第十章重积分
高等数学(下)课件D10_习题课

f ( x, y )dy
(2) I= ∫1 dy ∫1 f ( x, y )dx + ∫ dy ∫ f ( x, y )dx
2 y 1 y
2
2
2
2
解:根据积分限可得积分区域
1 1 D = {( x, y ) | ≤ y ≤ 1, ≤ x ≤ 2} 2 y U{( x, y ) |1 ≤ y ≤ 2, y ≤ x ≤ 2}
2 2 1 1 D − x 1
1 1 1[+−)1x 1(|−x 2 2 2 d − | 31 = ∫( x y ] = ∫ x ) − 1 d x − − 1 1 3 3 1 2 x1 = =∫3 ) 1 − ( −x . d 0 3 2 3
D 直x 及 2 3 ∫ y ,其是 =2 物 线 线 例算 σ 中由y − 抛yx 计x = d ∫
6、会用二重积分计算质量、质心、一阶矩和转动惯 量等。 7、掌握第一型曲面积分的概念,会确定曲面在坐标 平面上的投影区域,会计算简单曲面上的第一型 曲面积分。 8、对三重积分可以理解为密度函数为的所占的区域 为的物体的质量。理解这一点对三重积分的许多 性质的理解有极大的帮助。 9、还应将三重积分和以前各类积分比较,一方面可 以加强理解,另一方面也使同学不易忘记和混淆。
xσ [ xx d ∫ y = yy] ∫ d ∫∫ dy 1
22 D
3 4 2 x2y 2 yyd [2 y2 9 = y ] = 2 ) = −] . [ ( y 1 ∫ ⋅2d ∫ − y y 8= 1 1 8 2 2
D 直1 = 2 ∫ +−d 其是 = x 1 线 − 例算12 yσ 中由y 、 计y x 2 , ∫
二重积分

0
0
D
∫ ∫ =
π 0
(x2 y − 1 3
y3)
sin x 0
dx
=
π (x2 sin x − 1 sin3 x)dx
0
3
∫ ∫ =
π x2 sin xdx − 1 (2
π
2 sin3 xdx)
0
30
∫ =
(−x2
cos x)
π 0
+
2
π 0
x cos xdx − 1 (2 • 3
2) 3
∫ = π 2
D
次积分,其中积分区域 D 为:
∫∫ ∫∫ ( y2 − x)dσ = 2 ( y2 − x)dσ = − 24
D
D1
5
(3) ∫∫ (x 2 − y 2 )dσ , D : 0 ≤ y ≤ sin x,0 ≤ x ≤ π .
D
∫∫ ∫ ∫ 解:
(x2 − y2 )dσ =
π
dx
sin x (x2 − y2 )dy
≤y r2
≤r − y2
≤
x≤
,故
r2 − y2
∫ ∫ ∫∫
f (x, y)dσ
=
r dy
0
r2 − y2 − r2−y2
f (x, y)dx
D
(3)环形闭区域:1 ≤ x 2 + y 2 ≤ 4 .
D : X − 型区域
⎧⎪−2 ≤ x ≤ −1
⎨ ⎪⎩−
4 − x2 ≤ y ≤
4−
x2
∪
⎧⎪−1 ≤ ⎨ ⎪⎩2 )
3−2 y2 y2
dy
=
1 (y2x −
−1
高数 重积分 (1)

高数资料第十章重积分重积分积分类型计算方法典型例题二重积分()σd,⎰⎰=DyxfI平面薄片的质量质量=面密度⨯面积(1)利用直角坐标系X—型⎰⎰⎰⎰=Dbaxxdyyxfdxdxdyyxf)()(21),(),(φφY—型⎰⎰⎰⎰=d c y yDdxyxfdydxdyyxf)()(21),(),(ϕϕP141—例1、例3(2)利用极坐标系使用原则(1) 积分区域的边界曲线易于用极坐标方程表示( 含圆弧,直线段);(2) 被积函数用极坐标变量表示较简单( 含22()x yα+, α为实数)21()()(cos,sin)(cos,sin)Df d dd f dβϕθαϕθρθρθρρθθρθρθρρ=⎰⎰⎰⎰02θπ≤≤0θπ≤≤2πθπ≤≤P147—例5(3)利用积分区域的对称性与被积函数的奇偶性当D关于y轴对称时,(关于x轴对称时,有类似结论)P141—例2应用该性质更方便110(,)(,)(,)2(,)(,)(,)(,)D f x y x f x y f x y I f x y dxdyf x y x f x y f x y D D ⎧⎪⎪-=-⎪⎪=⎨⎪⎪-=⎪⎪⎩⎰⎰对于是奇函数,即对于是偶函数,即是的右半部分计算步骤及注意事项1. 画出积分区域2. 选择坐标系 标准:域边界应尽量多为坐标轴,被积函数关于坐标变量易分离3. 确定积分次序 原则:积分区域分块少,累次积分好算为妙 4. 确定积分限 方法:图示法 先积一条线,后扫积分域 5. 计算要简便 注意:充分利用对称性,奇偶性三重积分⎰⎰⎰Ω=dvz y x f I ),,(空间立体物的质量(1) 利用直角坐标⎩⎨⎧截面法投影法投影⎰⎰⎰⎰⎰⎰=Ωbay x z y x z x y x y z z y x f y x V z y x f ),(),()()(2121d ),,(d d d ),,(P159—例1P160—例2(2) 利用柱面坐标 cos sin x r y r z z θθ=⎧⎪=⎨⎪=⎩相当于在投影法的基础上直角坐标转换成极坐标 适用范围:○1积分区域表面用柱面坐标表示时方程简单;如 旋转体 ○2被积函数用柱面坐标表示时变量易分离.如2222()()f x y f x z ++ 21()()(,,)d d d (cos ,sin ,)d b r ar f x y z V z f z βθαθθρθρθρρΩ=⎰⎰⎰⎰⎰⎰P161—例3(3)利用球面坐标 cos sin cos sin sin sin cos x r y r z r ρθϕθρθϕθϕ==⎧⎪==⎨⎪=⎩dv r drd d =2sin ϕϕθ适用范围:○1积分域表面用球面坐标表示时方程简单;如,球体,锥体. P165—10-(1)质量=密度⨯面积○2被积函数用球面坐标表示时变量易分离. 如,222()f x y z++ 222111(,)2(,)d d(sin cos,sin sin,cos)sin d I fαβρθϕαβρθϕϕθρϕθρϕθρϕρϕρ=⎰⎰⎰(4)利用积分区域的对称性与被积函数的奇偶性。
重积分(解题方法归纳)Word版

