天体问题的几个重要区别
2020届高考地理复习重难点:宇宙中的地球

2020届高三地理复习重难点:宇宙中的地球重难点1.天体的判断方法一看其是否位于地球大气层之外。
例如:宇宙飞船在太空中运行时是天体,返回到地面就不是天体了。
二看其能否克服地球的引力,在太空中按自己的轨道运行。
三看其是不是某一天体的一部分,天体的一部分不能称为天体。
例如:月球表面的岩石块是月球的一部分,不是天体。
重难点2.天体系统的判断(1)天体之间能否构成天体系统必须同时具备两个条件,即“二要”:一要相互吸引,二要相互绕转。
只吸引不绕转不能构成天体系统。
例如,月球绕地球运转,形成地月系;北斗七星各恒星之间没有相互绕转关系,就不能形成天体系统。
(2)天体系统级别的判定天体系统尤其是恒星系统和行星系统的中心天体是判定的关键。
重难点3.地球的普通性表现地球是一颗普通的行星,主要原因在于它与太阳系其他行星在运动和结构方面具有很大的相似性。
(1)运动特征(2)结构特征地球在距日远近、质量、体积、密度、自转和公转周期、表面平均温度等方面与类地行星相似。
如下图所示:重难点4.地球上存在生命的条件(1)地球存在生命的外部条件(2)地球适宜的自身条件自身条件主要是指适宜的温度条件、适合生物生存的大气条件和液态水的存在。
跟踪训练读下图,回答1~2题。
1.下列叙述正确的是( )①d是人类已知的宇宙部分②水星所在的最低一级天体系统是a ③由b系统示意图可知,地球所处的宇宙环境是安全的④北极星与c是同一恒星系统A.①②B.③④C.①③D.②④2.关于b的叙述正确的是( )A.中心天体是地球B.哈雷彗星处在b系统C.狮子座流星雨现象不会在b系统出现D.b系统中除c星球外还有存在生命的行星3.下列同时包含太阳和地球的天体系统中,级别最高的和级别最低的分别是( )A.a和b B.d和bC.b和c D.(d-a)和b1.C2.B3.B [读图可知,图中d表示目前人类已经探测到的宇宙范围,半径为200亿光年。
图中a为银河系,b为太阳系,c为地月系。
天体力学中的三体问题探究

天体力学中的三体问题探究天体力学是研究天体运动规律的学科,三体问题则是其中的重要课题之一。
三体问题是指在一个引力场中,有三个物体(天体)处于运动状态时,它们之间的运动规律如何确定的问题。
虽然看似简单,但是它却是一个非常复杂的问题,而且得到解决对于天文学、物理学等领域有着深远的影响。
1. 三体问题的历史和背景三体问题的研究可以追溯到17世纪。
当时拉普拉斯通过数学方法求解了三个质点在其引力场中的运动规律,而且他的研究成果也成为了天体力学的基础。
然而,拉普拉斯也意识到了这一问题的复杂性,他提出了著名的“拉普拉斯极限”的概念,即三体问题在一定条件下是不可解的。
这一结论引起了当时数学界的热烈争论,也为后来的研究奠定了基础。
在随后的几百年中,许多数学家和天文学家对三体问题进行了深入研究,并探索了许多不同的方法和思路。
20世纪初,由爱因斯坦创立的广义相对论也为解决三体问题提供了新的思路和工具。
但是,尽管理论和计算方法已经取得了很大进步,但是这个问题依然没有被完全解决。
2. 三体问题的形式化表示为了更好地研究三体问题,我们首先需要对它进行形式化的表示。
假设有三个物体A、B、C,它们的质量分别为m1、m2、m3,在它们之间的引力场中运动。
设它们的位置矢量分别为r1、r2、r3,速度矢量分别为v1、v2、v3。
那么,它们之间的相互作用可以用牛顿第二定律和万有引力定律表示为:m1d^2r1/dt^2= Gm1m2(r2-r1)/|r2-r1|^3 + Gm1m3(r3-r1)/|r3-r1|^3m2d^2r2/dt^2= Gm2m1(r1-r2)/|r1-r2|^3 + Gm2m3(r3-r2)/|r3-r2|^3m3d^2r3/dt^2= Gm3m1(r1-r3)/|r1-r3|^3 + Gm3m2(r2-r3)/|r2-r3|^3其中d^2r/dt^2是位置矢量对时间的二阶导数,|r1-r2|是向量r1-r2的模长。
第4章 专题强化4 天体运动中的三种典型问题

