2014年山东省东营市中考数学试卷及答案
东营市2014年前三年中考数学试题分析

义和镇中心学校近三年中考数学试卷分析义和镇中心学校九年级备课组初中毕业升学考试是学生结束义务教育阶段学习的一次重要考试,既是对学生学习水平的一次测试,又是对初中四年数学教学的一次终结性评价。
通观近三年中考的数学试卷,试题既有亲和力,又新颖脱俗;既似曾相识,又改革创新;既注重基础,又突出能力;既背景新颖,又根植于课本;重视数学应用的考查,稳中求变,变中求新,导向明确。
充分体现了义务教育的普及性、基础性和发展性,贯彻了《初中数学新课程标准》的理念.今年中考数学试卷寓考查“知识与技能、过程与方法、情感态度价值观”三维目标于一身,在考查学生的数学素养、创新能力、实践能力等方面都做了有益的探索。
通过对试题的分析,不但有利于指导初中数学教学,有利于推进新课程的实施,更有利于指导我们的中考复习,为我们的此阶段的复习工作指明方向。
下面从以下几个方面进行具体分析:一、考查内容分布的分析全面考查东营市2011、2012、2013年中考数学试题,不难发现试题的基本结构、题型与题量基本一致,这三年都采用两卷试题,第I卷为36分的选择题,第II卷为84分的非选择题。
三年试题题型都分为选择题、填空题和解答题三种题型,题目个数都是24个。
从考查内容来看,都对函数、方程与不等式、三角形、四边形、圆、统计与概率作了重点考查。
三套试题均强调了应用性,增加了探究性,更注重综合性。
一方面,注重基础,突出对基础知识、基础技能及基本数学思想方法的考查,有较好的教学导向性;其次着眼于考查学生的基本的数学能力。
我们将试题逐一分析,从知识点领域和能力要求两个维度作了统计.“知识领域”的排列结构和知识点的描述参考了《课程标准》,“能力要求”则参考了国家教育研究部门的最新表述及《考试说明》.对于同一题涉及到不同的知识领域的考查内容,在分值上能够解剖的作了解剖,解剖的依据是评分细则和统计者对题目的分析;有些试题,由于“知识点”的设臵重复,分值无法解剖的,采用重点考察内容计分的方式。
【VIP专享】2014年东营市数学中考试题答案及评分标准

6
B
7
A
8
C
试卷类型:A
9
D
10
D
20. (本题满分 8 分)
人数
80
60
40
20
0
教 医 公 军 其 职业
师生务人 他
员
(第 20 题图)
解: (1)由公务员所占比例及相应人数可求出被调查的学生数是:
40÷20%=200(人);……………………………………………………………………1 分 (2)喜欢医生职业的人数为:200×15=30(人);…………………………………………2 分
=1+2+1 3 3 2 1………………………………………………………………2 分
=6- 3 2 ……………………………………………………………………………3 分
(2)解: 3
x
2
<1①
2(1 x)≤5②
解不等式①,得:x<1,解不等式②,得:x≥ 3 …………………………………………1 分 2
最后结果.
11. 3.251011 ;12. 3y(x 3)(x 3) ;13.丙; 14.10;
15.1; 16.8; 17. 8 ;18.(45,12). 三、解答题:本大题共 7 小题,共 62 分.解答要写出必要的文字说明、证明过程或演算步骤. 19. (本题满分 7 分)
(1)解:(-1)20(14 )sin 30 1 ( 3 )0 3 18 83 (0.125)3 5 2
一.选择题:本大题共 10 小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小 题选对得 3 分,共 30 分.选错、不选或选出的答案超过一个均记零分.
题号
2014东营市中考数学模拟试题

二0一四年东营市初中学生中考模拟考试数 学 试 题(总分120分 考试时间120分钟)注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共8页.2. 数学试题答案卡共9页.答题前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用0.5mm 签字笔答在答题卡的相应位置上.4. 考试时,不允许使用科学计算器.第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.31-的相反数是 ( ) A .31 B . -31C . 3D . -32.下列运算正确的是 ( )A .a a a =⋅B .()ab ab =C .)(a a =D .a a a =÷.3.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是( )A :B :C :D :4. 据悉,东营市一中、东营市二中、东营市中专学校三校建设被东营市委、市政府列为2014年全市重点建设项,三校建设估算总投资21.2亿元。
CA B D DA BC请用科学计数法表示该数字为( )A.21.2× 810 元 B. 2.12 910⨯元 C. 2.12 810⨯元 D. 21.2×810元5.下列几何体的主视图与众不同的是 ( )6. 河堤横断面如图所示,堤高BC =6米,迎水坡AB 的坡比为1:,则AB 的长为( ).12B .4米C .5米 D .6米7.某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?若设原价每瓶x 元,则可列出方程为 ( )A .205.0420420=--x x B .204205.0420=--x x C 5.020420420=--x x D .5.042020420=--xx8.将两副三角板如下图摆放在一起,连结AD ,则ADB ∠的正切值为( )A .132-B .31+C .332-D .332+9.方程0411)1(2=+---x k x k 有两个实数根,则k 的取值范围是( ). A . k ≥1B . k ≤1A B C D(8题图)第 3 页 共 9 页第15题图C . k >1D . k <110、如图,两个反比例函数y = k 1x 和y = k 2x在第一象限内的图象依次是C 1和C 2,设点P 在C 1上,PC ⊥x 轴于点C ,交C 2于点A ,PD ⊥y 轴于点D ,交C 2于点B ,则四边形PAOB 的面积为( )A .k 1+k 2B .k 1-k 2C .k 1·k 2 D.k 1k 2第Ⅱ卷(非选择题 共90分)二、填空题:本大题共7小题,共28分,只要求填写最后结果,每小题填对得4分.11. 分解因式:x x 93- = .12. 函数32--=x x y 的自变量x 的取值范围是_________。
2014年中考数学全等三角形试题汇编解析

2014年中考数学全等三角形试题汇编解析全等三角形一、选择题1.(2014•年山东东营,第4题3分)下列命题中是真命题的是()A.如果a2=b2,那么a=bB.对角线互相垂直的四边形是菱形C.旋转前后的两个图形,对应点所连线段相等D.线段垂直平分线上的点与这条线段两个端点的距离相等考点:命题与定理.分析:利用菱形的判定、旋转的性质及垂直平分线的性质对每个选项进行判断后即可得到正确的选项.解答:解:A、错误,如3与﹣3;B、对角线互相垂直的平行四边形是菱形,故错误,是假命题;C、旋转前后的两个图形,对应点所连线段不一定相等,故错误,是假命题;D、正确,是真命题,故选D.点评:本题考查了命题与定理的知识,解题的关键是理解菱形的判定、旋转的性质及垂直平分线的性质.2.(2014•四川遂宁,第9题,4分)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3B.4C.6D.5考点:角平分线的性质.分析:过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.解答:解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选A.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.3.(2014•四川南充,第5题,3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)分析:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选A.点评:本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.二、填空题1.(2014•福建福州,第15题4分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使..若AB=10,则EF的长是.2.(2014•广州,第15题3分)已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:_________,该逆命题是_____命题(填“真”或“假”).【考点】命题的考察以及全等三角形的判定【分析】本题主要考察命题与逆命题的转换,以及命题真假性的判断【答案】如果两个三角形的面积相等,那么这两个三角形全等.假命题.三、解答题1.(2014•湖南怀化,第19题,10分)如图,在平行四边形ABCD中,∠B=∠AFE,EA是∠BEF的角平分线.求证:(1)△ABE≌△AFE;(2)∠FAD=∠CDE.考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题.分析:(1)根据角平分线的性质可得∠1=∠2,再加上条件∠B=∠AFE,公共边AE,可利用AAS证明△ABE≌△AFE;(2)首先证明AF=CD,再证明∠B=∠AFE,∠AFD=∠C可证明△AFD≌△DCE进而得到∠FAD=∠CDE.解答:证明:(1)∵EA是∠BEF的角平分线,∴∠1=∠2,在△ABE和△AFE中,,∴△ABE≌△AFE(AAS);(2)∵△ABE≌△AFE,∴AB=AF,∵四边形ABCD平行四边形,∴AB=CD,AD∥CB,AB∥CD,∴AF=CD,∠ADF=∠DEC,∠B+∠C=180°,∵∠B=∠AFE,∠AFE+∠AFD=180°,∴∠AFD=∠C,在△AFD和△DCE中,,∴△AFD≌△DCE(AAS),∴∠FAD=∠CDE.点评:此题主要考查了平行四边形的性质,以及全等三角形的判定与性质,关键是正确证明△AFD≌△DCE.2.(2014•湖南张家界,第24题,10分)如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.考点:全等三角形的判定与性质;菱形的判定与性质.分析:(1)首先利用SSS定理证明△ABC≌△ADC可得∠BCA=∠DCA即可证明△CBF≌△CDF.(2)由△ABC≌△ADC可知,△ABC与△ADC是轴对称图形,得出OB=OD,∠COB=∠COD=90°,因为OC=OA,所以AC与BD互相垂直平分,即可证得四边形ABCD是菱形,然后根据勾股定理全等AB长,进而求得四边形的面积.(3)首先证明△BCF≌△DCF可得∠CBF=∠CDF,再根据BE⊥CD可得∠BEC=∠DEF=90°,进而得到∠EFD=∠BCD=∠BAD.解答:(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和CADF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BCD.点评:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.。
2014年东营市初中学生中考模拟考试数学试题及答案

2014年东营市初中学生中考模拟考试数学试题
(附答案)
一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.
