飞机起落架设计

合集下载

飞机起落架设计

飞机起落架设计

飞机起落架设计飞机起落架设计目录一、设计任务…………………………………………………………二、设计方案与参数的确定………………………………………….三、运动分析………………………………………………………….四、动态静力分析……………………………………………………..五、飞机起落架液压系统………………………………………………六、设计总结…………………………………………………………….七、设计中的不足………………………………………………………..八、附件………………………………………………………………...设计任务飞机起飞和着陆时,须在跑道上滑行,起落架放下机轮着地,如方案图中实线所示,此时油缸提供平衡力;飞机在空中时须将起落架收进机体内,如图中虚线所示,此时油缸为主动构件。

要求如下:1:起落架放下以后,只要油缸锁紧长度不变,则整个机构成为自由度为零的刚性架且处在稳定的死点位置,活塞杆伸出缸外。

起落架收起时,活塞杆往缸内移动,所有构件必须全部收进缸体以内。

不超出虚线所示区域。

采用平面连杆机构。

设计方案的确定方案(一)该方案是最容易想到的,简单易行,结构简单,但是由于机构没有放大功能,要使起落架运行到位,液压缸走过的行程甚大,不容易安装。

方案(二)在设计飞机起落架机构的方案的时候,把机构分成两部分,一部分机构为传动机构,它是由杆AE,BC,CD组成,利用该四杆机构死点锁紧的特性固定飞机起落架。

另一机构是动力机构,通过该机构给四杆机构一动力,使其能进行收放。

四杆机构以定,方案的变化主要是通过改变动力机构,动力机构的方案有如下几种。

1:油缸前推连杆放大动力机构如下:该机构通过三角板与四杆机构的连杆CD相连,通过油缸与连杆的共同作用驱动三角板。

从而是连杆进行收放。

缺点结构不够紧凑,不是最简单。

2:油缸浮动式动力机构如下:该机构油缸的一端直接与连杆CD相连另一端不是固定在机架上, 而是可以随着连杆CD的倾斜而运动, 故称为油缸浮动式机构。

飞机前起落架结构设计

飞机前起落架结构设计

飞机前起落架结构设计飞机前起落架结构设计8.7 前起落架的设计特点为了保证飞机在地面运动时有足够的滑跑稳定性,前轮应能绕支柱轴线自由定向旋转,因此在设计时要附加某些装置.一、前轮的自由定向及偏转操纵装置由于飞机在地面运动时要求灵活稳定,当飞机受到侧向力(如侧风、单边主轮受撞击等)而使机头偏向时,前轮应能自动转回原方向,并使飞机也e9较方便地转回原方向滑跑,面不致越偏越大,这是地面方向稳定性对前轮的要求.即便是方向稳定性好的前三点配置形式,如果将前轮固定死,则前轮处的摩擦力也将产生一定的不稳定力矩,使机头有越偏越大的趋势(图8.37)。

另外,地面滑行刹车转弯时(如刹住一侧主轮)也需前轮能自由,转以减小转弯半径。

因而现代飞机的前轮都不固定锁死,而有一定的偏转自由度,其最大值已。

由所需的最小转弯半径来定,即一般已,=~50’。

此外,为使前轮能自动转回飞机的前进方向,这就须将前轮放在支柱轴线后一定的距离“广(称为稳定距)处,这样,万一出现偏向,也会很快复原(参见图8.39).稳定距“广大一些则稳定性好,但对起落架受力不利,一般取,二e.1一o.4D(D为前轮直径)。

为了增大飞机地面运动的灵活性以保证矗小转弯半径,有的飞机,特别是大型旅客机,还装有使前轮偏转的操纵机构(如图8.38所示)。

飞机前起落架结构设计二、前轮的减摆装置当前起落架没有采用合适的减撰措施时前轮可能会出现摆振,即飞机在地面滑跑到一定速度时,能自由偏转的机轮和支柱的弹性振动与轮面的转动交织在一起,出现一种剧烈的僻摆振动,它会引起机头强烈摇晃,这种现象称为前轮摆振。