否则无法在万有引力作用下绕地球做匀速圆周运动。而同步静止轨道卫 星相对地面静止,与地球自转周期相同,所以其轨道平面一定和赤道平 面重合,即同步静止轨道卫星需要在赤道上空做匀速圆周运动,不可能 经过北京上空,故C错误;由题意可知卫星b的周期为24 h,卫星c的周期 为8 h,某时刻两者相距最近,设经过时间t后二者再次相距最近,则 Ttc-Ttb=1,解得 t=12 h,故 D 正确。
[解析]设地球质量为 M,质量为 m 的卫星绕地球做半径为 r、线速度 大小为 v 的匀速圆周运动,根据牛顿第二定律有 GMr2m=mvr2,解得 v=
GrM,因为卫星 b 的轨道半径比卫星 c 的轨道半径大,根据上式可知 卫星 b 运行的线速度小于卫星 c 的线速度,故 A 错误;卫星 a 与卫星 b 轨道高度相同,周期相同,线速度大小相同,但二者质量不一定相同, 所以机械能不一定相同,故 B 错误;人造卫星的轨道平面一定过地心,
道上,Q 为同步卫星,故两者的周期相等,而 N 和 Q 同为卫星,由万有 引力充当向心力,故有 GMr2m=m4Tπ22r,解得 T= 4GπM2r3。由上式可知, 轨道半径越大,周期越大,故卫星 Q 的周期大于天和核心舱 N 的周期, 故有 TP=TQ>TN,C 错误;Q 是同步卫星,其轨道在赤道上方即纬度为 0°, 南充市不在赤道上,所以卫星 Q 一定不会经过南充上空,D 正确。
(3)在地球表面有 GMRm20 =mg,卫星一绕地球做圆周运动,有 GMRm21 =
m2Tπ1 2R1, 联立解得 g=32Tπ220R0。
[答案]
(1)2 2T0
42 (2)6 2-3T0
(3)32Tπ220R0
〔专题强化训练〕
1.(多选)(2022·四川南充三模)我国“神舟十三号”航天员翟志刚、 王亚平和叶光富在空间站驻留长达6个月之久,是我国入驻太空时间最 长的三人组,已知“天和”核心舱N绕地球运行的轨道距地面的高度约 为400 km,地球半径约6 400 km。关于地球赤道静止的物体P、同步卫 星Q和“天和”核心舱N的运动,下列说法正确的是( AD )
高三 天体问题知识点

高三天体问题知识点天体问题是物理学中的一个重要研究领域,涉及到天体运动、引力、行星轨道等内容。
在高三物理学习中,我们需要掌握一些关键的天体问题知识点。
本文将从天体运动、行星轨道和引力三个方面来介绍高三物理学习中的天体问题知识点。
一、天体运动知识点1. 行星公转:行星在太阳周围做椭圆形轨道运动,公转周期是由行星质量和距离太阳的半长轴决定的。
根据开普勒第二定律,行星在椭圆轨道上的相等时间内扫过的面积是相等的。
2. 地球自转:地球自西向东自转,自转周期为24小时。
地球自转导致了地球的日晷现象,即昼夜交替的现象。
3. 星空的运动:由于地球自转和公转,星空中的星星看起来会有运动。
恒星的视运动通常分为南北视运动和东西视运动。
二、行星轨道知识点1. 椭圆轨道:行星绕太阳运动的轨道通常是一个椭圆。
椭圆有两个焦点,太阳位于其中一个焦点上。
椭圆的长轴和短轴决定了椭圆的形状和大小。
2. 圆形轨道:圆形轨道是一种特殊的椭圆轨道,它的长轴和短轴相等,即椭圆的离心率为零。
地球绕太阳的轨道就是一个接近圆形的椭圆轨道。
3. 开普勒定律:开普勒定律是描述行星运动的经验规律。
包括开普勒第一定律(椭圆轨道定律)、开普勒第二定律(面积定律)和开普勒第三定律(调和定律)。
三、引力知识点1. 引力的概念:引力是物质之间相互吸引的作用力,是宇宙中最普遍的力之一。
地球表面上的物体受到的重力大小与其质量成正比。
2. 引力定律:牛顿引力定律是描述引力作用的定律,它表明物体间的引力大小与它们的质量成正比,与它们的距离的平方成反比。
3. 太阳引力和行星运动:太阳对行星的引力决定了行星的运动轨迹和速度。
根据万有引力定律,太阳和行星之间的引力与它们的质量和距离有关。
通过对以上天体问题的知识点进行了解,我们能够更好地理解宇宙中的天体运动规律,进一步认识到人类在宇宙中的微小和脆弱。
天体问题是物理学习中的一部分,也是我们对宇宙的探索和理解的重要组成部分。
希望本文对高三物理学习中的天体问题知识点的了解有所帮助,并能够激发对宇宙的好奇与探索的热情。