第十章 重积分解题方法归纳一、重积分的概念、性质重积分的定义是一个黎曼和的形式,对于一些和式的极限问题,有时可根据定义,将其转化为重积分,再利用重积分的计算方法求解. 另外很多考试在选择题或填空题中,直接考查重积分的性质,常考的性质一般有:比较性质、对称性质、中值定理等.例1 (2010年考研 数一、数二)2211lim ()()→∞==++∑∑nnn i j nn i n j =( ) 11211()()(1)(1)(1)(1)++++⎰⎰⎰⎰xxA dx dyB dx dy x y x y11112000011()()(1)(1)(1)(1)++++⎰⎰⎰⎰C dx dyD dx dy x y x y解 由于 222211111()()=====++++∑∑∑∑nnnni j i j n nn i n j n i n j而 10111111lim lim 11→∞→∞====+++∑∑⎰nn n n i i dx i n in x n12220211111lim lim 11()→∞→∞====+++∑∑⎰nn n n j j n dy j n j n y n 因此 1122200111lim ()()(1)(1)→∞===++++∑∑⎰⎰nnn i j n dx dy n i n j x y 故选()D .『方法技巧』 当遇到黎曼和的形式时,经常考查积分的定义式,在积分中,积分变量的符号是任意的,可根据题目的要求选取.例2 设(,,)f x y z 在{}2222(,,)Ω=++≤R x y z x y z R 上连续,又(0,0,0)0≠f ,则0→R 时,(,,)Ω⎰⎰⎰Rf x y z dv 是R 的 阶无穷小.解 由题意 要确定 0(,,)lim0Ω→=≠⎰⎰⎰RnR f x y z dva R 中的n .由积分中值定理知,存在000(,,)∈ΩR x y z ,使得30004(,,)(,,)3πΩ=⎰⎰⎰Rf x y z dv f x y z R 因此 30003300(,,)(,,)4lim lim (0,0,0)03πΩ→→==≠⎰⎰⎰RR R f x y z dvf x y z R f R R故 3=n ,即(,,)Ω⎰⎰⎰Rf x y z dv 是R 的3阶无穷小.『方法技巧』 要将被积函数从积分号内取出时,常会用到积分中值定理,尤其在证明题中经常遇到.二、重积分的计算方法当给定被积函数和积分区域时,重积分是一个确定的数值.对于简单的函数,用性质或几何意义即可求得积分值;对一般函数,需要化为累次积分计算.1.重积分的计算方法归纳如下:(1) 利用重积分的性质计算重积分.(2) 利用重积分的几何意义(针对二重积分)计算重积分. (3) 直角坐标系下计算重积分.(4) 极坐标系、柱面坐标系和球面坐标系下,计算重积分. (5) 利用换元法计算重积分.2. 在具体计算时,常用到如下一些结论: (1)若积分区域D 关于x (或y )轴对称,则10 (,)(,)(,)2(,)(,)(,)DD f x y f x y f x y d f x y d f x y f x y σσ-=-⎧⎪=⎨-=⎪⎩⎰⎰⎰⎰(或10 (,)(,)(,)2(,)(,)(,)σσ-=-⎧⎪=⎨-=⎪⎩⎰⎰⎰⎰DD f x y f x y f x y d f x y d f x y f x y )其中1D 是D 在x (或y )轴上(或右)方的部分. (2)若积分区域D 关于直线y x =对称,则10 (,)(,)(,)2(,)(,)(,)DD f x y f x y f x y d f x y d f x y f x y σσ=-⎧⎪=⎨=⎪⎩⎰⎰⎰⎰其中1D 是D 在直线y x =上方的部分.(3)若积分区域Ω关于xOy (或,yOz zOx )面对称,则10 (,,)(,,)(,,)2(,,)(,,)(,,)ΩΩ-=-⎧⎪=⎨-=⎪⎩⎰⎰⎰⎰⎰⎰f x y z f x y z f x y z dv f x y z dv f x y z f x y z (或10 (,,)(,,)(,,)2(,,)(,,)(,,)ΩΩ-=-⎧⎪=⎨-=⎪⎩⎰⎰⎰⎰⎰⎰f x y z f x y z f x y z dv f x y z dv f x y z f x y z , 10 (,,)(,,)(,,)2(,,)(,,)(,,)ΩΩ-=-⎧⎪=⎨-=⎪⎩⎰⎰⎰⎰⎰⎰f x y z f x y z f x y z dv f x y z dv f x y z f x y z ) 其中1Ω是Ω在xOy (或,yOz zOx )面上(或前,右)方的部分.(4)若积分区域D 是X (或Y )型域,即12:()()a x b D x y x ϕϕ≤≤⎧⎨≤≤⎩(或12:()()c y d D y x y ψψ≤≤⎧⎨≤≤⎩),则二重积分 21()()(,)(,)ϕϕσ=⎰⎰⎰⎰bx a x Df x y d dx f x y dy (或21()()(,)(,)ψψσ=⎰⎰⎰⎰dy cy Df x y d dy f x y dx )(5)若极点O 在积分区域D 内或边界上,即02:0()D θπρϕθ≤≤⎧⎨≤≤⎩,则二重积分2()(,)(cos ,sin )(cos ,sin )DDf x y d f d d d f d πϕθσρθρθρρθθρθρθρρ==⎰⎰⎰⎰⎰⎰(6)若极点O 在积分区域D 外,即12:()()D αθβϕθρϕθ≤≤⎧⎨≤≤⎩,则二重积分21()()(,)(cos ,sin )(cos ,sin )DDf x y d f d d d f d βϕθαϕθσρθρθρρθθρθρθρρ==⎰⎰⎰⎰⎰⎰(7)若积分区域{}12(,,)(,)(,),(,)Ω=≤≤∈xy x y z z x y z z x y x y D (或{}12(,,)(,)(,),(,)Ω=≤≤∈yz x y z x y z x x y z y z D , {}12(,,)(,)(,),(,)Ω=≤≤∈zx x y z y z x y y z x z x D )则三重积分(投影法)21(,)(,)(,,)(,,)Ω=⎰⎰⎰⎰⎰⎰xyz x y z x y D f x y z dv dxdy f x y z dz (或21(,)(,)(,,)(,,)Ω=⎰⎰⎰⎰⎰⎰yzx y z x y z D f x y z dv dydz f x y z dx21(,)(,)(,,)(,,)Ω=⎰⎰⎰⎰⎰⎰zxy z x y z x D f x y z dv dzdx f x y z dy )(8)若积分区域{}(,,),(,)Ω=≤≤∈z x y z a z b x y D (或{}(,,),(,)Ω=≤≤∈x x y z c x d y z D ,{}(,,),(,)Ω=≤≤∈y x y z m y n z x D ) 则三重积分(截痕法)(,,)(,,)Ω=⎰⎰⎰⎰⎰⎰zbaD f x y z dv dz f x y z dxdy (或(,,)(,,)Ω=⎰⎰⎰⎰⎰⎰xdcD f x y z dv dx f x y z dydz ,(,,)(,,)Ω=⎰⎰⎰⎰⎰⎰ynmD f x y z dv dy f x y z dzdx )(9)若积分区域{}12(,,)(,)(,),(,)ρρθρθρθρθΩ=≤≤∈O z z z z D (或{}12(,,)(,)(,),(,)ρρθρθρθρθΩ=≤≤∈O x x x x D ,{}12(,,)(,)(,),(,)ρρθρθρθρθΩ=≤≤∈O y y y y D )则三重积分(柱面坐标)(,,)(cos ,sin ,)ρθρθρρθΩΩ=⎰⎰⎰⎰⎰⎰f x y z dv f z d d dz21(,)(,)(cos ,sin ,)ρρθρθρρθρθρθ=⎰⎰⎰O z z D d d f z dz(或(,,)(cos ,sin ,)ρθρθρρθΩΩ=⎰⎰⎰⎰⎰⎰f x y z dv f z d d dz21(,)(,)(cos ,sin ,)ρρθρθρρθρθρθ=⎰⎰⎰O x x D d d f x dx(,,)(cos ,sin ,)ρθρθρρθΩΩ=⎰⎰⎰⎰⎰⎰f x y z dv f z d d dz21(,)(,)(cos ,sin ,)ρρθρθρρθρθρθ=⎰⎰⎰O y y D d d f y dy )(10)若积分区域{}1212(,,)(,)(,),()(),ϕθϕθϕθϕθϕϕθαθβΩ=≤≤≤≤≤≤r r r r则三重积分(球面坐标)2(,,)(sin cos ,sin sin ,cos )sin f x y z dv f r r r rdrd d ϕθϕθϕϕϕθΩΩ=⎰⎰⎰⎰⎰⎰2211()(,)2()(,)sin (sin cos ,sin sin ,cos )r r d d f r r r r dr βϕθϕθαϕθϕθθϕϕϕθϕθϕ=⎰⎰⎰(1) 计算重积分的步骤:(1)二重积分画出积分区域D 的草图;三重积分想象出积分区域Ω的图形; (2)选取坐标系(依据D 或Ω的形状和被积函数(,)f x y 或(,,)f x y z 的形式);(3)选择积分次序;(4)确定累次积分的上、下限,分别计算定积分.例3 设{}222(,),0D x y x y a a =+≤>,若Dπ=,则a =( ).()1()()()A B C D 解由于被积函数z =a 的上半个球面,根据二重积分的几何意义知,D等于以D 为底,z =31423Da ππ==因此 a =()B . 『方法技巧』 当被积函数是我们比较熟悉的曲面时,首先要考虑二重积分的几何意义.本题也可直接利用极坐标计算二重积分.例4 设{}(,)1D x y x y =+≤,计算二重积分()Dx y dxdy +⎰⎰.解 积分区域D 如图10.35所示,它关于x 轴、y 轴及原点对称,1D 为D 在第一象限部分.()DDDx y dxdy x dxdy ydxdy +=+⎰⎰⎰⎰⎰⎰对于二重积分Dx dxdy ⎰⎰,由于被积函数对变量x均为偶函数,由二重积分的对称性知14DD x dxdy xdxdy =⎰⎰⎰⎰.对于二重积分Dydxdy ⎰⎰,由于被积函数对y 为奇函数,由二重积分的对称性知0Dydxdy =⎰⎰.故1110()44xDD x y dxdy xdxdy dx xdy -+==⎰⎰⎰⎰⎰⎰124(1)3x x dx =-=⎰ 『方法技巧』 当积分区域关于x 轴或y 轴对称时,首先要考虑被积函数是否存在对变量x 和y 的奇、偶性,若存在,可以先化简,再计算,这样会简化运算过程. 本题也可直接利用直角坐标计算二重积分.例5 设{}22(,)1,1D x y x y x y =+≤+≥,计算二重积分22x ydxdy x y++⎰⎰. 解 积分区域D 如图10.36所示,由于积分区域 与圆有关,被积函数中含有22x y +,因此采用极坐标.2211x y ρ+=⇒=11sin cos x y ρθθ+=⇒=+所以 1(,)1,0sin cos 2D πρθρθθθ⎧⎫=≤≤≤≤⎨⎬+⎩⎭,故222cos sin (cos sin )D D Dx y dxdy d d d d x y ρθρθρρθθθρθρ++==++⎰⎰⎰⎰⎰⎰ 1221sin cos (cos sin )(cos sin 1)22d d d ππθθπθθθρθθθ+=+=+-=-⎰⎰⎰『方法技巧』 当积分区域与圆(圆、圆环、扇形)有关,被积函数中含有22x y +、x y 或yx时,一般计算二重积分时,会考虑利用极坐标. 例6 设{}22(,)D x y x y x y =+≤+,计算二重积分()Dx y dxdy +⎰⎰.解 积分区域是由圆周22111()()222x y -+-=围成的,令1212u x v y ⎧=-⎪⎪⎨⎪=-⎪⎩,则作变换11,22x u y v =+=+,将xOy 面上的闭区域D 转化为uOv 面上的闭区域221(,)2D u v u v ⎧⎫'=+≤⎨⎬⎩⎭,则 10(,)(,)1001(,)x y J u v u v ∂===≠∂因此()(1)(1)DD D x y dxdy u v J dudv u v dudv ''+=++=++⎰⎰⎰⎰⎰⎰又由于D '关于u 轴、v 轴均对称,所以()0D u v dudv '+=⎰⎰,故2()()22DD x y dxdy dudv ππ'+===⎰⎰⎰⎰『方法技巧』 当复杂的积分区域D 可经过坐标变换(平移或旋转),变成简单区域D '时,一般会用二重积分的换元法.例7 设{}2222222(,,),,0Ω=++≤+≤≥x y z x y z R x y z z ,将三重积分(,,)Ω⎰⎰⎰f x y z dv 在三种坐标系下化为累次积分.解 积分区域Ω如图10.37所示.在直角坐标系下,先对z 积分,作平行于z 轴并与其方向一致的射线穿入Ω,穿进的曲面=z 是变量z 的下限,穿出的曲面=z是变量z 的下限,再将Ω投影 到xOy 面得闭区域(,)⎧⎫⎪⎪=≤≤≤≤⎨⎬⎪⎪⎩⎭xy D x yy x在xy D 上将二重积分转化为二次积分,故(,,)(,,)Ω=⎰⎰⎰f x y z dv dx f x y z dz在柱面坐标系下,将Ω转化为柱面坐标系下的积分区域,即(,,),022ρθρρθπ⎧⎫⎪⎪Ω=≤≤≤≤≤≤⎨⎬⎪⎪⎩⎭z z R则(,,)(cos,sin,)ρθρθρρθΩΩ=⎰⎰⎰⎰⎰⎰f x y z dv f z d d dz200(cos,sin,)πρθρρθρθρ=⎰d d f z dz 在球面坐标系下,将Ω转化为球面坐标系下的积分区域,即(,,)0,0,024πϕθϕθπ⎧⎫Ω=≤≤≤≤≤≤⎨⎬⎩⎭r r R则2(,,)(sin cos,sin sin,cos)sinf x y z dv f r r r r d d dϕθϕθϕϕρθϕΩΩ=⎰⎰⎰⎰⎰⎰224000sin(sin cos,sin sin,cos)ππθϕϕϕθϕθϕ=⎰⎰⎰Rd d f r r r r dr『方法技巧』有些三重积分既可用直角坐标计算,也可用柱面坐标和球面坐标计算,甚至直角坐标可以用投影法计算,还可用截痕法计算,但计算的难易程度还是有区别的,需要同学加强这方面的练习,以便在考试中,以最快的速度找出最简单的计算方法.