2020秋苏科版初中数学七年级上册2.7 有理数的乘方 同步练习及答案
苏科版七年级数学上册同步练习附答案2.7 有理数的乘方(课时1)

2.7 有理数的乘方(课时1)一、选择题1.5)2(-表示( ).A .5个-2相乘的积B .5乘以-2的积C .2个-5相乘的积D .5个-2相加的和2.任何一个有理数的偶次幂都是( ).A .正数B .负数C .非正数D .非负数3.对于5)3(--,下列说法正确的是( ).A .5)3(--是-3的5次幂B .-3是5)3(--的底数,5是指数C .5)3(--是5个-3相乘的积D .5)3(--表示5个-3相乘的积的相反数4.下面各数是正数的是( ).A .])1([2005---B .2005)1(--C .|)1(|2005---D .200520052005)1]()1(1[--⋅-5.如果一个有理数的偶次幂不是负数,那么这个有理数( )A .是任何有理数B .一定是正数C .一定是负数D .以上答案都不对6.下列各组数中,相等的是( ).A .3)1(-和1B .4)1(-和-1C .|-1|和-1D .-(-1)和2004)1(- 7.有理数a ,b 均小于0,并且0)(3<-b a ,则( ). A .ba 11< B .-a<-b C .|a|>|b| D .22b a > 8.数49-与2)23(-是( ). A .相等的数 B .互为相反数 C .互为倒数 D .以上答案都不对9.若a 为负数,则下列结论中不成立的是( ).A .02>aB .03<aC .0||>⋅a aD .-a >010.若a 为有理数,下列结论正确的个数为( ).①22)(a a -=-,②33)(a a -=-,③|a|>0,④012>+a .A .4B .3C .2D .1二、填空题11.3)2(-与32-的关系是 ;42-与4)2(-的关系是 .12.若02=+a a ,则a= .13.若03=-a a ,则a= .14.若n 为正整数,n n n 32)1()1()1(-⋅-⋅-的值为 .15.观察下列算式:221=,422=,823=,1624=,3225=,6426=,12827=,25628=,……,通过观察,用你发现的规律写出20052的末位数字是 .三、解答题16.计算:(1)3)101(- (2)542- (3)3)34(--(4)22)3()2(-⋅- (5)321)3()2()1(-+-+-17.计算:(1)20052004)21()2(⋅- (2)|82||23|32+----参考答案一、1.A 2.D 3.D 4.B 5.A 6.D 7.C 8.B 9.C 10.C二、11.相等 互为相反数 12.0或-1 13.0或±1 14.1 15.2三、16.解:(1)10001-.(2)516-.(3)2764.(4)36.(5)-22. 17.解:(1)21.(2)11.。
七年级数学上册第二章有理数2.7有理数的乘方区分乘方中的底数和指数素材(新版)苏科版

七年级数学上册第二章有理数2.7有理数的乘方区分乘方中的底数和指数素材(新版)苏科版
难易度:★★
关键词:有理数
答案:
(-a )与-a二者的区别:(-a )表示n个-a相乘,底数是-a;-a表示n个a相乘的相反数,底数是a.联系:当n为偶数时(-a )与-a互为相反数;当n为奇数
时,(-a )与-a相等.()与的区别:()表示分子分母都要乘n 次方,
只有分子乘n次方,分母不乘n次方.
【举一反三】
典例:计算43;-32;-
思路导引:一般来说,此类问题要明确清乘方的意义前提下,弄清底数、指数。
本题中43
可写成是4×4×4;43=4×4×4=64。
-32是2个3相乘的相反数;-32=-(3×3)=-9。
-
是2个2相乘与5的商的相反数,-=-×(2×2)=-。
标准答案:64,-9,-。
1。
《有理数的乘方》(苏科版).doc

D. 3x2?与(3x2)2A. —3x2®—3妆2 B . -32=(- 3)2C. -23=(-2)3D. -32=-23SHU XUE七年级上册《有理数的乘方》同步练习♦选择题5. 下列等式成立的是()6. 2014年5月,小俄两国签署了供气购销合同,从2018年起,俄罗斯开始向我国供气, 最终达到每年380亿立方米,380亿这个数据用科学记数法表示为()r◎义务教育教科书1.下列各组数中相等的是()A. (一3)2和一3?B. (一3尸和一3?C. 2?和 ¥D. (一1产和(一1)2"+1@为正整数) 2.下列各数互为相反数的是()A. 3?与一2彳B. 32与( — 3)2C. 3?与一3?D. 一3?与(一2)3.计算: <3、2的值是()991616 A ・一— B •— C. 一一 D.— 1616994.下列各对数中,数值相等的是 ( )3C. A. +3?与+2? B. 一2彳与(一2)3 一3?与(一3尸D. 3. 8xlO12A. 3. 8xlO9B. 3. 8xlO10C. 3. SxlO117.(-1)2013的底数是_________ ;指数是________ :幕是 ________ .8.________________________ 计算(一3)3所得结果是・9.将3x3x3写成乘方的形式是________ ;将一3x3x3写成乘方的形式是________ ;将(一3)x(—3)x(—3)写成乘方的形式是_______ •10.计算:一32+( —的值是___________ .11.已知地球的表面积约为510 000 000 km2,数510 000 000用科学记数法可表示为__________12.已知°, b互为相反数,c, d互为倒数,求(a+b)2013+(cd)2013的值.13.1根1米长的小木棒,第1次截去一半,第2次截去剩下的一半……如此截下去,第8次后剩下的小木棒有多长?笫“次后呢?答案和解析一、选择题1.B【解析】根据有理数的乘方的定义对各选项进行汁算,然后利用排除法求解.A. (—3)2=9, -32=-9,不相等,故本选项错误;B. (一3)—27, -3'=-27,相等,故本选项正确;C. 23=8, 32=9,不相等,故本选项错误;D. (一1严=1, (一1)2“十」・1,不相等,故本选项错误.2.C【解析】根据有理数的乘方的定义对各选项进行计算.A. 32=9, -23=-8,不是相反数,故本选项错误;B. 32=9, (—3)2=9,相等,故本选项错误;C. 32=9, ~32=-9,是相反数, 故本选项正确;D. -32=-9, (—2f二8,不是相反数,故木选项错误.3.B3Q【解析】根据有理数的乘方的定义进行计算:(-二)2二匕,所以答案为B.4164.B【解析】根据有理数的乘方的定义对各选项进行计算.A.+32=9, +22=4,不相等,故本选项错误;B. ~23=-8, (~2)3 =-8,相等,故本选项正确:C. ~32=-9, (~3)2 =9,不相等,故本选项错误;D. 3X22=12,(3X2)2=36,不相等,故本选项错误.5.C【解析】根据有理数的乘方的定义对各选项进行计算.A. —3x,二24, -32X2=-18,不相等,故本选项错误;B. ~32=-9, (一3)2=9,不相等,故本选项错误;C. -23=-8,(- 2)3二8,,相等,故本选项正确;D. -32=-9, -23=-8,不相等,故本选项错误.6.B.【解析】科学记数法的表示形式为axlO11的形式,将380亿用科学记数法表示为3.8x10'°二、填空题7.-1 2013 -1【解析】(一1严的底数是・1;指数是2013;幕是・1.&一27.【解析】根据有理数的乘方的定义计算(一3)j・27.9.33-33 ( — 3)'【解析】根据有理数的乘方的定义分析,3x3x3写成乘方的形式是今;-3x3x3写成乘方的1 ---- m.256形式是・¥; (-3)x(-3)x(-3)写成乘方的形式是(・3)2.10. -17【解析】根据有理数的乘方进行计算,一3% —2)—9-8二17.11.5.1X108【解析】用科学计数法表示:510 000 000=5.1 xlO x km\ 三、简答题11. 1.【解析】因为a, b 互为相反数,所以a+b=0. 又因为c, 〃互为倒数,所以cd=\.所以(a+b 严 3+(crf 严3=020门+严=0+1 = 1.12. (])8,(:)"2 2【解析】根据题意,第8次后剩下的小木棒的长度为(丄2 第8次后剩下的小木棒的长度为(丄)2。
七年级数学苏科版上册课时练第2单元《 2.7有理数的乘方课件》 练习试题试卷 含答案