1.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统
)
:,则的
B.4米
4. 在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m2)与体积V(单位:m3)满足函数关系式
V
k
=
ρ(k为常数,k≠0),其图象如图所示,则k的值为()。
2014年东营市中考数学试题答案

秘密★启用前试卷类型:A数学试题参考答案及评分标准评卷说明:1. 选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2. 解答题中的每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分意见相应评分.3. 如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一.选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,共30分.选错、不选或选出的答案超过一个均记零分.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分,只要求填写最后结果.11.113.2510⨯;12.3(3)(3)y x x+-;13.丙;14.10;15.1;16.8;17.8 ;18.(45,12).三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(本题满分7分)(1)解:201410331sin3038(0.125)-++-+⨯-(-)()=1+2+131+-………………………………………………………………2分=6-3分(2)解:2132(1)xx+⎧⎪⎨⎪-⎩<①≤5②解不等式①,得:x<1,解不等式②,得:x≥32-…………………………………………1分所以不等式组的解集为:32-≤x<1. ………………………………………………………2分解集中的整数解有1,0-.……………………………………………………………………3分…………………………………………………………………………………………………4分_20. (本题满分8分)解:(1)由公务员所占比例及相应人数可求出被调查的学生数是:40÷20%=200(人);……………………………………………………………………1分(2)喜欢医生职业的人数为:200×15=30(人);…………………………………………2分喜欢教师职业的人数为:200-70-20-40-30=40(人);………………………………3分 折线统计图如图所示;…………………………………………………………………4分(3)扇形统计图中,公务员部分对应圆心角的度数是360°×20%=72°;………………6分(4)抽取的这名学生最喜欢的职业是教师的概率是:4012005=.…………………………………………………………………………………8分 21.(本题满分8分) (1)证明:CDB BFD ∠=∠(已知), CAB CDB ∠=∠(圆周角相等)∴EAO DFO ∠=∠……………………………………1分在DFO ∆与EAO ∆中,EAO DFO ∠=∠,EOA DOF ∠=∠(公共角)∴ 90=∠=∠AEO FDOD 是半径OD 外端点,∴ FD 是⊙O 的一条切线.…………………………………………………………………4分(2)在DFO ∆与EAO ∆中,EAO DFO ∠=∠,EOA DOF ∠=∠∴DFO ∆∽EAO ∆ ∴OEODEA DF =,…………………………………………………………………………6分 AB =10,AC =8,OD ⊥AC第21题图务员 (第20题图) 师 生 人 他 其他 20% 教师公务员医生15% 军人10% 20%35%DAC∴.3,4,5====OE EA OD OA∴4520.33EA OD DF OE ⨯⨯=== …………………………………………………………………………………………………8分 22. (本题满分8分)解:如图,作AD ⊥BC 于点D ,从热气球看这栋高楼顶部的仰角记为α底部的俯角记为β,则30,60αβ=︒=︒,AD =120.tan BD ADα=,tan ,CD ADβ=………………………2分 ∴BD =tan 120tan 30AD α︒⋅=⨯=120=…………………………………………………………4分 ∴CD =tan 120tan 60AD β︒⋅=⨯=120=6分∴BC=BD+CD=277.1≈………………………………7分答:这栋楼高约为277.1m .………………………………………………………8分 23. (本题满分8分)解:(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需2x 天. 根据题意得:121010=+xx ………………………………………………………………2分 方程两边同乘以x 2,得302=x 解得:15=x经检验,15=x 是原方程的解.…………………………………………………………3分 ∴当x =15时,x 2=30.答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天. ………4分 (2)因为甲乙两工程队均能在规定的40天内单独完成,所以有如下三种方案:方案一:由甲工程队单独完成.所需费用为:4.5×15=67.5(万元);……………………5分 方案二:由乙工程队单独完成.所需费用为:2.5×30=75(万元);………………………6分 方案三:由甲乙两队合作完成.所需费用为:(4.5+2.5)×10=70(万元).……………7分 ∵75>70>67.5 ∴应该选择甲工程队承包该项工程. ……………………………………8分24.(本题满分11分)(1) 正确画出图形……………………………………………………………………………1分 ①第一种情况:当点E 在线段BC 上时. 证明:在AB 上取A G=CE ,连接EG .则BEG ∆是等边三角形∴∠AGE =120︒,而∠ECF =120︒∴∠AGE=∠ECF …………………………………2分∵∠AEC =∠AEF +∠CEF =∠GAE +∠B ,60AEF B ︒∠=∠=∴∠GAE =∠CEF ……………………………………………………………………………4分 ∴AGE ∆≌ECF ∆(ASA )∴AE =EF ………………………………………………………………………………………6分 ②第二种情况:当点E 在BC 延长线上时. 在CF 取C G=CE ,连接EG . ∵CF 是等边三角形外角平分线∴∠ECF =60︒∵CG=CE∴CEG ∆是等边三角形∴∠FGE =∠ACE =120︒………………………………2分 ∵∠AEF =∠AEG +∠GEF =∠AEG +∠AEC =60︒∴∠GEF =∠CEA ∴ACE ∆≌FGE ∆(ASA )∴AE =EF ③第三种情况:当点E 在BC 的反向延长线上时. 在AB 的延长线上取A G=CE ,连接EG .则有BG= BE ;∴BEG ∆是等边三角形∴∠G =∠ECF =60︒………………………………2分 ∵∠CEF =∠AEF -∠AEC =60︒-∠AEC ∠EAB =∠ABC -∠AEC =60︒-∠AEC∴∠CEF =∠EAB ……………………………………………4∴AGE ∆≌ECF ∆(ASA )∴AE =EF ……………………………………………………6(2∵CE = BC=AC∴∠CAE =∠C EA=30︒,∠BAE=90︒∴tan 303AB AE ︒==………………………………………………………………………9分 ∵AE =EF ,∠AEF =60︒∴AEF ∆是等边三角形∴AEF ∆∽ABC ∆…………………………………………………………………………10分 ∴2213ABC AEFS AB S AE ∆∆⎛⎫=== ⎪⎝⎭⎝⎭.…………………………………………………………11分 25. (本题满分12分)解:(1)在直线22+=x y 中,令0=x 得2=y ,所以得点B )2,0( 设直线BD 的解析式为:m kx y +=,代入B 、D 两点坐标得2,43m k m=⎧⎨-=+⎩解得:2,2-==k m .所以直线BD 的解析式为:22+-=x y .……………………………………………1分 将B 、D 两点坐标代入抛物线2y x bx c =-++中得:2,493c b c=⎧⎨-=-++⎩解得:2,1==c b .所以,抛物线的解析式为:22++-=x x y .……………………………………3分 (2)假设存在点M (x,y )符合题意,则有如下两种情形:①若MNO ∆∽BOC ∆,则OC NO BO MN =,所以有12xy =, 即x y 2=又因为M 点在抛物线上所以22++-=x x y ,所以:222x x x =-++ 即:022=-+x x解得1=x 或2-=x ,又因为M 点在第一象限,2-=x 不符合题意, 所以1=x ,2=y 故M )2,1(.………………………6分②若ONM ∆∽BOC ∆,则MNOCON BO =即x y 21=,所以2122x x x =-++即:0422=--x x 解得4331+=x 或4331-=x , 又因为M 点在第一象限,4331-=x 不符合题意, 所以4331+=x ,8331+=y 故M (4331+,8331+)………………………8分 所以,符合条件的点M 的坐标为)2,1( ,(4331+,8331+)………………………9分 (3)设点P 坐标为),(b a 则22++-=a a b 又因为点P 在直线BD 上方, 所以0<a <3,又PH 垂直于x 轴,交直线BD 于点H , 所以H )22,(+-a a ,所以)22(22+--++-=a a a PH a a 32+-=,……………………………………10分因为四边形BOHP 是平行四边形, 所以PH=OB =2, 即0232=+-a a ,解得1=a 或2=a 均满足0<a <3………………………………………………………11分当1=a 时,222=++-a a , 当2=a 时,022=++-a a ,所以点P 的坐标为)2,1(, )0,2(……………………………………………………12分。
山东省东营市2014年中考数学试题(版,含答案)