三、交换积分次序交换积分次序的题目,在考试中选择题和填空题居多,且大多数为二重积分,题型可分为以下几类:(1)给出一种次序的二次积分,要求交换成另一种次序的二次积分;(2)给出一种次序的二次积分,要求计算此积分(一般按给定次序不能进行计算);(3)计算一个二重积分(只有一种次序的二次积分可以计算);(4)直角坐标系下的二次积分与极坐标系下的二次积分互相转化.(5)证明一个二次积分等于一个定积分时,需要先交换二次积分的积分次序.例8计算sin=⎰⎰DxI dxdyx,其中积分区域D是由直线=y x及抛物线2=y x围成的闭区域.解积分区域D如图10.38所示.积分区域既是X型又是Y型区域,但被积函数为sin =xy x,若对x 积分时,不能得到原函数,故化为二次积分时,只能先对y 后对x 积分,故21100sin sin (1)sin 1sin1===-=-⎰⎰⎰⎰⎰x x Dxx I dxdy dx dy x xdx x x『方法技巧』 二重积分用任何次序都可转化为二次积分,但并不代表用任何次序的二次积分都可以求出结果,因此,做题时,若一种次序的二次积分计算非常繁琐,就需要考虑换一种积分次序试一试,尤其当被积函数中含有sin xx、2x e 等函数时,要特别注意. 例9 证明211()()=-⎰⎰y x dy f x dx e e dx证 在左边的二次积分中,由于被积函数含有 未知函数()f x ,而积分变量又是x ,因此不能按给 定次序求出定积分,需要交换积分次序. 首先还原成 二重积分的积分区域D ,如图10.39所示.左边=2211111()()()==⎰⎰⎰⎰⎰y y y xxdy f x dx dx e f x dy f x dx e dy221110()()()()==-⎰⎰yx x f x e dx e e f x dx =右边 证毕.四、重积分的几何应用和物理应用在几何上,二重积分可以求平面图形的面积、曲顶柱体的体积及空间曲面的面积等,三重积分可以求空间区域的体积.在物理上,重积分可以求物体的质量、质心(形心)坐标及转动惯量等. 在具体计算时,常用到如下一些结论: (1)()σ=⎰⎰Dd A D 的面积(2)(,)((,))σ=⎰⎰Df x y d V D f x y 以为底,为顶的曲顶柱体的体积(3)()Ω=Ω⎰⎰⎰dv V 的体积(4)()=∑DA 的面积其中D 为曲面:(,)∑=z f x y 在xOy 面的投影区域.(5)(,)()ρσ=⎰⎰Dx y d M xOy D 占平面上区域的物体的质量(,,)()ρΩ=Ω⎰⎰⎰x y z dv M 占空间区域的物体的质量(6) 质心坐标平面物体的质心坐标: (,)(,),(,)(,)ρσρσρσρσ==⎰⎰⎰⎰⎰⎰⎰⎰DDDDx x y d y x y d x y x y d x y d空间物体的质心坐标:(,,)(,,)(,,),,(,,)(,,)(,,)ρρρρρρΩΩΩΩΩΩ===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰x x y z dvy x y z dvz x y z dvx y z x y z dvx y z dvx y z dv当密度均匀时,质心也称为形心.(7) 转动惯量平面物体的转动惯量:22(,),(,)ρσρσ==⎰⎰⎰⎰x y DDI y x y d I x x y d空间物体的转动惯量:2222()(,,),()(,,)ρρΩΩ=+=+⎰⎰⎰⎰⎰⎰x y I y z x y z dv I z x x y z dv22()(,,)ρΩ=+⎰⎰⎰z I x y x y z dv在(5)—(7)中,(,)ρx y 和(,,)ρx y z 分别表示物体的面密度和体密度.例10 设{}2222(,,)()()()Ω=-+-+-≤x y z x a y b z c R ,则()Ω++⎰⎰⎰x y z dv = .解 利用球的形心坐标公式31(,,)(,,),,,,43πΩΩΩΩΩΩΩΩΩ⎛⎫⎛⎫ ⎪=== ⎪ ⎪⎝⎭ ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰xdv ydv zdv a b c x y z xdv ydv zdv dv dv dv R 因此 333444,,333πππΩΩΩ===⎰⎰⎰⎰⎰⎰⎰⎰⎰xdv aR ydv bR zdv cR 故34()()3πΩΩΩΩ++=++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰x y z dv xdv ydv zdv a b c R例11 设{}22(,)2=+≤D x y x y y ,计算(4)σ--⎰⎰Dx y d .解 由于积分区域D 是圆域,关于y 轴对称,且形心(圆心)为(0,1),半径为1,因此,1σσσπ===⎰⎰⎰⎰⎰⎰DDDxd yd d故(4)4403σσσσπππ--=--=--=⎰⎰⎰⎰⎰⎰⎰⎰DDDDx y d d xd yd『方法技巧』 以上两题说明,若积分区域的形状是规则的(如圆形、球形、柱形等),形心坐标很容易看出,在计算被积函数为x 、y 或z 的积分时,可以逆向利用形心坐标公式,使得计算更加简单(此方法非常实用).友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!。
高等数学(II)(第十章、重积分)

27
Z
A ( x )
(x)
z f ( x, y)
2
1
(x)
f ( x , y ) dy
y
1( x )
所以:
2(x)
2 (x)
D
f(x,y)dxdy
b
A(x)dx
a
[
a
b
f(x .y ) dy ]dx
1 (x)
3-12
28
注意: 1)上式说明: 二重积分可化为二次定 积分计算;
2)积分次序: X-型域 3)积分限确定法: 先Y后X;
域中一线穿—定内限, 域边两线夹—定外限
为方便,上式也常记为:
b
dx
a
2 (x)
f(x .y ) dy
1 (x)
29
3、Y-型域下二重积分的计算:
同理:
d
x 1( y)
D
x 2( y)
c
D
f ( x, y )d
6
得 (3) 求和. 将这 n 个小平顶柱体的体积相加,
到原曲顶柱体体积的近似值,即
V
i1
n
V i f ( i , i ) i .