随堂测试2.7有理数的乘方一、单选题1.快马加鞭君为先,自古英雄出少年,寒窗苦读十余载.走过高考,前面是一片新天地,据统计2021年全国约有1078万人报名参加高考,其中1078万人用科学记数法表示为()人.A .1.078×103B .1.08×103C .1.078×107D .1.078×1082.下列计算:①211()24-=;②224()55=;③3(0.2)0.008-=;④239-=;⑤211(39--=.其中正确的是()A .1个B .2个C .3个D .4个3.下列代数式:1a +,2a ,21a -,a ,21a +,()21+a ,()51a --的值中,一定是正数的有()A .1个B .2个C .3个D .以上答案都不对4.计算232223333m n ´´´=+++ 个个()A .23nm B .23m nC .32m nD .23m n5.对于代数式()2x 12-+,下列说法正确的是()A .当x 1=时,最大值是2B .当x 1=时,最小值是2C .当x 1=-时,最大值是2D .当x 1=-时,最小值是26.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64…,则22018的末位数是()A .2B .4C .6D .87.20152016(2)(2)-+-所得的结果是()A .20152B .20152-C .2-D .201522-8.()()()()233221212121-1+++××××××+的个位数字().A .2B .4C .6D .8二、填空题9.根据世卫组织最新统计数据,截止北京时间4月28日,全球累计新冠肺炎确诊病例超过147000000例,其中数147000000用科学记数法表示成______.10.某种细菌每30秒由1个分裂成2个,经过3分,1个细菌分裂成________个.11.计算:0.52018×(﹣2)2020=__________.12.对任意有理数a 、b .下面四个结论:①a +b >a ;②|﹣a |=a ;③a 2≥0;④﹣|﹣a |=|﹣(﹣a )|.其中,正确的结论有_____(填写序号).13.若a =25,b =-3,那么a 1999+b 2002结果的末位数字是____14.已知n 个数12,,,n x x x ¼,每个数只能取0,1,1-中的一个,若122016n x x x ++¼+=则20232023202312n x x x ++¼+的值为_______.15.设三个互不相等的有理数,既可分别表示为1,a+b ,a 的形式,又可分别表示为0,ba,b 的形式,则20202021a b +的值___16.求23201312222++++×××+的值,可令23201312222S =++++×××+,则23201422222S =+++×××+,因此2014221S S -=-.仿照以上推理,计算出23201415555++++×××+=______.17.我们常用的十进制数,如2639=2×103+6×102+3×101+9,我国古代《易经》一书记载,远古时期,人们通过在绳子上打结来记录数量.如图,一位母亲在从右到左依次排列的绳子上打结,并采用七进制(如2513=2×73+5×72+1×71+3),用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是_____.18.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如333235,37911,413151719,=+=++=+++¼,若3m 分裂后,其中有一个奇数是75,则m 的值是_______.三、解答题19.已知:||8a =,236b =.(1)当0ab >时,求a b +的值;(2)当a b b a -=-时,求a b +的值.20.规定:a^b=(-1)a ×3b (1)求5^3的值;(2)若2^(x+1)=81,求x 的值.21.记a 1=﹣2,a 2=(﹣2)×(﹣2),a 3=(﹣2)×(﹣2)×(﹣2),……a n =n 个-2相乘.(1)填空:a 4=,a 23是一个(填“正”或“负”);(2)计算:a 5+a 6;(3)请直接写出2020a n +1010a n +1的值.22.观察下列解题过程:计算:232425155555++++++ 的值.解:设232425155555S =++++++ (1)则232425265555555S =++++++ (2)(2)-(1),得26451S =-26514S -=通过阅读,你一定学会了一种解决问题的方法,请用你学到的方法计算:(1)23910133333++++++ (2)()239910011x x x x x x ++++++¹23.观察下列各式,完成下列问题。
七年级上册数学同步练习题库:有理数的乘方(选择题:较难)

有理数的乘方(选择题:较难)1、如图,是一组按照某种规律摆放而成的图案,第1个图有1个三角形,第二个图有4个三角形,第三个图有8个三角形,第四个图有12个三角形,则图5中三角形的个数是()A.8 B.12 C.16 D.172、大家都知道,八点五十五可以说成九点差五分,有时这样表达更清楚.这启发人们设计一种新的加减计数法.比如:9写成1,1=10﹣1;198写成20,20=200﹣2;7683写成13,13=10000﹣2320+3总之,数字上画一杠表示减去它,按这个方法请计算53﹣31=()A.1990 B.2068 C.2134 D.30243、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256……,则231的结果的个位数应为()A.2 B.4 C.8 D.64、若m、n满足,则的值等于().A.-1 B.1 C.-2 D.5、如果,那么的值为( ) .A.0 B.4 C.-4 D.26、某校女生的平均身高约为1.6米,则该校全体女生的平均身高的范围是()A.大于1.55米且小于1.65米 B.不小于1.55米且小于1.65米C.大于1.55米且不大于1.65米 D.不小于1.55米且不大于1.65米7、∑表示数学中的求和符号,主要用于求多个数的和,∑下面的小字,i=1表示从1开始求和;上面的小字,如n表示求和到n为止.即x i=x1+x2+x3+…+x n.则(i2﹣1)表示()A.n2﹣1B.12+22+32+…+i2﹣iC.12+22+32+…+n2﹣1D.12+22+32+…+n2﹣(1+2+3+…+n )8、观察下列算式:71=7,72=49,73=343,74=2401,….根据上述算式中的规律,你认为72006的个位数字是()A.7 B.9 C.3 D.19、小飞测量身高近似1.71米,若小飞的身高记为x,则他的实际身高范围为()A.1.7≤x≤1.8 B.1.705<x<1.715C.1.705≤x<1.715 D.1.705≤x≤1.71510、将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是()A.502 B.503 C.504 D.50511、观察下面由正整数组成的数阵:照此规律,按从上到下、从左到右的顺序,第50行的第50个数是()A.2450 B.2451 C.2550 D.255112、如图,是一组按照某种规律摆放而成的图案,第1个图有1个三角形,第二个图有4个三角形,第三个图有8个三角形,第四个图有12个三角形,则图5中三角形的个数是()A.8 B.12 C.16 D.1713、如图,是一组按照某种规律摆放成的图案,则图6中三角形的个数是()A.18 B.19 C.20 D.2114、如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第个图形需要黑色棋子的个数是.15、已知,+=0,则=().A.1 B.-2013 C.-1 D.201316、某种细菌在培养过程中,每半个小时分裂一次(由1个分裂成2个,两个裂成4个…),若这种细菌由1个分裂成128个,那么这个过程需要经过()小时。
第07讲 有理数的乘方(解析版)-2021-2022学年秋季七年级数学基础学案(苏科版)

第07讲有理数的乘方学习目标1.理解有理数的乘方的意义,会进行有理数的乘方运算.2.了解底数、指数和幂的概念,能说出一个乘方运算的底数、指数和幂,会求一个数的正整数指数幂.3.会用科学记数法表示较大的数,感受用科学记数法表示数带来的方便.考点考频1.能说出一个乘方运算关法的底数、指数、幂(常考点)2.会求一个数的正整数指数幂。
(必考点)3.会用科学记数法表示较大的数。
(必考点)知识点1有理数的乘方(重点;掌握)1.求n个相同因数的积的运算,叫做乘方.乘方运算的结果叫做幂,相同因数叫做底数,相同因数的个数叫做指数.如图.2.a n读作a的n次方,a n看作是a的n次方的结果时,也可以读作a的n次幂.3.正数的任何次幂都是正数,负数的偶数次幂是正数,负数的奇数次幂是负数,0的任何正整数次幂都得0.特别地,一个数的二次方,也称为这个数的平方;一个数的三次方,也称为这个数的立方.[特别提醒](1)要分清乘方表示的意义,如:(-2)5表示5个-2相乘的积、-25表示5个2相乘的积的相反数、-(-2)5表示5个-2相乘的积的相反数.(2)要注意书写分数的乘方时,底数要加括号.如:(− 23)4表示4个 − 23相乘的积、− 243表示4个2相乘的积的13的相反数.(3)一个数可以看作是它本身的一次方,指数1通常省略不写.例如,51通常写作5,a1写作a.例1把下列各式用幂的形式表示,并指出其底数和指数.(1)(-2021)×(-2021)×(-2021);(2)(+ 25 )×(+25 )×(+25 )×(+25 );(3)- 23 ×23 ×23 ×23 ×23 .【答案】(1)3;(2)4;(3)5练习1把下列各式用幂的形式表示,并说出其底数、指数.(1)2×2×2×2×2×2;(2)(-3)×(-3)×(-3)×(-3)×(-3)(3)(- 13 )×(-13 )×(-13 )(4)-13 ×13 ×13 .【答案】解:(1)26.底数是2,指数是6. (2)(-3)5,底数是-3,指数是5.(3)(- 13 ),底数是-13 ,指数是3.(4)-( 13 )底数是13 .