2020-2021学年上海市中考数学第三次模拟试题及答案解析
2021中考数学三轮临考冲刺:三角形和相似三角形含答案

2021中考数学三轮临考冲刺:三角形一、选择题1. 下列命题是假命题的是()A.平行四边形既是轴对称图形,又是中心对称图形B.同角(或等角)的余角相等C.线段垂直平分线上的点到线段两端的距离相等D.正方形的对角线相等,且互相垂直平分2. 在一个三角形中,有一个角是55°,则另外的两个角可能是()A.95°,20° B.45°,80°C.55°,60° D.90°,20°3. 在△ABC中,若一个内角等于另两个内角的差,则()A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°4. 如图,直线l1△l2,若△1=140°,△2=70°,则△3的度数是()A.70° B.80° C.65° D.60°5. 在△ABC中,△A=2△B=70°,则△C的度数为()A.35° B.40° C.75° D.105°6. 到三角形三个顶点的距离都相等的点是这个三角形的()A. 三条高线的交点B. 三条角平分线的交点C. 三条中线的交点D. 三条边的垂直平分线的交点7. 如图,在△ABC中,AB=4,BC=6,DE、DF是△ABC的中位线,则四边形BEDF 的周长是()A. 5B. 7C. 8D. 108. 如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A.118°B.119°C.120°D.121°二、填空题9. 如图,直线AB∥CD,OA⊥OB,若∠1=142°,则∠2=度.10. 已知三角形的三边长分别为3,8,x,若x为偶数,则x=____________.11. 如图,在△ABC中,点D是BC上的点,∠BAD=∠ABC=40°,将△ABD沿着AD翻折得到△AED,则∠CDE=°.12. 若正多边形的一个外角是60°,则这个正多边形的内角和是________.13. 在△ABC中,△A=72°,△B=△C,则△C=________°.14. 如图,在△ABC中,点D、E分别是AB、AC的中点,若BC=8,则DE的长为________.15. 如图,AD是△ABC的中线,已知△ABD的周长为25 cm,AB比AC长6 cm,则△ACD的周长为cm.16. 模拟某人为机器人编制了一段程序(如图),如果机器人以2 cm/s的速度在平地上按照程序中的步骤行走,那么该机器人从开始到停止所需的时间为________s.三、解答题17. 如图,AD是△ABC的角平分线,△B=35°,△BAD=30°,求△C的度数.18. 如图,A处在B处的北偏西45°方向,C处在B处的北偏东15°方向,C处在A处的南偏东80°方向,求△ACB的度数.19. 如图,CE是△ABC的外角△ACD的平分线,且CE交BA的延长线于点E,△B=25°,△E=30°,求△BAC的度数.20. 如图11-Z-11,点B在点A的南偏西45°方向,点C在点A的南偏东30°方向,点C在点B的北偏东60°方向,求△C的度数.21. 观察与转化思想如图是五角星形,求△A +△B +△C +△D +△E的度数.22. 已知:如图1-Z -20,在四边形ABCD 中,∠D=90°,∠ABC=∠BCD ,点E 在直线BC上,点F 在直线CD 上,且∠AEB=∠CEF . (1)如图①,若AE 平分∠BAD ,求证:EF ⊥AE ;(2)如图②,若AE 平分四边形ABCD 的外角,其余条件不变,则(1)中的结论是否仍然成立?说明理由.23. 如图,梯形ABCD 中,AD BC AB CD =∥,,对角线AC BD ,相交于点O ,60AOD ∠=︒,E F G ,,分别是OA OB CD ,,的中点,求证:EFG ∆是等边三角形24. 如图,求证:四边形两组对边中点连线与两对角线中点连结这三条线共点.A BCDEFGOO GFE DCBA OE FLHNMDCB A答案一、选择题1. 【答案】A2. 【答案】B[解析] △在一个三角形中,有一个角是55°,△另外的两个角的和为125°,各选项中只有B选项中的两个角的和为125°.故选B.3. 【答案】D[解析]不妨设∠A=∠C-∠B,∵∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选D.4. 【答案】A5. 【答案】C6. 【答案】D【解析】依题意知这个点到三角形每边的两个端点的距离相等,∴它是三条边的垂直平分线的交点,故选D.7. 【答案】D【解析】∵DE、DF是△ABC的中位线,∴DE∥AB,DF∥BC,DE=12AB,DF=12BC,∴四边形BEDF是平行四边形,∵AB=4,BC=6,∴DE=BF=2,DF=BE=3,∴四边形BEDF的周长为:2(DE+DF)=10.8. 【答案】C[解析] ∵∠A=60°,∠ABC=42°,∴∠ACB=180°-∠A-∠ABC=78°.∵∠ABC,∠ACB的平分线分别为BE,CD,∴∠FBC=∠ABC=21°,∠FCB=∠ACB=39°,∴∠BFC=180°-∠FBC-∠FCB=120°.故选C.二、填空题9. 【答案】52[解析]设OA与CD相交于点E,∵OA⊥OB,∴∠O=90°.∵∠1=142°,∴∠OED=∠1-∠O=142°-90°=52°.∵AB∥CD,∴∠2=∠OED=52°.故填52.10. 【答案】6或8或10 [解析] 由三角形三边关系可知5<x<11.因为x 为偶数,所以x的值为6或8或10.11. 【答案】20[解析]∵∠BAD=∠ABC=40°,∴∠ADC=∠BAD +∠ABC=40°+40°=80°.∵将△ABD 沿着AD 翻折得到△AED ,∴∠ADE=∠ADB=180°-∠ADC=180°-80°=100°. ∴∠CDE=∠ADE -∠ADC=100°-80°=20°.12. 【答案】720°[解析] 该正多边形的边数为360°÷60°=6.该正多边形的内角和为(6-2)×180°=720°.13. 【答案】54 14. 【答案】4【解析】∵点D 、E 分别是AB 、AC 的中点,∴由三角形的中位线定理可知DE =12BC =4.15. 【答案】19[解析] ∵AD 是BC 边上的中线,∴BD=CD.∴△ABD 的周长-△ACD 的周长=(AB+BD+AD )-(AC+CD+AD )=AB -AC. ∵△ABD 的周长为25 cm ,AB 比AC 长6 cm , ∴△ACD 的周长为25-6=19(cm).16. 【答案】16[解析] 由题意得,该机器人所经过的路径是一个正多边形,多边形的边数为36045=8,则所走的路程是4×8=32(cm), 故所用的时间是32÷2=16(s). 三、解答题17. 【答案】解:△AD 是△ABC 的角平分线, △△BAC =2△BAD =2×30°=60°.△△C =180°-△B -△BAC =180°-35°-60°=85°.18. 【答案】解: 由题意知△ABN =45°,△CBN =15°,△MAC =80°, 所以△ABC =60°.因为AM△BN ,所以△MAB =△ABN =45°, 所以△BAC =80°-45°=35°. 所以△ACB =180°-60°-35°=85°.19. 【答案】解:△△B=25°,△E=30°,△△ECD=△B+△E=55°.△CE是△ACD的平分线,△△ACE=△ECD=55°.△△BAC=△ACE+△E=85°.20. 【答案】解:△△NBC=60°,△NBA=△BAS=45°,△△ABC=△NBC-△NBA=60°-45°=15°.又△△BAC=△BAS+△SAC=45°+30°=75°,△在△ABC中,△C=180°-(75°+15°)=90°.21. 