秘籍06 天体运动中的五类热点问题和三大概念理解应用(教师版)-备战2024年高考物理抢分秘籍

秘籍06天体运动中的五类热点问题和三大概念理解一、开普勒行星运动定律k ,k 是一个与行星无关的常量注意:(1)行星绕太阳运动的轨道通常按圆轨道处理.(2)由开普勒第二定律可得12Δl 1r 1=12Δl 2r 2,12v 1·Δt ·r 1=12v 2·Δt ·r 2,解得v 1v 2=r2r 1,即行星在两个位置的速度之比与到太阳的距离成反比,近日点速度最大,远日点速度最小.(3)开普勒第三定律a 3T2=k 中,k 值只与中心天体质量有关二、万有引力定律的理解1.万有引力与重力的关系地球对物体的万有引力F 表现为两个效果:一是重力mg ,二是提供物体随地球自转的向心力F 向.(1)在赤道上:G MmR 2=mg 1+mω2R .(2)在两极上:G MmR2=mg 0.(3)在一般位置:万有引力GMmR2等于重力mg 与向心力F 向的矢量和.越靠近南、北两极,g 值越大,由于物体随地球自转所需的向心力较小,常认为万有引力近似等于重力,即GMmR 2=mg .2.星球上空的重力加速度g ′星球上空距离星体中心r =R +h 处的重力加速度为g ′,mg ′=GmM (R +h )2,得g ′=GM(R +h )2.所以g g ′=(R +h )2R2.3.万有引力的“两点理解”和“两个推论”(1)两点理解①两物体相互作用的万有引力是一对作用力和反作用力.②地球上的物体受到的重力只是万有引力的一个分力.(2)两个推论:①推论1:在匀质球壳的空腔内任意位置处,质点受到球壳的万有引力的合力为零,即∑F 引=0.②推论2:在匀质球体内部距离球心r 处的质点(m )受到的万有引力等于球体内半径为r 的同心球体(M ′)对其的万有引力,即F =GM ′mr 2.三、宇宙速度的理解与计算1.第一宇宙速度的推导方法一:由G Mm R 2=m v 21R ,得v 1=GM R= 6.67×10-11×5.98×10246.4×106m/s =7.9×103m/s.方法二:由mg =m v 21R得v 1=gR =9.8×6.4×106m/s =7.9×103m/s.第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min =2πRg=5078s≈85min.2.宇宙速度与运动轨迹的关系(1)v 发=7.9km/s 时,卫星绕地球表面做匀速圆周运动.(2)7.9km/s<v 发<11.2km/s ,卫星绕地球运动的轨迹为椭圆.(3)11.2km/s≤v 发<16.7km/s ,卫星绕太阳做椭圆运动.(4)v 发≥16.7km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间.3.对第一宇宙速度的理解1.第一宇宙速度是人造地球卫星的最小发射速度,也是卫星贴近地面运行的速度,即人造地球卫星的最大运行速度.2.当卫星的发射速度v 满足7.9km/s<v <11.2km/s 时,卫星绕地球运行的轨道是椭圆,地球位于椭圆的一个焦点上.四、赤道上的物体与近地卫星、同步卫星的比较1.分析人造卫星运动的两条思路(1)万有引力提供向心力即G Mmr2=ma 。
24 第五章 素养提升课(五) 天体运动中的三类典型问题

知识,可以估算出这一时刻两颗中子星
A自的自转角速度
BC [两颗中子星运动到某位置的示意图如图所示
每秒转动 12 圈,则角速度已知。中子星运动时,由万有引力提供向心
力得
G
m1m2 l2
=
m1ω2r1
,
G
m1m2 l2
= m2ω2r2 , l = r1 + r2 , 可 得
√B.下一次的“木星冲日”时间肯定在2023年
C.木星运行的加速度比地球的大 D.木星运行的周期比地球的小
B [设太阳质量为 M,行星质量为 m,轨道半径为 r,周期为 T,加
速度为
a。对行星由牛顿第二定律可得
Mm G r2
=ma=m4Tπ22
r,解得
a
=GrM2 ,T=2π
r3 GM
,由于木星到太阳的距离大约是地球到太阳距