指数是3.知识点2有理数幂的符号法则(重点;掌握)(1)正数的任何次幂都是正数;(2)负数的奇数次幂是负数,负数的偶数次幂是正数;(3)0的任何正整数次幂都等于0.[特别提醒]判断乘方符号的步骤:一看底数(正数、负数、0);二看指数(奇数次幂、偶数次幂).例2不做运算,判断下列各运算结果的正负.(-5)11,(-4)20,(-1.5)2021,(4)7,-(-6)29.3【答案】负;正;负;正;正知识点3科学记数法(重点;掌握)1.科学记数法的表示形式为a×10n试,其中1≤a < 10,n为整数.2.n的确定方法如下:方法一:整数位数减去1.如3900是一个四位数,用科学记数法表示为3.9×103,则n = 4-1 = 3.方法二:看小数点移动的位数,小数点向左移动了几位n就等于几.如3900用科学记数法表示为3.9×103,显然从3900到3.9小数点向左移动了3位,所以n = 3.3.用科学记数法表示数时,数的大小没有变化,只是数的书写形式发生了变化、这也是判断科学记数法表示是否正确的标准.4.若原数有“-”号,不能将“-”号丢掉.例3(2019·苏州中考)苏州是全国重点旅游城市,2018年实现旅游总收入约为26000000万元,数据26000000用科学记数法可表示为()A.0.26×108B.2.6×108C.26×106D.2.6×107【答案】D练习3(2019·盐城中考)正在建设中的北京大兴国际机场规划建设面积约1400000平方米的航站楼,数据1400000用科学记数法应表示为()A.0.14×108B.1.4×107C.1.4×106D.14×105【答案】C—— 题型总结 ——题型1根据乘方的法则计算例1计算.(1)(-0.2)3;(2)-54;(3)-(-2)6(4)-( 23 )3;(5)- 223 ;(6)-|- 12 |4.【答案】 (1)-1 125 ;(2)-625;(3)-64;(4)- 8 27 ;(5)- 43;(6)- 1 16。
苏科版七年级上《2.7有理数的乘方》同步测试含答案
2.7 第1课时 乘方的意义知识点 1 有理数的乘方1.计算的结果是( )(-3)2A .-6B .6C .-9D .92.(-5)6表示( )A .6个-5相乘的积B .-5乘6的积C .5个-6相乘的积D .6个-5相加的和3.对于-43,下列说法正确的是( )A .-4是底数,3是幂B .4是底数,3是幂C .4是底数,3是指数D .-4是底数,3是指数4.2017·陵城区三模-和(-)2是( )9432A .相等的数 B .互为相反数C .互为倒数D .上述选项都不正确5.2017·潍城区一模下列各组数中,结果相等的是( )A .-12与(-1)2 B.与()323323C .-|-2|与-(-2) D .(-3)3与-336.把××写成乘方的形式是________ .(-37)(-37)(-37)7.计算:=________;=________.(-113)2(-12)38.计算:(-5)2,(-0.1)4,,.(-23)3 (-15)3知识点 2 幂的符号法则9.2017·吉林计算(-1)2的正确结果是( )A .1B .2C .-1D .-210.计算:-=________;=________.225(-25)211.计算:(-10)2,(-10)3,(-10)4,(-10)7.12.计算32×33的结果是( )A .35B .36C .37D .3813.下列结论错误的是( )A .一个数的平方不可能是负数B .一个数的平方一定是正数C .一个非零有理数的偶次方是正数D .一个负数的奇次方还是负数14.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…解答问题:3+32+33+34+…+32018的末位数字是( )A.0 B.1 C.2 D.715.平方等于它本身的数是________;立方等于它本身的数是________.16.计算:(1) -32×23; (2)(-3)2×(-2)3;(3)-2×32; (4)(-2×3)2.17.探索题:(1)通过计算比较下列各式中两数的大小(填“>”“<”或“=”):①12________21,②23________32,③34________43,④45________54,⑤56________65,….(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n________时,n n+1<(n+1)n;当n________时,n n+1>(n+1)n.(3)根据上面的猜想,可知20172018________20182017(填“>”“<”或“=”).1.D 2.A3.C .4.B 5.D 6. 7. -(-37)3169188.解:(-5)2=25,(-0.1)4=,(-)3=-,(-)3=-.110000238271511259.A .10.- 4542511.解:(-10)2=100,(-10)3=-1000,(-10)4=10000,(-10)7=-10000000.12.A.13.B14.C 15.0,1 0,±1 16.解:(1)-32×23=-9×8=-72.(2)(-3)2×(-2)3=9×(-8)=-72.(3) -2×32=-2×9=-18 .(4)(-2×3)2=(-6)2=36.17. (1)①< ②< ③> ④> ⑤>(2)≤2 ≥3 (3)>。
有理数的乘方(3种题型)-2023年新七年级数学(苏科版)(解析版)
有理数的乘方(3种题型)1.掌握有理数乘方的意义,正确判断幂的底数,掌握乘方运算的符号法则;2.理解科学记数法的表示,会正确算出科学记数法表示的数的结果;一.有理数的乘方(1)有理数乘方的定义:求n个相同因数积的运算,叫做乘方.乘方的结果叫做幂,在a n中,a叫做底数,n叫做指数.a n读作a的n次方.(将a n看作是a的n次方的结果时,也可以读作a的n次幂.)(2)乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.(3)方法指引:①有理数的乘方运算与有理数的加减乘除运算一样,首先要确定幂的符号,然后再计算幂的绝对值;②由于乘方运算比乘除运算又高一级,所以有加减乘除和乘方运算,应先算乘方,再做乘除,最后做加减.二.非负数的性质:偶次方偶次方具有非负性.任意一个数的偶次方都是非负数,当几个数或式的偶次方相加和为0时,则其中的每一项都必须等于0.三.科学记数法—表示较大的数(1)科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.【科学记数法形式:a×10n,其中1≤a<10,n为正整数.】(2)规律方法总结:①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n.②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.一.有理数的乘方(共11小题)1.(2022秋•鼓楼区校级期末)下列各组数中,相等的是()A.+32与+23B.﹣23与(﹣2)3C.﹣32与(﹣3)2D.|﹣3|3与(﹣3)3【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:∵32=9,23=8,故选项A不符合题意,∵﹣23=﹣8,(﹣2)3=﹣8,故选项B符合题意,∵﹣32=﹣9,(﹣3)2=9,故选项C不符合题意,∵|﹣3|3=27,(﹣3)3=﹣27,故选项D不符合题意.故选:B.【点评】此题考查有理数的乘法,有理数的乘方,解题关键在于掌握运算法则.2.(2022秋•盐都区期中)计算:=.【分析】根据有理数乘方法则进行计算便可.【解答】解:原式=+,故答案为:.【点评】本题考查了有理数的乘方,熟记有理数乘方法则是解题的关键.3.(2023•南京二模)与(﹣3)2的值相等的是()A.﹣32B.32C.(﹣2)3D.23【分析】将原式计算得到结果,即可作出判断.【解答】解:∵(﹣3)2=9,A.﹣32=﹣9;B.32=9;C.(﹣2)3=﹣8.D.23=8.∴与(﹣3)2的值相等的是B.故选:B.【点评】本题考查了有理数的乘方,熟练掌握乘方的意义是解题的关键.4.(2022秋•仪征市期末)若一个数的立方为﹣27,则这个数是()A.﹣3B.3C.±3D.﹣9【分析】根据有理数的乘方运算即可求出答案.【解答】解:∵(﹣3)3=﹣27,∴这个数是﹣3,故选:A.【点评】本题考查有理数的乘方运算,解题的关键是熟练运用有理数的乘方运算,本题属于基础题型.5.(2023春•泰兴市校级月考)计算:()3=.【分析】求n个相同因数积的运算,叫做乘方,由此即可计算【解答】解:()3=××=.故答案为:.【点评】本题考查有理数的乘方,关键是掌握有理数的乘方运算法则.6.(2022春•灌南县期中)已知83=a9=2b,试求b a的值.【分析】根据83=(23)3=29,即可确定a和b的值,进一步求解即可.【解答】解:∵83=a9=2b,又∵83=(23)3=29,∴a=2,b=9,∴ba=92=81.【点评】本题考查了有理数的乘方,幂的乘方等,熟练掌握这些知识是解题的关键.7.(2023•海陵区一模)﹣32的值等于()A.﹣9B.9C.6D.﹣6【分析】利用有理数的乘方判断.【解答】解:﹣32=﹣9,故选:A.【点评】本题考查了有理数的乘方,解题的关键是掌握有理数的乘方.8.