【答案】解:如图,△△1是△CEG的外角,△△1=△C+△E.同理可得△AFB=△B+△D.△在△AFG中,△A+△1+△AFG=180°,△△A+△B+△C+△D+△E=180°.22. 【答案】解:(1)证明:∵∠BAE=180°-∠ABC-∠AEB,∠EFC=180°-∠BCD-∠CEF,且∠ABC=∠BCD,∠AEB=∠CEF,∴∠BAE=∠EFC.∵AE平分∠BAD,∴∠BAE=∠DAE.∴∠EFC=∠DAE.∵∠EFC+∠EFD=180°,∴∠DAE+∠EFD=180°.∴∠AEF+∠D=360°-(∠DAE+∠EFD)=180°.又∵∠D=90°,∴∠AEF=90°. ∴EF ⊥AE.(2)EF ⊥AE 仍成立.理由如下:如图.∵∠1=∠ABC -∠AEB ,∠F=∠BCD -∠CEF ,且∠ABC=∠BCD ,∠AEB=∠CEF ,∴∠1=∠F .∵AE 平分四边形ABCD 的外角, ∴∠1=∠2. ∴∠F=∠2.∵∠2+∠EAD=180°, ∴∠F+∠EAD=180°.∴∠AEF+∠D=360°-(∠F+∠EAD )=180°.又∵∠D=90°,∴∠AEF=90°. ∴EF ⊥AE.23. 【答案】连结DE ,由等腰梯形对角线相等,且60AOD ∠=︒,可证AOD ∆是等边三角形,因为E 是OA 中点,所以DE AC ⊥,在Rt DCE ∆中,G 是DC 中点,所以12EG DC =,同理可证12FG DC =,因为E F ,分别是OA OB ,的中点,所以12EF AB =,因为AB DC =,所以EG FG EF ==,即EFG ∆是等边三角形24. 【答案】方法一:设N H M L F E ,,,,,分别为AB BC CD DA AC BD ,,,,,的中点,要证明EF LH ,,及MN 三线共点.因为LF DC ∥且12LF DC =,所以EF DC ∥且12EF DC =,LF EH ∥且LF EH =,从而四边形EHFL 为平行四边形,故LH 与EF 互相平分.A BC DEFG O C设LH 与EF 的交点为O ,则LH 经过EF 中点O (当然也是LH 中点).同理,MN 也过EF 中点O .所以,EF ,LH ,MN 三线共点于O .说明:本题证明的关键是平行四边形EHFL 的获得(它是通过三角形中位线定理来证明的).由此可见,在某些四边形的问题中,通过构造平行四边形去解题是一种常用的技巧. 请看下例.方法二:应用中点公式法 可设()11A x y ,,()()()223344B x y C x y D x y ,,,,, 那么AC 线段的中点坐标为131322x x y y F ++⎛⎫⎪⎝⎭,,BD 线段的中点坐标为242422x x y y E ++⎛⎫ ⎪⎝⎭, 那么EF 线段的中点坐标为1234123422x x x x y y y y ++++++⎛⎫⎪⎝⎭, 同理可得:MN LH ,的中点坐标也为1234123422x x x x y y y y ++++++⎛⎫⎪⎝⎭, 所以可知:EF ,LH ,MN 三线共点于O2021中考数学三轮冲刺:相似三角形及其应用一、选择题1. 下列命题是真命题的是 ( )A .如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为2∶3B .如果两个三角形相似,相似比为4∶9,那么这两个三角形的周长比为4∶9C .如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为2∶3D .如果两个三角形相似,相似比为4∶9,那么这两个三角形的面积比为4∶92. 如图,在△ABC中,点D ,E 分别在AB 和AC 边上,DE ∥BC ,M 为BC 边上一点(不与点B ,C 重合),连接AM 交DE 于点N ,则 ( )A .=B .=C .=D .=3. 如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△A 1B 1C 1相似的是 ( )4. (2019•雅安)若,且,则的值是A .4B .2C .20D .145. (2020·重庆B 卷)如图,△ABC 与△DEF 位似,点O 为位似中心.已知OA :OD =1:2,则△ABC 与△DEF 的面积比为( ) A .1:2 B .1:3 C .1:4D .1:534ab =∶∶14a b +=2a b -6. (2020·河南)如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B的坐标分别为(-2,6)和(7,0).将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为( )A. (32,2) B. (2,2) C. (114,2) D. (4,2)7. (2020·重庆A卷)如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,则线段DF的长度为()A.5B.2C.4D.25 8. 如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=22,BD=3,则AB的长为()A. 2B. 3C. 4D. 5二、填空题9. 如图,在△ABC中,∠ACD=∠B,若AD=2,BD=3,则AC长为.10. 在某一时刻,测得一根高为1.8 m 的竹竿的影长为3 m ,同时同地测得一栋楼的影长为90 m ,则这栋楼的高度为 m .11. (2020·南通)如图,在正方形网格中,每个小正方形的边长均为1,△ABC 和△DEF 的顶点都在网格线的交点上,设△ABC 的周长为C 1,△DEF 的周长为C 2,则12C C 的值等于 ▲ .12. (2020·吉林)如图,////AB CD EF .若12=AC CE ,5BD =,则DF =______.13. (2020·东营)如图,P为平行四边形ABCD 边BC 边上一点,E 、F 分别为PA 、PD上的点,且PA=3PE ,PD=3PF ,△PEF 、△PDC 、△PAB 的面积分别记为S 、1S 、2S ,若S =2,则1S +2S = .14. (2020·绥化)在平面直角坐标系中,△ABC 和△A 1B 1C 1的相似比等于12,并且是关于原点O 的位似图形,若点A 的坐标为(2,4),则其对应点A 1的坐标是______. 15. (2020·杭州)如图是一张矩形纸片,点E 在AB 边上,把BCE △沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,2AE =,则DF =______,BE =______.16. (2020·深圳)如图,在四边形ABCD 中,AC 与BD 相交于点O ,∠ABC =∠DACABCDEF FDBE A C=90°,tan ∠ACB =12,BO OD =43,则S △ABDS △CBD=________.三、解答题 17. (2020·通辽)如图,⊙O 的直径AB 交弦(不是直径)CD 于点P ,且PC 2=PB •P A , 求证:AB ⊥CD .18.如图,在Rt△ABC 中,△ACB=90°,AC=BC.P 为△ABC 内部一点,且△APB=△BPC=135°. (1)求证:△P AB △△PBC ; (2)求证:P A=2PC ;(3)若点P 到三角形的边AB ,BC ,CA 的距离分别为h 1,h 2,h 3,求证:=h 2·h 3.19. (2020·苏州)如图,在矩形ABCD 中,E 是BC 的中点,DF AE ,垂足为F .ODCBA(1)求证:ABE DFA ∆∆∽;(2)若6AB =,4BC =,求DF 的长.20. 