测器则会在最短的时间内向火星迈进,无论是风险还是燃料都是最有
保障的。地球围绕太阳公转的一个周期大约是365天,而火星则是687
天,近似认为火星公转周期是地球的2倍。如果错过了这个机会,则
下次发射火星探测器的最佳日期大约为
A.2021年7月20日 C.2023年7月20日
√B.2022年7月20日
D.2024年7月20日
G(m1+m2) l2
=ω2l,所以 m1+m2=ωG2l3
,质量之和可以估算;由线
速度与角速度的关系 v=ωr 得 v1=ωr1,v2=ωr2,可得 v1+v2=ω(r1 +r2)=ωl,速率之和可以估算;质量之积和各自的自转角速度无法求 解,故选 BC。]
考向2 三星模型
图例
向心力来源
各星所受万有引力的合力提供圆周运动的向心力
新高考物理第四章 曲线运动 万有引力与航天4-5 “天体运动四大热点问题”的深入研究

向心加速度
B.在相同时间内卫星 b 转过的弧长最长,卫星 a、c 转过的弧长对应的角度相等
C.卫星 c 在 4 小时内转过的圆心角是π3,卫星 a 在 2 小时内转过的圆心角是π6 D.卫星 b 的周期一定小于卫星 d 的周期,卫星 d 的周期一定小于 24 小时
解析:卫星 a 在地球表面随地球一起转动,其万有引力等于重力与向心力之和,
3 T12 T22
C.若已知两颗卫星相距最近时的距离,可求出地球的密度
D.若已知两颗卫星相距最近时的距离,可求出地球表面的重力加速度
解析:两卫星运动方向相反,设经过时间 t 再次相遇,则有2Tπ1t+2Tπ2t=2π,解得 t=TT1+1TT2 2, A 正确;根据万有引力提供向心力得GMr2m=m4Tπ22r,A 卫星的周期为 T1,B 卫星的周
2.圈数关系 最近:Tt1-Tt2=n(n=1,2,3,…)(同向),Tt1+Tt2=n(n=1,2,3,…)(反向)。 最远:Tt1-Tt2=2n2-1(n=1,2,3,…)(同向),Tt1+Tt2=2n2-1(n=1,2,3,…)(反向)。
热点(三) 卫星变轨问题 考法(一) 卫星的变轨、对接问题 1.卫星发射及变轨过程概述 人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图所示。 (1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上。 (2)在A点点火加速,由于速度变大,万有引力不足以提供向心力,卫星 做离心运动进入椭圆轨道Ⅱ。 (3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ。 2.飞船与空间站的对接 航天飞船与宇宙空间站的“对接”实际上就是两个做匀速圆周运动的物体追赶 问题,本质仍然是卫星的变轨运行问题。
2.[卫星与赤道上物体各运行参量的比较]
(多选)有 a、b、c、d 四颗地球卫星,卫星 a 还未发射,在
高考一轮复习 专题4 天体运动的“两类热点”问题

专题四 天体运动的“两类热点”问题考点突破热点一 赤道上的物体、同步卫星和近地卫星师生共研1.同步卫星和近地卫星比较二者都是由万有引力提供向心力⎝ ⎛⎭⎪⎫GMm r 2=mv2r =m ω2r ,是轨道半径不同的两个地球卫星,应根据卫星运行参量的变化规律比较各物理量.2.同步卫星和赤道上的物体比较二者的角速度相同,即周期相等,半径不同,由此比较其他物理量.注意:赤道上的物体由万有引力和支持力的合力提供向心力,G Mm r 2=m v2r 不适用,不能按照卫星运行参量的变化规律判断.3.近地卫星和赤道上的物体比较先将近地卫星和赤道上物体分别与同步卫星比较,然后再对比二者的各物理量.例1 [2021·广州一模]如图所示,A 是地球的同步卫星,B 是地球的近地卫星,C 是地面上的物体,A 、B 、C 质量相等,均在赤道平面上绕地心做匀速圆周运动.设A 、B 、C 做圆周运动的向心加速度为a A 、a B 、a C ,周期分别为T A 、T B 、T C ,A 、B 、C 做圆周运动的动能分别为E kA 、E kB 、E kC .