(2022秋•鼓楼区校级期末)如图,A,B,C,D,E是数轴上5个点,A点表示的数为9,E点表示的数为9100,AB=BC=CD=DE,则数999所对应的点在线段上.【分析】先根据AB=BC=CD=DE,计算出每一个线段的长度,再把AB的长度与999﹣9进行比较即可.【解答】解:∵A点表示数为9,E点表示的数为9100,∴AE=9100﹣9,∵AB=BC=CD=DE,∴,∴B点表示的数为,∵=,∴>0,∴数999所对应的点在B点左侧,∴数999所对应的点在AB点之间,故答案为:AB.【点评】本题考查了数轴,掌握两点之间的距离是正确解答的前提,估算出的大小是得出正确答案的关键.9.(2023春•宿豫区期中)已知3=m5=()n,求m+n的值.【分析】根据幂的乘方、负整数指数幂解决此题.【解答】解:∵310=m5=()n,∴310=95=m5=3﹣n.∴m=9,n=﹣10.∴m+n=9+(﹣10)=﹣1.【点评】本题主要考查幂的乘方、负整数指数幂,熟练掌握幂的乘方、负整数指数幂是解决本题的关键.10.(2022秋•鼓楼区校级月考)已知|x|=5,y2=16,且x+y>0,那么x﹣y=.【分析】利用绝对值的定义,乘方运算确定x、y的可能取值,再代入数据求x﹣y的值.【解答】解:∵|x|=5,y2=16,∴x=±5,y=±4,∵x+y>0,∴x=5,y=±4,x﹣y=5﹣4=1,x﹣y=5﹣(﹣4)=9,∴x﹣y的值为1或9.故答案为:1或9.【点评】本题考查了有理数的乘方,有理数的加减,绝对值,解题的关键是掌握有理数的乘方运算,有理数的加减运算,绝对值的定义.11.(2023春•吴江区期中)规定两数a,b之间的一种运算,记作(a,b);如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,9)=,(,16)=2,(﹣2,﹣8)=;(2)有同学在研究这种运算时发现一个现象:(3n,4n)=(3,4),他给出了如下的证明:设(3n,4n)=x,∴(3n)x=4n即(3,4)=x,∴(3n,4n)=(3,4).②若(4,5)=a,(4,6)=b,(4,30)=c,请你尝试运用上述这种方法证明a+b=c;②猜想[(x﹣1)n,(y+1)n]+[(x﹣1)n,(y﹣2)n]=(,)(结果化成最简形式).【分析】(1)根据规定,利用乘方的运算解答即可;(2)①根据规定,利用同底数幂乘方的运算法则证明即可;②根据规定,利用同底数幂乘方的运算法则,以及多项式乘以多项式的运算法则解答即可.【解答】解:(1)∵32=9,∴(3,9)=2;∵42=16,∴(4,16)=2;∵(﹣2)3=﹣8,∴(﹣2,﹣8)=3.故答案为:2,4,3;(2)①∵(4,5)=a,(4,6)=b,(4,30)=c,∴4a=5,4b=6,4c=30,∴4a×4b=5×6=30=4c,∴4a+b=4c,即a+b=c;②设[(x﹣1)n,(y+1)n]=p,[(x﹣1)n,(y﹣2)n]=q,由上述结论,知(x﹣1)p=y+1,(x﹣1)q=y﹣2,且[(x﹣1)n,(y+1)n]+[(x﹣1)n,(y﹣2)n]=p+q,∵(x﹣1)p×(x﹣1)q=(y+1)(y﹣2),即(x﹣1)p+q=y2﹣y﹣2,∴[(x﹣1),(y2﹣y﹣2]=p+q,∴[(x﹣1)n,(y+1)n]+[(x﹣1)n,(y﹣2)n]=[(x﹣1),(y2﹣y﹣2].故答案为:(x﹣1),(y2﹣y﹣2).【点评】本题以阅读理解形式考查乘方、同底数幂的乘法、整式的乘法等运算,理解题意,掌握相关运算法则是解题的关键.二.非负数的性质:偶次方(共7小题)12.(2022秋•姑苏区校级期末)如果|a+3|+(b﹣2)2=0,则(a+b)2022的值是.【分析】根据绝对值和平方的非负性求出a,b,代入求值即可.【解答】解:因为|a+3|+(b﹣2)2=0,所以a+3=0,b﹣2=0,所以a=﹣3,b=2,所以(a+b)2022=(﹣3+2)2022=(﹣1)2022=1.故答案为:1.【点评】本题主要考查非负数的性质,涉及到有理数的乘方,解题的关键是掌握绝对值和平方的非负性.13.(2022秋•鼓楼区校级期末)已知|ab﹣2|+(b+1)2=0,则(a﹣b)2023=.【分析】根据绝对值和平方的非负性求出a,b,代入求值即可.【解答】解:因为|ab﹣2|+(b+1)2=0,所以ab﹣2=0,b+1=0,所以ab=2,b=﹣1,解得a=﹣2,b=﹣1,所以(a﹣b)2023=(﹣2+1)2023=(﹣1)2023=﹣1.故答案为:﹣1.【点评】本题主要考查代数式求值、有理数的乘方,解题的关键是掌握绝对值和平方的非负性.14.(2022秋•射阳县月考)已知(x﹣3)2+|2x﹣3y+6|=0,求x﹣y的值.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可求解.【解答】解:∵(x﹣3)2+|2x﹣3y+6|=0,(x﹣3)2≥0,|2x﹣3y+6|≥0,∴x﹣3=0,2x﹣3y+6=0,解得x=3,y=4,∴x﹣y=3﹣4=﹣1.【点评】本题考查了绝对值和偶次方的非负性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.15.(2023春•东台市期中)若(x﹣1)2+|2y+1|=0,则x+y的值为()A.B.C.D.【分析】直接利用非负数的性质得出x,y的值,进而得出答案.【解答】解:∵(x﹣1)2+|2y+1|=0,∴x﹣1=0,2y+1=0,解得:x=1,y=﹣,则x+y的值为:1﹣=.故选:D.【点评】此题主要考查了非负数的性质,正确掌握相关定义是解题关键.16.(2022秋•仪征市期末)若|a﹣2|+(b+3)2=0,则b a=.【分析】根据绝对值和偶次方的非负性求出a、b的值即可得到答案.【解答】解:∵|a﹣2|+(b+3)2=0,|a﹣2|≥0,(b+3)2≥0,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,∴ba=(﹣3)2=9,故答案为:9.【点评】本题主要考查了非负数的性质,代数式求值,熟知非负数的性质是解题的关键.17.(2023春•东台市期中)已知|x+2y+3|与(2x+y)2的值互为相反数,则x﹣y=.【分析】根据非负数的性质:几个非负数的和等于0,则每个数等于0,即可列出关于x和y的方程,求得x和y的值,进而求得代数式的值.【解答】解:根据题意得:,解得.则原式=1+2=3.故答案是3.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.18.(2022秋•江阴市期中)如果|a+2|+(b﹣1)2=0,那么代数式(a+b)2021的值是()A.1B.﹣1C.±1D.2021【分析】首先根据非负数的性质求出a、b的值,然后再代值求解.【解答】解:由题意,得:a+2=0,b﹣1=0,即a=﹣2,b=1;所以(a+b)2021=(﹣1)2021=﹣1.故选:B.【点评】本题考查了非负数的性质.解题的关键是掌握非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.三.科学记数法—表示较大的数(共4小题)19.(2023•苏州)在比例尺为1:8000000的地图上,量得A,B两地在地图上的距离为3.5厘米,即实际距离为28000000厘米.数据28000000用科学记数法可表示为.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可得出答案.【解答】解:28000000=2.8×107,故答案为:2.8×107.【点评】本题考查科学记数法表示较大的数,科学记数法是基础且重要知识点,必须熟练掌握.20.(2023•镇江一模)2023年2月15日春运结束,春运40天,全国发送旅客约15.95亿人次,比去年同期增长50.5%,其中,数据15.95亿用科学记数法可表示为.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:15.95亿=15.95×108=1.595×109.故答案为:1.595×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.21.(2023春•吴江区校级期中)光在真空中的传播速度约是3×108m/s,光在真空中传播一年的距离称为光年.(1)1光年约是多少千米?(一年以3×107s计算)(2)银河系的直径达10万光年,约是多少千米?(3)如果一架飞机的飞行速度为1000km/h,那么光的速度是这架飞机速度的多少倍?(1m/s=3.6km/h)【分析】(1)根据题意列出算式,求出即可;(2)根据题意列出算式,求出即可;(3)先化单位,再根据题意列出算式,求出即可.【解答】解:(1)3×108×3×107=9×1015(米),9×1015米=9×1012千米.答:1光年约是9×1012千米;(2)10万=100000,100000×9×1012=9×1017(千米),.答:银河系的直径达10万光年,约是9×1017千米;(3)3×108m/s=1.08×109km/h,1.08×109÷1000=1.08×106,答:光的速度是这架飞机速度的1.08×106倍.【点评】本题考查了科学记数法的表示方法.解此题的关键是能根据题意列出算式.22.