秘密★启用前 试卷类型:A二0一四年东营市初中学生学业考试数 学 试 题(总分120分 考试时间120分钟)注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共6页.2. 数学试题答案卡共8页.答题前,考生务必将自己的姓名、考号、考试科目等涂写在试题和答题卡上,考试结束,试题和答题卡一并收回.3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用0.5mm 碳素笔答在答题卡的相应位置上.4. 考试时,不允许使用科学计算器.第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.81的平方根是( )A .3±B .3C .9±D .92.下列计算错.误.的是( )A .=.236x x x ⋅=C .-2+|-2|=0D .91)3(2=--3.直线1+-=x y 经过的象限是( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限 4.下列命题中是真命题的是( )A .如果22a b =,那么a b =B .对角线互相垂直的四边形是菱形C .旋转前后的两个图形,对应点所连线段相等D .线段垂直平分线上的点到这条线段两个端点的距离相等5.如图,已知扇形的圆心角为60︒ABCD6.下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( )A .B. C . D .7.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形; ②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么, 这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比. 其中正确命题的序号是( )A .②③B .①②C .③④D .②③④8.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖 落在阴影区域的概率是( )A .12B .31C .14D .619.若函数21(2)12y mx m x m =++++的图象与x 轴只有一个交点,那么m 的值为( )A .0B .0或2C .2或-2D .0,2或-210.如图,四边形ABCD 为菱形,AB=BD ,点B 、C 、D 、G 四个点在同一个O 圆上,连接BG 并延长交AD 于点F ,连接DG 并延长交AB 于点E ,BD 与CG 交于点H ,连接FH .下列结论: ①AE =DF ;②FH ∥AB ;③△DGH ∽△BGE ;④当CG 为O 的直径时,DF =AF . 其中正确结论的个数是( ) A .1 B .2 C .3 D .4(第8题图) 2 2 1 3 1 1(第10题图)A第Ⅱ卷(非选择题 共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11.2013年东营市围绕“转方式,调结构,扩总量,增实力,上水平”的工作大局,经济平稳较快增长,全年GDP 达到3250亿元.3250亿元用科学记数法表示为元. 12.2327x y y -=.13.市运会举行射击比赛,某校射击队从甲、乙、丙、丁四人中选拔一人参赛.在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如右表.请你根据表中数据选一人参加比赛,最合适的人选是. 14.如图,有两棵树,一棵高12米,另一棵高6米, 两树相距8米.一只鸟从一棵树的树梢飞到另一棵树 的树梢,问小鸟至少飞行米.15.如果实数x 、y 是方程组30,233x y x y +=⎧⎨+=⎩的解,那么代数式12xy x y x y ⎛⎫+÷⎪++⎝⎭的值 为.16.在⊙O 中,AB 是⊙O 的直径,AB =8cm ,AC CD BD ==,M 是AB 上一动点,CM+DM 的最小值是cm .17.如图,函数1y x =和3y x =-的图象分别是1l 和2l .设点P 在1l 上,PC ⊥x 轴,垂足为C ,交2l 于点A ,PD ⊥y 轴,垂足为D ,交2l 于点B ,则三角形P AB 的面积为. 18.将自然数按以下规律排列:(第16题图)xyAP B D C O1l 2l(第17题图) (第14题图)F第一列 第二列 第三列 第四列 第五列第一行 1 4 5 16 17 … 第二行 2 3 6 15 … 第三行 9 8 7 14 … 第四行 10 11 12 13 … 第五行 … ……表中数2在第二行,第一列,与有序数对(2,1)对应;数5与(1,3)对应;数14与(3,4)对应;根据这一规律,数2014对应的有序数对为.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (本题满分7分,第⑴题3分,第⑵题4分)(1)计算:20141331sin 3038(0.125)-++-⨯-(-)()(2)解不等式组:21,32(1) 5.x x +⎧⎪⎨⎪-⎩<≤把解集在数轴上表示出来,并将解集中的整数解写出来.20.(本题满分8分)东营市某中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图.(1)求出被调查的学生人数; (2)把折线统计图补充完整;(3)求出扇形统计图中,公务员部分对应的圆心角的度数;(4)若从被调查的学生中任意抽取一名,求抽取的这名学生最喜欢的职业是“教师”的概率. 21.(本题满分8分)如图,AB 是⊙O 的直径.OD 垂直于弦AC 于点E ,且交⊙O 于点D.F_务员 (第20题图)师 生 人 他其他 20%教师 公务员 医生15%军人10%是BA 延长线上一点,若CDB BFD ∠=∠. (1)求证:FD 是⊙O 的一条切线; (2)若AB =10,AC =8,求DF 的长.22.(本题满分8分)热气球的探测器显示,从热气球底部A 处看一栋高楼顶部的仰角为30︒,看这栋楼底部的俯角为60︒,热气球A 处与高楼的水平距离为120m ,这栋高楼有多1.732≈,结果保留小数点后一位)?23. (本题满分8分)为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,须在40天内完成工程.现有甲、乙两个工程队有意承包这项工程.经调查知道:乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元.请你设计一种方案,既能按时完工,又能使工程费用最少. 24.(本题满分11分)【探究发现】如图1,ABC ∆是等边三角形,60AEF ︒∠=,EF 交等边三角形外角平分线CF 所在的直线于点F .当点E是BC 的中点时,有AE =EF 成立;【数学思考】某数学兴趣小组在探究AE 、EF 的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点E 是直线BC 上(B ,C 除外)任意一点时(其它条件不变),结论AE =EF 仍然成立.假如你是该兴趣小组中的一员,请你从“点E 是线段BC 上的任意一点”;“点E是线段BC 延长线上的任意一点”;“ 点E是线段BC 反向延长线上的任意一点”三种情况中,任选一种情况,在备用图1中画出图形,并进行证明.(第24题图1)(第24题备用图2)(第22题图) BA(第24题备用图1)(第25题图)【拓展应用】当点E 在线段BC 的延长线上时,若CE = BC ,在备用图2中画出图形,并运用上述结论求出:ABC AEF S S ∆∆的值.25.(本题满分12分) 如图,直线y=2x+2与x 轴交于点A ,与y 轴交于点B .把△AOB 沿y 轴翻折,点A 落到点C ,过点B 的抛物线2y x bx c =-++与直线BC 交于点D (3,4-). (1)求直线BD 和抛物线的解析式;(2)在第一象限内的抛物线上,是否存在一点M ,作MN 垂直于x 轴,垂足为点N ,使得以M 、O 、N 为顶点的三角形与△BOC 相似?若存在,求出点M 的坐标;若不存在,请说明理由;(3)在直线BD 上方的抛物线上有一动点P ,过点P 作PH 垂直于x 轴,交直线BD 于点H .当四边形BOHP 是平行四边形时,试求动点P 的坐标.秘密★启用前 试卷类型:A数学试题参考答案及评分标准评卷说明:1. 选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2. 解答题中的每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分意见相应评分.3. 如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一.选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,共30分.选错、不选或选出的答案超过一个均记零分.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分,只要求填写最后结果.11.113.2510⨯;12.3(3)(3)y x x+-;13.丙;14.10;15.1;16.8;17.8 ;18.(45,12).三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(本题满分7分)(1)解:201410331sin3038(0.125)-++-+⨯-(-)()=1+2+131+- (2)分=6- (3)分(2)解:2132(1)xx+⎧⎪⎨⎪-⎩<①≤5②解不等式①,得:x<1,解不等式②,得:x≥32- (1)分所以不等式组的解集为:32-≤x<1. ………………………………………………………2分解集中的整数解有1,0-. (3)分 (4)分_20.(本题满分8分)解:(1)由公务员所占比例及相应人数可求出被调查的学生数是:40÷20%=200(人);……………………………………………………………………1分(2)喜欢医生职业的人数为:200×15=30(人); (2)分喜欢教师职业的人数为:200-70-20-40-30=40(人);………………………………3分折线统计图如图所示;…………………………………………………………………4分(3)扇形统计图中,公务员部分对应圆心角的度数是360°×20%=72°;………………6分(4)抽取的这名学生最喜欢的职业是教师的概率是:4012005=.…………………………………………………………………………………8分21.(本题满分8分) (1)证明:CDB BFD ∠=∠(已知), CAB CDB ∠=∠(圆周角相等)∴EAO DFO ∠=∠……………………………………1分在DFO ∆与EAO ∆中,EAO DFO ∠=∠,EOA DOF ∠=∠(公共角)∴ 90=∠=∠AEO FDO第21题图务员 (第20题图) 师 生 人 他 其他 20% 教师 公务员 医生15% 军人10% 20%35%DAD 是半径OD 外端点,∴ FD 是⊙O 的一条切线. (4)分(2)在DFO ∆与EAO ∆中,EAO DFO ∠=∠,EOA DOF ∠=∠∴DFO ∆∽EAO ∆ ∴OEODEA DF =,…………………………………………………………………………6分 AB =10,AC =8,OD ⊥AC∴.3,4,5====OE EA OD OA ∴4520.33EA OD DF OE ⨯⨯=== …………………………………………………………………………………………………8分22.