函数误差与误差合成

合集下载

第三章 误差的合成和分配

第三章 误差的合成和分配
3-4
大纲要求
掌握函数误差的定义。 掌握随机误差的合成、系统误差的合成、
系统误差与随机误差的合成方法。 掌握误差分配的方法。 掌握微小误差取舍准则 理解最佳测量方案的确定。
3-5
第一节 函数误差
一、函数(已定)系统误差计算 二、函数随机误差计算 三、误差间的相关关系及相关系数 (correlation coefficient)
上式成立条件: 1、各个测量值的随机误差为正态分布时 2、 lim x i 取相同的置信概率来估算 3、 lim y具有相同的置信概率。 4、相互独立。
3-18
三角形式的函数随机误差公式
1) 正弦函数形式为:
s i n fx 1 ,x 2 , ,x n
函数随机误差公式为: c1o s x f1 2x 2 1 x f2 2x 22 x fn 2x 2n
尺寸轴工件的直
指通过直接测量与被测量有函数 关系的量,通过函数关系求得被测 量值的测量方法。
径,因量程不够, 采用测量弦长与 矢高的方法,间 接得到工件直径
3-2
基本概念
间接测量误差则是各个直接测得值误差的函数,故 称这种误差为函数误差(function error).
研究函数误差的内容,实质上就是研究误差的传递 问题(Propagation of Error)。
3-13
函数标准差计算
y 2( x f1)2 x 2 1 ( x f2)2 x 2 2 ( x fn)2 x 2n 2 1 in j x fi x fjm N 1xiN m xjm
3-12
二、函数随机误差计算
随机误差是用表征其取值分散程度的指

误差的合成、分配和传递

误差的合成、分配和传递

在通常情况下,未定系统总误差可以用极限误差的 形式给出误差的最大变化范围,也可用标准差来表示。

按极限误差合成 按标准差合成
三、误差的合成
1)按极限误差合成 a.绝对值合成法: 表达式:
( e1 e2
em ) ei
i 1 m
其中ei为极限误差。当m大于10时,合成误差估计值往 往偏大。一般应用于m小于10。
则有:
i
x f xi ci i xi y y
x
i
i
xi xi
相对误差传递公式
y i x
i 1
n
一、误差的传递
和差函数的误差传递
y x1 x2
c1 f 1 x1
x1 y
c2
f 1 x2
x2 y
1 c1
2 c2
y
1i j
n
对 y
y y
(
i 1
n
x x f )0 i 两边求方差,则得: xi y xi
随机相对误差的传递公式
y
n f 2 xi 2 2 f xi f x j ( ) ( ) 2 [( ) ] [( ) ]i , j i j 0 i x y x y x y i 1 1i j i i j n
2 i 1i j
1 y
x
i 1 2 ij i , j i j
1i j
n
在水文测验误差分析中,常对上式进行简化。假定各直接被测量的相对 标准差相等,再假定各直接被测量之间不存在相关关系,则变量和的相 对标准差传递公式变为: x m 2 1 m 2 灵敏系数平方和 ny xi xi y i 1 y i 1 的方根

第三章 误差的合成与分解

第三章 误差的合成与分解

西华大学物理与化学学院 物理实验中心 谌晓洪
第三章 误差的合成与分配 第一节 函数误差
【例】 用弓高弦长法间接测量大工件直径。如图所示,车间工
人用一把卡尺量得弓高 h = 50mm ,弦长 s = 500mm。已知, 弓高的系统误差 h = -0.1mm , 玄长的系统误差 h = -1mm 。 试求测量该工件直径的标准差,并求修正后的测量结果。 已知: h 0.005mm , l 0.01mm 【解】
车间工人测量弓高 h 、弦长 l 的系统误差
h 50 50.1 0.1mm
l 500 499 1mm
l2 5002 f 2 1 1 24 2 h 4h 4 50 f l 500 5 l 2h 2 50
sin f x1 , x2 ,..., xn cos f x1 , x2 ,..., xn
西华大学物理与化学学院 物理实验中心 谌晓洪
第三章 误差的合成与分配 第一节 函数误差
【例】 用弓高弦长法间接测量大
工件直径。如图所示,车间工人用 一把卡尺量得弓高 h = 50mm ,弦 长 s = 500mm。已知,弓高的系统 误差 h = -0.1mm , 玄长的系统误 差 h = -1mm 。试问车间工人测量 该工件直径的系统误差,并求修正 后的测量结果。 【解】
cos f x1, x2 ,, xn
f 2 f 2 f 2 x1 x2 x x x xn 1 2 n
2 2 2
函数随机误差公式为: 1 sin
2 2 2
或 令 则
f ai xi
f f f 2 y x12 x 22 xn x1 x2 xn