(2022春•仪征市校级月考)某银行去年新增加居民存款10亿元人民币.(结果用科学记数法表示)(1)经测量,100张面值为100元的新版人民币大约厚0.9厘米,如果将10亿元面值为100元的新版人民币摞起来,大约有多高?(2)一台激光点钞机的点钞速度是8×104张/时,按每天点钞5小时计算,如果让点钞机点一遍10亿元面值为100元的新版人民币,点钞机大约要点多少天?【分析】(1)先算出10亿元人民币的张数,然后再用张数乘以一张人民币的厚度即可;(2)用10亿元人民币的张数除以速度,再根据同底数幂相除,底数不变指数相减进行计算.【解答】解:(1)10亿=1 000 000 000=109,∴10亿元的总张数为109÷100=107张,107÷100×0.9=9×104(厘米);(2)107÷(5×8×104),=(1÷40)×(107÷104),=0.025×103=25=2.5×10(天).【点评】本题考查了同底数幂的除法与乘法运算、科学记数法,根据题意列出算式是解题的关键,需要注意先求出10亿元人民币的总张数.一、单选题【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:54700000用科学记数法表示为75.4710⨯;故选:C【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.【答案】A【分析】根据小于0的数是负数,对各选项计算后再计算负数的个数. 【详解】因为22−=,()2=2−−,()202311−=−所以负数有112−,()20231−,共计2个故选A【点睛】本题考查负数的概念,解题关键是利用了小于0的数是负数的概念.【答案】D【分析】根据几个非负数的和为0时,这几个非负数都为0列出算式,求出x 、y 的值,代入计算即可. 【详解】解:∵()2510x x y −+−−=,∴50x −=,10x y −−=, ∴5x =,4y =,∴()()20232023514x y −=−=,故选:D .0,则其中的每一项都为0. 4.(2022秋·江苏盐城·七年级统考期中)下列计算结果相等为( ) A .43和34B .43−和4|3|−C .25−和2(5)−D .2022(1)−和 2024(1)−【答案】D【分析】根据乘方运算法则和绝对值的意义逐项进行计算即可.【详解】解:A .∵4381=,3464=,且8164≠,∴选项A 不符合题意;B .∵4381−=−,4|3|81−=,且8181−≠,∴选项B 不符合题意;C .∵2525−=−,2(5)25−=,且2525−≠,∴选项C 不符合题意;D .∵()202211−=,2024(1)1−=,且11=,∴选项D 符合题意.故选:D .【点睛】本题主要考查了有理数的乘方运算,绝对值的意义,解题的关键是熟练掌握有理数乘方运算法则和绝对值的意义,准确进行计算.5.(2022秋·江苏扬州·七年级校联考期中)()633...33⨯⨯⨯÷−个的结果为( )A .73B .73−C .53 D .53−【答案】D【分析】根据有理数的乘方与除法运算法则计算即可得到答案.【详解】解:原式633=−÷ 53=−.故选:D .【点睛】此题考查的是有理数的乘方与除法,正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.【答案】A【分析】根据有理数的乘方运算求出x 、y 即可解答. 【详解】解:∵x 、y 、z 是三个连续的正整数, ∴y=x+1,∵x2=44944=2122, ∴x=212, ∴y=213,∴y2=2132=45 369, 故选:A .【点睛】本题考查有理数的乘方,熟练掌握有理数的乘方运算是解答的关键.二、填空题7.(2022秋·江苏苏州·七年级校考期中)倒数等于本身的数是______,相反数等于本身的数是______, 平方等于它本身的数是______,立方等于它本身的数是______. 【答案】 1± 0 1和0 1±和0【分析】根据倒数的定义、相反数的定义、平方、立方的意义,即可得到答案. 【详解】解:倒数等于它本身的数是1±, 相反数等于它本身的数是0, 平方等于它本身的数是1和0, 立方等于它本身的数是1±和0, 故答案为:1±;0;1和0;1±和0.【点睛】本题考查了倒数、相反数、平方、立方,解题的关键是掌握所学的知识进行解题. 8.(2022秋·江苏淮安·七年级淮阴中学新城校区校考期末)数字1920000000用科学记数法表示为____________. 【答案】91.9210⨯【分析】利用科学记数法的定义解决.科学记数法的表示形式为10na ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 【详解】解:91920000000 1.9210=⨯. 故答案为:91.9210⨯.【点睛】此题考查科学记数法的定义,关键是理解运用科学记数法.9.(2022春·江苏宿迁·七年级统考期中)如果ab =c ,那么我们规定[a ,c ]=b .例如:因为23=8,所以[2,8]=3.若[3,5]=n ,[9,m ]=n ;则[3,m +2]=_______. 【答案】3【分析】根据规定可得3n =5,9n =m ,从而得到m =25,然后设[3,m+2]=x ,则3x =m+2=27,再由33=27,即可求解.【详解】解:∵[3,5]=n ,[9,m]=n , ∴3n =5,9n =m , ∴9n =(3n )2=52=25, ∴m =25,即m+2=27,设[3,m+2]=x ,则3x =m+2=27,∴33=27, ∴[3,m+2]=3, 故答案为:3【点睛】本题主要考查了乘方的逆运算的应用,理解新规定是解题的关键.10.(2022秋·江苏南京·七年级统考期中)下列情景描述的结果与52相符的是________(填写所有正确选项的序号)①把一张报纸沿同一方向连续对折5次得到的后折痕条数;②把一团和好的面,揉搓成一根长条后,连续拉扣5次得到的面条根数③细胞分裂时,由1个分裂成2个,由2个分裂成4个,以此类推,一个这样的细胞分裂5次形成的细胞个数.【答案】②③/③②【分析】根据题干叙述分别计算找出对折的次数与折痕的条数,拉扣的次数和面条的根数,分裂的次数和细胞个数的规律,判断是否符合规律即可.【详解】①把一张报纸沿同一方向对折,对折一次有1条折痕,对折两次是3条折痕,以此类推,对折5次后有12481631++++=条折痕,不符合题意.②把一团和好的面,揉搓成一根长条后,拉扣一次时有两根面条,两次有4根面条,以此类推,拉扣5次有52根面条,符合题意.③由题意可得,一个这样的细胞分裂5次形成细胞个数为52个,符合题意. 故答案为②③.【点睛】本题主要考查幂的应用,清楚理解幂的含义是解决本题的关键.11.(2023春·江苏宿迁·七年级统考期中)根据全国第七次人口普查数据显示,截至2020年11月1日零时,泗阳总人口约1063000人,数据1063000用科学记数法表示____. 【答案】61.06310⨯【分析】用移动小数点的方法确定a 值,根据整数位数减一原则确定n 值,最后写成10na ⨯的形式即可. 【详解】∵61.010*******=10⨯, 故答案为:61.06310⨯.【点睛】本题考查了科学记数法表示大数,熟练掌握把小数点点在左边第一个非零数字的后面确定a ,运用整数位数减去1确定n 值是解题的关键.【答案】3【分析】根据非负数的性质列式求出m 、n 的值,再相减即可求出答案. 【详解】根据题意得,10m −=,20n +=, 解得,1m =,2n =−, 所以1(2)3m n −=−−=, 故答案为3.【点睛】本题主要考查了非负数的性质,有限个非负数的和为零,那么每一个加数必为零,熟练掌握非负数的性质是解题的关键.【答案】1−【分析】利用非负数的性质得出x y ,的值,代入计算得出答案. 【详解】解:()2130x y ++−=,10x ∴+=,30y −=,解得:=1x −,3y =, 3(1)1y x ∴=−=−,故答案为:1−.【点睛】本题考查了非负数的性质,掌握非负数的意义和性质是正确解答的关键.14.(2021秋·江苏无锡·七年级无锡市东林中学校考期中)若|2|a −与()21b +互为相反数,则a b −=___________.【答案】3【分析】由题意得知:|a-2|+(b+1)2=0,根据非负数的性质得出a 、b 的值,代入计算即可. 【详解】解:根据题意得:|a-2|+(b+1)2=0, ∵|a-2|≥0,(b+1)2≥0, ∴a-2=0,b+1=0, ∴a=2,b=-1,∴2(1)3a b −=−−=, 故答案为:3.【点睛】本题主要考查了非负数的性质.解题的关键是掌握相反数定义,利用只有符号不同的两个数互为相反数得出a 、b 的值是解题的关键.三、解答题15.(2023春·江苏泰州·七年级姜堰区实验初中校考阶段练习)记(1)2M =−,(2)(2)(2)M =−⨯−,(3)(2)(2)(2)M =−⨯−⨯−,……()2(2)(2)(2)n n M −=−⨯−⨯−个相乘,(其中n 为正整数)(1)计算:(5)(6)M M +; (2)求(2022)(2023)2M M +的值; (3)说明()2n M 与(1)n M +互为相反数. 【答案】(1)32 (2)0 (3)见解析【分析】(1(2)根据已知条件及乘方的运算,再利用同底数幂的乘法法则即可得到正确结果; (3)根据已知条件及乘方的运算,再利用同底数幂的乘法法则即可得到结论. 