(本题满分8分)解:如图,作AD ⊥BC 于点D ,从热气球看这栋高楼顶部的仰角记为α底部的俯角记为β,则30,60αβ=︒=︒,AD =120.tan BD ADα=,tan ,CD β=………………………2分∴BD =tan 120tan 30AD α︒⋅=⨯=1203=,…………………………………………………………4分 ∴CD =tan 120tan 60AD β︒⋅=⨯=120=…………………………………………………………6分∴BC=BD+CD=277.1≈………………………………7分答:这栋楼高约为277.1m .………………………………………………………8分 23. (本题满分8分)解:(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需2x 天.根据题意得:121010=+xx ………………………………………………………………2分 方程两边同乘以x 2,得302=x 解得:15=x经检验,15=x 是原方程的解.…………………………………………………………3分 ∴当x =15时,x 2=30.答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天. ………4分 (2)因为甲乙两工程队均能在规定的40天内单独完成,所以有如下三种方案: 方案一:由甲工程队单独完成.所需费用为:4.5×15=67.5(万元);……………………5分方案二:由乙工程队单独完成.所需费用为:2.5×30=75(万元);………………………6分方案三:由甲乙两队合作完成.所需费用为:(4.5+2.5)×10=70(万元).……………7分∵75>70>67.5∴应该选择甲工程队承包该项工程. ……………………………………8分24.(本题满分11分)(1) 正确画出图形……………………………………………………………………………1分 ①第一种情况:当点E 在线段BC 上时. 证明:在AB 上取A G=CE ,连接EG .则BEG ∆是等边三角形∴∠AGE =120︒,而∠ECF =120︒∴∠AGE=∠ECF …………………………………2分∵∠AEC =∠AEF +∠CEF =∠GAE +∠B ,60AEF B ︒∠=∠=∴∠GAE =∠CEF ……………………………………………………………………………4分 ∴AGE ∆≌ECF ∆(ASA )∴AE =EF ………………………………………………………………………………………6分②第二种情况:当点E在BC延长线上时.在CF取C G=CE,连接EG.∵CF是等边三角形外角平分线∴∠ECF=60︒∵CG=CE∴CEG∆是等边三角形∴∠FGE=∠ACE=120︒………………………………2分∵∠AEF=∠AEG+∠GEF=∠AEG+∠AEC=60︒∴∠GEF=∠CEA∴ACE∆≌FGE∆(ASA)∴AE=EF分③第三种情况:当点E在BC的反向延长线上时.在AB的延长线上取A G=CE,连接EG.则有BG= BE;∴BEG∆是等边三角形∴∠G=∠ECF=60︒………………………………2分∵∠CEF=∠AEF-∠AEC=60︒-∠AEC∠EAB=∠ABC-∠AEC=60︒-∠AEC∴∠CEF=∠EAB……………………………………………4分∴AGE∆≌ECF∆(ASA)∴AE=EF……………………………………………………6分(2)正确画出图形…………………………………………7分∵CE =BC=AC∴∠CAE=∠C EA=30︒,∠BAE=90︒∴tan30ABAE︒== (9)分∵AE=EF,∠AEF=60︒∴AEF∆是等边三角形∴AEF ∆∽ABC ∆…………………………………………………………………………10分 ∴2213ABC AEFS AB S AE ∆∆⎛⎫=== ⎪⎝⎭⎝⎭.…………………………………………………………11分25. (本题满分12分)解:(1)在直线22+=x y 中,令0=x 得2=y ,所以得点B )2,0( 设直线BD 的解析式为:m kx y +=,代入B 、D 两点坐标得2,43m k m=⎧⎨-=+⎩解得:2,2-==k m .所以直线BD 的解析式为:22+-=x y .……………………………………………1分 将B 、D 两点坐标代入抛物线2y x bx c =-++中得:2,493c b c=⎧⎨-=-++⎩解得:2,1==c b .所以,抛物线的解析式为:22++-=x x y .……………………………………3分 (2)存在.假设存在点M (x,y )符合题意,则有如下两种情形:①若MNO ∆∽BOC ∆,则OC NO BO MN =,所以有12xy =, 即x y 2=又因为M 点在抛物线上所以22++-=x x y ,所以:222x x x =-++ 即:022=-+x x解得1=x 或2-=x ,又因为M 点在第一象限,2-=x 不符合题意,所以1=x ,2=y 故M )2,1(.………………………6分 ②若ONM ∆∽BOC ∆,则MN OC ON BO =即x y 21=, 所以2122x x x =-++即:0422=--x x 解得4331+=x 或4331-=x , 又因为M 点在第一象限,4331-=x 不符合题意, 所以4331+=x ,8331+=y 故M (4331+,8331+)………………………8分 所以,符合条件的点M 的坐标为)2,1( ,(4331+,8331+)………………………9分 (3)设点P 坐标为),(b a 则22++-=a a b 又因为点P 在直线BD 上方, 所以0<a <3,又PH 垂直于x 轴,交直线BD 于点H , 所以H )22,(+-a a ,所以)22(22+--++-=a a a PH a a 32+-=,……………………………………10分因为四边形BOHP 是平行四边形, 所以PH=OB =2, 即0232=+-a a ,解得1=a 或2=a 均满足0<a <3………………………………………………………11分当1=a 时,222=++-a a , 当2=a 时,022=++-a a ,所以点P 的坐标为)2,1(, )0,2(……………………………………………………12分。
山东省东营市中考数学试题(含答案)

绝密★启用前 试卷类型:A二○一○年东营市初中学生学业考试数 学 试 题(总分120分 考试时间120分钟)注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷3页为选择题,36分;第Ⅱ卷8页为非选择题,84分;全卷共11页.2. 答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4. 考试时,不允许使用科学计算器.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列运算中,正确的是( ) (A)2a a a += (B)22a a a =⋅(C)22(2)4a a =(D)325()a a = 2. 64的立方根是( )(A )4 (B )-4 (C )8 (D )-8 3. 一次函数34y x =-的图象不经过( )(A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限 4.分式方程xx 321=-的解是( ) (A)-3(B) 2(C)3(D)-2,5. 不等式组431x x +>⎧⎨⎩≤ 的解集为( )(A )-1< x ≤1 (B) -1≤x <1 (C) -1< x <1 (D) x <-1或x ≥16.如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于( )(A)50° (B)30° (C)20°(D)15°7. 如图所示,反比例函数1y 与正比例函数2y 的图象的一个交点是(21)A ,,若210y y >>,则x 的取值范围在数轴上表示为( )8. 如图,小明为了测量其所在位置A 点到河对岸B 点之间 的距离,沿着与AB 垂直的方向走了m 米,到达点C , 测得∠ACB =α,那么AB 等于( ) (A) m ·sin α米 (B) m ·tan α米 (C) m ·cos α米 (D)αtan m米 9. 有20张背面完全一样的卡片,其中8张正面印有天鹅湖风光,7张正面印有黄河入海口自然风景,5张正面印有孙武湖景色.把这些卡片的背面朝上,搅匀后从中随机抽出一张卡片,抽到正面是天鹅湖风光卡片的ABCmα(第8题图)(A )1 23(第6题y 12 21 1- Ay 2 y 1OACB A ' B 'C '(第10题图)图乙图甲A BCDEM N (第11题概率是( ) (A)41 (B)207 (C)52 (D)85 10. 把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.......在自然界和日常生活中,大量地存在这种图形变换(如图甲).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换......过程中,两个对应三角形(如图乙)的对应点所具有的性质是( )(A)对应点连线与对称轴垂直 (B)对应点连线被对称轴平分 (C)对应点连线被对称轴垂直平分 (D)对应点连线互相平行11. 如图,点C 是线段AB 上的一个动点,△ACD 和△BCE 是在AB 同侧的两个等边三角形,DM ,EN 分别是△ACD 和△BCE 的高,点C 在线段AB 上沿着从点A 向点B 的方向移动(不与点A ,B 重合),连接DE ,得到四边形DMNE .这个四边形的面积变化情况为( ) (A )逐渐增大 (B) 逐渐减小 (C) 始终不变 (D) 先增大后变小12. 二次函数2y ax bx c =++的图象如图所示,则一次函数ac bx y -=与反比例函数xcb a y +-=在同一坐标系内的图象大致为( )1- 1O yy xO y xO y xO (C)y O (D)绝密★启用前 试卷类型:A二○一○年东营市初中学生学业考试数 学 试 题第Ⅱ卷(非选择题 共84分)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接写在试卷上. 2.答卷前将密封线内的项目填写清楚. 题号 二 三 总分 18 19 20 21 22 23 24 得分二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.上海世博会主题馆屋面太阳能板面积达3万多平方米,年发电量可达280万度.这里的280万度用科学记数法表示(保留三个有效数字)为_________________________度.14.把x x 43分解因式,结果为________________________________. 15.有一组数据如下: 3, a , 4, 6, 7. 它们的平均数是5,那么这组数据的方差为_________.16.将一直径为17cm 的圆形纸片(图①)剪成如图②所示形状的纸片,再将纸片沿虚线折叠得到正方体(图③)形状的纸盒,则这样的纸盒体积最大为 cm 3.得 分评 卷 人(第16题图)①②③17. 观察下表,可以发现: 第_________个图形中的“△”的个数是“○”的三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18. (本题满分7分) 先化简,再求值:22112()2y x y x y x xy y -÷-+++,其中,23+=x 23-=y .