振动可能越来越厉害,直至支柱折断,轮胎撕裂,在很短的时间内酿成严重事故。

产生前轮摆振的原因是由于机轮(连带支柱)是一个弹性体.当偶然受到外力千扰时(如跑道不平、侧风、操纵不当等)使机轮偏离前进轴线一个距离^。

(图8.39)。

这时轮面倾斜,轮胎接地部分的形状变成弯腰形。

当飞机继续前进时,机轮将一边《9转“角;同时由于弹性恢复力的作用,一边向前进轴线靠近(减小^).当达到^二o,"二Jo时,由于惯性关系,在继续往前滚时又出现了一^,同时就又出现了弹性恢复力,而轮胎接地部分变成反的弯腰形,这样就使得A反向增大,到一厶后又开始减小。

毕业设计论文飞机前起落架机构设计论文

毕业设计论文飞机前起落架机构设计论文

1.引言起落架是供飞机起飞、着陆时在地面上滑跑、滑行停放用的。

它是飞机的主要部件之一,其工作性能的好坏以及可靠性直接影响飞机的使用和安全。

具体说,起落架主要功用有:一是吸收并耗散飞机着陆垂直速度所产生的动能;二是保证飞机能够自如而又稳定地完成在地面上的各种动作。

为了有效地完成起功能,起落架设计面临着结构设计、机构设计、空气动力性能以及由飞机用途决定和维修人员提出的使用、维修等方面一系列存在的有一定矛盾的各种要求。

举例来说,在多数情况下飞机起落架整个装置的重量占全机重量的3%~5%,占飞机结构重量的10%~15%;而它必须在飞机升空后能收入到机体结构和飞机阻力影响最小的空间中去。

然而,现代飞机速度增大;现代战斗机均要求有近距离起落等高性能;一些大型运输机比过去重的多(如波音-747的重量是波音-707-320的两倍多),此时就必须采用大的多轮式起落架;同时上述种种原因使起落架的各种装置比过去更为复杂,而使其起落架的空间更显紧张。

由此可见,设计人员要找到一个能最好地协调各种要求,同时又使结构轻、成本低的设计方案变得越来越困难了。

现代飞机起落架是由结构、机构和各种系统共同组成的复杂机械装置,包括减震系统、受力支柱、撑杆、机轮、刹车装置和防滑控制系统、收放机构、电气系统、液压系统和其他一些系统和装置。

因此起落架设计比飞机结构设计的其他部件要包含更多的工程专业。

起落架材料的发展状况,欧美国家起落架选用300M和35NCD16低合金超高强度钢整体锻件结构加工工艺,零件外形加工后进行真空热处理或可控气氛热处理。

材料利用率只有12.5%-25.0%。

俄罗斯起落架选用30CrMnSiNi2A(真空冶炼)低合金超高强度钢锻件焊接结构加工工艺,主要受力构件采用高压真空电子束焊焊接,焊后进行热处理(空气炉加热+盐浴炉淬火)。

目前,新型的高强度、高韧性和高腐蚀抗力的改进型镍-钴低碳合金钢已开始在舰载飞机起落架上应用,最典型的材料是AerMet100和AF100,此类材料除具有优异的综合力学性能外,还具有优良的疲劳性能和焊接性能,可替代现在使用的起落架结构材料300M和4340钢等。

军用飞机起落架次设计 -回复

军用飞机起落架次设计 -回复

军用飞机起落架次设计-回复军用飞机起落架次设计:提高性能与适应多种环境需求引言:军用飞机的起落架次设计是决定飞机在地面移动、升降、滑行和起降过程中承受载荷、减震、导电、阻尼等多种功能的关键元素。