误差理论与数据处理第三章

误差理论与数据处理第三章

D D D 1 3 0 0 7 . 4 1 2 9 2 . 6 m m 0
第一节
函数误差
基本概念 一、函数系统误差 二、函数随机误差 1、 函数标准差的计算 2、 相关系数估计
二、函数随机误差
数学模型
函数的一般形式
y f( xx , , . . . , x ) 1 2 n
函数随机误差计算
为求得用各个测量值的标准差表
示的函数y的标准差公式,设对 各个测量值皆进行了N 次等精度 测量,其相应的随机误差为:

x1
x2 xn
x , x , , x 11 12 1 N


x , x , , x 21 22 2 N x , x , , x n 1 n 2 nN
变量中有随机误差,即
y y f ( x x , x , , x x ) 1 1 2x 2 n n
泰勒展开,并取其一阶项作为近似值,可得 f f f y y f ( x , x , . . . , x ) x x x 12 n 1 2 n x x x 1 2 n
ij 0
a a a y
2 2 1x 1 2 2 2x 2
2 2 n x n
ij 1
a a a
y 11 x 2 x 2 nx n
相关系数的确定-直接判断法
0 可判断 i j 的情形
断定xi与xj 两分量之间无相互依赖关系
x j)
2
K ij ij xi xj

K ij ij xi xj
则可得
f 2 2 f 2 2 f 2 2 ( ) x1( ) x2 ( ) xn x x x 1 2 n

第三章 误差的合成与分配 (全)

第三章 误差的合成与分配 (全)
f xi xi
5
对于 cot f ( x1, x2 ,..., xn ) ,角度系统误差为:
sin 2
n
P56-57:例3-1;3-2
i 1
二. 函数随机误差计算
随机误差 取值的分散程度 标准差
函数的随机误差
..., xn 的标准差之间的关系。
取值的分散程度 标准差 函数随机误差计算:就是研究函数y 的标准差与各测量值 x1 , x2 , 以各测量值的随机误差δx1, δx2, …….. Δxn
2
2
f f 2 2 2 2 2 2 ( x x ... x ) ... ( xn1 xn 2 ... xnN ) 21 22 2N x2 xn
2
n
1i j
(
m1
N
f f xim x jm ) xi x j
第一节 函数误差
间接测量:通过直接测量与被测的量之间有一定函数关系的其
它量,按照已知的函数关系式计算出被测量。
间接测量误差是各直接测量值误差的函数,即函数误差。
研究函数误差的实质就是研究误差的传递性的问题。
对于这种有确定关系的误差的计算称为误差合成。
2
一. 函数系统误差的计算 在间接测量中,函数主要为多元初等函数,其表达式为:
10
那么,三角函数的标准差公式? 假设三角函数的标准差为 ,各测量值的标准差为 x1 , x2 ,... xn ,
可得相应的角度标准差公式。 (1)对于 sin f ( x1, x2 ,..., xn ), 有:
f 2 f 2 f 2 1 xn x1 x2 ... cos x1 x2 xn

误差理论与数据处理-第二章.part4+第三章.part1

误差理论与数据处理-第二章.part4+第三章.part1
第9页 页
异常值判断准则
特点:
3σ准则比较保守,因为在测量次数有限时,出现在靠近±3σs界 限处的数据极少,除非有较大的粗大误差,否则|v|>3σs而导致 数据被剔除的可能性很小。
在测量次数小于10次时, 3σ准则失效。为什么?
3σ准则只宜用于重复测量次数较多(有的资料推荐测量次数n>50) 的重要测量中。
′ ′ ′ ′ 以上的r10,r10,r11,r11,r21,r21,r22,r22,分别简记为rij,rij′,
第15页 页
异常值判断准则
,n), 选定显著性水平α,查表得D(α ,n), 选取计算出的rij 、rij′ 中的数值大者, 即: 若rij > rij′ , 则选rij, 若rij > D(α , n), 则x′ 为异常值, n 若rij < rij′ , 则选rij′, 若rij′ > D(α , n), 否则判断为 没有异常值。 则 x′ 为 异 常 值 , 1
∂f ∂f ∂f dy = dx1 + dx 2 + ⋯ + dx n ∂x n ∂x1 ∂x 2
第24页 页
2.函数误差的计算 ——a.已定系统误差 函数误差的计算 已定系统误差
计算公式(续)
若已知各个直接测量值的系统误差 可近似得到函数的系统误差为:
∆x1 , ∆x2 , ⋯ , ∆xn
∂f ∂f ∂f ∆y = ∆x1 + ∆x 2 + ⋯ + ∆x n ∂x1 ∂x 2 ∂x n
第20页 页
引子
圆柱体体积V的测量
用千分尺直接测量圆柱体的直径d和高度h(d和h的基本尺寸均为 10mm)各6次,测得值列于下表,求圆柱体体积V,并给出最后测 量结果。 直径d (mm) 高度h (mm) 10.085 10.105 10.085 10.115 10.090 10.115 10.080 10.110 10.085 10.110 10.080 10.105