已知AB 是半径为1的圆O 直径,C 是圆上一点,D 是BC 延长线上一点,过D 点的直线交AC 于E 点,交AB 于F 点,且△AEF 为等边三角形. (1)求证:△DFB 是等腰三角形; (2)若DA =7AF ,求证CF△AB.21. 如图,△ABC中,∠ACB =90°,D 为AB 上一点,以CD 为直径的△O 交BC 于点E ,连接AE 交CD 于点P ,交△O 于点F ,连接DF ,∠CAE =△ADF. (1)判断AB 与△O 的位置关系,并说明理由; (2)若PF△PC =1△2,AF =5,求CP 的长.22. (2020·江苏徐州)我们知道:如图①,点B 把线段AC 分成两部分,如果BC ABAB AC=,那么称点B 为线段AC 的黄金分割点.. (1)在图①中,若AC =20cm ,则AB 的长为 cm ; (2)如图②,用边长为20cm 的正方形纸片进行如下操作:对折正方形ABCD 得折痕EF ,连接CE ,将CB 折叠到CE 上,点B 的对应点H ,得折痕CG .试说明:G 是AB 的黄金分割点; (3)如图③,小明进一步探究:在边长为a 的正方形ABCD 的边AD 上任取点E (AE >DE ),连接BE ,作CF ⊥BE ,交AB 于点F ,延长EF 、CB 交于点P .他发现当PB 与BC 满足某种关系时,E 、F 恰好分别是AD 、AB 的黄金分割点.请猜想小明的发现,并说明理由.图① 图 ② 图③23. 如图,AB为半圆的直径,O 为圆心,OC △AB ,D 为BC ︵的中点,连接DA 、DB 、DC ,过点C 作DC 的垂线交DA 于点E ,DA 交OC 于点F . (1)求证:△CED =45°; (2)求证:AE =BD ;(3)求AOOF 的值.24. (2020·泰安)(12分)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形,∠ACB 与∠ECD 恰好为对顶角,∠ABC ﹦∠CDE ﹦90°,连接BD ,AB ﹦BD ,点F 是线段CE 上一点. 探究发现:(1)当点F 为线段CE 的中点时,连接DF (如图(2)),小明经过探究,得到结论:BD ⊥DF .你认为此结论是否成立?___________.(填“是”或“否”) 拓展延伸:(2)将(1)中的条件与结论互换,即:若BD ⊥DF ,则点F 为线段CE 的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由. 问题解决:(3)若AB =6,CE =9,求AD 的长.A CBGPABC DEF EDCBA图(1) 图(2) 备用图答案一、选择题 1. 【答案】B2. 【答案】C[解析]根据DE ∥BC ,可得△ADN ∽△ABM ,△ANE ∽△AMC ,再应用相似三角形的性质可得结论.∵DN ∥BM ,∴△ADN ∽△ABM ,∴=,∵NE ∥MC ,∴△ANE ∽△AMC ,∴=,∴=.故选C .3. 【答案】B[解析]根据勾股定理分别表示出已知三角形的各边长,同理利用勾股定理表示出四个选项中阴影三角形的各边长,利用三边长对应成比例的两个三角形相似可得结果,△A 1B 1C 1各边长分别为1,,选项A 中阴影三角形三边长分别为:,3,三边不与已知三角形各边对应成比例,故两三角形不相似;选项B 中阴影三角形三边长分别为:,2,,三边与已知三角形的各边对应成比例,故两三角形相似;选项C中阴影三角形三边长分别为:1,,2,三边不与已知三角形各边对应成比例,故两三角形不相似;选项D 中阴影三角形三边长分别为:2,,三边不与已知三角形各边对应成比例,故两三角形不相似,故选B .4. 【答案】A【解析】由a ∶b =3∶4知,所以. 所以由得到:, 解得.所以.所以.故选A .5. 【答案】C【解析】本题考查了相似三角形的性质, ∵△ABC 与△DEF 位似,且1=2OA OD ,∴211=24ABC DEFS S⎛⎫= ⎪⎝⎭,因此本题选C .6. 【答案】B【解析】∵点A ,B 的坐标分别为(-2,6)和(7,0),∴OC=2,AC=6,OB=7,∴BC=9,正方形的边长为2.将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,设正方形与x 轴的两个交点分别为G 、F ,∵EF ⊥x 轴,EF=GF=DG=2,∴EF ∥AC ,D ,34b a =43ab =14a b +=4143aa +=6a =8b =22684a b -=⨯-=E 两点的纵坐标均为2, ∴EF BF AC BC ,即269BF,解得BF=3.∴OG=OB-BF-GF=7-3-2=2,∴ D 点的横坐标为2,∴点D 的坐标为 (2,2).7. 【答案】D【解析】∵A (1,2),B (1,1),C (3,1),∴AB=1,∵△DEF 与△ABC 成位似图形,且相似比为2,∴DF=2AB=2.8. 【答案】B【解析】由垂径定理可得DH =2,所以BH =BD 2-DH 2=1,又可得△DHB ∽△ADB ,所以有BD 2=BH·BA ,(3)2=1×BA ,AB =3.二、填空题 9. 【答案】 [解析]∵∠ACD=∠B ,∠CAD=∠BAC ,∴△ACD ∽△ABC , ∴=,即=, ∴AC=或AC=-(舍去).10. 【答案】5411. 【答案】2【解析】由图形易证△ABC 与△DEF 相似,且相似比为所以周长比为故答案为:2.12. 【答案】10【解析】∵////AB CD EF ,∴AC BDCE DF=, 又∵12=AC CE ,5BD =,∴512DF =,∴10DF =,故答案为:10.13. 【答案】18【解析】本题考查了相似三角形的判定、性质,三角形的面积,解题的关键是根据已知条件推出相似三角形,并由相似比得到面积比.∵PA=3PE ,PD=3PF ,∠APD =∠EPF ,∴△PEF ∽△PAD ,相似比为1︰3,∵△PEF 的面积为S =2,∴PAD S ∆=9S=9×2=18, ∴1S +2S =PAD S ∆=18.14. 【答案】(-4,-8)或(4,8)【解析】∵△ABC 和△A1B1C1的相似比等于12,∴△A1B1C1和△ABC 的相似比等于2.因此将点A(2,4)的横、纵坐标乘以±2即得点A1的坐标,∴点A1的坐标是(-4,-8)或(4,8).15. 【答案】25-1 【解析】设BE =x ,则AB =AE +BE =2+x .∵四边形ABCD 是矩形,∴CD =AB =2+x ,AB ∥CD ,∴∠DCE =∠BEC .由折叠得∠BEC =∠DEC ,EF =BE =x ,∴∠DCE =∠DEC .∴DE =CD =2+x .∵点D ,F ,E 在同一条直线上,∴DF =DE -EF =2+x -x =2.∵AB ∥CD ,∴△DCF ∽△EAF ,∴DC EA =DF EF .∴22x +=2x ,解得x 1=5-1,x 2=-5-1.经检验,x 1=5-1,x 2=-5-1都是分式方程的根.∵x >0,∴x =5-1,即BE =5-1.16. 【答案】332【解析】法1:过B 点作BE //AD 交AC 于点E ,则△ADO ∽△EBO ,由∠DAC =90°,得到BE ⊥AD ,∴AO OE =OD OB =34,由tan ∠ACB =12,可得CE =2BE =4AE , ∴S △ABDS △CBD=AO OC =34+(3+4)×4=332. 