本文将详细介绍军用飞机起落架次设计的重要性,设计原则,主要的构成部分以及现代技术应用。

一、起落架次设计的重要性军用飞机起落架次设计的优劣直接影响飞机的飞行性能、操作安全性和战斗效能。

良好的起落架次设计能提供稳定的地面滑行、起降过程,并承受来自各个方向的冲击、运动和负载。

同时,起落架次设计还考虑飞行器在各种复杂地形条件下的操作能力,如起降距离、爬升降落角度等,以保证其在各类任务中的高效执行。

二、起落架次设计的原则1. 结构轻量化:军用飞机需要在提供足够的强度和刚度的同时,尽可能减轻自身重量,以提高机动性和航程。

2. 构造强度和刚度:起落架应能够承受来自着陆冲击、滑行、滚动等各个方向的载荷,并在恶劣条件下保持完整稳定。

3. 减震和阻尼:为了保护飞机和飞行员免受地面冲击的影响,起落架次设计需要具备良好的减震和阻尼功能。

4. 运动和操纵性能:起落架应能够自由舵转、可伸缩,以适应各种地面高度和复杂地形条件。

5. 导电和防雷:为了提供良好的接地和保护电子设备不受雷击,起落架次设计需要具备良好的导电和防雷性能。

三、起落架次主要构成部分1. 主起落架:主起落架位于飞机的较大机动轮下方,承受飞机几乎全部的重量。

主起落架通常由弹簧或液压缸和减震器组成,能够在着陆时吸收冲击力,并在滑行和飞行过程中提供稳定支撑。

2. 前起落架:前起落架位于飞机的前部,主要用于地面滑行、转弯和起飞时的重心调整,能够在抬头起飞时减少飞机的升头角度。

3. 末端起落架:末端起落架位于飞机的机翼末端,用于支撑和平衡机翼载荷,以确保其强度和刚度。

4. 阻尼器:阻尼器位于主起落架的减震系统内,能够通过压缩气体、液压缸或弹簧等方式,减少起落架在地面滑行和起降过程中的振动和震动。

飞机起落架设计与可靠性评估

飞机起落架设计与可靠性评估

飞机起落架设计与可靠性评估飞机起落架是飞机结构中非常重要的一部分,它承担着支撑飞机重量、降落冲击减震、方向控制和停机支持等重要任务。

因此,保证飞机起落架的设计合理性和可靠性至关重要。

1. 起落架设计的基本原则飞机起落架设计的基本原则是兼顾飞行性能、牵引力和航空公司的维修要求。

首先,合理的起落架设计需要考虑空气动力学的要求,包括重心位置、风阻和起飞速度等因素。

其次,起落架设计还需要满足牵引力的需求,确保飞机在起飞、着陆和滑行等操作时具有良好的操控性。

最后,航空公司的维修要求也是起落架设计的重要考虑因素,包括容易检修、有效利用维修资源和延长维修间隔等。

2. 起落架系统的构成飞机起落架系统主要由三部分构成:主起落架、前起落架和支撑起落架。

其中,主起落架和前起落架主要用于支撑飞机的负荷,而支撑起落架则用于支撑飞机停在地面时的重量。

这些起落架之间相互配合,共同保证飞机能够在各种操作状态下安全地起飞和降落。

3. 起落架可靠性评估的方法起落架可靠性评估是保证飞机起落架安全的关键措施。

常用的方法包括应力试验、疲劳试验、振动试验和温度试验等。

应力试验是通过在正常工作条件下对起落架进行各种载荷测试,以验证其设计强度和刚度是否满足要求。

疲劳试验则是通过反复加载和卸载起落架,模拟实际使用条件下的疲劳情况,评估其寿命和可靠性。

振动试验主要用于检测起落架在各种振动状态下的动态响应和振动特性。

温度试验则是通过暴露起落架于高温、低温和极端环境中,评估其材料和构造的耐久性和可靠性。

4. 起落架故障原因及解决方案起落架故障是飞机运行过程中常见的问题,其故障原因主要包括材料疲劳、维修不当和设计缺陷等。

为了解决起落架故障问题,可以采取以下措施:首先,加强对起落架材料的选择和使用要求,确保其耐疲劳性和可靠性。

其次,加强对维修人员的培训,提高其维修水平和技能素质。

最后,及时更新和改进起落架设计,解决设计缺陷,提高系统的可靠性和安全性。

5. 起落架的未来发展趋势随着航空技术的不断发展,飞机起落架也将迎来新的发展机遇。

飞机起落架的设计与安全性评估

飞机起落架的设计与安全性评估

飞机起落架的设计与安全性评估飞机起落架是飞机非常重要的组成部分之一,其设计和安全性评估关系到飞机的稳定性和飞行安全。

本文将探讨飞机起落架的设计原理、结构以及安全性评估的重要性。

一、起落架的设计原理飞机起落架的设计原理旨在保证飞机在地面起飞和降落时的稳定性和平衡性。