下列关系式正确的是( )A .aB =aC >a A B .a B >a A >a C C .T A =T B <T CD .E kA <E kB =E kC练1 国务院批复,自2016年起将4月24日设立为“中国航天日”.1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km ,远地点高度约为2 060 km ;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35 786 km 的地球同步轨道上.设东方红一号在远地点的加速度为a 1,东方红二号的加速度为a 2,固定在地球赤道上的物体随地球自转的加速度为a 3,则a 1、a 2、a 3的大小关系为( )A .a 2>a 1>a 3B .a 3>a 2>a 1C .a 3>a 1>a 2D .a 1>a 2>a 3练2 (多选)如图所示,同步卫星与地心的距离为r ,运行速率为v 1,向心加速度为a 1;地球赤道上的物体随地球自转的向心加速度为a2,第一宇宙速度为v2,地球半径为R,则下列比值正确的是( )A.a1a2=rRB.a1a2=⎝⎛⎭⎪⎫Rr2 C.v1v2=rRD.v1v2=Rr题后反思赤道上的物体(A)、近地卫星(B)和地球同步卫星(C)之间常见的运动学物理量比较如下:半径r A<r B<r C周期T A=T C>T B角速度ωA=ωC<ωB线速度v A<v C<v B向心加速度a A<a C<a B热点二卫星(航天器)的变轨及对接问题多维探究题型1|卫星变轨问题1.卫星变轨的实质两类变轨离心运动近心运动变轨起因卫星速度突然增大卫星速度突然减小受力分析G<m G>m变轨结果变为椭圆轨道运动或在较大半径圆轨道上运动变为椭圆轨道运动或在较小半径圆轨道上运动2.人造卫星的发射过程,如图所示.(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上.(2)在A点(近地点)点火加速,由于速度变大,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅱ.(3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ.例2 近年来,我国的航天事业飞速发展,“嫦娥奔月”掀起高潮.“嫦娥四号”进行人类历史上的第一次月球背面登陆.若“嫦娥四号”在月球附近轨道上运行的示意图如图所示,“嫦娥四号”先在圆轨道上做圆周运动,运动到A点时变轨为椭圆轨道,B点是近月点,则下列有关“嫦娥四号”的说法正确的是( ) A.“嫦娥四号”的发射速度应大于地球的第二宇宙速度B.“嫦娥四号”要想从圆轨道进入椭圆轨道必须在A点加速C.“嫦娥四号”在椭圆轨道上运行的周期比圆轨道上运行的周期要长D.“嫦娥四号”运行至B点时的速率大于月球的第一宇宙速度题型2|卫星的对接问题在低轨道运行的卫星,加速后可以与高轨道的卫星对接.同一轨道的卫星,不论加速或减速都不能对接.例3 [2021·南宁一模]我国是少数几个掌握飞船对接技术的国家之一,为了实现神舟飞船与天宫号空间站顺利对接,具体操作应为( )A.飞船与空间站在同一轨道上且沿相反方向做圆周运动接触后对接B.空间站在前、飞船在后且两者沿同一方向在同一轨道做圆周运动,在合适的位置飞船加速追上空间站后对接C.空间站在高轨道,飞船在低轨道且两者同向飞行,在合适的位置飞船加速追上空间站后对接D.飞船在前、空间站在后且两者在同一轨道同向飞行,在合适的位置飞船减速然后与空间站对接题型3|变轨前、后各物理量的变化规律4 2020年10月6日,诺贝尔物理学奖的一半颁给了给出黑洞形成理论证明的罗杰·彭罗斯,引起世界轰动.黑洞是近代引力理论所预言的宇宙中的一种特殊天体,在黑洞引力范围内,任何物体都不能脱离它的束缚,甚至连光也不能射出,欧洲航天局由卫星观察发现银河系中心存在一个超大型黑洞,假设银河系中心仅存一个黑洞,太阳系绕银河系中心做匀速圆周运动,则根据下列哪组数据可以估算出该黑洞的质量(引力常量为已知)( )A.太阳系的质量和太阳系绕该黑洞公转的周期B.太阳系的质量和太阳系到该黑洞的距离C.