法2:如图,过点D 作DM ∥BC ,交CA 的延长线于点M ,延长BA 交DM 于点N ,得到△ABC ∽△ANM ,△OBC ∽△ODM ,进而得出对应边成比例,AB BC =ANNM =tan ∠ACB =12,BC DM =OB OD =43;又∵∠ABC =∠DAC =90°,∴∠BAC +∠NAD =90°,∵∠BAC +∠BCA =90°,∴∠NAD =∠BCA ,∴△ABC ∽△DAN ,得出对应边之间关系,AB BC =DNNA =12,设AB =a ,DN =b ,则BC =2a ,NA =2b ,MN =4b ,得DM =32a ,∴4b +b =32a ,即ODCBAEb =310a ,进而表示三角形的面积,得到S △ABDS △CBD=12AB ⋅DN 12BC ⋅NB =ab 2a ⋅(a +2b )=310a 22a ⋅1610a =332.三、解答题17. 【答案】解:如图,连结AC ,BD .∵∠A =∠D ,∠C =∠B ,∴△ACP ∽△DBP ,∴AP DP =CPBP,∴PC •PD =PB •P A ,∵PC 2=PB •P A ,∴PC =PD ,即AB 平分CD ,∵CD 是弦(不是直径),AB 是直径,∴AB ⊥CD .18. 【答案】证明:(1)在△ABP 中,∠APB=135°, ∴∠ABP +∠BAP=45°,又△ABC 为等腰直角三角形,∴∠ABC=45°,即∠ABP +∠CBP=45°, ∴∠BAP=∠CBP ,又∠APB=∠BPC=135°,∴△P AB ∽△PBC. (2)由(1)知△P AB ∽△PBC , ∴===,∴=·=2,即P A=2PC.(3)方法一:如图①,过点P 作边AB ,BC ,CA 的垂线,垂足分别为Q ,R ,S ,则PQ=h 1,PR=h 2,PS=h 3, 在Rt△CPR 中,=tan ∠PCR==,BA∴=,即h 3=2h 2.又由△P AB ∽△PBC ,且=,得:=,即h 1=h 2,∴=h 2·h 3.方法二:如图②,过点P 作边AB ,BC ,CA 的垂线,垂足分别为Q ,R ,S ,连接SQ ,SR ,RQ ,易知四边形ASPQ ,四边形BRPQ 都有外接圆, ∴∠PSQ=∠P AQ ,∠PQR=∠PBR ,由(1)可知∠P AB=∠PBC ,∴∠PSQ=∠PQR.又∵∠SPQ=∠QPR=180°-45°=135°,∴△PSQ ∽△PQR ,∴=,即PQ 2=SP ·PR ,∴=h 2·h 3.19. 【答案】 解: 证明:(1)∵四边形ABCD 是矩形,∴90B ∠=︒,AD BC .∴AEB DAF ∠=∠, ∵DF AE ⊥,∴90DFA ∠=︒.∴B DFA ∠=∠,∴ABE DFA ∆∆∽.解:(2)∵ABE DFA ∆∆∽,∴AB AE DF AD =. ∵4BC =,E 是BC 的中点,∴114222BE BC ==⨯=.∴在Rt ABE ∆中,AE ==.又∵4AD BC ==,∴6DF=,∴DF =.20. 【答案】(1)证明:△AB 为直径,∴∠ACB =90°,∵△AEF 是等边三角形,∴∠EAF =△EFA =60°,∴∠ABC =30°,∴∠FDB =△EFA -△B =60°-30°=30°,(2分)∴∠ABC =△FDB ,∴FB =FD ,∴△BDF 是等腰三角形.(3分)(2)解:设AF =a ,则AD =7a ,解图如解图,连接OC ,则△AOC 是等边三角形,由(1)得,BF =2-a =DF ,∴DE =DF -EF =2-a -a =2-2a ,CE =AC -AE =1-a ,在Rt △ADC 中,DC =(7a )2-1=7a 2-1,在Rt △DCE 中,tan 30°=CE DC =1-a 7a 2-1=33, 解得a =-2(舍去)或a =12,(5分)∴AF =12,在△CAF 和△BAC 中,CA AF =BAAC =2,且△CAF =△BAC =60°,∴△CAF ∽△BAC ,∴∠CFA =△ACB =90°,即CF△AB.(6分)21. 【答案】解:(1)AB 与△O 相切.理由如下:∵∠ACB =90°,∴∠CAE +△AEC =90°,又△△AEC =△CDF ,∠CAE =△ADF ,∴∠CDF +△ADF =90°,∴∠ADC =90°,又△CD 为△O 的直径,∴AB 与△O 相切.(3分)(2)如解图,连接CF ,解图∵CD 为△O 的直径,∴∠CDF +△DCF =90°,又△△CDF +△ADF =90°,∴∠DCF =△ADF ,又△△CAE =△ADF ,∴∠CAE =△DCF ,又△△CPA =△FPC ,∴△PCF ∽△PAC ,∴PC PA =PF PC ,(6分)又△PF△PC =1△2,AF =5,故设PF =a ,则PC =2a ,∴2a a +5=a 2a , 解得a =53,∴PC =2a =2×53=103.(8分)22. 【答案】解: (1)10.解:∵AB AC =,AC=20,∴AB=10.(2)延长CG 交DA 的延长线于点J ,由折叠可知:∠BCG=∠ECG ,∵AD ∥BC ,∴∠J=∠BCG=∠ECG ,∴JE=CE.由折叠可知:E 、F 为AD 、BC 的中点,∴DE=AE=10,由勾股定理可得:∴EJ=∴AJ=JE-AE=,∵AJ ∥BC ,∴△AGJ ∽△BGC,∴AG AJ BG BC ===,∴G 是AB 的黄金分割点.(3)PB=BC ,理由如下:∵E 为AD 的黄金分割点,且AE>DE ,∴AE= a. ∵CF ⊥BE ,∴∠ABE+∠CBE=∠CBE+∠BCF=90˚,∴∠ABE=∠FCB,在△BEA 和△CFB 中,∵90ABE FCB AB BC A FBC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△BEA ≌△CFB ,∴BF=AE= a.∴AF BF BF AB==,∵AE ∥BP ,∴△AEF ∽△BPF,∴AE AF BF PB BF AB ==, ∵AE=BF,∴PB=AB ,∴PB=BC.23. 【答案】(1)证明:△△CDA =12△COA =12×90°=45°, 又△CE △DC ,△△DCE =90°,△△CED =180°-90°-45°=45°;J(2)解:如解图,连接AC ,△D 为BC ︵的中点,△△BAD =△CAD =12×45°=22.5°,而△CED =△CAE +△ACE =45°,△△CAE =△ACE =22.5°,△AE =CE ,△△ECD =90°,△CED =45°,△CE =CD ,又△CD ︵=BD ︵,△CD =BD ,△AE =CE =CD =BD ,△AE =BD ;解图(3)解:设BD =CD =x ,△AE =CE =x ,由勾股定理得,DE =2x ,则AD =x +2x ,又△AB 是直径,则△ADB =90°,△△AOF △△ADB ,△AO OF =AD DB =x +2x x =1+ 2.24. 【答案】(1)是;(2)结论成立.理由如下:∵BD ⊥DF ,ED ⊥AD ,∴∠BDC +∠CDF ﹦90°,∠EDF +∠CDF ﹦90°. ∴∠BDC ﹦∠EDF .∵AB ﹦BD ,∴∠A ﹦∠BDC .∴∠A ﹦∠EDF .又∵∠A ﹦∠E ,∴∠E ﹦∠EDF .∴EF ﹦FD .又∠E +∠ECD ﹦90°,∴∠ECD ﹦∠CDF .∴CF ﹦DF .∴CF ﹦EF .∴F 为CE 的中点.(3)在备用图中,设G 为EC 的中点,则DG ⊥BD .∴GD ﹦12 EC ﹦92 .又BD =AB =6,在Rt △GDB 中,GB =62+(92)2 =152 .∴CB =152 —92 =3.在Rt △ABC 中,AC =62+32 =3 5 .由条件得:△ABC ∽△EDC .∴3 5 9 =3CD .∴CD =9 5 5. ∴AD =AC +CD =3 5 +9 5 5 ﹦24 5 5 .FE D CB A A BC D EG。
2023届上海市区域中考数学模拟试题分层分类汇编专项真题练习—选择题(提升题)含解析