起落架一般由几个重要组件组成,包括主起落架、前起落架、吊挂系统等。

在设计过程中需要考虑到飞机的重量、速度、起飞和降落的道面情况以及飞行环境等因素。

主起落架是飞机最主要的支撑系统,承受着飞机几乎全部的重量。

它一般由多个主轮和支撑结构组成,能够在飞机起降过程中承受较大的垂直和水平力。

主起落架的设计需要考虑起落架的结构强度、重量以及起飞和降落时的冲击力。

前起落架则是飞机前部支持系统,主要用于平衡飞机在起降过程中的倾斜和前倾力。

前起落架通常由一个或两个轮子组成,分别连接到飞机的前部结构上。

它的设计需要考虑到飞机前部结构的强度和稳定性,以确保飞机在地面起飞和降落时的平衡性。

吊挂系统是起落架的重要组成部分,用于连接起落架与飞机结构。

吊挂系统的设计一般采用可调节的设计,以适应不同飞机的需求。

吊挂系统的设计需要考虑到起落架与飞机结构之间的连接强度和可靠性,确保起落架在飞机起降过程中不会发生脱落或松动。

二、起落架的结构飞机起落架的结构一般包括几个关键组件,如主轮、刹车系统、阻尼系统等。

这些组件协同工作,确保飞机在地面起飞和降落时的稳定性和安全性。

主轮是起落架的重要组成部分,它承受着飞机的重量和地面的冲击力。

主轮一般采用高强度合金材料制造,以保证其结构强度和耐久性。

同时,主轮还具备一定的缓冲和减震功能,以减少飞机起降时产生的震动。

刹车系统是起落架的另一个关键组件,它用于控制飞机在地面行驶时的制动力和停止距离。

刹车系统一般由刹车盘、刹车片、刹车液和刹车操纵机构等组成。

刹车系统的设计需要考虑到飞机的负载、速度以及制动力的分配等因素,以确保飞机在地面停止时的稳定性和安全性。

飞机前起落架一体化机构设计及优化

飞机前起落架一体化机构设计及优化

飞机前起落架一体化机构设计及优化下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!飞机前起落架一体化机构设计及优化飞机前起落架作为飞机的重要组成部分,其设计和优化对飞行安全和性能至关重要。

[舰载飞机的起落架设计]飞机起落架设计

[舰载飞机的起落架设计]飞机起落架设计

[舰载飞机的起落架设计]飞机起落架设计关于歼10战斗机能否上舰的议题,已有许多人发表了自己的观点。

但很少有人从起落架的角度谈及这个话题。

本文试图就舰载飞机对主轮距的要求,从一个侧面阐述歼10能否上舰的问题。

舰载飞机降落的技术要求一架常规起降的舰载飞机正在接近航空母舰的斜角甲板。

此时,航空母舰正在迎风全速前进,并在海浪中左右颠簸、上下起伏。

只见训练有素的飞行员驾驶飞机钩住了一条拦阻索,安全着舰了……喜欢军事的朋友,大抵在影视资料中看过F-14、F/A-18等舰载飞机在航母上降落的画面。

在陆上机场降落,可供飞机降落的跑道较长,而航空母舰的斜角甲板较短,舰载飞机降落时几乎是砸向飞行甲板的。

而高速运动中的航母,加上飞行员不断调整飞行姿态的需要,极有可能造成飞机歪斜着舰。

当舰载飞机降落在航母的瞬间,起落架必须保证飞机平稳着舰,且不能有任何部位与斜角甲板相碰撞。

否则,后果不堪设想。

常规起降的作战飞机,无论从航空母舰上如何起飞,都需要拦阻降落。

而保证飞机能够安全降落的重要装置,除了拦阻钩外,便是起落架。

首先对起落架设计的基本要求是:在飞机的起飞、着陆(舰)过程中能够吸收一定的能量,包括垂直和水平方向的;在滑行、离地(舰)和接地(舰)时飞机的其他部分不能触及地(舰)面;不允许发生不稳定现象,特别是在最大刹车、侧风着陆(舰)和高速滑行时。

大部分起落架上都安装有减震器,其作用是吸收飞机着陆(舰)时垂直方向的能量,包括飞机粗暴着陆(舰)的撞击能量(严重状态),并且在滑跑时还应使飞机平滑地越过地面(舰)突起的鼓包。

大部分现代飞机起落架都使用油气减震器,因为在各种减震器中它的效率最高,并且具有最好的能量吸收能力。

舰载飞机着舰瞬间的撞击载荷、拦阻索强制制动载荷,使得舰载飞机的起落架以及机体结构,特别是与起落架安装密切相关的结构都需要在设计时考虑加强,使之能够承受弹射起飞、拦阻着舰时产生的巨大力量,避免结构破坏。

因此,舰载飞机的机体结构和起落架均要比陆基飞机的强度要高,其减震器在着舰时吸收的能量比陆基飞机的要大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