第三章 误差的合成与分配

第三章 误差的合成与分配

δ lim xi 第i个直接测得量 xi 的极限误差
其置信概率与xi相同
证明
(3-16)函数 极限误差公式
3-17
函数的极限误差计算公式
2 2 2 2 2 δ lim y = ± a12δ lim x1 + a 2 δ lim x2 + ⋯ + a n δ lim xn = ± 2 ai2 ⋅ δ lim xi ∑ i =1 n
y为间接测量值
3-7
已定) 一、函数(已定)系统误差计算 函数 已定
的全微分,其表达式为: 求上述函数 y 的全微分,其表达式为:
dy = ∂f ∂f ∂f ⋅ dx1 + ⋅ dx 2 + ⋯ + ⋅ dx n ∂xi ∂x 2 ∂x n
函数系统误差
∆y 的计算公式
∂f ∂f ∂f ∆y = ∆x1 + ∆x2 + ... + ∆xn ∂x1 ∂x2 ∂xn
3-5
第一节 函数误差
一、函数(已定)系统误差计算 函数(已定) 二、函数随机误差计算 三、误差间的相关关系及相关系数 (correlation coefficient)
3-6
一、函数(已定)系统误差计算 函数(已定)
间接测量的数学模型
y = f ( x1 , x2 ,..., xn )
x1 , x2 ,… , xn 为各个直接测量值
(3-13)函数 13) 随机误差公式
3-15
相互独立的函数标准差计算
若各测量值的随机误差是相互独立的,相关项为0
∂f 2 2 σ = ∑ ( ) ⋅ σ xi i =1 ∂xi
n 2 y
(3-14) )

误差与理论分析实验报告

误差与理论分析实验报告

误差与理论分析实验报告实验一 误差的基本性质与处理一、实验目的了解误差的基本性质以及处理方法。

二、实验原理 (1)正态分布设被测量的真值为0L ,一系列测量值为i L ,则测量列中的随机误差i δ为:i δ=i L -0L (式中i=1,2,…..n)正态分布的分布密度: ()()222f δσδ-=正态分布的分布函数: ()()222F ed δδσδδ--∞=,式中σ-标准差(或均方根误差);它的数学期望为:()0E f d δδδ+∞-∞==⎰它的方差为:()22f d σδδδ+∞-∞=⎰(2)算术平均值对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。

1、算术平均值的意义在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。

设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值 121...nin i l l l l x n n=++==∑ 算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。

i v = i l -xi l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差)2、算术平均值的计算校核算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。

残余误差代数和为:11nni i i i v l nx ===-∑∑当x 为未经凑整的准确数时,则有:1ni i v ==∑01)残余误差代数和应符合:当1n i i l =∑=nx ,求得的x 为非凑整的准确数时,1ni i v =∑为零;当1ni i l =∑>nx ,求得的x 为凑整的非准确数时,1ni i v =∑为正;其大小为求x 时的余数。

