临沂市2013届高三第三次模拟考试 理科数学)已知2()cossin 22f x x x ωω=-+的图象上两相邻对称轴间的距离为()2ωπ>0. (Ⅰ)求()f x 的单调减区间;(Ⅱ)在△ABC 中,,,a b c 分别是角A,B,C 的对边,若1(),3,2f A c ==△ABC 的面积是求a 的值.24.(山东省枣庄市2013届高三4月(二模)模拟考试数学(理)试题)已知,A B 是ABC ∆的两个内角,向量,sin )22A B A Ba +-= ,且||2a = . (1)证明:tan tan A B 为定值;(2)若,26A AB π==,求边BC 上的高AD 的长度.25.(山东省济南市2013届高三3月高考模拟理科数学)已知)1,sin 32cos 2(x x +=,),(cos y x -=,且m n ⊥.(1)将y 表示为x 的函数)(x f ,并求)(x f 的单调增区间;(2)已知c b a ,,分别为ABC ∆的三个内角C B A ,,对应的边长,若()32A f =,且2=a ,4b c +=,求ABC ∆的面积.26.(2013山东高考数学(理))设△ABC 的内角,,A B C 所对的边分别为,,a b c ,且6a c +=,2b =,7cos 9B =. (Ⅰ)求,a c 的值; (Ⅱ)求sin()A B -的值.27.(山东威海市2013年5月高三模拟考试数学(理科))ABC ∆中,B ∠是锐角,2BC AB ==,,已知函数2()2cos f x BC BA x =++ .(Ⅰ)若(2)14f B =,求AC 边的长; (Ⅱ)若()12f B π+=,求tan B 的值.28.(山东省潍坊市四县一校2013届高三11月期中联考(数学理))ABC ∆中,内角A 、B 、C 成等差数列,其对边c b a ,,满足ac b 322=,求A.29.(山东省潍坊市2013届高三第一次模拟考试理科数学)已知函数2()cossin (0,0)2222x x x f x ωϕωϕωϕπωϕ+++=+><<.其图象的两个相邻对称中心的距离为2π,且过点(,1)3π.(I) 函数()f x 的达式;(Ⅱ)在△ABC 中.a 、b 、c 分别是角A 、B 、C 的对边,a =,ABC S ∆=,角C 为锐角.且满7()2126C f π-=,求c 的值.30.(山东省烟台市2013届高三上学期期中考试数学试题(理科))已知向量m=)(3,cos 22x ,n=)(x 2sin ,1,函数()f x =m ∙n.(1)求函数()f x 的对称中心;(2)在∆ABC 中,c b a ,,分别是角A,B,C 的对边,且1,3)(==c C f ,32=ab ,且b a >,求b a ,的值.31.(山东省青岛市2013届高三上学期期中考试数学(理)试题)在ABC ∆中,c b a ,,分别是角C B A ,,的对边,已知bc a c b 23)(3222+=+. (Ⅰ)若C B cos 2sin =,求C tan 的大小;(Ⅱ)若2=a ,ABC ∆的面积22=S ,且c b >,求c b ,.32.(山东省莱芜市莱芜十七中2013届高三4月模拟数学(理)试题)已知向量a =(cos ,sin x x ωω),b =(cos x ω,3cos x ω),其中(02ω<<).函数21)(-⋅=x f ,其图象的一条对称轴为6x π=.(I)求函数()f x 的表达式及单调递增区间;(Ⅱ)在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,S 为其面积,若()2Af =1,b=l,S △ABC 求a 的值.33.(山东省泰安市2013届高三上学期期末考试数学理)ABC ∆的内角A 、B 、C 所对的边分别为,,a b c ,且sin sin sin sin a A b B c C B +=+(I)求角C;(II)cos 4A B π⎛⎫-+⎪⎝⎭的最大值.34.(山东省莱芜市莱芜二中2013届高三4月模拟考试数学(理)试题)已知向量2,1),(cos ,cos ).444x x x m n == 记()f x m n =⋅ .(Ⅰ)若3()2f α=,求2cos()3πα-的值;(Ⅱ)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且满足(2)cos cos a c B b C -=,若1()2f A =,试判断△ABC 的形状.35.(山东省济宁邹城市2013届高三上学期期中考试数学(理)试题)在△ABC 中,内角A,B,C 的对边分别为a,b,c,己知cos 2cos 2.cos A C c aB b--=(I)求sin sin CA的值; (II)若cosB=1,2,4b =求△ABC 的面积S.36.(山东省青岛市2013届高三第一次模拟考试理科数学)已知函数()sin f x x ω= (0)ω>在区间[0,]3π上单调递增,在区间2[,]33ππ上单调递减;如图,四边形OACB 中,a ,b ,c 为ABC △的内角A B C ,,的对边,且满足ACB AC B cos cos cos 34sin sin sin --=+ω. (Ⅰ)证明:a c b 2=+;(Ⅱ)若c b =,设θ=∠AOB ,(0)θπ<<,22OA OB ==,求四边形OACB 面积的最大值.37.(山东省曲阜市2013届高三11月月考数学(理)试题)在三角形ABC 中,,,a b c 分别是角,,A B C 的对边,(2,cos ),(,cos ),//m b c C n a A m n =-=且.(1)求角A 的大小;(2) 若4a =,三角形ABC 的面积为S ,求S 的最大值.38.(山东省济宁市2013届高三第一次模拟考试理科数学 )在△ABC 中,已知A=4π,cos B =.(I)求cosC 的值; (Ⅱ)若为AB 的中点,求CD 的长.39.(山东省威海市2013届高三上学期期末考试理科数学)在ABC ∆中,角,,A B C 所对应的边分别为c b a ,,,,A B 为锐角且B A <,sin A =, 3sin 25B =.(Ⅰ)求角C 的值;(Ⅱ)若1b c +=,求c b a ,,的值.40.(山东省济南市2012届高三3月高考模拟题理科数学(2012济南二模))在△ABC 中,角A,B,C 所对的边分别为a,b,c ,且满足cos 2A =AB AC=3.(1) 求△ABC 的面积; (2) 若c =1,求a 、sin B 的值.41.(山东省德州市乐陵一中2013届高三十月月考数学(理)试题)在ABC ∆中,角C B A ,,所对的边为c b a ,,已知4102sin=C . (Ⅰ)求C cos 的值; (Ⅱ)若ABC ∆的面积为4153,且C B A 222sin 1613sin sin =+,求c b a ,,的值. 42.(2013届山东省高考压轴卷理科数学)(2013济南市一模)已知)1,sin 32cos 2(x x m +=,),(cos y x n -=,且m n ⊥. (1)将y 表示为x 的函数)(x f ,并求)(x f 的单调增区间;(2)已知c b a ,,分别为ABC ∆的三个内角C B A ,,对应的边长,若()32A f =,且2=a ,4b c +=,求ABC ∆的面积.43.(山东省凤城高中2013届高三4月模拟检测数学理试题 )已知(2cos ,1)a x x =+ ,(,cos )b y x =,且//a b .(I)将y 表示成x 的函数()f x ,并求()f x 的最小正周期;(II)记()f x 的最大值为M ,a 、b 、c 分别为ABC ∆的三个内角A 、B 、C 对应的边长,若(),2Af M =且2a =,求bc 的最大值.44.(山东省菏泽市2013届高三5月份模拟考试数学(理)试题)如图,角A 为钝角,且sinA=35,点P,Q 分别是在角A的两边上不同于点A 的动点.(1)若5,AP PQ ==求AQ 的长; (2)若∠APQ=α,∠AQP=β,且12cos 13α=,求sin(2)αβ+的值.45.(山东师大附中2013届高三第四次模拟测试1月理科数学)设ABC ∆的内角A B C 、、 的对边分别为a b c 、、,且sin cos b A B =.(1)求角B 的大小;(2)若3,sin 2sin b C A ==,求,a c 的值.46.(2011年高考(山东理))在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c .已知c o s 2c o s 2c o s A C c aB b --=. (1)求sin sin C A的值;(2)若1cos ,24B b ==,求ABC ∆的面积S .47.