序号 1 2 3… 图形 ○ ○△ ○ ○○○ ○ ○ △ △○ △ △ ○○○○○ ○○ ○ △ △ △ ○△ △ △ ○○△ △ △ ○ ○ ○○ …得 分 评 卷 人 座号19. (本题满分9分)如图,在平行四边形ABCD 中,点E ,F 分别是AD ,BC 的中点. 求证:(1)△ABE ≌△CDF ;(2)四边形BFDE 是平行四边形.得 分 评 卷 人AEDCF B(第19题图)20. (本题满分9分)光明中学组织全校 1 000名学生进行了校园安全知识竞赛.为了解本次知识竞赛的成绩分布情况,从中随机抽取了部分学生的成绩(得分取正整数,满分为100分),并绘制了如图的频数分布表和频数分布直方图(不完整).请根据以上提供的信息,解答下列问题: (1)直接写出频数分布表中a ,b ,c 的值,补全频数分布直方图; (2)上述学生成绩的中位数落在哪一组范围内?(3)学校将对成绩在90.5~100.5分之间的学生进行奖励,请估计全校 1 000名学生中约有多少名获奖?得 分 评 卷 人分组 频数 频率 50.5~60.5 10 a 60.5~70.5 b 70.5~80.50.2 80.5~90.5 52 0.26 90.5~100.5 0.37 合计 c 180 70 60 50 40 30 20 10 0 成绩/分 50.5 60.5 70.5 80.5 90.5 100.521. (本题满分9分)如图,AB是⊙O的直径,点D在AB的延长线上,点C在⊙O上,CA=CD,∠CDA=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为5,求点A到CD所在直线的距离.得分评卷人O(第21题图) BC得分评卷人22. (本题满分10分)如图所示的矩形包书纸中,虚线是折痕,阴影是裁剪掉的部分,四个角均为大小相同的正方形,正方形的边长为折叠进去的宽度.(1)设课本的长为a cm,宽为b cm,厚为c cm,如果按如图所示的包书方式,将封面和封底各折进去3cm,用含a,b,c的代数式,分别表示满足要求的矩形包书纸的长与宽;(2)现有一本长为19cm,宽为16cm,厚为6cm的字典,你能用一张长为43cm,宽为26cm的矩形纸,按图所示的方法包好这本字典,并使折叠进去的宽度不小于3cm吗?请说明理由.封面封底(第22题图)23. (本题满分10分)如图,已知二次函数24y ax x c =-+的图象与坐标轴交于点A (-1, 0)和点 B (0,-5).(1)求该二次函数的解析式;(2)已知该函数图象的对称轴上存在一点P ,使得△ABP 的周长最小.请求出点P 的坐标.得 分 评 卷 人xOA(第23题图)By24. (本题满分10分)如图,在锐角三角形ABC 中,12 BC ,△ABC 的面积为48,D ,E 分别是边AB ,AC 上的两个动点(D 不与A ,B 重合),且保持DE ∥BC ,以DE 为边,在点A 的异侧作正方形DEFG .(1)当正方形DEFG 的边GF 在BC 上时,求正方形DEFG 的边长; (2)设DE = x ,△ABC 与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,写出x 的取值范围,并求出y 的最大值.得 分 评 卷 人B (第24题图)A DE FG C B(备用图(1))ACB(备用图(2))AC绝密★启用前 试卷类型:A东营市初中学生学业考试数学试题参考答案与评分标准评卷说明:1. 选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2. 解答题中的每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分意见进行评分.3. 如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一.选择题:本大题共12小题,共36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 题号123456789101112答案 C A B C A C D B C B C B 二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13. 2.80×106; 14.)2)(2(-+x x x ; 15. 2; 16.1717; 17. 20.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤. 18. (本题满分7分)解:22112()2y x y x y x xy y-÷-+++ yy x y x y x y x y x 2)())(()()(2+⋅+---+=…………………………………3分yy x y x y x y 2)())((22+⋅+-=yx yx -+=. ··················································································· 5分把,23+=x 23-=y 代入上式,得原式=262232)23()23()23()23(==--+-++.………………7分19. (本题满分9分)证明:(1)在平行四边形ABCD 中,AB =CD ,AD =CB . 又点E ,F 分别是AD ,BC 的中点. (1)分∴ AE =CF , …………………………3分BAE DCF ∠=∠,…………………4分∴△ABE ≌△DCF (边,角,边) ……5分(2)在平行四边形BFDE 中,∵△ABE ≌△DCF ,∴ BE =DF . ………………………………………6分 又点E ,F 分别是AD ,BC 的中点.∴DE =BF , ……………………………………………8分 ∴四边形BFDE 是平行四边形. …………………9分20. (本题满分9分)解:(1).200;24;05.0===c b a …………………………………3分作图略. …………………………………………………………4分 (2)80.5~90.5; …………………………………………………6分 (3)370人. …………………………………………………9分 21. (本题满分9分)解:(1)△ACD 是等腰三角形,∠D =30°.∴∠CAD =∠CDA =30°.连接OC ,AO =CO ,∴△AOC 是等腰三角形. ………………………2分 ∴∠CAO =∠ACO =30°,∴∠COD =60°.…………………………………3分 在△COD 中,又∠CDO =30°,∴∠DCO =90°.………………………………4分∴CD 是⊙O 的切线,即直线CD 与⊙O 相切.……………5分AEDCF B(第19题图)O(第21题图)ABCE(2)过点A 作AE ⊥CD ,垂足为E . ………………………6分在Rt △COD 中, ∠CDO =30°,∴OD =2OC =10. AD =AO +OD =15…………………7分 在Rt △ADE 中,∠EDA =30°,∴点A 到CD 边的距离为:5.730sin =︒⋅=AD AE .…9分22. (本题满分10分)解:(1)矩形包书纸的长为:(2b +c +6)cm ,…………………………………………2分矩形包书纸的宽为(a +6)cm. ……………………4分 (2)设折叠进去的宽度为x cm ,……………………………5分 分两种情况:①当字典的长与矩形纸的宽方向一致时,根据题意,得⎩⎨⎧++⨯+.4326216,26219x x ………………………………7分解得x ≤2.5.所以不能包好这本字典. …………………8分 ②当字典的长与矩形纸的长方向一致时,同理可得x ≤-6. 所以不能包好这本字典. ……………………9分综上,所给矩形纸不能包好这本字典. …………10分 23. (本题满分10分)解:(1)根据题意,得⎪⎩⎪⎨⎧+⨯-⨯=-+-⨯--⨯=.0405,)1(4)1(022c a c a …2分解得 ⎩⎨⎧-==.5,1c a ……………………3分 ∴二次函数的表达式为542--=x x y .……4分 (2)令y =0,得二次函数542--=x x y 的图象与x 轴 的另一个交点坐标C (5, 0).……………5分 由于P 是对称轴2=x 上一点,连结AB ,由于2622=+=OB OA AB ,要使△ABP 的周长最小,只要PB PA +最小.……………6分≤≤ (第22题图)封面 封底xOA(第23题图)By C Px=2由于点A 与点C 关于对称轴2=x 对称,连结BC 交对称轴于点P ,则PB PA += BP +PC =BC ,根据两点之间,线段最短,可得PB PA +的最小值为BC .因而BC 与对称轴2=x 的交点P 就是所求的点.………………8分 设直线BC 的解析式为b kx y +=,根据题意,可得⎩⎨⎧+=-=.50,5b k b 解得⎩⎨⎧-==.5,1b k 所以直线BC 的解析式为5-=x y .……………………9分 因此直线BC 与对称轴2=x 的交点坐标是方程组⎩⎨⎧-==5,2x y x 的解,解得⎩⎨⎧-==.3,2y x所求的点P 的坐标为(2,-3).…………………10分 24. (本题满分10分)解:(1)当正方形DEFG 的边GF 在BC 上时,如图 (1),过点A 作BC 边上的高AM ,交DE 于N ,垂足为M . ∵S △ABC =48,BC =12,∴AM =8.∵DE ∥BC ,△ADE ∽△ABC , ………1分 ∴AMANBC DE =, 而AN=AM -MN=AM -DE ,∴8812DEDE -=. ………2分 解之得8.4=DE .∴当正方形DEFG 的边GF 在BC 上时,正方形DEFG 的边长为4.8.…3分(2)分两种情况:①当正方形DEFG 在△ABC 的内部时,如图(2),△ABC 与正方形DEFG 重叠部分的面积为正方形DEFG 的面积, ∵DE =x ,∴2x y =,此时x 的范围是x <0≤4.8…4分 ②当正方形DEFG 的一部分在△ABC 的外部时, 如图(2),设DG 与BC 交于点Q ,EF 与BC 交于点P ,△ABC 的高AM 交DE 于N ,∵DE =x ,DE ∥BC ,∴△ADE ∽△ABC , …………5分 B(第24题图(2))A D E FGCB (第24题图(1))ADEF G CM N即AMANBC DE =,而AN =AM -MN =AM -EP , ∴8812EP x -=,解得x EP 328-=.………6分 所以)328(x x y -=, 即x x y 8322+-=.………7分由题意,x >4.8,x <12,所以128.4<<x . 因此△ABC 与正方形DEFG 重叠部分的面积为⎪⎩⎪⎨⎧<<+-=)128.4(83222x x x x y ……………………8分 当x <0≤4.8时,△ABC 与正方形DEFG 重叠部分的面积的最大值为4.82=23.04当128.4<<x 时,因为x x y 8322+-=,所以当6)32(28=-⨯-=x 时,△ABC 与正方形DEFG 重叠部分的面积的最大值为24)32(480)32(42=-⨯-⨯-⨯.因为24>23.04,所以△ABC 与正方形DEFG 重叠部分的面积的最大值为24. …10分M B (第24题图(3))ADEFGCNP Q(0< x ≤4.8)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