i1
n
(4) 取极限. 将区域 D 无限细分且每一个子域趋 向于缩成一点, 这个近似值就趋向于曲顶柱体的体
积, 即
V lim
0
将区域 D 任意分成 n 个小区域
任取一点 若存在一个常数 I , 使 记作
则称 f ( x , y )
可积 , 称 I 为 f ( x , y ) 在D上的二重积分.
高等数学第十章重积分

高等数学第十章重积分1. 引言在高等数学中,积分是一个重要的概念。
在之前的学习中,我们学习了定积分和不定积分的概念和性质。
在本章中,我们将进一步学习一种扩展的积分形式,即重积分。
2. 重积分的引入和定义重积分是一种将函数在二维或更高维空间内的区域上进行积分的方法。
它的引入主要是为了解决在二维平面上对非矩形区域进行积分的问题。
在计算重积分之前,我们首先需要定义积分区域。
对于二维平面上的区域,我们可以使用极坐标或直角坐标来描述。
对于更高维的区域,我们则需要使用其他的坐标系。
一般来说,重积分可以分为两类:累次积分和二重积分。
累次积分是指先对一个变量进行积分,然后再对另一个变量进行积分。
而二重积分则是指在一个积分符号下同时对两个变量进行积分。
对于二重积分,我们可以使用迭代积分和换元积分的方法来计算。
迭代积分是将一个二重积分转化为两个累次积分的过程,而换元积分是利用变量替换的方法来简化计算。
3. 重积分的性质重积分具有一些和定积分相似的性质。
例如,重积分具有线性性质和保号性质。
线性性质指的是对于两个函数的重积分,其和函数的重积分等于两个函数分别取重积分后再相加。
保号性质指的是如果函数在积分区域上恒大于等于0,则函数的重积分也大于等于0。
此外,重积分还具有可加性和可积性。
可加性指的是如果一个积分区域可以被分割为多个不相交的子区域,则重积分可以拆分成多个子区域的重积分之和。
可积性指的是如果一个函数在有界闭区域上连续或只有有限个间断点,那么该函数的重积分存在。
4. 重积分的应用重积分在物理学、经济学和几何学等领域中有着广泛的应用。
在物理学中,我们可以使用重积分来计算物体的质心、面积、体积等性质。
在经济学中,我们可以使用重积分来计算市场需求曲线和供给曲线之间的面积,从而得到市场的总需求量和总供给量。
在几何学中,重积分可以用来计算平面和空间中的曲线长度、曲面面积和体积。
例如,我们可以使用重积分来计算球体的体积和球冠的体积。
10-5 三重积分的概念与性质 (1)
x
y
Dxy : x 2 y2 4.
zdv
2
2 1 2 64 4 d (16 )d . 0 2 0 3
0
d d 2 zdz
0
2
4
12
(2)当 f ( x , y, z ) 在闭区域上连续时, 定义中和 式的极限必存在,即三重积分必存在.
(3)三重积分与二重积分有类似的性质。 (4)三重积分的物理意义:如果被积函数表示空 间物体的体密度,则三重积分表示物体的质量。
4
三重积分的直角坐标形式
z
已知三重积分存在的前提下 在直角坐标系下用平行于三 个坐标面的三组平面来划分区域 Ω,则典型小区域是长方体,
第十章 重积分
第三节 三重积分的概念
1
一、三重积分的概念
定义 设 f ( x , y, z ) 是空间有界闭区域 上的有界 , 函数,将 任意分成 n 个小闭区域 v1 , v2 , 上任取一点 (i ,i , i ) , 作乘积 f (i ,i , i ) v i , 并作和
在每个 vi vn , v i 也表示第 i 个小闭区域的体积,
( i 1,2,, n) ,
f ( , , )v ,
i 1 i i i i
2
n
如果当各小闭区域的直径中的最大值 趋近于零 时,这和式的极限存在,则称此极限为函数 f ( x, y, z ) 在闭区域 上的三重积分, 记为
o
x
v
x
z
y
y
则体积元素为 dv xyz dxdydz
故三重积分可写为
f ( x, y, z )dv f ( x, y, z )dxdydz.
同济大学(高等数学)_第十章_重积分
D
f (x, y)d
D
n
lim f ( 0i 1
i,
i )Δ
i,
(10-1-1)
其中 D 叫做积分区域, f ( x , y ) 叫做被积函数, dσ叫做面积元素, f (x , y)dσ叫做被积表达
n
式, x 与 y 叫做积分变量,
f ( ξi ,ηi )Δσi 叫做积分和 .
i1
在直角坐标系中,我们常用平行于 x 轴和 y 轴的直线 ( y =常数和 x =常数 )把区域 D 分割成
小矩形,它的边长是 x 和 Δy ,从而 Δσ Δx Δy ,因此在直角坐标系中的面积元素可写成
d dx dy ,二重积分也可记作
n
f (x, y)dxdy lim 0
f ( i, i ) i .
D
i1
有了二重积分的定义, 前面的体积和质量都可以用二重积分来表示
数 z f (x , y ) 在区域 D 上的二重积分
x
2
yd
,D
{ x, y |x 2
y2
D
a2} ;
(2)
a2
x2
y2 d , D
2
{ x,y | x
2
y
2
a }.
D
3.设 f x , y 为连续函数,求
lim
r0
1 πr 2
D
f ( x, y)d
,
2
2
D { x,y | x x0
y y0
4.根据二重积分性质,估计下列积分的值:
(1) I
4 + xyd , D { x, y | 0 x 2,0 y 2} ;
性质 2
kf ( x, y)d k f (x, y)d .
第十章重积分
f (x, y)
与
xoy 面所围的
曲顶柱体的体积的代数和.
当 f ( x, y) 1,( x, y) D 时,得二重积分
问:1d =? D (D的面积)
3.可积条件
若函数 f ( x, y) 在有界闭区域 D 上连续,
则二重积分 f ( x, y) d 一定存在.