太阳系的运行速度和该黑洞的半径D.太阳系绕该黑洞公转的周期和轨道的半径题后反思航天器变轨的问题“四个判断”(1)判断速度①在两轨道切点处,外轨道的速度大于内轨道的速度.②在同一椭圆轨道上,越靠近椭圆焦点速度越大.③对于两个圆轨道,半径越大速度越小.(2)判断加速度①根据a =,判断航天器的加速度.②公式a =对椭圆不适用,不要盲目套用.(3)判断机械能①在同一轨道上,航天器的机械能守恒.②在不同轨道上,轨道半径越大,机械能一定越大.(4)判断周期:根据开普勒第三定律,行星轨道的半长轴(半径)越大周期越长.题型4|卫星的追及相遇问题行星A和B围绕恒星O做匀速圆周运动,周期分别为T A和T B.设t=0时刻,A、B和O三者共线,则三者再次共线所需要的最少时间t满足以下条件:情境图若A、B公转方向相同若A、B公转方向相反t0=0时,A、B在O同侧(A、B再次在O同侧)⎝⎛⎭⎪⎫2πT B-2πT At=2πtT B-tT A=1(A、B再次在O同侧)⎝⎛⎭⎪⎫2πT A+2πT Bt=2πtT A+tT B=1t0=0时,A、B在O异侧⎝⎛⎭⎪⎫2πT B-2πT At=πtT B-tT A=12⎝⎛⎭⎪⎫2πT A+2πT Bt=πtT A+tT B=12例5 火星冲日现象即火星、地球和太阳刚好在一条直线上,如图所示.已知火星轨道半径为地球轨道半径的1.5倍,地球和火星绕太阳运行的轨道都视为圆且两行星的公转方向相同,则( ) A.火星与地球绕太阳运行的线速度大小之比为2:3B.火星与地球绕太阳运行的加速度大小之比为4:9C.火星与地球的公转周期之比为:D.2021年10月13日前有可能再次发生火星冲日现象练3 [2021·湖南怀化一模]随着嫦娥奔月梦想的实现,我国不断刷新深空探测的“中国高度”.“嫦娥”卫星整个飞行过程可分为三个轨道段:绕地飞行调相轨道段、地月转移轨道段、绕月飞行轨道段.我们用如图所示的模型来简化描绘“嫦娥”卫星飞行过程,假设调相轨道和绕月轨道的半长轴分别为a、b,公转周期分别为T1、T2.关于“嫦娥”卫星的飞行过程,下列说法正确的是( )A.=B.“嫦娥”卫星在地月转移轨道上运行的速度应大于11.2 km/sC.从调相轨道切入到地月转移轨道时,卫星在P点必须减速D.从地月转移轨道切入到绕月轨道时,卫星在Q点必须减速练4 [2021·成都七中二诊](多选)2020年3月9日我国成功发射第54颗北斗导航卫星,意味着北斗全球组网仅差一步之遥.人造卫星的发射过程要经过多次变轨方可到达预定轨道,如图所示,在发射地球同步卫星的过程中,卫星从近地圆轨道Ⅰ的A点先变轨到椭圆轨道Ⅱ,然后在B点变轨进入地球同步轨道Ⅲ,则( )A.卫星在同步轨道Ⅲ上的运行速度小于7.9 km/sB.卫星在轨道Ⅱ稳定运行时,经过A点时的速率比过B点时小C.若卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行的周期分别为T1、T2、T3,则T1<T2<T3D.现欲将卫星由轨道Ⅱ变轨进入轨道Ⅲ,则需在B点通过点火减速来实现思维拓展卫星通信中的“阴影区”问题在卫星的通信、观测星体问题中,由于另一个星体的遮挡出现“阴影区”,解决此类问题的基本方法是:(1)建立几何模型:通过构建平面几何画图,找出被星体挡的“阴影区”.(2)建立几何关系:关键是找出两个星体转动角度之间的几何关系.例1 [2020·福州二模]有一颗绕地球做匀速圆周运动的卫星,其运行周期是地球近地卫星的2倍,卫星圆形轨道平面与地球赤道平面重合,卫星上有太阳能收集板可以把光能转化为电能,已知地球表面重力加速度为g,地球半径为R,忽略地球公转,此时太阳处于赤道平面上,近似认为太阳光是平行光,则卫星绕地球一周,太阳能收集板的工作时间为( )A. B. C. D.例2 侦察卫星对国家有极高的战略意义,尤其是极地侦察卫星.极地侦察卫星在通过地球两极的圆轨道上运行,由于与地球自转方向垂直,所以理论上可以观察到地球上任何一处.假如它的运行轨道距地面高度为h,要使卫星在一天的时间内将地面上赤道各处在日照条件的情况下全都拍摄下来,在卫星通过赤道上空时,卫星上的摄像机至少应拍摄地面上赤道圆周的弧长是多少?