秘密★启用前 试卷类型:A二0一四年东营市初中学生学业考试数 学 试 题(总分120分 考试时间120分钟)注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共6页.2. 数学试题答案卡共8页.答题前,考生务必将自己的姓名、考号、考试科目等涂写在试题和答题卡上,考试结束,试题和答题卡一并收回.3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用0.5mm 碳素笔答在答题卡的相应位置上.4. 考试时,不允许使用科学计算器.第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.81的平方根是( ) A . 3± B . 3C . 9±D . 92.下列计算错误..的是( )A .=B .236x x x ⋅=C .-2+|-2|=0D .91)3(2=--3.直线1+-=x y 经过的象限是( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限 4.下列命题中是真命题的是( ) A .如果22a b =,那么a b =B .对角线互相垂直的四边形是菱形C .旋转前后的两个图形,对应点所连线段相等D .线段垂直平分线上的点到这条线段两个端点的距离相等5.如图,已知扇形的圆心角为60︒,则图中弓形的面积为(ABCD6.下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( )A .B. C . D .7.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形; ②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么, 这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比. 其中正确命题的序号是()A .②③B .①②C .③④D .②③④8.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖 落在阴影区域的概率是( )A .12B .31C .14D .619.若函数21(2)12y mx m x m =++++的图象与x 轴只有一个交点,那么m 的值为( )A .0B .0或2C .2或-2D .0,2或-210.如图,四边形ABCD 为菱形,AB=BD ,点B 、C 、D 、G 四个点在同一个O 圆上,连接BG 并延长交AD于点F ,连接DG 并延长交AB 于点E ,BD 与CG 交于点H ,连接FH .下列结论: ①AE =DF ;②FH ∥AB ; ③△DGH ∽△BGE ;④当CG 为O 的直径时,DF =AF .其中正确结论的个数是( )A .1B .2C .3D .4(第8题图) 2 2 1 3 1 1(第10题图)A第Ⅱ卷(非选择题 共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11.2013年东营市围绕“转方式,调结构,扩总量,增实力,上水平”的工作大局,经济平稳较快增长,全年GDP 达到3250亿元.3250亿元用科学记数法表示为 元. 12.2327x y y -= .13.市运会举行射击比赛,某校射击队从甲、乙、丙、丁四人中选拔一人参赛.在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如右表.请你根据表中数据选一人参加比赛,最合适的人选是 .14.如图,有两棵树,一棵高12米,另一棵高6米, 两树相距8米.一只鸟从一棵树的树梢飞到另一棵树 的树梢,问小鸟至少飞行 米.15.如果实数x 、y 是方程组30,233x y x y +=⎧⎨+=⎩的解,那么代数式12xy x y x y ⎛⎫+÷⎪++⎝⎭的值 为 .16.在⊙O 中,AB 是⊙O 的直径,AB =8cm ,AC CD BD ==,M 是AB 上一动点,CM+DM的最小值是 cm .17.如图,函数1y x =和3y x =-的图象分别是1l 和2l .设点P 在1l 上,PC ⊥x 轴,垂足为C ,交2l 于点A ,PD ⊥y 轴,垂足为D ,交2l 于点B ,则三角形P AB 的面积为 .甲乙丙丁平均数 8.2 8.0 8.2 8.0 方差2.0 1.8 1.5 1.6BDCOAM(第16题图)xy AP B D C O1l 2l(第17题图) (第14题图)18.将自然数按以下规律排列:第一列 第二列 第三列 第四列 第五列第一行 1 4 5 16 17 … 第二行 2 3 6 15 … 第三行 9 8 7 14 … 第四行 10 11 12 13 … 第五行 … ……表中数2在第二行,第一列,与有序数对(2,1)对应;数5与(1,3)对应;数14与(3,4)对应;根据这一规律,数2014对应的有序数对为 .三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (本题满分7分,第⑴题3分,第⑵题4分)(1)计算:20141331sin 3038(0.125)-++-+⨯-(-)()(2)解不等式组:21,32(1) 5.x x +⎧⎪⎨⎪-⎩<≤把解集在数轴上表示出来,并将解集中的整数解写出来.20.(本题满分8分)东营市某中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图.(1)求出被调查的学生人数; (2)把折线统计图补充完整;(3)求出扇形统计图中,公务员部分对应的圆心角的度数;(4)若从被调查的学生中任意抽取一名,求抽取的这名学生最喜欢的职业是“教师”的概率._务员 (第20题图) 师 生 人 他其他 20%教师 公务员 医生15%军人10%(第21题图)FEBD AC21.(本题满分8分)如图,AB 是⊙O 的直径.OD 垂直于弦AC 于点E ,且交⊙O 于点D .F是BA 延长线上一点,若CDB BFD ∠=∠. (1)求证:FD 是⊙O 的一条切线; (2)若AB =10,AC =8,求DF 的长.22.(本题满分8分) 热气球的探测器显示,从热气球底部A 处看一栋高楼顶部的仰角为30︒,看这栋楼底部的俯角为60︒,热气球A 处与高楼的水平距离为120m ,这栋高楼有多高(3 1.732≈,结果保留小数点后一位)?23. (本题满分8分)为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,须在40天内完成工程.现有甲、乙两个工程队有意承包这项工程.经调查知道:乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元.请你设计一种方案,既能按时完工,又能使工程费用最少. 24.(本题满分11分)【探究发现】如图1,ABC ∆是等边三角形,60AEF ︒∠=,EF 交等边三角形外角平分线CF 所在的直线于点F .当点E是BC 的中点时,有AE =EF 成立;【数学思考】某数学兴趣小组在探究AE 、EF 的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点E 是直线BC 上(B ,C 除外)任意一点时(其它条件不变),结论AE =EF 仍然成立.假如你是该兴趣小组中的一员,请你从“点E 是线段BC 上的任意一点”;“点E是线段BC 延长线上的任意一点”;“ 点E是线段BC 反向延长线上的任意一点”三种情况中,任选一种情况,在备用图1中画出图形,并进行证明.FAB (第24题图1)(第22题图) BA(第25题图)【拓展应用】当点E 在线段BC 的延长线上时,若CE = BC ,在备用图2中画出图形,并运用上述结论求出:ABC AEF S S ∆∆的值.25.(本题满分12分) 如图,直线y=2x+2与x 轴交于点A ,与y 轴交于点B .把△AOB 沿y 轴翻折,点A 落到点C ,过点B 的抛物线2y x bx c =-++与直线BC 交于点D (3,4-). (1)求直线BD 和抛物线的解析式;(2)在第一象限内的抛物线上,是否存在一点M ,作MN 垂直于x 轴,垂足为点N ,使得以M 、O 、N 为顶点的三角形与△BOC 相似?若存在,求出点M 的坐标;若不存在,请说明理由;(3)在直线BD 上方的抛物线上有一动点P ,过点P 作PH 垂直于x 轴,交直线BD 于点H .当四边形BOHP 是平行四边形时,试求动点P 的坐标. 秘密★启用前 试卷类型:A数学试题参考答案及评分标准评卷说明:1. 选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2. 解答题中的每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分意见相应评分.3. 如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一.选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28(第24题备用图2) (第24题备用图1)分,只要求填写最后结果.11.113.2510⨯;12.3(3)(3)y x x +-;13.丙; 14.10;15.1; 16.8; 17. 8 ;18.(45,12).三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19. (本题满分7分)(1)解:20141331sin 3038(0.125)-++-+⨯-(-)()=1+2+131+- (2)分=6-3分(2)解: 2132(1)x x +⎧⎪⎨⎪-⎩<①≤5②解不等式①,得:x <1,解不等式②,得:x ≥32-…………………………………………1分所以不等式组的解集为:32-≤x <1. ………………………………………………………2分解集中的整数解有1,0-.……………………………………………………………………3分…………………………………………………………………………………………………4分20. (本题满分8分)_解:(1)由公务员所占比例及相应人数可求出被调查的学生数是:40÷20%=200(人);……………………………………………………………………1分(2)喜欢医生职业的人数为:200×15=30(人); (2)分喜欢教师职业的人数为:200-70-20-40-30=40(人);………………………………3分折线统计图如图所示;…………………………………………………………………4分(3)扇形统计图中,公务员部分对应圆心角的度数是360°×20%=72°;………………6分(4)抽取的这名学生最喜欢的职业是教师的概率是:4012005.