(山东省临沂市2013届高三5月高考模拟理科数学)在△ABC 中,角A,B,C 的对边分别为a,b,c ,已知4A =π,sin()sin()44b Cc B a ---=ππ. (Ⅰ)求B 和C ;(Ⅱ)若a =求△ABC 的面积.48.(2013年山东临沂市高三教学质量检测考试理科数学)已知函数22x xf (x )cos=. (I)若[22]x ,ππ∈-,求函数f (x )的单调减区间;(Ⅱ)在△ABC 中,a,b,c 分别为角A,B,C 的对边,若24233f (A ),sin B C,a π-===求△ABC 的面积.49.(山东省烟台市莱州一中2013届高三第三次质量检测数学(理)试题)在∆ABC 中,a,b,c 分别为有A,B,C的对边,向量2(2sin ,2cos 2),(2sin (),1),24π=-=+- B m B B n 且⊥ m n(1)求角B 的大小; (2)若a =,b=1,求c 的值.山东省2014届理科数学一轮复习试题选编12:正余弦定理的问题参考答案一、选择题1. 【答案】C 由()222S a b c =+-得22222S a b ab c =++-,即22212sin 22ab C a b ab c ⨯=++-,所以222sin 2ab C ab a b c -=+-,又222sin 2sin cos 1222a b c ab C ab C C ab ab +--===-,所以s i n c o s 12C C +=,即22cos sin cos 222C C C =,所以tan 22C =,即222tan2242tan 1231tan2C C C ⨯===---,选C.2. 【答案】D【解析】设底边长为x ,则两腰长为2x ,则顶角的余弦值222(2)(2)7cos 2228x x x x x θ+-==⨯⨯.选D.3. B 【解析】因为4524==B c ,,又面积11sin 2222S ac B a =⨯=⨯=,解得1a =,由余弦定理知2222cos b a c ac B =+-,所以21322252b =+-⨯=,所以5b =,选B.4. D5. D 【解析】由正弦定理可知sin sin a bA B=.即sin 1sin 2b A B a ===所以60B = 或120 ,选D.6. C 【解析】因为cos ,cos ,cos a C b B c A 成等差数列,所以cos cos 2cos a C c A b B +=,根据正弦定理可得sin cos sin cos 2sin cos A C C A B B +=,即sin()2sin cos A C B B +=,即sin 2sin cos B B B =,所以1cos 2B =,即3B π=,选C. 7. B8. C 【解析】在C 中,sin 162C A =⨯=且sin C A a c <<,所以有两解.选C. 9. 【答案】A【解析】由222222c a b ab=++得,22212a b c ab+-=-,所以222112cos 0224aba b c C ab ab -+-===-<,所以090180C << ,即三角形为钝角三角形,选A.10. C11. 【答案】A11sin 6022222S AB AC AC =⨯⋅=⨯⨯= ,所以1AC =,所以2222c o s03B C A B A C A A C=+-⋅ ,,所以BC =,选A. 二、填空题12. 【解析】因为015,30BCD BDC ∠=∠=,所以135CBD ∠=,在三角形BCD 中,根据正弦理可知s i n s i n C D B CC BD B D C =,即030sin135sin 30BC=,解得12BC =,在直角ABC∆中,tan 60ABBC== 所以AB ===13. 【答案】60由222b c a +-=得222cos 2b c a A bc +-===,所以30A = .由正弦定理得sin cos sin cos sin sin A B B A C C +=,即sin()sin sin sin A B C C C +==,解得sin 1C =,所以90C = ,所以60B = .14. 【答案】16【解析】设另两边为,a b ,则由余弦定理可知22242cos 60a b ab =+- ,即2216a b ab =+-,又22162a b ab ab ab ab =+-≥-=,所以16ab ≤,当且仅当4a b ==时取等号,所以最大值为16.15. (0,]3π【解析】因为sin ,sin ,sin A B C 依次成等比数列,所以2sin sin sin A C B =,即2ac b =,所以22222221cos 2222a c b a c ac a c B ac ac ac +-+-+===-,所以221211cos 22222a c ac B ac ac +=-≥-=,所以03B π<≤,即B 的取值范围是(0,]3π.16. 30 【解析】设旗杆的高度为x 米,如图,可知001806015105ABC ∠=--= ,0301545CAB ∠=+= ,所以1801054530ACB ∠=--= ,根据正弦定理可知sin 45sin 30BC AB = ,即BC =,所以sin 60x BC ==,所以30x ==米.17.23π18. 【答案】60或120【解析】由正弦定理可知sin sin a bA B=,即2==,所以sin A =,因为a b >,所以45A > ,所以60A = 或120A = .19.答案:6π解析:由sin cos B B +=1+2sinBcosB=2,即sin21B =,因为0B π<<,所以45B =︒,又因为2,a b ==,所以在ABC ∆中,由正弦定理得:2sin sin 45A =︒,解得1sin 2A =,又a b <,所以45A B <<︒,所以30A =︒.命题意图:本题考查了三角恒等变换、已知三角函数值求解以及正弦定理,考查了同学们解决三角形问题的能力,属于中档题.三、解答题 20.21.22. 【解析】(1)因为54cos =B ,且),0(π∈B ,=-=B B 2cos 1sin 53,则)cos(cos B A C --=π+=-=B B cos 43cos )43cos(ππB sin 43sin π10253225422-=⨯+⨯-=.(2)由(1)可得=∠-=∠ACB ACB 2cos 1sin 1027)102(12=--=. 由正弦定理得ACB ABA BC ∠=sin sin ,即10272210AB =,解得AB=14. 因为在△BCD 中,721==AB BD ,⋅⋅-+=BD BC BD BC CD 222237541072107cos 22=⨯⨯⨯-+=B ,所以37=CD .23.解:由已知,函数()f x 周期为π.∵21cos ()cos22xx f x x x ωωωω+=-+=-+11cos 22x x ωω=-- 1sin(62x ω=--π),∴2=2ω=ππ, ∴1()sin(2)62f x x =--π.(Ⅰ)由3222,262k x k +-+πππ≤≤ππ 得25222,33k x k ++ππ≤≤ππ∴5()36k x k k ++∈z ππ≤≤ππ∴()f x 的单调减区间是5[,]()36k k k ++∈z ππππ.(Ⅱ)由1(),2f A =得11sin(2)622A --=π,sin(2)16A -=π.∵0<<πA ,∴112666A --ππ<<π,∴262A -=ππ,3A =π.由1sin 2ABC S bc A == 3,c =得4b =,∴22212cos 169243132a b c bc A =+-=+-⨯⨯⨯=,故a = 24.25.解:(1)由m n ⊥ 得0=⋅n m,22cos cos 0x x x y ∴+-=即x x x y cos sin 32cos 22+=1)62sin(212sin 32cos ++=++=πx x x∴222,262k x k k Z πππππ-+≤+≤+∈,∴,36k x k k Z ππππ-+≤≤+∈,即增区间为[,],36k k k Z ππππ-++∈(2)因为3)2(=A f ,所以2sin()136A π++=,sin()16A π+=, ∴Z k k A ∈+=+,226πππ因为π<<A 0,所以3π=A由余弦定理得:2222cos a b c bc A =+-,即224b c bc =+-∴24()3b c bc =+-,因为4b c +=,所以4bc =∴1sin 2ABC S bc A ==26.解:(Ⅰ)由余弦定理2222cos b a c ac B=+-,得()222(1cos )b a c ac B =+-+,又6a c +=,2b =,7cos 9B =,所以9ac =,解得3a =,3c =.