(设地球半径为R,地面处的重力加速度为g,地球自转的周期为T)专题四天体运动的“两类热点”问题考点突破例1 解析:C与A的角速度相同,根据a=ω2r,可知a C<a A;根据卫星的加速度a=,可知a A<a B;所以a C<a A<a B,故A项错误,B项正确;对卫星A、B,由开普勒第三定律=k,知T A>T B,卫星A是地球的同步卫星,则T A=T C,所以T A=T C>T B,故C项错误;对于卫得A、B,由v=分析知v A<v B.由于卫星A、C角速度相等,由v=ωr分析知v C<v A,所以v C<v A<v B,卫星的动能为:E k=mv2可得:E kC<E kA<E kB,故D项错误.答案:B练1 解析:由于东方红二号卫星是同步卫星,则其角速度和赤道上的物体角速度相等,根据a=ω2r,r2>r3,则a2>a3;由万有引力定律和牛顿第二定律得,G=ma,由题目中数据可以得出,r1<r2,则;综合以上分析有,a1>a2>a3,选项D正确.答案:D练2 解析:对于卫星,其共同特点是由万有引力提供向心力,有G=m,故=.对于同步卫星和地球赤道上的物体,其共同特点是角速度相等,有a=ω2r,故=.答案:AD例2 解析:“嫦娥四号”的发射速度应大于地球的第一宇宙速度7.9 km/s,小于地球的第二宇宙速度11.2 km/s,故A错误;“嫦娥四号”要想从圆轨道变轨到椭圆轨道,必须在A点进行减速,故B错误;由开普勒第三定律知=,由题图可知,圆轨道的半径r大于椭圆轨道的半长轴a,故“嫦娥四号”在圆轨道上运行的周期T1大于在椭圆轨道上运行的周期T2,所以C错误;“嫦娥四号”要想实现软着陆,运行至B点时必须减速才能变为环月轨道,故在B点时的速率大于在环月轨道上运行的最大速率,即大于月球的第一宇宙速度,故D正确.答案:D例3 解析:飞船在轨道上高速运动,如果在同一轨道上沿相反方向运动,则最终会撞击而不是成功对接,故A项错误;两者在同一轨道上,飞船加速后做离心运动,则飞船的轨道抬升,故不能采取同一轨道加速对接,故B项错误;飞船在低轨道加速做离心运动,在合适的位置,飞船追上空间站实现对接,故C项正确;两者在同一轨道飞行时,飞船突然减速做近心运动,飞船的轨道高度要降低,故不可能与同一轨道的空间站实现对接,故D项错误.答案:C例4 解析:太阳系绕银河系中心的黑洞做匀速圆周运动,万有引力提供向心力,则有G=mr=m=mω2r=mωv,分析可知,要计算黑洞的质量M,需知道太阳系的公转周期T与轨道半径r,或者线速度v与轨道半径r,或者轨道半径r与角速度ω,或者角速度ω、线速度v与轨道半径r,选项A、B、C 错误,D正确.答案:D例5 解析:火星和地球绕太阳做圆周运动,万有引力提供向心力,有G=m=ma=m r,得v=,a=,T=2π.由v=可知v∝,则火星与地球的公转线速度大小之比为,选项A错误;由a=可知a∝,则火星与地球的向心加速度大小之比为4∶9,选项B正确;由T=2π可知T∝,则火星与地球公转周期之比为3∶2,选项C错误;再次相距最近时,地球比火星多转动一周,则据此有t=2π,其中T火∶T地=3∶2,解得t≈2.2年,故下一次发生火星冲日现象的时间为2022年10月13日前后,选项D错误.答案:B练3 解析:根据开普勒第三定律,调相轨道与绕月轨道的中心天体分别对应地球和月球,故它们轨道半长轴的三次方与周期的二次方比值不相等,故A错误;11.2 km/s是第二宇宙速度,是地球上发射脱离地球束缚的卫星的最小发射速度,由于嫦娥卫星没有脱离地球束缚,故其速度小于11.2 km/s,故B错误;从调相轨道切入到地月转移轨道时,卫星的轨道将持续增大,故卫星需要在P点做离心运动,故在P 点需要加速,故C错误;从地月转移轨道切入到绕月轨道时,卫星相对月球而言,轨道半径减小,需要在Q点开始做近心运动,故卫星需在Q点减速,故D正确.答案:D练4 解析:卫星绕地球做匀速圆周运动,万有引力提供向心力,有=,得v=.可知卫星运动半径r越大,运行速度v越小,所以卫星绕近地轨道运行时速度最大,即地球的最大的环绕速度(7.9 km/s),则卫星在同步轨道Ⅲ上的运行速度小于7.9 km/s,选项A正确.