2023届上海市区域中考数学模拟试题分层分类汇编专项真题试卷练习—选择题(提升题)目录一.二次函数的性质(共2小题) (1)二.二次函数图象与系数的关系(共1小题) (1)三.二次函数图象上点的坐标特征(共1小题) (1)四.三角形的重心(共2小题) (2)五.矩形的性质(共1小题) (2)六.旋转的性质(共3小题) (2)七.比例的性质(共1小题) (3)八.相似三角形的性质(共1小题) (3)九.相似三角形的判定(共1小题) (3)一十.相似三角形的判定与性质(共3小题) (3)一十一.解直角三角形(共1小题) (4)一十二.解直角三角形的应用-坡度坡角问题(共3小题) (4)一.二次函数的性质(共2小题) (6)二.二次函数图象与系数的关系(共1小题) (6)三.二次函数图象上点的坐标特征(共1小题) (6)四.三角形的重心(共2小题) (7)五.矩形的性质(共1小题) (9)六.旋转的性质(共3小题) (10)七.比例的性质(共1小题) (14)八.相似三角形的性质(共1小题) (14)九.相似三角形的判定(共1小题) (14)一十.相似三角形的判定与性质(共3小题) (17)一十一.解直角三角形(共1小题) (18)一十二.解直角三角形的应用-坡度坡角问题(共3小题) (19)一.二次函数的性质(共2小题)1.(2023•松江区一模)已知一个二次函数的图象经过点(0,2),且在y轴左侧部分是上升的,那么该二次函数的解析式可以是(只要写出一个符合要求的解析式).2.(2023•青浦区一模)抛物线y=3x2﹣1在y轴右侧的部分是.(填“上升”或“下降”)二.二次函数图象与系数的关系(共1小题)3.(2023•金山区一模)抛物线y=(k+2)x2﹣3x﹣1有最高点,那么k的取值范围是.三.二次函数图象上点的坐标特征(共1小题)4.(2023•长宁区一模)已知抛物线y=ax2﹣2ax+2(a>0)经过点(﹣1,y1),(2,y2),试比较y1和y2的大小:y1y2(填“>”,“<”或“=”).四.三角形的重心(共2小题)5.(2023•金山区一模)如图,△ABC为等腰直角三角形,∠A=90°,AB=6,G1为△ABC的重心,E为线段AB上任意一动点,以CE为斜边作等腰Rt△CDE(点D在直线BC的上方),G2为Rt△CDE的重心,设G1、G2两点的距离为d,那么在点E运动过程中d的取值范围是.6.(2023•松江区一模)已知△ABC,P是边BC上一点,△PAB、△PAC的重心分别为G1、G2,那么的值为.五.矩形的性质(共1小题)7.(2023•青浦区一模)如图,在矩形ABCD中,AB=2,BC=4.点H、F分别在边AD、BC 上,点E、G在对角线AC上.如果四边形EFGH是菱形,那么线段AH的长为.六.旋转的性质(共3小题)8.(2023•松江区一模)已知Rt△ABC中,∠C=90°,sin A=,将△ABC绕点C旋转至△A'B′C,如果直线A′B'⊥AB,垂足记为点D,那么的值为.9.(2023•青浦区一模)如图,点P是正方形ABCD内一点,AB=5,PB=3,PA⊥PB.如果将线段PB绕点B顺时针旋转90°,点P的对应点为Q,射线QP交边AD于点E,那么线段PE的长为.10.(2023•普陀区一模)如图,在△ABC中,AD为边BC上的中线,BC=2AC,BC=6,AD =2.将△ADC绕点D以逆时针方向旋转得到△A′DC′,点A′、C′分别与点A、C对应.连接BC′,BC′与线段AD交于点G.如果点A′、A、C′在同一条直线上,那么C′G =.七.比例的性质(共1小题)11.(2023•松江区一模)如果=,那么=.八.相似三角形的性质(共1小题)12.(2023•长宁区一模)如果两个相似三角形的面积比是1:9,那么它们的周长比是.九.相似三角形的判定(共1小题)13.(2023•徐汇区一模)规定:如果经过三角形一个顶点的直线把这个三角形分成两个小三角形,其中一个小三角形是等腰三角形,另一个小三角形和原三角形相似,那么符合这样条件的三角形称为“和谐三角形”,这条直线称为这个三角形的“和谐分割线”.例如,如图所示,在Rt△ABC中,∠C=90°,CA=CB,CD是斜边AB上的高,其中△ACD是等腰三角形,且△BCD和△ABC相似,所以△ABC是“和谐三角形”,直线CD为△ABC的“和谐分割线”.请依据规定求解问题:已知△DEF是“和谐三角形”,∠D=42°,当直线EG是△DEF的“和谐分割线”时,∠F的度数是.(写出所有符合条件的情况)一十.相似三角形的判定与性质(共3小题)14.(2023•金山区一模)如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA:C△CDF=1:2,那么S△EAF:S四边形ABCF=.的延长线交于点E,如果C△EAF15.(2023•奉贤区一模)如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,DE∥BC,EF∥AB.如果DE:BC=2:5,那么EF:AB的值是.16.(2023•奉贤区一模)如图,在梯形ABCD中,AD∥BC,AC与BD相交于点O,如果BC:AD=3:2,那么S△ADC:S△ABC的值为.一十一.解直角三角形(共1小题)17.(2023•金山区一模)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,tan∠BCD=,AC =12,则BC=.一十二.解直角三角形的应用-坡度坡角问题(共3小题)18.(2023•金山区一模)某商场场业厅自动扶梯的示意图如图所示,自动扶梯AB坡度i=1:,自动扶梯AB的长度为12米,那么大厅两层之间的高度BC=米.19.(2023•长宁区一模)小杰沿着坡度i=1:2.4的斜坡向上行走了130米,那么他距离地面的垂直高度升高了米.20.(2023•松江区一模)如图,河堤横断面迎水坡AB的坡比i=1:0.75,堤高BC=4.8米,那么坡面AB的长度是米.上海市2023年各地区中考数学模拟(一模)试题按题型难易度分层分类汇编(11套)-02填空题(提升题)2答案与试题解析一.二次函数的性质(共2小题)1.(2023•松江区一模)已知一个二次函数的图象经过点(0,2),且在y轴左侧部分是上升的,那么该二次函数的解析式可以是y=﹣x2+2,(答案不唯一)(只要写出一个符合要求的解析式).【正确答案】y=﹣x2+2,(答案不唯一).解:由题意得抛物线开口向下,抛物线对称轴为y轴或在y轴右侧,∴y=﹣x2+2符合题意.故y=﹣x2+2,(答案不唯一).2.(2023•青浦区一模)抛物线y=3x2﹣1在y轴右侧的部分是上升.(填“上升”或“下降”)【正确答案】上升.解:∵y=3x2﹣1,∴抛物线开口向上,对称轴为y轴,∴y轴右侧部分上升,故上升.二.二次函数图象与系数的关系(共1小题)3.(2023•金山区一模)抛物线y=(k+2)x2﹣3x﹣1有最高点,那么k的取值范围是k<﹣2.【正确答案】k<﹣2.解:∵抛物线有最高点,∴抛物线开口向下,∴k+2<0,解得k<﹣2,故k<﹣2.三.二次函数图象上点的坐标特征(共1小题)4.(2023•长宁区一模)已知抛物线y=ax2﹣2ax+2(a>0)经过点(﹣1,y1),(2,y2),试比较y1和y2的大小:y1>y2(填“>”,“<”或“=”).【正确答案】>.解:∵a>0,∴抛物线开口向上,∵y=ax2﹣2ax+2,∴抛物线对称轴为直线x=﹣=1,∵1﹣(﹣1)>2﹣1,∴y1>y2,故>.四.三角形的重心(共2小题)5.(2023•金山区一模)如图,△ABC为等腰直角三角形,∠A=90°,AB=6,G1为△ABC的重心,E为线段AB上任意一动点,以CE为斜边作等腰Rt△CDE(点D在直线BC的上方),G2为Rt△CDE的重心,设G1、G2两点的距离为d,那么在点E运动过程中d的取值范围是0≤d≤.