(Ⅱ)在△ABC 中,sin 9B ==,由正弦定理得sin sin 3a B A b ==,因为a c =,所以A 为锐角,所以1cos 3A ==因此sin()sin cos cos sin 27A B A B A B -=-=.27.解:(Ⅰ)2()2cos243222cos f x BC BA B B x =++=++⨯+()72cos f x B x =++(2)72cos 214f B B B =++=整理得:24cos 90B B +-=cos 2B =或cos 2B -=(舍)∴2222cos 4312AC BC BA BC BA B =+-⋅=+-= ∴1AC =(Ⅱ)()72sin 12f B B B π+=+-= 整理得:sin 3B B -=将上式平方得:22sin cos 12cos 9B B B B -+=9=,同除2cos B9=整理得:28tan 30B B +-=∴tan B =,∵B ∠是锐角, ∴tan B = 28.解:由C B A 、、成等差数列可得C A B +=2,而π=++C B A ,故33ππ=⇒=B B ,且A C -=32π而由ac b 322=与正弦定理可得C A B sin sin 3sin 22=A A sin )32sin(33sin 22-=⨯⇒ππ所以可得⇒=+⇒-=⨯1sin sin cos 3sin )sin 32cos cos 32(sin 34322A A A A A A ππ 21)62sin(122cos 12sin 23=-⇒=-+πA A A , 由67626320ππππ<-<-⇒<<A A , 故662ππ=-A 或6562ππ=-A ,于是可得到6π=A 或2π=A29.解:(Ⅰ)[]1())1cos()2f x x x w j w j =++-+ π1sin()62x w j =+-+Q 两个相邻对称中心的距离为π2,则πT =,2ππ,>0,=2||w w w \=\Q , 又()f x 过点π(,1)3,2ππ1π1sin 1,sin 36222j j 骣骣鼢珑\-++=+=鼢珑鼢珑桫桫即, 1cos 2j \=,πππ10,,()sin(2)2362f x x j j <<\=\=++Q(Ⅱ)πππ117sin sin 21266226C f C C 骣骣鼢珑-=-++=+=鼢珑鼢珑桫桫, 2sin 3C \=,π0,cos 2C C <<\=Q ,又112sin 223ABC a S ab C b D ===?,6b \=,由余弦定理得2222cos 21c a b ab C =+-=,c \=30.解:(1)22()(2cos ,(1,sin 2)2cos 2f x m n x x x x =⋅=⋅=+ ,cos 2122sin(2)16x x x π=++=++令ππk x =+62得,122ππ-=k x )(Z k ∈,∴函数()f x 的对称中心为)1122(,ππ-k (2)31)62sin(2)(=++=πC C f ,1)62sin(=+∴πC ,C 是三角形内角,∴262ππ=+C 即:.6π=C232cos 222=-+=∴ab c a b C 即:722=+b a 将32=ab 代入可得:71222=+aa ,解之得:32=a 或4,23或=∴a ,32或=∴b 3,2,==∴>b a b a31.32.由余弦定理得22241241cos6013a =+-⨯⨯︒=, 故a = 33.34.解:211()cos cos cos 44422222x x x x x f x =+=++1sin 262x π⎛⎫=++⎪⎝⎭(I) 由已知32f ()α=得13sin 2622απ⎛⎫++= ⎪⎝⎭,于是24,3k k παπ=+∈Z , ∴ 22241333cos()cos k πππαπ⎛⎫-=--= ⎪⎝⎭(Ⅱ) 根据正弦定理知:()2cos cos (2sin sin )cos sin cos a c B b C A C B B C -=⇒-=12sin cos sin()sin cos 23A B B C A B B π⇒=+=⇒=⇒= ∵13()f A +=∴ 113sin 2622263A A πππ+⎛⎫++=⇒+= ⎪⎝⎭或23π3A π⇒=或π 而203A π<<,所以3A π=,因此∆ABC 为等边三角形35.36.解:(Ⅰ)由题意知:243ππω=,解得:32ω=,ACB AC B cos cos -cos -2sin sin sin =+ A C A B A A C A B sin cos -sin cos -sin 2cos sin cos sin =+∴ A A C A C A B A B sin 2sin cos cos sin sin cos cos sin =+++∴ A C A B A sin 2)(sin )(sin =+++∴ a c b A B C 2sin 2sin sin =+⇒∴=+∴(Ⅱ)因为2b c a b c +==,,所以a b c ==,所以ABC △为等边三角形213sin 2OACB OAB ABC S S S OA OB AB θ∆∆=+=⋅+22sin -2cos )OA OB OA OB θθ=++⋅435cos 3-sin +=θθ2sin (-)3πθ=(0)θπ∈ ,,2--333πππθ∴∈(,),当且仅当-32ππθ=,即56πθ=时取最大值,OACB S 的最大值为2+37.解:(1)由//m n,得(2)cos cos 0b c A a C --=,∴(2sin sin )cos sin cos 0,2sin cos sin cos sin cos sin()sin()sin B C A A C B A C A A C A C B Bπ--==+=+=-=在三角形ABC 中,sin 0B >,因此1cos ,23A A π==故 (2)∵3A π=,∴2222cos a b c bc A =+-,即2216b c bc =+-,∴22162()b c bc bc bc bc b c =+-≥-==当且仅当时取等号,∴11sin 1622S bc A =≤⨯= 38.解:(Ⅰ)552cos =B 且(0,180)B ∈,∴55cos 1sin 2=-=B B )43cos()cos(cos B B A C -=--=ππ1010552255222sin 43sin cos 43cos-=⋅+⋅-=+=B B ππ (Ⅱ)由(Ⅰ)可得10103)1010(1cos 1sin 22=--=-=C C由正弦定理得sin sin =BCABA C,即101032252AB =,解得6=AB在∆BCD 中,5252323)52(222⨯⨯⨯-+=CD 5=,所以5=CD39.解:(Ⅰ)∵A 为锐角,sinA =∴cos A ==∵B A <,sin A =<,∴45B <∵3sin 25B =,∴4cos 25B ==∴cosB ==sin B =cos cos()cos cos sin sinC A B A B A B =-+=-+==∴135C =(Ⅱ)由正弦定理sin sin sin a b ck A B C===∴b c k+=+,解得k=∴1,a b c===40. 【答案】解:(1) cos A=2×2-1=35,而||||AB AC AB AC=cos A=35bc=3,∴bc=5又A∈(0,π),∴sin A=45,∴S=12bc sin A=12×5×45=2(2) ∵bc=5,而c=1,∴b=5∴222a b c=+-2bc cos A=20,a=又sin sina bA B=,∴sinB=sinb Aa==41.解:(Ⅰ)41451)410(212sin21cos22-=-=⨯-=-=CC(Ⅱ)∵CBA222sin1613sinsin=+,由正弦定理可得:2221613cba=+由(Ⅰ)可知415cos1sin,0,41cos2=-=∴<<-=CCCCπ.4153sin21==∆CabABCS,得ab=6由余弦定理Cabbac cos2222-+=可得3161322+=cc4,0,162=∴>=ccc由⎩⎨⎧==⎩⎨⎧==⎪⎩⎪⎨⎧==+322361322babaabba或得,42. 【解析】(1)由m n⊥得0=⋅nm,22cos cos0x x x y∴+-=即xxxy cossin32cos22+=1)62sin(212sin32cos++=++=πxxx∴222,262k x k k Zπππππ-+≤+≤+∈,∴,36k x k k Zππππ-+≤≤+∈,即增区间为[,],36k k k Zππππ-++∈(2)因为3)2(=Af,所以2sin()136Aπ++=,sin()16Aπ+=, ∴ZkkA∈+=+,226πππ因为π<<A0,所以3π=A由余弦定理得:2222cosa b c bc A=+-,即224b c bc=+-∴24()3b c bc=+-,因为4b c+=,所以4bc=∴1sin 2ABC S bc A ==43.