卫星在轨道Ⅱ上从A向B运动过程中,万有引力对卫星做负功,动能逐渐减小,速率也逐渐减小,所以卫星在轨道Ⅱ上过A点的速率比卫星在轨道Ⅱ上过B点的速率大,选项B错误.设卫星在轨道Ⅰ上运行的轨道半径为r1、轨道Ⅱ的半长轴为r2、在轨道Ⅲ上运行的轨道半径为r3.根据图中几何关系可知r1<r2<r3,又由开普勒第三定律有=k,可得T1<T2<T3,选项C正确.卫星在B点要进入Ⅲ必须加速做离心运动,所以卫星在B点通过点火加速可实现由轨道Ⅱ进入轨道Ⅲ,选项D错误.答案:AC思维拓展典例1 解析:地球近地卫星做匀速圆周运动,根据牛顿第二定律:mg=mR T=2π,此卫星运行周期是地球近地卫星的2倍,所以该卫星运行周期T′=4π,由=m′r,=m′g,得r=2R.如图,当卫星在阴影区时不能接受阳光,据几何关系:∠AOB=∠COD=,卫星绕地球一周,太阳能收集板工作时间为:t=T′=.答案:C典例2 解析:设卫星运行周期为T1,则有G=(h+R)物体处于地面上时有G=m0g解得T1=在一天内卫星绕地球转过的圈数为,即在一天中有次经过赤道上空,所以每次摄像机拍摄的赤道弧长为s==T1,将T1代入,可得s=.答案:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天体问题中几个重要的区别
1、自转周期和公转周期的区别
例:已知太阳光传播到地球需t=500s ,地球同步卫星距地面的高度h=3.6*104km ,试估算太阳和地球的质量。
2、不同公式中r 的区别
3、“近地卫星”与“赤道上物体”的不同
两者的本质区别是向心力问题,近地卫星的向心力的大小等于地球对卫星的万有引力的大小,卫星处于完全失重状态,故有R v m R GMm 22==R T m 22⎪⎭
⎫ ⎝⎛π。
由此可得近地卫星的线速度为m km gR R
GM v /9.7=== 即其大小等于第一宇宙速度,周期T=85min 赤道上的物体做圆周运动的周期与地球自转周期相同,T 自=24h ,随地球自转的向心力是由地球对物体万有引力的一个分力来提供的,其大小为
R v m R T m F 22
2=⎪⎪⎭⎫ ⎝⎛=自π可知向心力F 很小,赤道上的物体的线速度为V=0.47km/s
4、同步卫星运动与赤道上物体随地球自转运动的不同
例:某地球同步卫星离地心距离为r ,运行速度为v 1,加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2;第一宇宙速度为v 2,地球的半径为R 。
则下列比例式正确的是
( ) A R r a a =21 B 221⎪⎭
⎫ ⎝⎛=r R a a C R r v v =21 D r R v v =21 5、重力与万有引力的区别 例:月球质量为地球质量的811,月球半径是地球半径的4
1,以同一初速度在地球上和月球上竖直上抛一物体,求两者上升的高度之比。
6、向心力与万有引力的区别
例:设地球半径为R 0,质量为m 的卫星在距离地面R 0的高度处做匀速圆周运动,地面的重力加速度为g ,则
A. 卫星的线速度为220gR
B. 卫星的角速度为0
8R g C.卫星的加速度为4g D.卫星的周期为2πg
R 02
7、重力与向心力的区别
例:某人在一星球上以速率v 竖直上抛一物体,经时间t 落回手中。
已知该星球半径为R ,则至少以多大的速度沿星球表面发射一物体,才能使其不落回该星球 A r vt B t vR 2 C t VR D t
vR 2 8、向心加速度与重力加速度的区别
例:人造地球卫星在进入轨道做匀速圆周运动时,卫星内的物体
A.处于完全失重状态,所受重力为0
B.处于完全失重状态,但仍然受重力作用
C.所受的重力提供它跟随卫星一起做匀速圆周运动的向心力
D.处于平衡状态,即所受合外力为0
9、人造地球卫星运行速度和发射速度的区别
例:有甲乙两颗人造地球卫星,分别沿半径为R 甲和R 已的轨道饶地心做匀速圆周运动,已知R 甲>R 已,则两卫星饶地心运行的线速度的关系为V 甲_____V 乙,两卫星需要的发射速度的关系为V 甲/_____V 乙/。