【详解】(1)解:∵(1)2M =−,(2)(2)(2)M =−⨯−,(3)(2)(2)(2)M =−⨯−⨯−,∴()()552M =−,()662M =−,∴(5)(6)M M +()()5622=−−+()()5212⎡⎤=−−⎣⎦+()()521=−−32=;(2)解:∵()2(2)(2)(2)n n M −=−⨯−⨯−个相乘,∴()()202220232M M +()()20222023222=−−+()()2022222=−−⎡⎤⎣⎦+0=;(3)解:∵()2(2)(2)(2)n n M −=−⨯−⨯−个相乘,∴()12n n M M ++()()1222nn =−−++()()222n=−−⎡⎤⎣⎦+0=,∴()2n M 与(1)n M +互为相反数.【点睛】本题考查了乘方的意义及同底数幂的乘法法则,理解乘方的意义是解题的关键.【答案】数轴表示见解析,()()21301232−−<<−<<−−【分析】先把各数化简,然后再数轴上表示出来,即可求解. 【详解】解:33−−=−,()211−=,()33−−=,各数在数轴上表示出来,如下:按从小到大的顺序用“<”号连接起来为()()21301232−−<<−<<−−.【点睛】本题考查了有理数的乘方、绝对值的意义、有理数的大小比较.能熟记有理数的大小比较法则是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.,一般地,把c aa a a a÷÷÷÷个(a ≠0Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣【答案】(1)3,﹣27;(2)C ;(3)Ⅰ.9;(5 )4;28;Ⅱ.a ⓝ=(a )n ﹣2;Ⅲ.131−.【分析】(1)根据新定义运算的法则进行运算即可;(2)根据新定义运算对每个选项逐一分析判断,即可得到答案;(3)Ⅰ.根据新定义的运算法则进行计算即可;Ⅱ.结合前面的具体计算进行归纳总结可得答案;Ⅲ.根据新定义运算,逐一先计算除方,再转化为有理数的乘除乘方运算,再计算即可. 【详解】解:概念学习:(1)由新定义运算可得:3③=3÷3÷3=13,(13−)⑤=(13−)÷(13−)÷(13−)÷(13−)÷(13−)=﹣27. 故答案为:13,﹣27;(2)A 、任何非零数的圈2次方就是两个相同数相除,所以都等于1;所以选项A 正确; B 、因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1;所以选项B 正确;C 、3④=3÷3÷3÷3=19,4③=4÷4÷4=14,则 3④≠4③;所以选项C 错误;D 、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D 正确; 本题选择说法错误的,故选C ; 深入思考:(3)Ⅰ.(﹣3)④=(﹣3)÷(﹣3)÷(﹣3)÷(﹣3) ()1113333æöæöæöç÷ç÷ç÷=-´-´-´-ç÷ç÷ç÷èøèøèø=21319−=⎛⎫⎪⎝⎭; 5⑥=5÷5÷5÷5÷5÷511111=555555´´´´´ =(15)4; 同理得:(12−)⑩=28;故答案为:19;(15)4;28;Ⅱ:由新定义运算及(1)(2)归纳总结可得: a ⓝ=21n a −⎛⎫ ⎪⎝⎭;故答案为:a ⓝ=21n a −⎛⎫ ⎪⎝⎭Ⅲ.2112()3÷−④(2)÷−⑤1()3−−⑥33÷ =()()324311443332æöç÷¸-¸---¸ç÷èø()1144881279=´´--¸1283131=--=-故答案为:131−【点睛】本题考查的是新定义运算,有理数的除法运算,有理数的乘方运算,理解新定义运算的运算法则,并利用新定义进行计算是解题的关键.【答案】(1)351−,,(2)①122x x −−,;②2BD PC =,理由见解析【分析】(1)根据非负数的性质求出a b 、的值,再根据数轴沿点C 折叠,点A 和点B 重合即点C 为AB 的中点进行求解即可;(2)①根据数轴上两点距离公式即可求出PC ,再求出点D 表示的数即可求出BD ;②分别表示出PC 和BD 即可得到结论. 【详解】(1)解:∵()2350a b ++−=,()23050a b +≥−≥,,∴()2350a b +=−=,∴3050a b +=−=,, ∴35a b =−=,,∵数轴沿点C 折叠,点A 和点B 重合, ∴点C 为AB 的中点, ∴12a bc +==,故答案为:351−,,;(2)解:①由题意得1PC x =−,∵将数轴沿点P 折叠,数轴上与点A 重合的点记为D , ∴点P 是AD 的中点,∴点D 表示的数为()323x x x +−−=+⎡⎤⎣⎦, ∴2352222BD x x x=+−=−=−, 故答案为:122x x −−,; ②2BD PC =,理由如下:同①得1PC x =−,2221BD x x =−=−,∴2BD PC =;【点睛】本题主要考查了数轴上两点的距离,数轴上两点中点公式,非负数的性质,熟知数轴上两点距离公式是解题的关键. 19.(2022秋·江苏南京·七年级统考期中)某公司培养绿藻细胞制作绿藻粉,该公司制作1克的绿藻粉需要60亿个绿藻细胞.(1)在光照充沛的环境下,1个绿藻细胞每20小时可分裂成4个绿藻细胞,且分裂后的细胞继续分裂.现从1个绿藻细胞开始培养,经过15天后,共分裂成4k 个绿藻细胞,求k 的值.(2)已知210=1024,请判断(1)问中的4k 个绿藻细胞是否足够制作10克的绿藻粉,并说明理由.【答案】(1)18;(2)足够,理由见解析【分析】(1)由1个绿藻细胞每20小时可分裂成4个绿藻细胞,可知经过15天,即360小时,分裂成184个绿藻细胞,故k 之值为18;(2)根据每1克的绿藻粉需要60亿个绿藻细胞, 60亿介于322与332之间,可得制作10克的绿藻粉需要600亿个绿藻细胞,且352<600亿362<,又()1818236422==,即得184个绿藻细胞足够制作10克的绿藻粉. 【详解】(1)解∶15天1524=⨯小时360=小时,∴3602018÷=,根据题意得,1844k =,∴18k =;(2)解:(1)问中的4k个绿藻细胞是否足够制作10克的绿藻粉.理由如下∶∵每1克的绿藻粉需要60亿个绿藻细胞,∴制作10克的绿藻粉需要6010600⨯=亿个绿藻细胞,∵352<600亿362<,而()1818236422==,∵600亿184<,∴184个绿藻细胞足够制作10克的绿藻粉.【点睛】本题考查有理数的乘方,解题的关键是读懂题意,根据已知找到规律求出k 的值.一.选择题1.下列各组数中,相等的是( )A .(﹣3)2与﹣32B .|﹣3|2与﹣32C .(﹣3)3与﹣33D .|﹣3|3与﹣33【分析】根据有理数的乘方的定义对各选项分析判断利用排除法求解.【解答】解:A 、(﹣3)2=9,﹣32=﹣9,9≠﹣9,故本选项错误;B 、|﹣3|2=9,﹣32=﹣9,9≠﹣9,故本选项错误;C 、(﹣3)3=﹣27,﹣33=﹣27,故本选项正确;D 、|﹣3|3=27,﹣33=﹣27,27≠﹣27,故本选项错误.故选:C .【点评】本题考查了有理数的乘方,要注意(﹣3)2与﹣32的区别.2.党的十八大以来,坚持把教育扶贫作为脱贫攻坚的优先任务.中央财政累计投入“全面改善贫困地区义务教育薄弱学校基本办学条件”专项补助资金169200000000元,将169200000000用科学记数法表示应为( )A .0.1692×1012B .1.692×1011C .1.692×1012D .16.92×1010【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a|<10,n 为整数,且n 比原来的整数位数少1,据此判断即可.【解答】解:169200000000=1.692×1011.故选:B .【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a ×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.3.在数学中为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”,如记=1+2+3+…+(n﹣1)+n,(x+k)=(x+3)+(x+4)+…+(x+n);已知([x(x+k)]=9x2+mx,则m的值是()A.45B.63C.54D.不确定【分析】根据条件和新定义列出方程,化简即可得出答案.【解答】解:根据题意得:x(x+3)+x(x+4)+…+x(x+n)=x(9x+m),∴x(x+3+x+4+…+x+n)=x(9x+m),∴x[(n﹣3+1)x+]=x(9x+m),∴n﹣2=9,m=,∴n=11,m=54.故选:C.【点评】本题考查了新定义,根据条件和新定义列出方程是解题的关键.二.填空题4.2021年5月15日,天问一号探测器成功着陆火星,迈出了我国星际探测征程的重要一步.已知火星与地球的近距离约为550055 000 000用科学记数法表示为.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:55000000=5.5×107.故答案为:5.5×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.计算:﹣(﹣)3=.