D
(不证)
二、二重积分的性质
z z f (x, y)
xO
y
DLeabharlann ( i )(i ,i )
3. 求和
n
n
V Vi f (i ,i ) . i
i 1
i 1
z z f (x, y) 4. 将 D 分得越细,
近似值
n
f (i ,i ). i
i 1
xO
y
( i ) D
就越接近于精确值 V
记 ( i )的直径为 di ,最大直径 max di
1 i n
n
lim
0i1
f (i ,i ) i
存在 ,且该极限值与
D 的分法以及点 (i ,i ) 的取法无关,
则称该极限值为函数 f (x, y) 在闭区域 D
上的二重积分,记为 f ( x, y)d ,即
D
n
f (x, y)d
D
=
lim
0
i 1
f
( i
,i
)
i
说明 按定义
n
f ( x, y) d =
§1 二重积分的概念与性质
一、二重积分的概念
1.两个实例
z 曲顶柱体
例1 求曲顶柱体的体积
xO
y
z
z f (x, y)
高等数学同济第七版7版下册习题 全解
第十章重积分95数,故/, = Jj( x2 + y1)3d(j = 2jj(x2+ y1) 3dcr.fh i)i又由于D3关于;t轴对称,被积函数(/+r2)3关于y是偶函数,故jj(x2+j2)3dcr=2j(x2+y2)3da=2/2.Dy1):从而得/, = 4/2.(2)利用对称性来计算二重积分还有以下两个结论值得注意:如果积分区域关于^轴对称,而被积函数/(x,y)关于y是奇函数,即fix, -y) = -f(x,y) ,PJjf/(x,y)da =0;D如果积分区域D关于:K轴对称,而被积函数/(x,y)关于:c是奇函数,即/(~x,y)=-/(太,y),则=0.D«3.利用二重积分定义证明:(1)jj da=(其中(7为的面积);IJ(2)JJ/c/( X ,y)drr =Aj|y’(A:,y)do■(其中A:为常数);o n(3 ) JJ/( x,y)clcr = JJ/( x,y)drr + jJ/( x ,y) dcr ,其中 /) = /)! U /)2,, A 为两个I)b\lh尤公共内点的WK域.96一、《高等数学》(第七版)下册习题全解jj'ltr = Hm y^/( ,rji) A<r, = lim ^ Ac,=l i m cr= a.A—0n(2)Ji/(x,j)(Ic7=lim^i)1n=A lim y/(^(,i7,)A(7-,=k\\f{x,y)Aa.A-°台•{!(3)因为函数/U,y)在闭区域/)上可积,故不论把£»怎样分割,积分和的极限总是不变的.因此在分割D时,可以使和/)2的公共边界永远是一条分割线.这样fix.y)在A U D2上的积分和就等于&上的积分和加D2上的积分和,记为^/(^, ,17,) A CT, = ^/( ^, , 17,) A CT, + ^/(^, ,17,) A CT,./)(U0,",l):令所有的直径的最大值A-0,上式两端同时取极限,即得Jf(x,y)i\a=jjf(x,y)da+JJ/(x f y)da.p,un}V,n;Sa4.试确定积分区域/),使二重积分][(1-2x2-y2)d«l y达到最大值.I)解由二重积分的性质可知,当积分区域/>包含了所有使被积函数1-2.v2-V2 大于等于零的点,而不包含使被积函数1-2/-y2小于零的点,即当£»是椭圆2/+y2= l所围的平面闭区域时,此二重积分的值达到最大.& 5.根据二重积分的性质,比较下列积分的大小:(1)Ju+y)2山7与J[U,其中积分区域D是由x轴、^轴与直线A+.、=D I)1所围成;(2)J(x+7)2如与■,其中积分区域0是由圆周(.r-2)2+(.v-l)2=t)n2所围成;(3)I'M A;+y)(lor与!"[In(X+y)]2(1(7,其中Z>是三角形闭K域,三顶点分别为l)"(1,0),(1,1),(2,0);(4)Jpn(:r+y)dcr与In(:t+y)]2fW,其中/)=|(.r,.v)|3,0彡、彡1 .i)i)解(1)在积分K域0上,故有(x + j) 3 ^ (x + y) 2.根据二重积分的性质4,可得J(.r + y) \lrx ^ J (.\ + v)0D(2)由于积分区域0位于半平面|(A:,V) | .V+ •、彡1第十章重积分97(3)由于积分区域D位于条形区域1U,y)|1彡1+7彡2丨内,故知区域/)上的点满足0彡InU+y)彡1,从而有[lnU+y)]2彡lnU+.y).因此jj[ln(A:+y)]2(Jo-^+y)d(4)由于积分区域/)位于半平面丨(x,y)| .v+y彡e|内,故在Z)上有ln(x+y)彡1,从而:In(-v+)')]2彡In(:c+)').因此Jj^ 1 n(.r + y) ] 2dcr ^ Jln( x + y) da.i)a36.利用二重积分的性质估计下列积分的值:(1) / = |^7(文+7)心,其中/)= \ (x ,y)1,01|;n(2)/=j^sin^sin^do■,其中/)=j(A:,y)|0^^^TT,0^y^TT1;i)(3)/= J*(A:+y + l)d(7,其中/>= { {x,y) |0^x^l,0^j^2[;it(4)/=J(x2 +4y2 +9)do•,其中D= \{x,y) \x2 +y2 ^ 4|.I)解(1)在积分区域D上,0矣;<:矣1,0英y矣1,从而0矣巧•(*+y)矣2•又£»的面积等于1,因此(2)在积分区域/)上,0矣sin J:矣1,0^sin1,从而0彡sin2A:sin2y彡1,又0的面积等于TT2,W此(3)在积分K域"上有\^x+y +\«4,/)的而积等于2,因此(4)W为在积分K域/>»上有0矣;t2+y2苳4,所以有9^+4r2+9^4( x2+y2)+9矣25.34I)的酣枳等于4TT,W此36TT^[[(x2+4/+9)(Ur^lOO-ir.二重积分的计算法.^1.计算下列二甩积分:98{高等数学> (第七叛)下册习题全第十) ;,其中"是由两坐标轴及直线-- + =听围成的闭区域;b ( 3 J jj( x J + 3x 2 \ + v 3 ) da ,其中 D =( x , v )0 ^ A : ^ 1 .0 ^ v ^ 1;u( 4 ) jjxcas( X + Y j do ■,其中Z >是顶点分别为( 0 .0 j < 77 ,0 )和( 77 , 77 )的三角形闭区域. 4- 2 2 ) dx fh 2) D 可用不等式表示为 2 r 3xy +y 2 ]l~x dx = | (4 + 2x - 2x 2 ) dx 203(+ + 3 > (文3+ 3.2 +、、).+ + "JC di (4l )可用不等式表示为0 ^ V ^ A : ,0 ^ .t ^ 7T .于是|A :COS JC + ) = + ) d I [ sin (.t + y ) ]Q ()^ = J V ( sin 2.v - sin .v ) <1 x x(\( cos .v —丄(.<,s 2.v )卜(1X (-TT r T X cos .v —rus TT.& 2. _出枳分ix:域,斤i 卜r): v 列m 分:第十章重积分99 x2^y^J^,0矣x矣1(图10-2).0«^^/4-y2,-2矣7矣2(图10-3),(1)J^^do■,其中/)是由两条抛物线7=v^,y=*2所围成的闭区域;D(2)jfxy2dcr,其中D是由圆周x2+J2=4及y轴所围成的右半闭区域;I)(3)JV+'dcr,其中/)=I(%,)•)||A;|+|J|^1!;D(4)|"U2+/-x)<lo•,其中D是由直线y:l、y二xh :2*所围成的闭区域.D解(1)0可用不等式表示为于是(2)D可用不等式表示为(3)如阁I()-4,W=/\U"2,其中/>1= \(x,y)\-x-\ ^y^Jc + 1,-1 ^a;^0|,I)2=\(x,y) |*-1+因此100一、《高等数学》(第七版)下册习题全解Ea 3.