解:(I)由//a b 得22cos cos 0x x y +-= 2'即22cos cos cos 2212sin(2)16y x x x x x π=+=+=++所以()2sin(2)16f x x π=++ , 4'又222T πππω===所以函数()f x 的最小正周期为.π 6' (II)由(I)易得3M = 7'于是由()3,2A f M ==即2sin()13sin()166A A ππ++=⇒+=,因为A 为三角形的内角,故3A π=9'由余弦定理2222cos a b c bc A =+-得2242b c bc bc bc bc =+-≥-= 11' 解得4bc ≤于是当且仅当2b c ==时,bc 的最大值为4. 12'44.45. 【解析】(1) sin cos b A B =,由正弦定理得sin sin cos B A A B =即得tan B =3B π∴=(2)sin 2sin C A = ,由正弦定理得2c a =,由余弦定理2222cos b a c ac B =+-,229422cos 3a a a a π=+-⋅,解得a =2c a ∴== 稿源:konglei46.解:(Ⅰ)在ABC ∆中,由cos 2cos 2cos A C c aB b--=及正弦定理可得 cos 2cos 2sin sin cos sin A C C AB B--=, 即sin sin 2cos sin 2sin cos sin cos A B C B C B A B -=- 则sin sin sin cos 2sin cos 2cos sin A B A B C B C B +=+sin()2sin()A B C B +=+,而A B C π++=,则sin 2sin C A =,即sin 2sin C A=. 另解1:在ABC ∆中,由cos 2cos 2cos A C c a B b--=可得 cos 2cos 2cos cos b A b C c B a B -=- 由余弦定理可得22222222222222b c a a b c a c b a c b c a a c+-+-+-+--=-, 整理可得2c a =,由正弦定理可得sin 2sin C c A a==. 另解2:利用教材习题结论解题,在ABC ∆中有结论cos cos ,cos cos ,cos cos a b C c B b c A a C c a B b A =+=+=+. 由cos 2cos 2cos A C c a B b--=可得cos 2cos 2cos cos b A b C c B a B -=- 即cos cos 2cos 2cos b A a B c B b C +=+,则2c a =, 由正弦定理可得sin 2sin C c A a==. (Ⅱ)由2c a =及1cos ,24B b ==可得 22222242cos 44,c a ac B a a a a =+-=+-=则1a =,2c =,S 11sin 1222ac B ==⨯⨯=,即S = 47.解:(Ⅰ)由sin()sin(),44ππ---=C b c B a 用正弦定理得 sin sin()sin sin()sin .44ππ---=C C B B A∴sin )sin )-=C C C B B B即sin cos cos sin 1,-=C C B B∴sin() 1.-=C B ∵30,4<<π,C B ∴33,44π<<π--C B ∴2π-=C B . 又4A =π,∴34π+=C B , 解得5,.88ππ==C B (Ⅱ)由(Ⅰ)5,88ππ==C B ,由正弦定理,得sin 54sin .sin 8a B b A ===π∴△ABC的面积115sin 4sin sin 2288ππ==⨯C S ab5sin sin 8888==ππππ2.4==π 48.49.解 22sin 2sin ()(2cos 2)242sin (1cos())2cos 22ππ=+--=-+-+ B mgn Bg B Bg B B 12sin 10,sin 2=-=∴=B B 因为0π<<B ,所以566ππ=B 或 (2)在∆ABC 中,因为b<a,所以6π=B由余弦定理2222cos b a c ac B =+-,得2320c c -+= 所以1c =或2c =。
淄博市2013—2014学年度高三模拟考试试题理科

淄博市2013—2014学年度高三模拟考试试题理 科 数 学第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|02}A x x =<<,{|(1)(1)0}B x x x =-+>,则AB =A .()01,B .()12,C .(,1)(0,)-∞-+∞D .(,1)(1,)-∞-+∞2.在复平面内,复数2ii+ 对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.已知tan =2α,那么sin 2α的值是A .45-B . 45C .35-D .354.在等差数列{}n a 中,已知3810a a +=,则753a a +=A .10B .18C .20D .285.执行如图所示的程序框图,若输入的x 的值为2,则输出的x 的值为A .3B .126C .127D .1286.如图所示,曲线12-=x y ,2,0,y=0x x ==围成的阴影部分的面积为A .dx x⎰-22|1| B .|)1(|202dx x ⎰-C .dx x ⎰-22)1( D .122201(1)(1)x dx x dx -+-⎰⎰7.把边长为1的正方形ABCD 沿对角线BD 折起,形成的三棱锥A BCD -的正视图与俯视图如图所示,则其侧视图的面积为A .22B .21C .42D .418.下列说法正确..的是 A .“p q ∨为真”是“p q ∧为真”的充分不必要条件; B .已知随机变量()22,XN σ,且()40.84P X ≤=,则()00.16P X ≤=;C .若[],0,1a b ∈,则不等式2214a b +<成立的概率是4π; D .已知空间直线,,a b c ,若a b ⊥,b c ⊥,则//a c .9.过抛物线24y x =焦点F 的直线交其于A ,B 两点,O 为坐标原点.若||3AF =,则AOB ∆的面积为 A .22B .2C .223 D .2210.若函数()f x 的导函数在区间(),a b 上的图像关于直线2a bx +=对称,则函数()y f x =在区间[,]a b 上的图象可能是A .①④B .②④C .②③D .③④第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.不等式|1||2|5x x ++-≤的解集为 .12.已知变量y x ,满足约束条件⎪⎩⎪⎨⎧≥-≤+-≤-+0101205x y x y x ,则2z x y =+的最大值是 .13.在直角三角形ABC 中,090C ∠=,2AB =,1AC =,若32A D AB =,则C D C B ⋅= .14.从0,1,2,3,4中任取四个数字组成无重复数字的四位数,其中偶数的个数是 (用数字作答).15.已知在平面直角坐标系中有一个点列:()12220,1,(,)P P x y ,……,()*(,)n n n P x y n ∈N .若点(,)n n n P x y 到点()111,n n n P x y +++的变化关系为:11n n nn n nx y x y y x ++=-⎧⎨=+⎩()*n ∈N ,则||20142013P P 等于 .一、选择:二、填空:三、解答题:本大题共6小题,共75分. 16.(本题满分12分)已知向量)sin cos ),32(cos(x x x a +-=π ,)sin cos ,1(x x b -= ,函数b a x f⋅=)(.(Ⅰ)求函数)(x f 的单调递增区间;(Ⅱ)在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知23)(=A f ,2=a ,3B π=,求ABC ∆的面积S .17.(本题满分12分)在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,060ABC ∠=,22AB CB ==.在梯形ACEF 中,EF ∥AC ,且=2AC EF ,EC ⊥平面ABCD .(Ⅰ)求证:BC AF ⊥;(Ⅱ)若二面角D AF C --为045,求CE 的长.18.(本题满分12分)中国男子篮球职业联赛总决赛采用七场四胜制(即先胜四场者获胜).