起落架设计
起落架形式的选择
前三点式起落架,采用前三点式起落架,与自行车式后三点式相比前三点式具有结构重量适中,前方视界、地面滑行稳定性、起飞抬前轮、起飞过程中的操作、着陆接地的操作性能好,着陆速度使用的发动机不限的特点。

飞机起落架安装位置的选择
飞机起落架形式的选择
特点:1.受力系统在放下位置借助承力锁来保证几何不变性,该锁将起落架的承力杆或梁直接固定在飞机结构上;2.收放作动筒不是受理系统承力杆;3.这种受力形式的下锁位承受很大的地面载荷,其变形等可能影响锁的可靠性,从而降低起落架收放的可靠性。

故用此种形式时,对起落架收放的可靠性应予以充分注意,可靠性设计和试验均应考虑地面载荷。

这一类起落架在机体内所占的空间较小。

各参数确定
前三点式起落架的主要几何参数包括:主轮距B、前主轮距b、停机角ψ、着地角φ、防后倒立角γ、起落架高度h
(1)停机角ψ的确定: ψ = 0°~ 4°起滑安装按起飞要求,其最佳值应能使
飞机起飞距离最小。

根据经验取:=2°
(2)着地角φ的确定着陆安装按着陆迎角确定
(3)防后倒立角γ的确定:应大于着地角
γ= +2°=18°
(4)前主轮距b 的确定:Lf=(m) 取b=*L f=
(5)起落架高度h 重心位置为LB=( m) 前轮所承受的载荷最佳值为起飞重量的
8~15%的条件及γ =18°来确定
前轮载荷TQ,后轮载荷T H,飞机重量G 对主轮距取矩:TQ× b=G×e 由此得出:e=(8~15%)b
取e== (m)
则h' =e/tanγ =(m)
减震器参数
(1)飞机下沉速度
减震器的行程取决于飞机下沉速度(接地时的垂直速度)、减震材料和接地时机翼升力。

不同类型飞机的下沉速度(vV)不同:陆基飞机为3m/s,垂直起落飞机为4.5m/s,舰载飞机为6~7m/s。

(2)起落架过载飞机垂直速度的减速率称为起落架过载,其决定了由起落架传到机体上的载荷的大小,影响结构重量和乘员/ 旅客的舒适性。

不同类型飞机,起落架过载(ng)不同:大型轰炸机为2~3,商用飞机为~3,通用航空飞机为3,空军战斗机为3~4,海军战斗机为5~6。

(3)减震器行程计算
2
减震器行程:S vV T S T
2 g n g
下沉速度:vV=7(m/s)
ng为飞机着陆过载,取6
和T分别为减震器和轮胎的效率:= ~ (定油孔) 或~ (变油孔) ,取T= ,在方案设计时,如无轮胎的资料时,可近似按下述方法计算
S t k St h
式中k St为按机轮直径D t 计算的压缩量系数,对低压胎k St ;对高压胎k St ~,这里取,ST为轮胎的行程为( m)
所以有S=(m)
h h' S T S
h= (m)
主轮距B 的确定
2 2 2 ah
——机轮侧向摩擦力,取
a
——前轮到重心距离a=b-e=(m)
所以有B ( m)
考虑到起落架的配置及机身机翼形状尺寸我们取B=3米。

在选择纵向轮距b 和主轮距B 时,应确定飞机是否能在其使用的一定等级跑道上进行180°转弯。

从飞机完成转弯动作的几何示意图中得出,在一定跑道宽度下飞机完成
180 °转弯必须具备下列条件:跑道宽度≥ B+RBH +RHOC +Δ2 其中:BH R -内侧主起落架圆周运动半径;
HOC R -前起落架圆周运动半径;
Δ -机轮离跑道边缘的距离,Δ =~2.0 米。

飞机在跑道上转弯示意图
经过验算该起落架可以满足在 15m 宽的跑到上 180 度转弯,我们的起落架 选择保证飞机的着陆角。

前三点式起落架的缺点是自由偏转的前支柱可能出现振幅越来越大的自激 振荡现象。

这种现象称为“摆振”,我们专门设计了液压减摆器加以消除。

当飞 机上设有前轮转弯操纵机构时,减摆器同时还起该机构液压传动装置的作用。

向 前轮提供转弯能量的液压系统补偿了减摆器可能的漏油 ,这样就大大提高了减摆 器的工作可靠性。

相关文档
最新文档