【分析】根据有理数的乘方解决此题.【解答】解:﹣(﹣)3=.故答案为:.【点评】本题主要考查有理数的乘方,熟练掌握有理数的乘方是解决本题的关键.6.计算:(﹣5)2=.【分析】根据幂的意义求解即可.【解答】解:(﹣5)2=(﹣5)×(﹣5)=25,故答案为:25.【点评】本题考查了有理数的乘方,解题的关键是知道(﹣5)2表示2个(﹣5)相乘.7.若有理数x,y满足x2=64,|y|=10,且|x﹣y|=x﹣y,则x+y的值为.【分析】根据绝对值、有理数的乘方、有理数的加法法则解决本题.【解答】解:∵x2=64,|y|=10,∴x=±8,y=±10.又∵|x﹣y|=x﹣y,∴x﹣y≥0.∴x≥y.∴当x=8时,y=﹣10,此时x+y=8+(﹣10)=﹣2;当x=﹣8时,y=﹣10,此时x+y=﹣8+(﹣10)=﹣18.综上:x+y=﹣2或﹣18.故答案为:﹣2或﹣18.【点评】本题主要考查绝对值、有理数的乘方、有理数的加法,熟练掌握绝对值、有理数的乘方、有理数的加法法则是解决本题的关键.8.1根1米长的木棒,第一次截去一半,第二次截去剩下的一半,…,如此截下去,则第8次剩下的木棒的长为米.【分析】根据有理数的乘方的定义解答即可.【解答】解:第一次截去一半,剩下,第二次截去剩下的一半,剩下×=()2,如此下去,第8次后剩下的长度是()8=.故答案为:.【点评】本题考查的是有理数的乘方,是基础题,理解乘方的定义是解题的关键.三.解答题9.(2020秋•滕州市期末)如果x n=y,那么我们记为:(x,y)=n.例如32=9,则(3,9)=2.(1)根据上述规定,填空:(2,8)=,(2,)=;(2)若(4,a)=2,(b,8)=3,求(b,a)的值.【分析】(1)这个定义括号内第一个数为底数,第二个数为幂,结果为指数,根据有理数的乘方及负整数指数幂的计算即可;(2)根据定义先求出a,b的值,再求(b,a)的值.【解答】解:(1)因为23=8,所以(2,8)=3;因为2﹣2=,所以(2,)=﹣2.故答案为:3,﹣2;(2)根据题意得a=42=16,b3=8,所以b=2,所以(b,a)=(2,16),因为24=16,所以(2,16)=4.答:(b,a)的值为4.【点评】本题主要考查了有理数的乘方,负整数指数幂,考核学生的运算能力,熟悉乘方运算是解题的关键.10.若|a+1|+(b﹣2)2=0.(1)求a2﹣b2的值;(2)求a b的值.【分析】(1)根据绝对值、偶次方的非负性求得a=﹣1,b=2,再代入a2﹣b2求值.(2)由(1)得a=﹣1,b=2,根据乘方的定义,代入求值.【解答】解:(1)∵|a+1|≥0,(b﹣2)2≥0,∴当|a+1|+(b﹣2)2=0时,a+1=0,b﹣2=0.∴a=﹣1,b=2.。
2.7有理数的乘方课时作业(第1—2课时)(含答案)(2024年)苏科版七年级数学上册
2.7 有理数的乘方第 1 课时有理数的乘方(一)自主学习1.求的积的运算叫做乘方,乘方运算的结果叫 .2.在a°中, 是底数, 是指数.3.正数的任何次幂都是数;负数的奇数次幂是数,负数的偶数次幂是数.当堂反馈1. 比较(-3)⁴和-3⁴,下列说法正确的是 ( )A.它们底数相同,指数也相同B.它们底数相同,但指数不相同C.它们所表示的意义相同,但运算结果不相同D.它们底数不同,运算结果也不相同2.−1²⁰ ²⁰等于 ( )A.1B. -1C. 2020D. -20203.下列各数中一定是正数的是 ( )A.0B. |a|C.-(-5)D. -2²4.下列运算正确的是 ( )A.−(−2)²=−4B.-|-2|=2C.(−2)³=−6D.(−2)³=85.如果一个有理数的偶次幂是非负数,那么这个数是 ( )A. 正数B.负数C.非负数D.任何有理数6.将5×5×5写成乘方的形式是 ;将-5×5×5写成乘方的形式是 ;将(-5)×(-5)×(-5)写成乘方的形式是 .,-(-2),(-4)²中,正数有个.7.在有理数-3²,0,20,-1.25,1348.(1)一个数的平方等于它本身,这个数是;(2)一个数的立方等于它本身,这个数是;(3)如果一个数的平方等于36,那么这个数是 .9.探究规律:3¹=3,个位数字为3;3²=9,个位数字为9;3³=27,个位数字为7;3⁴=81,个位数字为1;3⁵=243,个位数字为3;3⁶=729,个位数字为9,……那么3⁷的个位数字是,3²⁰²ˡ的个位数字是10. 计算.(1)(-3)³; (2)(−23)2; (3)−(23)2;(4)−(−23)2; (5)−223; (6)−232.11. 计算.(1)(−23)3; (2)−23÷49×(−32)2;(3)−(−2)³×(−3)²; (4)(−14)3×(−4)2÷(−1)11.12. 计算.(1)(−2)3−2×(−4)÷14; (2)−5²×4+|−2|×3³.13.你吃过“手拉面”吗?拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条(假设在拉的过程中面条没有断),如图所示.这样的捏合,到第多少次后可拉出128根细面条?捏合了10次后可拉出多少根细面条?能力拓展14. 若( (x +1)²+|y −2020|=0,则2020-x ʸ的值为 .15.现有两种给你钱的方法:第一种方法是每天给你1元,一直给你10年;第二种方法是第一天给你1分钱,第2天给你2分钱,第3天给你4分钱,第4天给你8分钱,第5天给你16分钱……依次类推,给你20天.哪一种方法得到的钱多?第2课时有理数的乘方(二)自主学习一般地,一个大于10的数可以写成的形式,其中1≤a<10,n是正整数.这种记数法称为科学记数法.注意:n等于 .当堂反馈1.为了将新冠疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展.据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632400000000元,其中632400000000用科学计数法表示为 ( )A.6.324×10¹¹B.6.324×10¹⁰C.632.4×10⁹D.0.6324×10¹²2. 2021年党中央首次颁发“光荣在党50年”纪念章,约 7100000名党员获此纪念章.数71000 00用科学记数法表示为 ( )A.71×10⁵B.7.1×10⁵C.7.1×10⁶D.0.71×10⁷3.今年6月13 日是我国第四个文化和自然遗产日.目前,我国世界遗产总数居世界首位.其中自然遗产总面积约68000km²,将68000用科学记数法表示为 ( )A.6.8×10⁴B.6.8×10⁵C.0.68×10⁵D.0.68×10⁶4.嫦娥五号从月球风驰电掣般返回地球的速度接近第二宇宙速度,即11200 米/秒,数字11200用科学记数法表示为 ( )A.112×10²B.1.12×10³C.1.12×10⁴D.1.12×10⁵5.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3.12×10⁶吨二氧化碳的排放量,把3.12×10⁶写成原数是 ( )A.312000B.3120000C. 31200000D.3120000006.“我的连云港”App是全市统一的城市综合移动应用服务端.一年来,实名注册用户超过1600 000人.数据1600000用科学记数法表示为7.2020年6月23日,中国北斗全球卫星导航系统提前半年全面完成,其星载原子钟授时精度高达每隔3000000年才误差1秒.数据3000000用科学记数法表示为8. 地球的半径大约为6400 km.数据6400 用科学记数法表示为9.一天有8.64×10⁴秒,一年如果按365天计算,用科学记数法表示一年有秒.10.用科学记数法表示下列各数字.(1)太阳的半径约为696000km;(2)陕北大红枣是驰名中外的陕西特产,目前陕北地区红枣的种植面积约有420000亩;(3)光的速度大约是300000千米/秒;(4)第七次全国人口普查数据结果显示,全国人口约为1411780000 人;(5)中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长.预计2020年底中国在线教育用户规模将达到305000000 人.11.有关资料表明,一个人在刷牙过程中如果一直打开水龙头,将浪费大约7 杯水.(每杯水约250mL)(1)如果你家里人(按 3 人算)也像这样每天刷两次牙,请计算一年要浪费多少毫升水? (一年按360天计算)(2)如果每立方米水按2元计算,你家里一年要浪费多少元?(3)某城市约有100万个这样的家庭,如果所有人在刷牙过程中都不关水龙头,则一年要浪费多少毫升水?浪费多少元?(4)这道题给了我们什么启示?12.已知全国总人口约1.41×10⁹人,若平均每人每天需要粮食0.5kg,则全国每天大约需要多少粮食?(结果用科学记数法表示)能力拓展 --o13.我们平常用的数是十进制的数,如1234=1×10³+2×10²+3×10¹+4×1,表示十进制的数要用十个数码:0,1,2,3,4,5,6,7,8,9.在电子计算机中用的是二进制,只要两个数码0和1,如:二进制中,101=1×2²+0×2¹+1等于十进制的数5;10111=1×2⁴+0×2³+1×2²+1×2¹+1等于十进制的数23.请问二进制中的10 11101 等于十进制中的数 .14.先计算,然后根据计算结果回答问题.