进入总决赛的甲乙两队中,若每一场比赛甲队获胜的概率为23,乙队获胜的概率为13,假设每场比赛的结果互相独立.现已赛完两场,乙队以2:0暂时领先. (Ⅰ)求甲队获得这次比赛胜利的概率;(Ⅱ)设比赛结束时两队比赛的场数为随机变量X ,求随机变量X 的分布列和数学期望EX .19.(本题满分12分)若数列{}n A 满足21n n A A +=,则称数列{}n A 为“平方递推数列”.已知数列{}n a 中,19a =,点1(,)n n a a +在函数2()2f x x x =+的图象上,其中n 为正整数.(Ⅰ)证明数列{}1n a +是“平方递推数列”,且数列{}lg(1)n a +为等比数列; (Ⅱ)设(Ⅰ)中“平方递推数列”的前n 项积为n T , 即12(1)(1)(1)n n T a a a =+++,求lg n T ;(Ⅲ)在(Ⅱ)的条件下,记lg lg(1)nn n T b a =+,求数列{}n b 的前n 项和n S ,并求使4026n S >的n 的最小值.20.(本题满分13分)已知椭圆C :22221x y a b +=(0a b >>)的焦距为2,且过点(1,2),右焦点为2F .设A ,B 是C 上的两个动点,线段AB 的中点M 的横坐标为12-,线段AB 的中垂线交椭圆C 于P ,Q 两点.(Ⅰ)求椭圆C 的方程; (Ⅱ)求22F P F Q ⋅的取值范围.21.(本题满分14分)已知函数()ln(2)x m f x e x -=-.(Ⅰ)设1x =是函数)(x f 的极值点,求m 的值并讨论)(x f 的单调性; (Ⅱ)当2≤m 时,证明:)(x f >ln 2-.一模数学试题参考答案及评分说明2014.3一、选择题:本大题共10小题,每小题5分,共50分.1.B 2.D 3.B 4.C 5.C 6.A 7.D 8.B 9.C 10.D二、填空题:本大题共5小题,92每小题5分,共25分.11.[2,3]- 12.9 13. 14.60 15.10062三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤. 16.(理科 本题满分12分)解:(Ⅰ)x x x b a x f 22sin cos )32cos()(-+-=⋅=π312cos 23(sin 22))223x x x x x π=+==+…………3分 所以,函数)(x f 的单调递增区间为5,()1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. …………6分(Ⅱ)由23)(=A f ,得21)32sin(=+πA ,所以,ABC ∆的面积C ab S sin 21=4266221+⨯⨯⨯==233+ .…12分 17.解证:(Ⅰ)证明:在ABC ∆中,2222cos603AC AB BC AB BC =+-⋅= 所以222AB AC BC =+,由勾股定理知90ACB ∠=所以 BC AC ⊥. ……2分又因为 EC ⊥平面ABCD ,BC ⊂平面ABCD所以 BC EC ⊥. ………………………4分 又因为ACEC C = 所以 BC ⊥平面ACEF ,又AF ⊂平面ACEF所以 BC AF ⊥. ………………………6分(Ⅱ)因为EC ⊥平面ABCD ,又由(Ⅰ)知BC AC ⊥,以C 为原点,建立如图所示的空间所以1212cos 452⋅==⋅n n n n ,解得h = . (11)分所以CE……12分 18.解: (Ⅰ)设甲队获胜为事件A ,则甲队获胜包括甲队以4:2获胜和甲队以4:3获胜两种情况.设甲队以4:2获胜为事件1A ,则()41216381P A ⎛⎫== ⎪⎝⎭ ……………………2分设甲队以4:3获胜为事件2A ,则()312412264333243P A C ⎛⎫=⨯⨯⨯=⎪⎝⎭ ………4分 ()()()12166411281243243P A P A P A =+=+= …………………………… 6分(Ⅱ)随机变量X 可能的取值为4567,,,. ()211439P X ⎛⎫=== ⎪⎝⎭()121214533327P X C ==⨯⨯⨯= ()24131212286333381P X C ⎛⎫⎛⎫==⨯⨯⨯+= ⎪ ⎪⎝⎭⎝⎭ ()314123273381P X C ⎛⎫==⨯⨯=⎪⎝⎭ (或者()3313441212123264327++=33333324324381P X C C ⎛⎫⎛⎫==⨯⨯⨯⨯⨯=⎪ ⎪⎝⎭⎝⎭)1428324884567927818181EX =⨯+⨯+⨯+⨯=……………………………12分19.解证:(Ⅰ)由题意得:212n n n a a a +=+,即 211(1)n n a a ++=+, 则{}1n a +是“平方递推数列”.……………………………………………2分对211(1)n n a a ++=+两边取对数得 1lg(1)2lg(1)n n a a ++=+,所以数列{}lg(1)n a +是以{}1lg(1)a +为首项,2为公比的等比数列.………4分 (Ⅱ)由(Ⅰ)知 111lg(1)lg(1)22n n n a a --+=+⋅= ……………………………5分1212lg lg(1)(1)(1)lg(1)lg(1)lg(1)n n n T a a a a a a =+++=++++++1(12)2112n n ⋅-==-- ……………………………………8分(Ⅲ)11lg 2112()lg(1)22n n n n n n T b a ---===-+ ………………………………9分111122221212nn n S n n --=-=-+- ……………………………………10分又4026n S >,即111224026,201422n n n n --+>+> …………………11分又1012n <<,所以min 2014n =.20.解:(Ⅰ) 因为焦距为2,所以221a b -=.因为椭圆C 过点(1所以221112a b+=.故22a =,21b =… 2分所以椭圆C 的方程为2212x y += …………4分(Ⅱ) 由题意,当直线AB 垂直于x 轴时,直线AB 方程为12x =-,此时()P 、)Q ,得221F P F Q ⋅=-.………5分当直线AB 不垂直于x 轴时,设直线AB 的斜率为k (0k ≠),1(,)2M m -(0m ≠),()11,A x y ,()22,B x y由 221122221,21,2x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 得()()1212121220y y x x y y x x -+++⋅=-,则140mk -+=,故41mk =. … 6分此时,直线PQ 斜率为14k m =-,PQ 的直线方程为142y m m x ⎛⎫-=-+ ⎪⎝⎭. 即4y mx m =--.联立22412y m x mx y =--⎧⎪⎨+=⎪⎩消去y,整理得222(321)16220m x m x m +++-=.()33,P x y ()44,Q x y 234216321m x x m +=-+,234222321m x x m -=+. ……………………………9分 ()()()()()22343434343411144F P F Q x x y y x x x x mx m mx m ⋅=--+=-+++++()()()2223434411611m x x m x x m =-+++++2222222(116)(22)(41)(16)1321321m m m m m m m +---=+++++22191321m m -=+.…… 11分由于1(,)2M m -在椭圆的内部,故2708m << 令2321t m =+,129t <<,则2219513232F P F Q t⋅=-. …………… 12分 又129t <<,所以221251232F P F Q -<⋅<.综上,Q F P F 22⋅的取值范围为1251,232⎡⎫-⎪⎢⎣⎭. …………………… 13分 21.解证:(Ⅰ)1()x mf x ex-'=-,由1x =是)(x f 的极值点得(1)0f '=, 即110me --=,所以1m =. 于是1()ln(2)0xf x e x x -=->,(),11()x f x e x-'=-,由121()0x f x e x-''=+>知 ()f x '在(0,)x ∈+∞上单调递增,且(1)0f '=,所以1x =是()0f x '=的唯一零点. ……………………………4分因此,当(0,1)x ∈时,()0f x '<;当(1,)x ∈+∞时,()0f x '>,所以,函数)(x f 在(0,1)上单调递减,在(1,)+∞上单调递增. ……………………………6分(Ⅱ)解法一:当2≤m ,(0,)x ∈+∞时,2x mx ee --≥,故只需证明当2m =时,)(x f >ln 2-. ………………………………8分 当2m =时,函数21()x f x ex-'=-在(0,)+∞上单调递增, 又(1)0,(2)0f f ''<>,故()0f x '=在(0,)+∞上有唯一实根0x ,且0(1,2)x ∈.