…………………………………………………………………………………8分21.(本题满分8分) (1)证明:CDB BFD ∠=∠(已知), CAB CDB ∠=∠(圆周角相等)∴EAO DFO ∠=∠……………………………………1分在DFO ∆与EAO ∆中,EAO DFO ∠=∠,EOA DOF ∠=∠(公共角)∴ 90=∠=∠AEO FDOD 是半径OD 外端点,第21题图务员 (第20题图) 师 生 人 他 其他 20% 教师 公务员 医生15% 军人10% 20%35%DA∴ FD 是⊙O 的一条切线. (4)分(2)在DFO ∆与EAO ∆中,EAO DFO ∠=∠,EOA DOF ∠=∠∴DFO ∆∽EAO ∆ ∴OEODEA DF =,…………………………………………………………………………6分 AB =10,AC =8,OD ⊥AC∴.3,4,5====OE EA OD OA∴4520.33EA OD DF OE ⨯⨯=== …………………………………………………………………………………………………8分22. (本题满分8分)解:如图,作AD ⊥BC 于点D ,从热气球看这栋高楼顶部的仰角记为α底部的俯角记为β,则30,60αβ=︒=︒,AD =120.tan BD ADα=,tan ,CD ADβ=………………………2分∴BD =tan 120tan30AD α︒⋅=⨯=1203=,…………………………………………………………4分 ∴CD =tan 120tan 60AD β︒⋅=⨯=120=6分∴BC=BD+CD==277.1≈………………………………7分答:这栋楼高约为277.1m .………………………………………………………8分 23. (本题满分8分)解:(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需2x 天. 根据题意得:121010=+xx ………………………………………………………………2分FGBA FA 方程两边同乘以x 2,得302=x 解得:15=x经检验,15=x 是原方程的解.…………………………………………………………3分 ∴当x =15时,x 2=30.答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天. ………4分 (2)因为甲乙两工程队均能在规定的40天内单独完成,所以有如下三种方案: 方案一:由甲工程队单独完成.所需费用为:4.5×15=67.5(万元);……………………5分方案二:由乙工程队单独完成.所需费用为:2.5×30=75(万元);………………………6分方案三:由甲乙两队合作完成.所需费用为:(4.5+2.5)×10=70(万元).……………7分∵75>70>67.5 ∴应该选择甲工程队承包该项工程. ……………………………………8分24.(本题满分11分)(1) 正确画出图形……………………………………………………………………………1分 ①第一种情况:当点E 在线段BC 上时. 证明:在AB 上取A G=CE ,连接EG .则BEG ∆是等边三角形∴∠AGE =120︒,而∠ECF =120︒∴∠AGE=∠ECF …………………………………2分∵∠AEC =∠AEF +∠CEF =∠GAE +∠B ,60AEF B ︒∠=∠=∴∠GAE =∠CEF ……………………………………………………………………………4分 ∴AGE ∆≌ECF ∆(ASA )∴AE =EF ………………………………………………………………………………………6分②第二种情况:当点E 在BC 延长线上时.在CF 取C G=CE ,连接EG .∵CF是等边三角形外角平分线∴∠ECF=60︒∵CG=CE∴CEG∆是等边三角形∴∠FGE=∠ACE=120︒………………………………2分∵∠AEF=∠AEG+∠GEF=∠AEG+∠AEC=60︒∴∠GEF=∠CEA∴ACE∆≌FGE∆(ASA)∴AE=EF分③第三种情况:当点E在BC的反向延长线上时.在AB的延长线上取A G=CE,连接EG.则有BG= BE;∴BEG∆是等边三角形∴∠G=∠ECF=60︒………………………………2分∵∠CEF=∠AEF-∠AEC=60︒-∠AEC∠EAB=∠ABC-∠AEC=60︒-∠AEC∴∠CEF=∠EAB……………………………………………4分∴AGE∆≌ECF∆(ASA)∴AE=EF……………………………………………………6分(2)正确画出图形…………………………………………7分∵CE = BC=AC∴∠CAE=∠C EA=30︒,∠BAE=90︒∴tan303ABAE︒== (9)分∵AE=EF,∠AEF=60︒∴AEF∆是等边三角形∴AEF∆∽ABC∆ (10)分∴22133ABC AEF S AB S AE ∆∆⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭.…………………………………………………………11分25. (本题满分12分)解:(1)在直线22+=x y 中,令0=x 得2=y ,所以得点B )2,0( 设直线BD 的解析式为:m kx y +=,代入B 、D 两点坐标得2,43m k m=⎧⎨-=+⎩解得:2,2-==k m .所以直线BD 的解析式为:22+-=x y .……………………………………………1分 将B 、D 两点坐标代入抛物线2y x bx c =-++中得:2,493c b c=⎧⎨-=-++⎩解得:2,1==c b .所以,抛物线的解析式为:22++-=x x y .……………………………………3分 (2)假设存在点M (x,y )符合题意,则有如下两种情形:①若MNO ∆∽BOC ∆,则OC NO BO MN =,所以有12xy =, 即x y 2=又因为M 点在抛物线上所以22++-=x x y , 所以:222x x x =-++ 即:022=-+x x解得1=x 或2-=x ,又因为M 点在第一象限,2-=x 不符合题意, 所以1=x ,2=y 故M )2,1(.………………………6分②若ONM ∆∽BOC ∆,则MN OC ON BO =即x y 21=, 所以2122x x x =-++即:0422=--x x 解得4331+=x 或4331-=x , 又因为M 点在第一象限,4331-=x 不符合题意, 所以4331+=x ,8331+=y 故M (4331+,8331+)………………………8分 所以,符合条件的点M 的坐标为)2,1( ,(4331+,8331+)………………………9分 (3)设点P 坐标为),(b a 则22++-=a a b 又因为点P 在直线BD 上方, 所以0<a <3,又PH 垂直于x 轴,交直线BD 于点H , 所以H )22,(+-a a ,所以)22(22+--++-=a a a PH a a 32+-=,……………………………………10分因为四边形BOHP 是平行四边形, 所以PH=OB =2, 即0232=+-a a ,解得1=a 或2=a 均满足0<a <3………………………………………………………11分当1=a 时,222=++-a a , 当2=a 时,022=++-a a ,所以点P 的坐标为)2,1(, )0,2(……………………………………………………12分2014年山东省东营市中考数学试卷一、选择题(共10小题,每小题只有一个选项正确,每小题选对得3分,错选不选或选出的答案超过一个均记零分)1.(3分)(2014年山东东营)的平方根是( ) A . ±3 B . 3 C . ±9 D . 9考点: 平方根;算术平方根.分析: 根据平方运算,可得平方根、算术平方根. 解答: 解:∵, 9的平方根是±3, 故答案选A .点评: 本题考查了算术平方根,平方运算是求平方根的关键. 2.(3分)(2014年山东东营)下列计算错误的是( ) A . 3﹣=2 B . x 2•x 3=x 6 C . ﹣2+|﹣2|=0D .(﹣3)﹣2=考点: 二次根式的加减法;有理数的加法;同底数幂的乘法;负整数指数幂.分析: 四个选项中分别根据二次根式的加减法求解,同底数幂的乘法法则求解,绝对值的加减法用负整数指数幂的法则求解. 解答: 解:A ,3﹣=2正确,B ,x 2•x 3=x 6 同底数的数相乘,底数不变指数相加,故错,C ,﹣2+|﹣2|=0,﹣2+2=0,正确,D,(﹣3)﹣2==正确.故选:B.点评:本题主要考查了二次根式的加减法,同底数幂的乘法,绝对值的加减法,负整数指数幂,解题的关键是根据它们各自和法则认真运算.3.(3分)(2014年山东东营)直线y=﹣x+1经过的象限是()A.第一、二、三象限B.第一、二、四象限 C.第二、三、四象限D.第一、三、四象限考点:一次函数图象与系数的关系.分析:根据一次函数的性质解答即可.解答:解:由于﹣1<0,1>0,故函数过一、二、四象限,故选B.点评:本题考查了一次函数的性质,要知道,对于y=kx+b(k≠0)来说,k、b的符号决定函数所过的象限.4.(3分)(2014年山东东营)下列命题中是真命题的是()A.如果a2=b2,那么a=bB.对角线互相垂直的四边形是菱形C.旋转前后的两个图形,对应点所连线段相等D.线段垂直平分线上的点与这条线段两个端点的距离相等考点:命题与定理.分析:利用菱形的判定、旋转的性质及垂直平分线的性质对每个选项进行判断后即可得到正确的选项.解答:解:A、错误,如3与﹣3;B、对角线互相垂直的平行四边形是菱形,故错误,是假命题;C、旋转前后的两个图形,对应点所连线段不一定相等,故错误,是假命题;D、正确,是真命题,故选D.点评:本题考查了命题与定理的知识,解题的关键是理解菱形的判定、旋转的性质及垂直平分线的性质.5.(3分)(2014年山东东营)如图,已知扇形的圆心角为60°,半径为,则图中弓形的面积为()A.B.C.D.考点:扇形面积的计算.分析:过A作AD⊥CB,首先计算出BC上的高AD长,再计算出三角形ABC的面积和扇形面积,然后再利用扇形面积减去三角形的面积可得弓形面积.解答:解:过A作AD⊥CB,∵∠CAB=60°,AC=AB,∴△ABC是等边三角形,∵AC=,∴AD=AC•sin60°=×=,∴△ABC面积:=,∵扇形面积:=,∴弓形的面积为:﹣=,故选:C.点评:此题主要考查了扇形面积的计算,关键是掌握扇形的面积公式:S=.6.(3分)(2014年山东东营)下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.考点:由三视图判断几何体;简单组合体的三视图.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:从俯视图可以看出直观图的各部分的个数,可得出左视图前面有2个,中间有3个,后面有1个,即可得出左视图的形状.故选B.点评:此题主要考查了三视图的概念.根据俯视图得出每一组小正方体的个数是解决问题的关键.7.(3分)(2014年山东东营)下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.