【正确答案】0≤d≤.解:当E与B重合时,G1与G2重合,此时d最小为0,当E与A重合时,G1G2最大,连接并延长AG1交BC于H,连接并延长DG2交AC于K,连接HK,过G2作G2T⊥AH于T,如图:∵G1为等腰直角三角形ABC的重心,∴H为BC中点,∴∠AHB=∠AHC=90°,∴△ABH和△ACH是等腰直角三角形,∴BH=CH=AH==3,∵AG1=2G1H,∴AG1=2,G1H=,∵G2是为等腰Rt△CDE的重心,∴K为AC中点,∴∠AKD=∠CKD=90°,∠AKH=∠CKH=90°,∴∠AKD+∠AKH=180°,∴D,K,H共线,∵AK=CK=DK=AC=AB=3=HK,∴G2K=DK=1,G2D=DK﹣G2K=2,∴G2H=G2K+HK=4,∵TG2∥ED,∴====,即==,∴TG2=2,TH=2,∴TG1=TH﹣G1H=,∴G1G2==,∴G1G2最大值为,∴G1G2的范围是0≤G1G2≤,故0≤d≤.6.(2023•松江区一模)已知△ABC,P是边BC上一点,△PAB、△PAC的重心分别为G1、G2,那么的值为.【正确答案】.解:延长AG1交PB于D,延长AG2交PC于E,∵△PAB、△PAC的重心分别为G1、G2,∴AG1:AD=AG2:AE=2:3,D是PB中点,E是PC中点,∵∠G1AG2=∠DAE,∴△AG1G2∽△ADE,∴△AG1G2的面积:△ADE的面积=4:9,∵D是PB中点,E是PC中点,∴△ADE的面积=×△ABC的面积,∴的值为.故.五.矩形的性质(共1小题)7.(2023•青浦区一模)如图,在矩形ABCD中,AB=2,BC=4.点H、F分别在边AD、BC上,点E、G在对角线AC上.如果四边形EFGH是菱形,那么线段AH的长为.【正确答案】.解:连接FH交AC于O,如图:∵四边形EFGH是菱形,∴FH⊥AC,OF=OH,∵四边形ABCD是矩形,∴∠B=∠D=90°,AD∥BC,∴∠ACB=∠CAD,在△AOH与△COF中,,∴△AOH≌△COF(AAS),∴AO=CO,Rt△ABC中,AB=2,BC=4,∴AC===2,∴AO=AC=,∵∠CAD=∠HAO,∠AOH=∠D=90°,∴△AOH∽△ADC,∴=,即=,∴AH=,故.六.旋转的性质(共3小题)8.(2023•松江区一模)已知Rt△ABC中,∠C=90°,sin A=,将△ABC绕点C旋转至△A'B′C,如果直线A′B'⊥AB,垂足记为点D,那么的值为或.【正确答案】或.解:设AC=3x,则AB=5x,BC=4x,当旋转90°时,A′B=x,∵sin A=,∴B′D=x,∴AD=x,∴BD=AB﹣AD=x,∴=,同理:当旋转270°时,=,故或.9.(2023•青浦区一模)如图,点P是正方形ABCD内一点,AB=5,PB=3,PA⊥PB.如果将线段PB绕点B顺时针旋转90°,点P的对应点为Q,射线QP交边AD于点E,那么线段PE的长为.【正确答案】.解:以B为原点,以BC所在直线为x轴建立直角坐标系,过P作PF⊥AB于F,过Q作QG⊥AB交AB延长线于G,如图:∵AB=5,PB=3,PA⊥PB,∴AP==4,=AP•PB=AB•PF,∵2S△ABP∴PF==,∴BF==,∴P,∵将线段PB绕点B顺时针旋转90°,点P的对应点为Q,∴∠PBQ=90°,BP=BQ,∴∠FBP=90°﹣∠QBG=∠BQG,∵∠PFB=∠BGQ=90°,∴△PFB≌△BGQ(AAS),∴PF=BG=,BF=QG=,∴Q(,﹣),由P,Q(,﹣)得直线PQ解析式为y=7x﹣15,在y=7x﹣15中,令y=5得x=,∴E(,5),∵P,∴PE==,故.10.(2023•普陀区一模)如图,在△ABC中,AD为边BC上的中线,BC=2AC,BC=6,AD =2.将△ADC绕点D以逆时针方向旋转得到△A′DC′,点A′、C′分别与点A、C对应.连接BC′,BC′与线段AD交于点G.如果点A′、A、C′在同一条直线上,那么C′G=.解:以D为原点,DC所在直线为x轴建立直角坐标系,过A作AH⊥DC于H,设A'C'交y轴于M,如图:∵AD为边BC上的中线,BC=2AC,BC=6,∴BD=CD=AC=3,∴B(﹣3,0),设DH=m,则CH=3﹣m,∵AD2﹣DH2=AH2=AC2﹣CH2,∴22﹣m2=32﹣(3﹣m)2,解得m=,∴DH=,AH=,∴A,由D(0,0),A得直线DA解析式为y=2x,∵将△ADC绕点D以逆时针方向旋转得到△A′DC′,∴AD=A'D,∠CAD=∠C'A'D,∴∠AA'D=∠A'AD,∴∠CAD=∠A'AD,∵AC=CD,∴∠CAD=∠ADC,∴∠A'AD=∠ADC,∴A'C'∥DC,∴四边形AMDH是矩形,∴AM=DH=,DM=AH=,∵AD=A'D,∴A'M=AM=,∴C'M=A'C'﹣A'M=3﹣=,∴C',由B(﹣3,0),C'得直线BC'解析式为y=x+,联立得,∴G,∴C'G==,故.七.比例的性质(共1小题)11.(2023•松江区一模)如果=,那么=.【正确答案】见试题解答内容解:∵=,则x=y,∴===.故.八.相似三角形的性质(共1小题)12.(2023•长宁区一模)如果两个相似三角形的面积比是1:9,那么它们的周长比是1:3.【正确答案】1:3.解:∵两个相似三角形的面积比是1:9,∴两个三角形的相似比为,1:3,∴它们的周长比是1:3,故1:3.九.相似三角形的判定(共1小题)13.(2023•徐汇区一模)规定:如果经过三角形一个顶点的直线把这个三角形分成两个小三角形,其中一个小三角形是等腰三角形,另一个小三角形和原三角形相似,那么符合这样条件的三角形称为“和谐三角形”,这条直线称为这个三角形的“和谐分割线”.例如,如图所示,在Rt△ABC中,∠C=90°,CA=CB,CD是斜边AB上的高,其中△ACD是等腰三角形,且△BCD和△ABC相似,所以△ABC是“和谐三角形”,直线CD为△ABC的“和谐分割线”.请依据规定求解问题:已知△DEF是“和谐三角形”,∠D=42°,当直线EG是△DEF的“和谐分割线”时,∠F的度数是54°或27°或46°或32°..(写出所有符合条件的情况)【正确答案】54°或27°或46°或32°.解:若△DEG是等腰三角形,△EFG与△DEF相似,如图1,当DG=EG,∠GEF=∠D=42°时,∴∠DEG=∠D=42°,∴∠F=180°﹣∠D﹣∠DEF=180°﹣3×42°=54°,如图2,当DE=DG,∠FGE=∠D=42°时,∴∠DGE=∠DEG==69°,∴∠F=∠DGE﹣∠FEG=69°﹣42°=27°,当△EFG是等腰三角形,△DEG与△DEF相似时,如图3,当EG=FG,∠DEG=∠F时,∴∠F=∠FEG,∴∠F=∠FEG=∠DEG==46°,如图4,当EF=FG,∠DEG=∠F时,∴∠FEG=∠FGE,设∠F=∠DEG=x°,∴∠FEG=∠FGE=(42+x)°,∴x+2(42+x)=180,∴x=32°,∴∠F=32°,综上所述:∠F=54°或27°或46°或32°,故答案为54°或27°或46°或32°.一十.相似三角形的判定与性质(共3小题)14.(2023•金山区一模)如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA:C△CDF=1:2,那么S△EAF:S四边形ABCF=1:8.的延长线交于点E,如果C△EAF【正确答案】1:8.解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC,AD∥BC,∴∠E=∠FCD,∠EAF=∠CDF,∴△EAF∽△CDF,:C△CDF=1:2,∵C△EAF∴=,∴=,∴=,∵AF∥BC,∴△EAF∽ABC,∴=()2=()2=,:S四边形ABCF=1:8,∴S△EAF故1:8.15.