……10分 当0(0,)x x ∈时,()0f x '<;当0(,)x x ∈+∞时,()0f x '>, 从而当0x x =时, )(x f 取得最小值且0()0f x '=.由0()0f x '=得021x e x -=,00ln 2x x =-.…………………………………12分 故0()()f x f x ≥020()ln(2)x f x ex -=-=01x 0ln 22x --+=2ln 2-ln 2>-. 综上,当2≤m 时,)(x f ln 2>-. …………………………14分 解法二:当2≤m ,(0,)x ∈+∞时,2x mx ee --≥,又1+≥x e x ,所以12-≥≥--x e e x m x . ………………………………………8分取函数()1ln(2)(0)h x x x x =-->)0(>x ,xx h 11)('-=,当10<<x 时,0)('<x h ,)(x h单调递减;当1>x 时,0)('>x h ,)(x h 单调递增,得函数()h x 在1=x 时取唯一的极小值即最小值为(1)ln 2h =-. ……12分所2()ln(2)ln(2)1ln(2)ln 2x m x f x e x e x x x --=-≥-≥--≥-,而上式三个不等号不能同时成。
【2014淄博二模】理

P 0, 0, 2 , PD 2, 2, 2 , AC 0, 4, 0
设 M x, y , z , PM t PD ,则
x, y, z 2 t 2, 2, 2 ,
………………8 分
容量为 5 的样本,所以 的所有基本事件为( A1 , A2 ), ( A1 , B1 ), ( A1 , B2 ), ( A1 , B3 ), ( A2 , B1 ), ( A2 , B2 ), ( A2 , B3 ),( B1 , B2 ),( B1 , B3 ),( B2 , B3 ),共 10 个; ( A1 , B3 ), ( A2 , B1 ),( A2 , B2 ),( A2 , B3 ) 所以从中任取 2 人,至少有 1 名女生的概率为 P 17. (理科 本题满分 12 分) ………………………………1 分 …………………9 分 其中至少有 1 名女生的基本事件有 7 个: ( A1 , A2 ),( A1 , B1 ),( A1 , B2 ), …………………………11 分
高三复习阶段性诊断考试
数学试题参考答案 2014.4
一、选择题: BDDAC ADCCB
二、填空题:本大题共 5 小题,每小题 5 分,共 25 分. 11.
3 4
12. 512 .
13. 1
14. 2,1
15. (文科) 7 15. (理科) ①②③ . 三、解答题:本大题共 6 小题,共 75 分,解答应写出文字说明、证明过程或演算步 骤. 16. (本题满分 12 分) 解: (Ⅰ)解法一: 因为 m // n ,所以 2b cos A 2c a 由余弦定理得 2b 所以 cos B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三复习阶段性诊断考试试题理科数学本试卷,分第I 卷和第Ⅱ卷两部分.共5页,满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、区县和科类填写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}{}{},,,,,,,,,U U a b c d e M a d N a c e M C N ===⋃,则为A.{},,,a c d eB.{},,a b dC.{},b dD.{}d2.已知i 是虚数单位,则32i i -+等于 A.1i -+ B.1i -- C.1i + D.1i -3.“a b c d a >>>且是“c bd ”成立的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.某程序框图如右图所示,若输出的S=57,则判断框内填A.4k >B. k >5C. k >6D. k >75.设,a b 是两个非零向量,则下列命题为真命题的是A.若a b a b a b +=-⊥,则B.若a b a b a b ⊥+=-,则C.若a b a b +=-,则存在实数λ,使得a b λ=D. 若存在实数λ,使得a b λ=,则a b a b +=-6.某几何体正视图与侧视图相同,其正视图与俯视图如图所示,且图中的四边形都是边长为2的正方形,正视图中两条虚线互相垂直,则该几何体的体积是A.203 B.6 C.4 D.437.下列函数是偶函数,且在[]0,1上单调递增的是A.cos 2y x π⎛⎫=+ ⎪⎝⎭ B.212cos 2y x =-C.2y x =-D.()sin y xπ=+8.二项式24展开式中,x 的幂指数是整数的项共有A.3项B.4项C.5项D.6项9.3名男生3名女生站成两排照相,要求每排3人且3名男生不在同一排,则不同的站法有A.324种B.360种C.648种D.684种10.如图,已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1212,,4F F F F =,P 是双曲线右支上的一点,2F P y 与轴交于点A ,1APF ∆的内切圆在1PF 上的切点为Q ,若1PQ =,则双曲线的离心率是A.3B.2第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.已知3sin ,tan 25παπαα⎛⎫∈== ⎪⎝⎭,,则________. 12.已知等比数列{}3481298n a a a a a a a =⋅⋅⋅=若,则________.13.若log 41,a b a b =-+则的最小值为_________.14.已知x ,y 满足2211,0x y x y z x y y ⎧+≤⎪+≤=-⎨⎪≥⎩则的取值范围是________.15.在实数集R 中,我们定义的大小关系“>”为全体实数排了一个“序”.类似的,我们在平面向量集(){},,,D a a x y x R y R =∈∈上也可以定义一个称“序”的关系,记为“”.定义如下:对于任意两个向量()()11122212,,,,a x y a x y a a ==“”当且仅当“12x x >”或“1212x x y y =>且”.按上述定义的关系“”,给出如下四个命题: ①若()()()12121,0,0,1,00,0,0e e e e ===则; ②若1223,a a a a ,则13a a ; ③若12a a ,则对于任意12,a D a aa a ∈++; ④对于任意向量()12120,00,0,a a a a a a a =⋅>⋅,若则.其中真命题的序号为__________.三、解答题:本大题共6小题,共75分16.(本题满分12分)在ABC ∆中,角A,B,C 的对边分别为a,b,c ,若()(),2,1,2cos ,//m b c a n A m n =-=且.(I )求B ;(II )设函数()211sin 2cos cos sin cos 222f x x B x B B π⎛⎫=+++ ⎪⎝⎭,求函数()04f x π⎡⎤⎢⎥⎣⎦在,上的取值范围. 17.(本题满分12分)某学校组织了一次安全知识竞赛,现随机抽取20名学生的测试成绩,如下表所示(不低于90分的测试成绩称为“优秀成绩”):(I )若从这20人中随机选取3人,求至多有1人是“优秀成绩”的概率;(II )以这20人的样本数据来估计整个学校的总体数据,若从该校全体学生中(人数很多)任选3人,记ξ表示抽到“优秀成绩”学生的人数,求ξ的分布列及数学期望.18.(本题满分12分)如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,AD//BC,PB ⊥AC,,AD CD AD ⊥且2CD PA ===,点M 在线段PD 上.(I )求证:AB ⊥平面PAC ;(II )若二面角M-AC-D 的大小为45,试确定点M 的位置.19.(本题满分12分)某市为控制大气PM2.5的浓度,环境部门规定:该市每年的大气主要污染物排放总量不能超过55万吨,否则将采取紧急限排措施.已知该市2013年的大气主要污染物排放总量为40万吨,通过技术改造和倡导绿色低碳生活等措施,此后每年的原大气主要污染物排放最比上一年的排放总量减少10%.同时,因为经济发展和人口增加等因素,每年又新增加大气主要污染物排放量()0m m >万吨.