其中正确命题的序号是()A.②③B.①②C.③④D.②③④考点:位似变换;命题与定理.分析:利用位似图形的定义与性质分别判断得出即可.解答:解:①相似图形不一定是位似图形,位似图形一定是相似图形,故此选项错误;②位似图形一定有位似中心,此选项正确;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形,此选项正确;④位似图形上任意两点与位似中心的距离之比等于位似比,此选项错误.正确的选项为②③.故选:A.点评:此题主要考查了位似图形的性质与定义,熟练掌握位似图形的性质是解题关键.8.(3分)(2014年山东东营)小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是()A.B.C.D.考点:几何概率;平行四边形的性质.分析:先根据平行四边形的性质求出平行四边形对角线所分的四个三角形面积相等,再求出S1=S2即可.解答:解:根据平行四边形的性质可得:平行四边形的对角线把平行四边形分成的四个面积相等的三角形,根据平行线的性质可得S1=S2,则阴影部分的面积占,故飞镖落在阴影区域的概率为:;故选C.点评:此题主要考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比,关键是根据平行线的性质求出阴影部分的面积与总面积的比.9.(3分)(2014年山东东营)若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为()A.0 B.0或2 C.2或﹣2 D.0,2或﹣2考点:抛物线与x轴的交点.分析:分为两种情况:函数是二次函数,函数是一次函数,求出即可.解答:解:分为两种情况:①当函数是二次函数时,∵函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,∴△=(m+2)2﹣4m(m+1)=0且m≠0,解得:m=±2,②当函数时一次函数时,m=0,此时函数解析式是y=2x+1,和x轴只有一个交点,故选D.点评:本题考查了抛物线与x轴的交点,根的判别式的应用,用了分类讨论思想,题目比较好,但是也比较容易出错.10.(3分)(2014年山东东营)如图,四边形ABCD为菱形,AB=BD,点B、C、D、G 四个点在同一个圆⊙O上,连接BG并延长交AD于点F,连接DG并延长交AB于点E,BD与CG交于点H,连接FH,下列结论:①AE=DF;②FH∥AB;③△DGH∽△BGE;④当CG为⊙O的直径时,DF=AF.其中正确结论的个数是()A. 1 B. 2 C. 3 D. 4考点:圆的综合题.分析:①由四边形ABCD是菱形,AB=BD,得出△ABD和△BCD是等边三角形,再由B、C、D、G四个点在同一个圆上,得出∠ADE=∠DBF,由△ADE≌△DBF,得出AE=DF,②利用内错角相等∠FBA=∠HFB,求证FH∥AB,③利用∠DGH=∠EGB和∠EDB=∠FBA,求证△DGH∽△BGE,④利用CG为⊙O的直径及B、C、D、G四个点共圆,求出∠ABF=120°﹣90°=30°,在RT△AFB中求出AF=AB,在RT△DFB中求出FD=BD,再求得DF=AF.解答:解:①∵四边形ABCD是菱形,∴AB=BC=DC=AD,又∵AB=BD,∴△ABD和△BCD是等边三角形,∴∠A=∠ABD=∠DBC=∠BCD=∠CDB=∠BDA=60°,又∵B、C、D、G四个点在同一个圆上,∴∠DCH=∠DBF,∠GDH=∠BCH,∴∠ADE=∠ADB﹣∠GDH=60°﹣∠EDB,∠DCH=∠BCD﹣∠BCH=60°﹣∠BCH,∴∠ADE=∠DCH,∴∠ADE=∠DBF,在△ADE和△DBF中,∴△ADE≌△DBF(ASA)∴AE=DF故①正确,②由①中证得∠ADE=∠DBF,∴∠EDB=∠FBA,∵B、C、D、G四个点在同一个圆上,∠BDC=60°,∠DBC=60°,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGE=180°﹣∠BGC﹣∠DGC=180°﹣60°﹣60°=60°,∴FGD=60°,∴FGH=120°,又∵∠ADB=60°,∴F、G、H、D四个点在同一个圆上,∴∠EDB=∠HFB,∴∠FBA=∠HFB,∴FH∥AB,故②正确,③∵B、C、D、G四个点在同一个圆上,∠DBC=60°,∴∠DGH=∠DBC=60°,∵∠EGB=60°,∴∠DGH=∠EGB,由①中证得∠ADE=∠DBF,∴∠EDB=∠FBA,∴△DGH∽△BGE,故③正确,④如下图∵CG为⊙O的直径,点B、C、D、G四个点在同一个圆⊙O上,∴∠GBC=∠GDC=90°,∴∠ABF=120°﹣90°=30°,∵∠A=60°,∴∠AFB=90°,∴AF=AB,又∵∠DBF=60°﹣30°=30°,∠ADB=60°,∴∠DFB=90°,∴FD=BD,∵AB=BD,∴DF=AF,故④正确,故选:D.点评:此题综合考查了圆及菱形的性质,等边三角形的判定与性质,全等三角形的判定和性质,运用四点共圆找出相等的角是解题的关键.解题时注意各知识点的融会贯通.二、填空题(共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分)11.(3分)(2014年山东东营)2013年东营市围绕“转方式,调结构,扩总量,增实力,上水平”的工作大局,经济平稳较快增长,全年GDP达到3250亿元,3250亿元用科学记数法表示为 3.25×1011.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将3250亿用科学记数法表示为:3.25×1011.故答案为:3.25×1011.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2014年山东东营)3x2y﹣27y=3y(x+3)(x﹣3).考点:提公因式法与公式法的综合运用.分析:首先提取公因式3y,再利用平方差进行二次分解即可.解答:解:原式=3y(x2﹣9)=3y(x+3)(x﹣3),故答案为:3y(x+3)(x﹣3).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.(3分)(2014年山东东营)市运会举行射击比赛,某校射击队从甲、乙、丙、丁四人中选拔一人参赛,在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如下表,请你根据表中数据选一人参加比赛,最合适的人选是丙.甲乙丙丁平均数8.2 8.0 8.2 8.0方差 2.0 1.8 1.5 1.6考点:方差;算术平均数.分析:根据甲,乙,丙,丁四个人中甲和丙的平均数最大且相等,甲,乙,丙,丁四个人中丙的方差最小,说明丙的成绩最稳定,得到丙最合适的人选.解答:解:∵甲,乙,丙,丁四个人中甲和丙的平均数最大且相等,甲,乙,丙,丁四个人中丙的方差最小,说明丙的成绩最稳定,∴综合平均数和方差两个方面说明丙成绩既高又稳定,∴最合适的人选是丙.故答案为:丙.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.(3分)(2014年山东东营)如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行10米.考点:勾股定理的应用.分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.解答:解:如图,设大树高为AB=12m,小树高为CD=6m,过C点作CE⊥AB于E,则四边形EBDC是矩形,连接AC,∴EB=6m,EC=8m,AE=AB﹣EB=12﹣6=6(m),在Rt△AEC中,AC==10(m).故小鸟至少飞行10m.故答案为:10.点评:本题考查了勾股定理的应用,根据实际得出直角三角形,培养学生解决实际问题的能力.15.(4分)(2014年山东东营)如果实数x,y满足方程组,那么代数式(+2)÷的值为1.考点:分式的化简求值;解二元一次方程组.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出方程组的解得到x与y的值,代入计算即可求出值.解答:解:原式=•(x+y)=xy+2x+2y,方程组,解得:,当x=3,y=﹣1时,原式=﹣3+6﹣2=1.故答案为:1点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16.(4分)(2014年山东东营)在⊙O中,AB是⊙O的直径,AB=8cm,==,M是AB上一动点,CM+DM的最小值是8cm.考点:轴对称-最短路线问题;勾股定理;垂径定理.分析:作点C关于AB的对称点C′,连接C′D与AB相交于点M,根据轴对称确定最短路线问题,点M为CM+DM的最小值时的位置,根据垂径定理可得=,然后求出C′D为直径,从而得解.解答:解:如图,作点C关于AB的对称点C′,连接C′D与AB相交于点M,此时,点M为CM+DM的最小值时的位置,由垂径定理,=,∴=,∵==,AB为直径,∴C′D为直径,∴CM+DM的最小值是8cm.故答案为:8.点评:本题考查了轴对称确定最短路线问题,垂径定理,熟记定理并作出图形,判断出CM+DM的最小值等于圆的直径的长度是解题的关键.17.(4分)(2014年山东东营)如图,函数y=和y=﹣的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形PAB的面积为8.考点:反比例函数系数k的几何意义.分析:设P的坐标是(a,),推出A的坐标和B的坐标,求出∠APB=90°,求出PA、PB的值,根据三角形的面积公式求出即可.解答:解:∵点P在y=上,∴|x p|×|y p|=|k|=1,∴设P的坐标是(a,)(a为正数),∵PA⊥x轴,∴A的横坐标是a,∵A在y=﹣上,∴A的坐标是(a,﹣),∵PB⊥y轴,∴B的纵坐标是,∵B在y=﹣上,∴代入得:=﹣,解得:x=﹣3a,∴B的坐标是(﹣3a,),∴PA=|﹣(﹣)|=,PB=|a﹣(﹣3a)|=4a,∵PA⊥x轴,PB⊥y轴,x轴⊥y轴,∴PA⊥PB,∴△PAB的面积是:PA×PB=××4a=8.故答案为:8.点评:本题考查了反比例函数和三角形面积公式的应用,关键是能根据P点的坐标得出A、B的坐标,本题具有一定的代表性,是一道比较好的题目.18.(4分)(2014年山东东营)将自然数按以下规律排列:表中数2在第二行第一列,与有序数对(2,1)对应,数5与(1,3)对应,数14与(3,4)对应,根据这一规律,数2014对应的有序数对为(45,12).考点:规律型:数字的变化类.分析:根据已知数据可得出第一列的奇数行的数的规律是第几行就是那个数平方,同理可得出第一行的偶数列的数的规律,从而得出2014所在的位置.解答:解:由已知可得:根据第一列的奇数行的数的规律是第几行就是那个数平方,第一行的偶数列的数的规律,与奇数行规律相同;∵45×45=2025,2014在第45行,向右依次减小,∴2014所在的位置是第45行,第12列,其坐标为(45,12).故答案为:(45,12).。