(2×10²)×(3×10⁴)=;(2×10⁴)×(4×10⁷)=;(5×10⁷)×(7×10⁴)=;(9×10²)×(3×10¹¹)=.已知式子(a×10ⁿ)×(b×10ᵐ)=c×10ᵖ(其中a、b、c均为大于或等于1而小于 10的数,m、n、p均为整数)成立,你能说出m、n、p之间存在的等量关系吗?2.7 有理数的乘方第1 课时有理数的乘方(一)【自主学习】1. 相同因数幂2. a n3. 正负正【当堂反馈】1. D2. B3. C4. A5. D6. 5³ -5³ (-5)³7.48.(1)0,1 (2)-1,0,1(3)-6,69. 7 310. (1)﹣27 (2)49(3)−49(4)−49(5)-43(6)-2911.(1)−827(2)−812(3)72 (4) 1412. (1)24 (2)-4613. 捏合7次后有 128 根细面条.捏合 10 次后有10 24 根细面条.【能力拓展】14. 2019 【解析】因为(x+1)²+|y−2020|=0,所以x+1=0,y-2020=0,解得:x=-1,y=2020,所以2020−xʸ=2020−(−1)²⁰²⁰=2020−1=2019.15. 第一种方法获得:1×365×10=3650(元)=365000(分钱);第二种方法:按规律,到第20天给的钱数是2¹⁹分钱,所以共获得分钱数为:S=1+2+2²+2³+2⁴+218+219 circle1,因为2S=2+22+23+24+25+⋯+219+220②,所以②-①得:S=2²⁰−1=(2¹⁰)²−1=1024²−1,因为1024²>1000²,即1024²>100000,所以1024²−1 >365000,所以第二种方法得到的钱多.第2课时有理数的乘方(二)【自主学习】a×10ⁿ原数的整数位数减去1【当堂反馈】1. A2. C3. A4. C5. B6. 1.6×10⁶7. 3×10⁶8. 6.4×10³9.3.1536×10⁷10. (1)6.96×10⁵(2)4.2×10⁵(3)3×10⁵(4)1.41178×10⁹ (5)3.05×10⁸11.(1)3.78×10⁶mL (2)7.56元(3)3.78×10¹²m L 7.56×10⁶元 (4)节约用水,从身边小事做起.12.1.41×10⁹×0.5=0.705×10⁹=7.05×10⁸(kg)答:全国每天大约需要7.05×10⁸kg粮食.【能力拓展】13. 93 【解析】1011101=1×2⁶+0×2⁵+1×2⁴+1×2³+1×2²+0×2¹+1=64+0+16+ 8+4+0+1=9314.6×1068×10113.5×10122.7×1014通过计算发现:前两式结果中10的指数正好等于两因数指数的和,是因为2×3<10,2×4<10;后两式结果中10的指数正好等于两因数指数的和加1,是因为5×7=35>10,9×3=27>10.所以当ab≥10时,m+n+1=p;当1≤ab<10时, m+n=p.。
_2.7有理数的乘方 同步练习 2021-2022学年苏科版七年级数学上册
A. 米B. 米C. 米D. 米
9.2018年9月14日,北京新机场名称确定为“北京大兴国际机场”,2019年建成的新机场一期将满足年旅客吞吐量45000000人次的需求.将45000000用科学记数法表示应为( )
【解析】解:(1)
第64格应放:263粒;
(2)∵21=2,22=4,23=8,24=16,25=32,
∴末位数字是4个一循环,
63÷4=15……3,
∴263的末位数字与23的末位数字相同,是8.
23.地球绕太阳转动的速度快
【解析】本题考查了幂的乘方与积的乘方.先把1.1×105化为110×103,然后比较110×103km与1.2×103km的大小,从而得出答案.
(1)在第64格中应放多少粒米(用幂表示)
(2)请探究(1)中的数的末位数字是多少?(简要写出探究过程)
23.地球绕太阳转动每小时经过的路程约为1.1×105km,声音在空气中每小时传播1.2×103km,地球绕太阳转动的速度与声音传播的速度哪个快?
24.下列是用科学记数法表示的数,求原数是多少?
12.将 × × × 写成幂的形式是____.
13.( )3﹣1的值为__________.
14.如果a4=81,那么a=_____.
15.比较大小:(1)(-2) ____-2 ;
(2)(-2) ____-2 .
16. 世纪数学家裴波那契的(计算书)中有这样一个问题:“在罗马有 位老妇人,每人赶着 头毛驴,每头驴驮着 只口袋,每只口袋里装着 个面包,每个面包附有 把餐刀,每把餐刀有 只刀鞘”,则刀鞘数为________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学苏科版七年级上册2.7 有理数的乘方同步练习
一、单选题(共10题;共20分)
1.下列各对数中,是互为相反数的是()
A. -3与-3
B. 与
C. -3与-|-3|
D. 与
2.的运算结果是()
A. B. C. D.
3.以下结论中,正确的是()①没有最大负数;②没有最大负整数;③负数的偶次幂是正数;
④任何有理数都有倒数;⑤两个负数的乘积仍然是负数()
A. ①③
B. ①③④
C. ①③④⑤
D. ①②③④⑤
4.下列各数-(-2),-|-2|,(-2)2,(-2)3,-23负数个数为()
A. 2个
B. 3个
C. 4个
D. 5个
5.将867000用科学记数法表示为()
A. B. C. D.
6.用科学计数法表示的数-1.96×104,则它的原数是()
A. 19600
B. -1960
C. 196000
D. -19600
7.下列语句中,是正确的是()
A. 若,则>
B. 若>,则
C. 若,则
D. 若,则
8.计算(-1)2019+(-1)2020的结果是()
A. 2
B. -1
C. 1
D. 0
9.观察等式,其中的取值可能是().
A. B. 或 C. 或 D. 或或
10.观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729…,那么3+32+33+…+302018+32019的个位数字是( )
A. 9
B. 3
C. 2
D. 0
二、填空题(共6题;共8分)
11.把(-5)×(-5)×(-5)写成幂的形式是________,底数是________,指数是________;
12.据统计,嘉兴市2019年全市财政总收入达到94500000000元,列全省第三,94500000000用科学记数法可表示为________。
13.下列说法:①-0.5的倒数是-2;②-a一定是负数;③若一个数的绝对值是6,那么这个数是±6;④任何有理数的平方都是正数.其中正确的是________.(填序号)
14.平方等于36的数与立方等于-64的数的和是________.
15.若(a﹣1)2+|b+2|=0,那么a+b=________.
16.将一根长1米的木棒,第一次截去一半,第二次截去剩下部分的一半,如此截下去,截至第五次,剩下的木棒长是________米.
三、解答题(共6题;共35分)
17.
(1)用科学记数法表示下列各数:
①900200
②11000000
③-510000.
(2)将科学记数法表示的数写为原数:
①6.070×103
② 6×107
③104
18.计算:.
19.计算:-23-2×(-3)+|-5|-(-1)2019
20.把下列各数在数轴上表示出来,并按从小到大的顺序用“<”号连起来.
﹣22,|﹣2.5|,﹣(﹣),0,﹣(﹣1)100,|﹣4|
21.已知太阳离地球大约有一亿五千万千米,光的速度大约是3×108米/秒,则太阳发出的光需要多长时间才能到达地球?(结果用科学记数法表示)
22.2003年,地球人制造的机器人成功登上火星,对火星进行科学探索,你知道火星有多大吗?火星半径是地球半径的一半,质量是地球质量的.若地球半径为6370千米,质量是6×1027克,请你求出:
(1)火星的体积(体积公式为πR3,取π的近似值为3);
(2)火星的质量(小数点后取两位).
答案解析部分
一、单选题
1.【答案】B
2.【答案】C
3.【答案】A
4.【答案】B
5.【答案】C
6.【答案】D
7.【答案】C
8.【答案】D
9.【答案】D
10.【答案】A
二、填空题
11.【答案】(-5)3;-5;3
12.【答案】9.45×1010
13.【答案】①和③
14.【答案】2或-10
15.【答案】-1
16.【答案】
三、解答题
17.【答案】(1)解:①900200 = 9.002×105
②11000000= 1.1×107
③-510000=-5.1×105.
(2)解:①6.070×103 =6070
②6×107 =60000000
③104=10000
18.【答案】解:原式=[()100× ]×
=()100×
=4.
19.【答案】解:
20.【答案】解:﹣22=﹣4;|﹣2.5|=2.5;﹣(﹣)= ;﹣(﹣1)100=﹣1;|﹣4|=4.
∴﹣22<﹣(﹣1)100<0<﹣(﹣)<|﹣2.5|<|﹣4|
21.【答案】解:一亿五千万千米用科学记数法表示为
(秒)
答:太阳发出的光需要秒才能到达地球。
22.【答案】解:(1)πR3=×3×63703=1033899412000 (立方千米).故火星的体积是1033899412000立方千米;(2)6×1027×≈6.67×1026克.故火星的质量大约是6.67×1026克.。