如果二重积分|/( .r ,y )心办的被积函数/( x ,v )是两个函数/] ( O 及)的乘n积,即/(X ,y) = f\(x) ./“y ),积分区域/) = { (.V , y ) I (1 ^ V ^ />, r ^,证叫这个二重积分等于两个单积分的乘枳,即|*/|U) -/2(r) flatly = [ J/, (.v)(l.v] - [ [/:( > )^v]-证Jj./1 ( x ) • .,2 ( / ) dvd V ~ J [ f J \ ( v ) ■ ./: t ^] l ^x *在上式右端的第一次单枳分f /,(.V )•/2(.V )dv 中,./,(A .)1Jfut 变招:、无关,nn 见为 常数提到积分5外,W 此上式“端笏T第十章重积分101fix/ = j [ dy ^/(*,y )tk.而在这个积分中,由于f/2 (y ) d y 为常数,故又可提到积分号外,从而得到• f 2<,y)^xAy= [| /2(y )dj ] - [ J n /, (x )dx ]证毕.^4.化二重积分/ = Jf(x ,y )daI)为二次积分(分别列出对两个变量先后次序不同的两个二次积分),其中积分区域£>是:(1)由直线及抛物线y 2 =4x 所围成的闭区域;(2)由x 轴及半圆周/ +y 2 =r 2(y 英0)所围成的闭区域;(3)由直线y =x ,;c = 2及双曲线:K = ^-(*>0)所围成的闭区域;X(4)环形闭区域 IU ,y ) | 1+y 2^4(.解(1)直线y =x 及抛物线y 2 =4;c 的交点为(0,0)和(4,4)(图10-6).于是f(x,y)dy,(2)将/)用不等式表示'fyO^y^r 2 -x 2,- r ^ W /•,于是可将/化为如下的先对y 、后对*的二次积分:r/ = J (1文Jf(x ,y)(\y ;如将0叫不等式表示为~Vr 2 -y 2^x^Vr 2 - y 2 ,0各/•,则可将/化为如卜的先对*、后对y 的二次枳分:102一、《高等数学》(第七版)下册习题全解dr x,y) dx.(3)如图 10-7.:条边界曲线两两相交,先求得3个交点为(1 ,1 ),2,y 和(2,2).于是dy (i_/(^,y)+ tlj /( x ,y)dx.dx • \/4J\x y y)dy + d.vl(1%/T /(A :,y)clr +d.vl■ yA -x 2/(.r ,v )d > -f/(.v V v ) dv ./(.v ,v )d.v -f.\/4-、/( \ , > ) d.v -f厂、/4 -、•'•I-v^ W"/( v , y) (l .\.| dxj[f(x,y)dy.注本题说明,将二重积分化为二次积分时,需注意根据积分区域的边界曲线的情况,选取恰当的积分次序.本题中的积分区域/)的上、下边界曲线均分别由—个方程给出,而左边界曲线却分为两段,由两个不同的方程给出,在这种情况下采取先对y 、后对^的积分次序比较有利,这样只需做一个二次积分,而如果采用相反的枳 分次序则需计算两个二次积分.需要指出,选择积分次序时,还需考虑被积函数/U , y )的特点.具体例子n ]'见教材下册第144页上的例2.(4)将D 按图10 - 8( a )和图10 - 8( 1>)的两种不同方式則分为4块,分別得o 第十章重积分103x ,r)d.t.(5) (lx\ f{x,y)Ay\广2 f yix -x2(4)|叫2f{x,y)dy-,fix /-sin x(6)I Ax\J(x,y)Ay.JO J - siny图10-8,5.设/U,Y)在D上连续,其中/)是由直线;==所围成的闭区域,证明dx| f(x,y)Ay证等式两端的二次积分均等于二重积分J/U,y)d o•,因而它们相等.I)^6.改换下列二次积分的积分次序:(2) J) dj|:f(x,y)dx;解(丨)所给二次积分等于二重积分J[/U,;K)(^,其中o=丨h,y)1°^^^r-"0 ^ j ^ I(. /> n|■改写为 | Uj) | * 矣y矣 1,0 ^^ I | (罔 10 - 9),于是原式=丄<ixj/(x,y)dy.(2)所给一.次枳分等于二'Ti积分|/U,y)山,.K:中/)=I|.y2^^<2y,0^21. M I) njm为{u’y) I 音矣 j ^ 7^,0 ^ x 在4)( 1冬1 1(> - I0),W此原式=J,i\xjy/(x,y)i\y.104一、《高等数学>(第七版)下册习题全解-y2^.V ^1$、飞V彡1(3)所给二次积分等于二重积分.其中D=:(.v.v)|-V 1UX^J1-y2,0彡>•彡1;•又D可表示为:(JC,)*)丨0彡y 彡V 1- .r2,-1=(图10-11),因此f 1 f V1 -X~原式=J^dxj/(x,v)dy.(4)所给二次积分等于二重积分其中D=:(.v.v)'2-hs/lx -x1%\彡.r彡2:.又D可表示为:(A:,V)|2-1彡.t•彡1+Y1—v2,0:(图10-12),故原式=丄d)j f(x %y)dx.(5)所给二次积分等于二重积分]|/(.10)(1^,)1:中/)=1(.v.v)|0^v^I)x彡e|•又/)可表示为|(A:,>•)|e、彡A•彡e,0彡、彡1i(|劄10-1,故原式=L(I.、|,./X .、,.、)(l.v.(6)m1()-14,将积分|><:域/)丧示为/),U/)2,其中A),=j U,、)|arcsin>^o 第十章重积分105/(x,y)dx.y广 1r ir - arcsin >原式=I dyf(x y y)c\xJO Jarcsin )T T - arcsin y ,0彡 y 彡 1 | 1 ,D 2 = |(.r, y)一 2arcsin, 一1彡)'彡0|.于是rt-x + xydrAy~d\2x c\)''i x E | o»•Y = s i n A 的反闲数足A = i i r r s »M y- -1 x足ih y - H in x = sin ( T T - x) "n!J T T - x ^ arcKiny,从ifii 得反闲数 ^(子•中,TTT T - iin-Hiny.^7.设平面薄片所占的闭区域D 由直线;t = 2,y = 和;r 轴所围成,它的面密度/x (.t ,v ) = x 2 +y 2,求该薄片的质量.解 D 如图10-15所示.所求薄片的质M = jJ/Lt( x 9y) dcr = ^ dyj ( x 2 + y 2 ) dxr[+(2”)3+2,12| 冬| 10 - 158. i |灯|l |四个平而A : = 0,y = 0,;t = I ,v = I 所闲成的柱休被平面z = 0及2.r +3y+z6藏得的立休的体积.V - (I 6 - ^ x 2 + y 2 ) dx(\y6 ( 1 - x ) - x 2 +——f 1\1_6"*10-17m 10 - 18解江力一 E J .它??芪是;c 0:. S 二苎泛7:省•。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章重积分
1.设积分区域Ω:2222R z y x ≤++,则⎰⎰⎰Ω
),,(dxdydz z y x f ,在球坐标系中三次积分
为( )
A.⎰⎰⎰π
πϕϕθϕθϕθ20
)cos ,sin sin ,sin cos (R
dr r r r f d d B.