(I )从2014年起,该市每年大气主要污染物排放总量(万吨)依次构成数列{}n a ,求相邻两年主要污染物排放总量的关系式;(II )证明:数列{}10n a m -是等比数列;(III )若该市始终不需要采取紧急限排措施,求m 的取值范围.20.(本题满分13分)已知中心在原点,对称轴为坐标轴的椭圆C 的一个焦点在抛物线2y =的准线上,且椭圆C 过点1,2⎛ ⎝⎭.(I )求椭圆C 的方程;(II )点A 为椭圆C 的右顶点,过点()1,0B 作直线l 与椭圆C 相交于E ,F 两点,直线AE,AF 与直线3x =分别交于不同的两点M,N ,求EM FN ⋅的取值范围.21.(本题满分14分)已知函数()()1 1.x f x x e =--(I )求函数()f x 的最大值;(II )若()()0ln 110xx g x e x λ≥=+--≤时,,求λ的取值范围. (III )证明:111123n n n ee e ++++++……+12n e ln 2n <+(n *N ∈)高三复习阶段性诊断考试数学试题参考答案2014.4一、选择题: BDDAC ADCCB二、填空题:本大题共5小题,每小题5分,共25分.11. 34-12. 512 . 13. 1 14. ⎡⎤⎣⎦ 15.(文科) 7 15.(理科) ①②③ . 三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(本题满分12分)解:(Ⅰ)解法一:因为//m n ,所以 2cos 2b A c a =- …………………………………2分 由余弦定理得222222b c a b c a bc+-⋅=-,整理得222=+ac a c b - 所以222+1cos =22a cb B ac -= ……………………………4分 又因为0B π<<,所以3B π=. ………………………………………6分 解法二:因为//m n ,所以2cos 2b A c a =- ………………………………2分由正弦定理得 2sin cos 2sin sin B A C A =-所以()2sin cos 2sin sin B A A B A =+-整理得2sin cos sin 0A B A -=因为0A π<<,所以sin 0A ≠,所以1cos 2B =……………………4分 又因为0B π<<,所以3B π=. …………………………………………6分 (Ⅱ)211()sin 2cos cos sin cos()222f x x B x B B π=+++11cos 2sin 242x x +=1sin 224x x =1sin(2)23x π=+ ………………8分 因为 04x π≤≤,则 52+336x πππ≤≤, ………………………10分 所以 1sin 2+23x π≤≤()1,即()f x 在[0,]4π上取值范围是11[,]42. ……………………12分 17.(文科 本题满分12分)解:(Ⅰ)设该校总人数为n 人, 由题意,得5010100300n =+,所以2000n = ………………3分 故2000(100300150450600)400z =-++++=. …………5分(Ⅱ)设所抽样本中有m 个女生.因为用分层抽样的方法在高一学生中抽取一个容量为5的样本,所以40010005m =,解得2m =. ………………………7分 也就是抽取了2名女生,3名男生,分别记作12123,,,,A A B B B ,则从中任取2个的所有基本事件为(12,A A ),(11,A B ),(12,A B ),(13,A B ),(21,A B ),(22,A B ),(23,A B ),(12,BB ),(13,B B ),(23,B B ),共10个; …………………9分其中至少有1名女生的基本事件有7个: (12,A A ),(11,A B ),(12,A B ),(13,A B ), (21,A B ),(22,A B ),(23,A B ) …………………………11分所以从中任取2人,至少有1名女生的概率为710P =. …………………12分 17.(理科 本题满分12分)解:(Ⅰ)由表知:“优秀成绩”为4人. ………………………………1分设随机选取3人,至多有1人是“优秀成绩”为事件A ,则3211616433202052()57C C C P A C C =+=. ……………………………………………5分 (Ⅱ)由样本估计总体可知抽到“优秀成绩”学生的概率15P =. ………6分 ξ可取0,1,2,3 ………………………………………………………7分 00331464(0)()()55125P C ξ===;1231448(1)()()55125P C ξ===; 2231412(2)()()55125P C ξ===;3303141(3)()()55125P C ξ===. ξ的分布列:……………………………………11分6448121301231251251251255E ξ=⨯+⨯+⨯+⨯=. ………………………12分或 1(3,)5B ξ, 13355E ξ=⨯=. ………………………12分18.(文科 本题满分12分)证明:(Ⅰ)因为PA ⊥平面ABCD ,,AC AB ⊂平面ABCD所以 PA AC ⊥,PA AB ⊥ …………………………………2分 又因为PB AC ⊥,PA AC ⊥,,PA PB ⊂平面PAB ,PA PB P =,所以AC ⊥平面PAB …………………………………3分 又因为AC ⊥平面PAB ,AB ⊂平面PAB ,所以AC ⊥AB …………………………………4分 因为AC ⊥AB ,PA AB ⊥,,PA AC ⊂平面PAC ,PA AC A =,所以 AB ⊥平面PAC ………………………6分 (Ⅱ)方法一取PC 的中点E ,连接QE 、ED . 因为Q 是线段PB 的中点,E是PC 的中点,所以 QE ∥BC ,12QE BC =………8分因为 AD ∥BC ,2BC AD =所以 QE ∥AD ,QE AD =所以 四边形AQED 是平行四边形,………………………………9分所以 AQ ∥ED , ………………………………10分 因为AQ ∥ED ,AQ ⊄平面PCD ,ED ⊂平面PCD所以 AQ ∥平面PCD . …………………………………………12分 方法二取BC 的中点E ,连接AE 、QE . 因为 2BC AD = 所以AD EC = 又 AD ∥EC ,所以 四边形ADCE 是平行四边形,所以AE ∥CD因为AE ⊄平面PCD ,CD ⊂平面PCD ,所以AE ∥平面PCD ……………8分因为Q ,E 分别是线段PB ,BC 的中点,所以QE ∥PC ,所以QE ∥平面PCD ……………………………10分 因为QE AE E =,所以平面AEQ ∥平面PCD ……………………11分 因为AQ ⊂平面AEQ ,所以AQ ∥平面PCD . ………………………12分18.(理科 本题满分12分)解证:(Ⅰ)因为PA ⊥平面ABCD ,,AC AB ⊂ 平面ABCD所以 PA AC ⊥,PA AB ⊥ …………………………………2分 又因为PB AC ⊥,PA AC ⊥,,PA PB ⊂平面PAB ,PA PB P =, 所以AC ⊥平面PAB …………………………………3分 又因为AC ⊥平面PAB ,AB ⊂平面PAB ,所以AC ⊥AB …………………………………4分 因为AC ⊥AB ,PA AB ⊥,,PA AC ⊂平面PAC ,PA AC A =, 所以 AB ⊥平面PAC ………………………6分 (Ⅱ)因为PA ⊥平面ABCD ,又由(Ⅰ)知BA AC ⊥,建立如图所示的空间直角坐标系 A xyz -.则()0,0,0A ,()0,4,0C ,()2,2,0D -,()0,0,2P ,()2,2,2PD =--,()0,4,0AC =设(),,M x y z ,PM tPD =,则 ()(),,22,2,2x y z t -=--,故点M 坐标为()2,2,22t t t --,()2,2,22AM t t t =-- ………………8分 设平面MAC 的法向量为1(,,)x y z =n ,则110,0.AC AM ⎧⋅=⎪⎨⋅=⎪⎩n n ………………9分所以()40,22220.y tx ty t z =⎧⎪⎨-++-=⎪⎩令1z =,则11(01)t t-=,,n . ………………………………10分 又平面ACD 的法向量2(0,0,1)=n所以1212cos 452⋅==⋅n n n n , 解得1=2t 故点M 为线段PD 的中点. ………………………………12分19.(本题满分12分)解:(Ⅰ)由已知,1400.9a m =⨯+,10.9n n a a m +=+(1n ≥).