(2023•奉贤区一模)如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,DE∥BC,EF∥AB.如果DE:BC=2:5,那么EF:AB的值是3:5.【正确答案】3:5.解:∵DE∥BC,∴△ADE∽△ABC,∴=,∴=,∵EF∥AB,∴△CEF∽△CAB,=,故3:5.16.(2023•奉贤区一模)如图,在梯形ABCD中,AD∥BC,AC与BD相交于点O,如果BC:AD=3:2,那么S△ADC:S△ABC的值为2:3.【正确答案】2:3.解:∵四边形ABCD是梯形,AD∥BC,∴△ADC的边BC上的高和△ADC的边AD上的高相等,:S△ABC=,∴S△ADC∵BC:AD=3:2,∴AD:BC=2:3,:S△ABC==2:3,∴S△ADC故2:3.一十一.解直角三角形(共1小题)17.(2023•金山区一模)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,tan∠BCD=,AC =12,则BC=9.【正确答案】见试题解答内容解:∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A,∴tan∠BCD=tan A=,在Rt△ABC中,AC=12,∴tan A==,则BC=9,故9一十二.解直角三角形的应用-坡度坡角问题(共3小题)18.(2023•金山区一模)某商场场业厅自动扶梯的示意图如图所示,自动扶梯AB坡度i=1:,自动扶梯AB的长度为12米,那么大厅两层之间的高度BC=6米.【正确答案】6.解:∵自动扶梯AB坡度i=1:,∴=,设BC=x米,则AC=x米,∵∠BCA=90°,AB=12米,∴AC2+BC2=AB2,∴(x)2+x2=122,解得x1=6,x2=﹣6(不合题意,舍去),即BC的长为6米,故6.19.(2023•长宁区一模)小杰沿着坡度i=1:2.4的斜坡向上行走了130米,那么他距离地面的垂直高度升高了50米.【正确答案】50.解:设坡度的高为x米(x>0),则水平距离为:2.4x米,则:x2+(2.4x)2=1302,解得:x=50,故50.20.(2023•松江区一模)如图,河堤横断面迎水坡AB的坡比i=1:0.75,堤高BC=4.8米,那么坡面AB的长度是6米.【正确答案】6.解:∵i=BC:AC=1:0.75=4:3,∴令BC=4x(米),AC=3x(米),∴AB===5x(米),∵BC=4x=4.8(米),∴x=1.2,∴AB=5x=6(米).故6.。
上海市长宁区2020-2021学年九年级(上)期末数学试卷(中考一模) 含详解

2020-2021学年上海市长宁区九年级(上)期末数学试卷(一模)一、选择题(本大题共6题,每题4分,满分24分)[每题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]1.已知在△ABC中,∠C=90°,∠B=50°,AB=10,那么BC的长为()A.10cos50°B.10sin50°C.10tan50°D.10cot50°2.下列命题中,说法正确的是()A.四条边对应成比例的两个四边形相似B.四个内角对应相等的两个四边形相似C.两边对应成比例且有一个角相等的两个三角形相似D.斜边与一条直角边对应成比例的两个直角三角形相似3.已知、是两个单位向量,向量=3,=﹣3,那么下列结论正确的是()A.=B.=﹣C.||=||D.||=﹣||4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么a、c满足()A.a>0,c>0B.a>0,c<0C.a<0,c>0D.a<0,c<05.已知点P、点Q是线段AB的两个黄金分割点,且AB=10,那么PQ的长为()A.5(3﹣)B.10(﹣2)C.5(﹣1)D.5(+1)6.如图,已知在△ABC中,点D、点E是边BC上的两点,联结AD、AE,且AD=AE,如果△ABE∽△CBA,那么下列等式错误的是()A.AB2=BE•BC B.CD•AB=AD•ACC.AE2=CD•BE D.AB•AC=BE•CD二、填空题(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案]7.已知=,那么的值为.8.计算:(2﹣)+=.9.计算:cos45°+sin260°=.10.如果两个相似三角形对应边上的中线之比为5:4.那么这两个三角形的周长之比为.11.将抛物线y=2x2﹣1向下平移3个单位后,所得抛物线的表达式是.12.一辆汽车沿着坡度i=1:的斜坡向下行驶50米,那么它距离地面的垂直高度下降了米.13.已知抛物线y=x2﹣2x+c经过点A(﹣1,y1)和B(2,y2),比较y1与y2的大小:y1 y2(选择“>”或“<”或“=”填入空格).14.如图,已知AC∥EF∥BD.如果AE:EB=2:3,CF=6.那么CD的长等于.15.已知,二次函数f(x)=ax2+bx+c的部分对应值如下表,则f(﹣3)=.x﹣2﹣1012345y50﹣3﹣4﹣3051216.如图,点G为△ABC的重心.如果AG=CG,BG=2,AC=4,那么AB的长等于.17.如图,矩形ABCD沿对角线BD翻折后,点C落在点E处.联结CE交边AD于点F.如果DF=1,BC=4,那么AE的长等于.18.如果一条对角线把凸四边形分成两个相似的三角形,那么我们把这条对角线叫做这个凸四边形的相似对角线,在凸四边形ABCD中,AB=AC=,AD=CD=,点E、点F 分别是边AD,边BC上的中点.如果AC是凸四边形ABCD的相似对角线,那么EF的长等于.三、解答题(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上]19.(10分)已知二次函数y=﹣x2﹣x+.(1)用配方法把该二次函数的解析式化为y=a(x+m)2+k的形式;(2)写出该二次函数图象的开口方向、顶点坐标和对称轴,并说明函数值y随自变量x 的变化而变化的情况.20.(10分)如图,四边形ABCD是平行四边形,点E是边AD的中点AC、BE相交于点O.设=,=.(1)试用、表示;(2)在图中作出在、上的分向量,并直接用、表示.(不要求写作法,但要保留作图痕迹,并写明结论)21.(10分)如图,在△ABC中,点D在边AB上,点E、点F在边AC上,且DE∥BC,=.(1)求证:DF∥BE;(2)如果AF=2,EF=4,AB=6,求的值.22.(10分)某校为检测师生体温,在校门安装了某型号的测温门,如图为该“测温门”截面示意图.身高1.6米的小聪做了如下实验:当他在地面M处时“测温门”开始显示额头温度,此时在额头B处测得A的仰角为30°;当他在地面N处时,“测温门”停止显示额头温度,此时在额头C处测得A的仰角为53°.如果测得小聪的有效测温区间MN的长度是0.98米,求测温门顶部A处距地面的高度约为多少米?(注:额头到地面的距离以身高计,sin53°≈0.8,cos53°=0.6,cot53°≈0.75,≈1.73.)23.(12分)已知:如图,在Rt△ABC中,∠ACB=90°,CH⊥AB,垂足为点H.点D在边BC上,联结AD,交CH于点E,且CE=CD.(1)求证:△ACE∽△ABD;(2)求证:△ACD的面积是△ACE的面积与△ABD的面积的比例中项.24.(12分)已知在平面直角坐标系xOy中,抛物线y=ax2+bx+2经过点A(﹣3,﹣6)、B (6,0),与y轴交于点C.(1)求抛物线的表达式;(2)点D是抛物线上的点,且位于线段BC上方,联结CD.①如果点D的横坐标为2.