当1ni i l =∑<nx ,求得的x 为凑整的非准确数时,1ni i v =∑为负;其大小为求x 时的亏数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以上两种方法,当f是输入量Xi的线性函数时,它们 的结果相同。但当f是Xi的非线性函数时,应采用第一 种的计算方法。
一、函数系统误差计算
函数系统误差公式
y f (x1, x2,..., xn )
由高等数学可知,对于多元函数,其增量可 用函数的全微分表示,则函数增量
dy
f x1
dx1
f x2
被测量的近似真值
y0 f (x10 , x20 ,..., xn0 )
系统误差
y y y0 f (x1, x2 ,..., xn ) f (x10, x20,..., xn0 )
y
f x1
x1
f x2
x2
...
f xn
xn
函数系统误差的计算
y y y0 f (x1, x2 ,..., xn ) f (x10, x20,..., xn0 )
h
l D 2
【解】 建立间接测量大工件直径的函数模型
D l2 h 4h
不考虑测量值的系统误差,可求出在 h 50mm l 500mm
处的直径测量值
D0
l2 4h
h
5计算结果
车间工人测量弓高 h 、弦长 l 的系统误差
h 50 50.1 0.1mm l 500 499 1mm
第5章 函数误差与误差合成
知识点和教学目标
函数系统误差 函数随机误差 误差分布的模拟计算 误差合成 误差分配 微小误差取舍准则 最佳测量方案
第一节 函数误差
误差传递
当要测量截球体的体积时
,最方便的方法是先测量 圆截面的直径d和高度h, 在按下式计算体积V
hd 2 h3
V
2
dx2
...
f xn
dxn
各个直接测得值的系统误差 x1, x2 , , xn , 由于这些误差值皆较小,可以近似代替微分
量 dx1, dx2 ,L , dxn
函数系统误差 y 的近似计算公式
y
f x1
x1
f x2
x2
...
f xn
xn
▪ f xi (i 1,2,L , n) 为各个输入量在该测量 点 (x1, x2,K , xn ) 处的误差传播系数
4
3
如果在直接测得值d和h中含有误差△d 和
△h ,则由V=f (h,d)计算出的体积V中,也
必然会有误差△V ,而且与 △d 和 △h之间
也有一定的函数关系,这就是误差传递。
误差的合成与分配
由两个(如△h, △d)或多个误差值合并成 一个误差值(如△V),叫作误差的合成。
它是间接测量计算误差的基本方法。
y0 f (x10 , x20 ,..., xn0 )
f x1 x1, x2 x2 ,L , xn xn
f x1, x2 ,L , xn
f xi
xi
L
y
f xi
xi
L
常见函数的系统误差计算
若函数形式为线性公式
y a1x1 a2 x2 ... an xn
函数的系统误差为
sin cos
正弦函数的角度系统误差公式为
1
cos
n i 1
f xi
xi
【例】
用弓高弦长法间接测量大工件直径。 如图所示,车间工人用一把卡尺量得 弓高 h 50mm,弦长l 500mm ,工厂 检验部门又用高准确度等级的卡尺量 得弓高 h 50.1mm,弦长 l 499mm 试问 车间工人测量该工件直径的系统误差, 并求修正后的测量结果。
▪ xi 和 y 的量纲或单位相同,则 f xi 起到误差放大或缩小的作用
▪ xi 和 y 的量纲或单位不相同,则f xi 起到误差单位换算的作用
函数系统误差的计算
直接测得值的系统误差x1, x2 , , xn 对直接测得值进行修正,得到
x10 x1 x1, x20 x2 x2 ,L , xn0 xn xn
若三角函数为
sin f x1, x2,..., xn
可得三角函数的系统误差为
sin
f x1
x1
f x2
x2
...
f xn
xn
在角度测量中,需要求得的误差不是三角
函数误差,而是所求角度的误差。
常见函数的系统误差计算
对正弦函数微分得
d sin cosd
d d sin cos
用系统误差代替相应的微分量,则有
反过来如上例中已知对△V的要求,进而要 确定具体测量时对△h和△d的要求,这就 是误差的分配或误差的分解。
它是设计仪器和装置时不可缺少的步骤, 即从仪器总的精度要求出发,确定仪器各 个组成部分和环节(包括零件、部件和装 调等)的精度要求。
函数误差
间接测量
通过直接测得的量与被测量之间的函数关系计算 出被测量
D f (l,h) l2 h 4h
误差传播系数为
f h
l2 4h2
1
5002 4 502
1
24
f l 500 5 l 2h 2 50
间接测量的量是直接测量所得到的各个测量值的 函数
函数误差
间接测得的被测量误差也应是直接测得量及其误差的函 数,故称这种间接测量的误差为函数误差
研究函数误差的内容,实质上就是研究误差 的传递问题。而对于这种具有确定关系的误 差计算,也有称之为误差合成。
间接测量数学模型
某类间接测量的数学模型(显函数)
Y f (X1, X 2 , , X N )
y f (x1, x2,..., xn )
x1, x2,K , xn 与被测量有函数关系的各个直接测 量值及其他非测量值,又称输入量
y 间接测量值 又称输出量
被测量Y的最佳估计值
重复测量时,被测量Y的最佳估计值y,可以有以下两
种方法获得:
第一种方法
y
y
1 n
n k 1
yi
1 n
n k 1
f ( x1k , x2k ,L
, xNk )
第二种方法 y f ( x1, x2,L , xN )
第一种方法适用于输入量彼此相关,输入量受环境 条件在内的影响量的影响
第二种方法适用于输入量不相关,且不受环境条件 的影响,或环境条件发生变化时做了适当的修正
y a1x1 a2x2 ... anxn
式中的各误差传播系数ai为常数。 当ai =1时,则有
y x1 x2 ... xn
函数为各个测得值的和时,其函数系统误 差亦为各测得值系统误差之和。
常见函数的系统误差计算
在间接测量中,也常遇到角度测量,其函 数关系为三角函数式,它常以 sin 、cos 、tan 等形式出现。
相关文档
最新文档