………4分 (Ⅱ)由(Ⅰ)得:()1100.990.910n n n a m a m a m +-=-=-,所以数列{}10n a m -是以110369a m m -=-为首项、0.9为公比的等比数列.………6分(Ⅲ)由(Ⅱ)得:()1103690.9n n a m m --=-⋅ ,即()13690.910n n a m m -=-⋅+ . ……………………8分 由()13690.91055n m m --⋅+≤ ,得1155360.9 5.540.9 1.541090.910.910.9n n n n n m ---⨯-⨯≤==+-⨯--恒成立(*n N ∈) …11分解得: 5.5m ≤;又0m > ,综上,可得(]0,5.5m ∈. …………………………12分20.(文科 本题满分13分)解:(Ⅰ)连接1AF ,因为2AF AB ⊥,211F F BF =,所以211F F AF=, 即c a 2=,则)0,21(2a F ,)0,23(a B -. ……………… 3分 ABC Rt ∆的外接圆圆心为)0,21(1a F -,半径a B F r ==221 ………4分 由已知圆心到直线的距离为a ,所以a a =--2321, 解得2=a ,所以1=c ,3=b ,所求椭圆方程为13422=+y x . ………………6分(Ⅱ)因为)0,1(2F ,设直线l 的方程为:)1(-=x k y ,),,(11y x M ),(22y x N . 联立方程组:⎪⎩⎪⎨⎧=+-=134)1(22y x x k y ,消去y 得01248)43(2222=-+-+k x k x k . ……………… 7分 则2221438kk x x +=+,22121436)2(k k x x k y y +-=-+=+, MN 的中点为)433,434(222k k k k +-+. ………………8分 当0=k 时,MN 为长轴,中点为原点,则0=m . ………………9分当0≠k 时,MN 垂直平分线方程).434(1433222kk x k k k y +--=++ 令0=y ,所以43143222+=+=kk k m 因为032>k ,所以2344k +>,可得410<<m , …………12分 综上可得,实数m 的取值范围是).41,0[ ………………13分 20.(理科 本题满分13分)解:(Ⅰ)抛物线x y 342=的准线方程为:3-=x ……………1分 设椭圆的方程为()222210x y a b a b+=>>,则c =依题意得⎪⎩⎪⎨⎧=++=143132222b ab a ,解得24a =,21b =. 所以椭圆C 的方程为2214x y +=. ………………………………3分 (Ⅱ)显然点)0,2(A .(1)当直线l 的斜率不存在时,不妨设点E 在x 轴上方,易得(1,E F,(3,M N ,所以1EM FN ⋅=. ………………………………5分(2)当直线l 的斜率存在时,由题意可设直线l 的方程为(1)y k x =-,1122(,),(,)E x y F x y ,显然0k = 时,不符合题意.由22(1),440y k x x y =-⎧⎨+-=⎩得2222(41)8440k x k x k +-+-=. …………………6分 则22121222844,4141k k x x x x k k -+==++.……………7分 直线AE ,AF 的方程分别为:1212(2),(2)22y y y x y x x x =-=---, 令3x =,则1212(3,),(3,)22y y M N x x --. 所以1111(3)(3,)2y x EM x x -=--,2222(3)(3,)2y x FN x x -=--. ………9分 所以11221212(3)(3)(3)(3)22y x y x EM FN x x x x --⋅=--+⋅-- 121212(3)(3)(1)(2)(2)y y x x x x =--+-- 2121212(1)(1)(3)(3)(1)(2)(2)x x x x k x x --=--+⋅-- 2121212121212()1[3()9][1]2()4x x x x x x x x k x x x x -++=-++⨯+⋅-++ 222222222222244814484141(39)(1)4484141244141k k k k k k k k k k k k k --+-++=-⋅+⋅+⋅-++-⋅+++ 22221653()(1)414k k k k +-=⋅++22216511164164k k k +==+++. …………………11分 因为20k >,所以21644k +>,所以22165511644k k +<<+,即5(1,)4EM FN ⋅∈. 综上所述,EM FN ⋅的取值范围是5[1,)4. ………………………13分21.(文科 本题满分14分)解:(Ⅰ)()x f x xe '=-, ……………………………………1分 当0x =时,()0f x '=;当0x <时,()0f x '>;当0x >时,()0f x '<;所以函数()f x 在区间(,0)-∞上单调递增,在区间(0,)+∞上单调递减;………………………3分故max ()(0)0f x f ==. ………………………………………………4分 (Ⅱ)由2()(1)1x g x x e x λ=-+-,得()(2)x g x x e λ'=--.…………6分 当0λ≤时,由(Ⅰ)得2()()()0g x f x x f x λ=+≤≤成立; …………8分 当102λ<≤时,因为(0,)x ∈+∞时()0g x '<,所以0x ≥时, ()(0)0g x g ≤=成立; ……………………………………………………10分 当12λ>时,因为(0,ln 2)x λ∈时()0g x '>,所以()(0)0g x g >=.…13分 综上,知λ的取值范围是1(,]2-∞. ……………………………………14分 21.(理科 本题满分14分)解证:(Ⅰ)()x f x xe '=-, ……………………………………1分 当0x =时,()0f x '=;当0x <时,()0f x '>;当0x >时,()0f x '<; 所以函数()f x 在区间(,0)-∞上单调递增,在区间(0,)+∞上单调递减;…………………3分故max ()(0)0f x f ==. ……………………………………………………4分 (Ⅱ)解法一:(1)()11x x x e g x e x x λλ--'=-=--, …………………5分 当0λ≤时,因为(0,1)x ∈时()0g x '>,所以0x >时,()(0)0g x g >=;……………………………………………………………………………6分 当01λ<<时,令()(1)x h x x e λ=--,()x h x xe '=-.当(0,1)x ∈时,()0h x '<,()h x 单调递减,且(0)(1)(1)()0h h λλ=--<, 故()h x 在(0,1)内存在唯一的零点0x ,使得对于0(0,)x x ∈有()0h x >, 也即()0g x '>.所以,当0(0,)x x ∈时()(0)0g x g >=; ……………8分当1λ≥时,(0,1)x ∈时(1)(1)1()()0111x x x e x e f x g x x x xλ----'=≤=<---,所以,当0x ≥时()(0)0g x g ≤=. …………………………………9分综上,知λ的取值范围是[1,)+∞. …………………………………10分 解法二: (1)()11x x x e g x e x x λλ--'=-=--, ……………………5分令()(1)x h x x e λ=--,()x h x xe '=-.当[0,1)x ∈时,()0h x '≤,所以()h x 单调递减. …………………6分 若在[0,1)内存在使()(1)0x h x x e λ=-->的区间0(0,)x ,则()g x 在0(0,)x 上是增函数,()(0)0g x g >=,与已知不符. ………8分 故[0,1)x ∈,()0h x ≤,此时()g x 在[0,1)上是减函数,()(0)0g x g ≤=成立. 由()(1)0x h x x e λ=--≤,[0,1)x ∈恒成立,而()0h x '≤,则需()h x 的最大值(0)0h ≤,即()0100e λ--≤,1λ≥,所以λ的取值范围是[1,)+∞. ……………………10分(Ⅲ)在(Ⅱ)中令1λ=,得0x >时,1ln(1)x e x <--. ……………11分 将1111,,,,1232x n n n n =+++代入上述不等式,再将得到的n 个不等式相加,得11111232ln 2n n n n e e e e n +++++++<+. ………………………14分。