⎰
⎰
⎰
π
π
ϕϕ
θ
20
2sin ),,(R
dr r z y x f d d
C. ⎰
⎰
⎰
π
π
ϕϕϕθϕθϕθ200
02sin )cos ,sin sin ,sin cos (R
dr r r r r f d d D.
⎰
⎰
⎰
π
π
ϕϕϕθϕθϕ
θ
20
2sin )cos ,sin sin ,sin cos (R
dr r r r r f d d
2.设积分区域Ω:x 2+y 2+z 2≤1,三重积分I=⎰⎰⎰Ω
+dxdydz )1z (,则( )
A.I<0
B.I=0
C.I>0
D.I 与z 有关
3.设Ω是由平面01=-+-z y x 及坐标面所围成的区域,则三重积分
=⎰⎰⎰Ω
dxdydz ( ) A.81 B.61 C.3
1 D.
2
1
4.设积分区域22:y x Ω+≤R 2,0≤z ≤1,则三重积分⎰⎰⎰=+Ω
dxdydz y x f )(22( ) A .⎰⎰⎰π
20
1
2)(R
dz r f dr d θ
B .⎰⎰⎰π20
1
2)(R dz r f rdr d θ
C .⎰⎰⎰+π20
1
22)(R rdz y x f dr d θ
D .⎰⎰⎰π0
1
2)(R dz r f rdr d θ
5.顶点坐标为(0,0),(0,1),(1,1)的三角形面积可以表示为( ) A.0
x
y
dy dx
⎰⎰
B. 10
1
x
dx dy
⎰⎰
C.
1
1
x
dx dy ⎰
⎰
D.
1
y
dy dx ⎰
⎰
6. 设区域D :|x|≤1,0≤y ≤1,则二重积分⎰⎰+D
2dxdy )x sin x 1(的值等于___________.
7.设积分区域D :x 2+y 2≤4,则二重积分⎰⎰+D
dxdy y x f )(22在极坐标中的二次积分
为____.
8.设积分区域D :x 2+y 2≤2,则二重积分⎰⎰D
f (x ,y )dxdy 在极坐标中的二次积分为
________.
9.二次积分()1
00
d ,d I x x y y =⎰⎰交换积分次序后I=______.
10.计算二重积分D
xydxdy ⎰⎰,其中积分区域D 是由,2y x x y =+=及2x =所围成。
11.计算三重积分222()I x y z dxdydz Ω
=++⎰⎰⎰,其中积分区域Ω是由球面
z =0z =所围成。
12.计算二重积分I=⎰⎰+D
dxdy )y 2x (,其中D 是由坐标轴和直线x+y=4所围成的
区域.
13.计算二重积分()dxdy e I D
y x
⎰⎰+-=2
2
,其中区域D :.0,422≥≤+y y x
14.计算⎰⎰+D
dxdy y x )(,其中积分区域D 是由直线x +y =2,y =x 及y =0所围成的区
域.
15.计算二重积分⎰⎰+D
dxdy y x )sin(22,其中积分区域D :x 2+y 2≤a 2.
16.计算二重积分()⎰⎰+D
dxdy y x 2,其中积分区域D:.422≤+y x
17.计算二重积分⎰⎰D
y 22
x e -dxdy .其中积分区域D 是由直线y=x , x =1及x 轴所围成
的区域.
18计算二重积分22
x y D
I e
dxdy +=⎰⎰,其中积分区域22:9D x y +≤.
19.计算三重积分(2)I x y z dxdydz Ω
=-+⎰⎰⎰.其中积分区域:
Ω≤1,-1≤y ≤0,0≤z
≤2.
20.计算三重积分⎰⎰⎰Ω
(1-x 2-y 2)dxdydz ,其中积分区域Ω是由x 2+y 2=a 2,z =0及z =2
所围成的区域.
21.计算三重积分⎰⎰⎰Ω
xdxdydz ,其中积分区域Ω是由1=++z y x 及坐标面所围成区
域.
22.计算三重积分⎰⎰⎰Ω
zdxdydz ,其中Ω是由曲面z =x 2+y 2,z =0及x 2+y 2=1所围区
域.
23.计算三重积分⎰⎰⎰Ω
ydxdydz ,其中积分区域Ω是由平面2x +3y +z =2及坐标面所
围成的.
24.计算二次积分⎰⎰
=2
0 2
sin π
π
y
dx x
x
dy I . 25.计算三重积分I=⎰⎰⎰Ω
++dxdydz )z y x (222,其中积分区域Ω:x 2+y 2+z 2≤1.
26.求由四个平面x=0, y=0, x=1, y=1所构成的柱面和平面z=0及x+y+z=7所围成的立体的体积.
27.计算由三个坐标面,平面x =2, y =2及曲面z =x 2+y 2+2所围立体的体积. 28.计算由曲面,322y x z +=三个坐标面及平面1=+y x 所围立体的体积. 29.求由曲面z =xy ,x 2+y 2=1及z =0所围在第一卦限的立体的体积.。