求cot∠DCB的值;②如果∠DCB=2∠CBO,求点D的坐标.25.(14分)已知,在矩形ABCD中,点M是边AB上的一个点(与点A、B不重合),联结CM,作∠CMF=90°,且MF分别交边AD于点E、交边CD的延长线于点F.点G 为线段MF的中点,联结DG.(1)如图1,如果AD=AM=4,当点E与点G重合时,求△MFC的面积;(2)如图2,如果AM=2,BM=4.当点G在矩形ABCD内部时,设AD=x,DG2=y,求y关于x的函数解析式,并写出定义域;(3)如果AM=6,CD=8,∠F=∠EDG,求线段AD的长.(直接写出计算结果)2020-2021学年上海市长宁区九年级(上)期末数学试卷(一模)参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)[每题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]1.已知在△ABC中,∠C=90°,∠B=50°,AB=10,那么BC的长为()A.10cos50°B.10sin50°C.10tan50°D.10cot50°【分析】根据直角三角形的边角关系可得结论.【解答】解:在Rt△ABC中,∵cos B=,∠B=50°,AB=10,∴BC=AB•cos B=10•cos50°,故选:A.2.下列命题中,说法正确的是()A.四条边对应成比例的两个四边形相似B.四个内角对应相等的两个四边形相似C.两边对应成比例且有一个角相等的两个三角形相似D.斜边与一条直角边对应成比例的两个直角三角形相似【分析】根据三角形相似和相似多边形的判定解答.【解答】解:A、四个角对应相等,四条边对应成比例的两个四边形相似,原命题是假命题;B、四个内角对应相等,四条边对应成比例的两个四边形相似,原命题是假命题;C、两边对应成比例且其夹角相等的两个三角形相似,原命题是假命题;D、斜边与一条直角边对应成比例的两个直角三角形相似,是真命题;故选:D.3.已知、是两个单位向量,向量=3,=﹣3,那么下列结论正确的是()A.=B.=﹣C.||=||D.||=﹣||【分析】根据题意可以得到:与方向相同,与方向相同.【解答】解:根据题意知,与方向相同,与方向相同.A、当向量与方向相反时,=,故本选项不符合题意.B、当、是两个单位向量方向相同时,=﹣,故本选项不符合题意.C、由向量=3,=﹣3知,||=||,故本选项符合题意.D、由向量=3,=﹣3知,||=||,故本选项不符合题意.故选:C.4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么a、c满足()A.a>0,c>0B.a>0,c<0C.a<0,c>0D.a<0,c<0【分析】根据抛物线开口方向以及与y轴的交点情况即可进行判断.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线与y轴的交点在x轴的上方,∴c>0,故选项A、B、D错误,选项C正确.故选:C.5.已知点P、点Q是线段AB的两个黄金分割点,且AB=10,那么PQ的长为()A.5(3﹣)B.10(﹣2)C.5(﹣1)D.5(+1)【分析】先由黄金分割的比值求出BP=AQ=5(﹣1),再由PQ=AQ+BP﹣AB进行计算即可.【解答】解:如图,∵点P、Q是线段AB的黄金分割点,AB=10,∴BP=AQ=AB=5(﹣1),∴PQ=AQ+BP﹣AB=10(﹣1)﹣10=10(﹣2),故选:B.6.如图,已知在△ABC中,点D、点E是边BC上的两点,联结AD、AE,且AD=AE,如果△ABE∽△CBA,那么下列等式错误的是()A.AB2=BE•BC B.CD•AB=AD•ACC.AE2=CD•BE D.AB•AC=BE•CD【分析】根据相似三角形的性质,由△ABE∽△CBA得到AB:BC=BE:AB,则可对A 选项进行判断;由△ABE∽△CBA得到∠BAE=∠C,∠AEB=∠BAC,则证明△CAD∽△CBA,利用相似三角形的性质得CD:AC=AD:AB,则可对B选项进行判断;证明△CAD∽△ABE得到AD:BE=CD:AE,加上AD=AE,则可对C选项进行判断;利用△CBA∽△ABE得到AB•AC=AE•CB,由于AE2=CD•BE,AE≠CB,则可对D选项进行判断.【解答】解:∵△ABE∽△CBA,∴AB:BC=BE:AB,∴AB2=BE•BC,所以A选项的结论正确;∵△ABE∽△CBA,∴∠BAE=∠C,∠AEB=∠BAC,∵AD=AE,∴∠ADE=∠AED,∠ACD=∠BCA,∴∠ADE=∠BAC,∵∠ADC=∠BAC,∴△CAD∽△CBA,∴CD:AC=AD:AB,即CD•AB=AD•AC,所以B选项的结论正确;∵△ABE∽△CBA,△CAD∽△CBA,∴△CAD∽△ABE,∴AD:BE=CD:AE,即AD•AE=CD•BE,∵AD=AE,∴AE2=CD•BE,所以C选项的结论正确;∵△CBA∽△ABE,∴AC:AE=CB:AB,∴AB•AC=AE•CB,∵AE2=CD•BE,AE≠CB,∴AB•AC≠BE•CD,所以D选项的结论不正确.故选:D.二、填空题(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案]7.已知=,那么的值为﹣3.【分析】利用比例性质得到y=2x,把y=2x代入,然后进行分式的化简.【解答】解:∵=,∴y=2x,∴原式==﹣=﹣3.故答案为﹣3.8.计算:(2﹣)+=+.【分析】先利用乘法结合律去括号,然后计算加减法.【解答】解:原式=﹣+=+.故答案是:+.9.计算:cos45°+sin260°=.【分析】将cos45°=,sin60°=代入求解.【解答】解:原式=×+()2=1+=.故答案为:.10.如果两个相似三角形对应边上的中线之比为5:4.那么这两个三角形的周长之比为5:4.【分析】根据相似三角形的性质可直接得出结论.【解答】解:∵两个相似三角形的对应中线的比为5:4,∴其相似比为5:4,∴这两个相似三角形的周长的比为5:4,故答案为:5:4.11.将抛物线y=2x2﹣1向下平移3个单位后,所得抛物线的表达式是y=2x2﹣4.【分析】先确定抛物线y=2x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,﹣4),然后利用顶点式写出平移后的抛物线的表达式.【解答】解:抛物线y=2x2﹣1的顶点坐标为(0,﹣1),点(0,﹣1)向下平移3个单位后所得对应点的坐标为(0,﹣4),所以平移后的抛物线的表达式是y=2x2﹣4.故答案为y=2x2﹣4.12.一辆汽车沿着坡度i=1:的斜坡向下行驶50米,那么它距离地面的垂直高度下降了25米.【分析】设出垂直高度,表示出水平距离,利用勾股定理求解即可.【解答】解:∵坡度i=1:,∴设垂直高度下降了x米,则水平前进了x米.根据勾股定理可得:x2+(x)2=502.解得x=25(负值舍去),即它距离地面的垂直高度下降了25米.故答案为:25.13.已知抛物线y=x2﹣2x+c经过点A(﹣1,y1)和B(2,y2),比较y1与y2的大小:y1>y2(选择“>”或“<”或“=”填入空格).【分析】把点A、B的坐标分别代入已知抛物线解析式,并分别求得y1与y2的值,然后比较它们的大小.【解答】解:∵抛物线y=x2﹣2x+c经过点A(﹣1,y1)和B(2,y2),∴y1=(﹣1)2﹣2×(﹣1)+c=3+c,y2=22﹣2×2+c=c,∵y1﹣y2=3>0,∴y1>y2,故答案是:>.14.如图,已知AC∥EF∥BD.如果AE:EB=2:3,CF=6.那么CD的长等于15.【分析】根据平行线分线段成比例定理得到==,这样可求出FD的长,然后计算CF+FD即可.【解答】解:∵AC∥EF∥BD,∴==,∴FD=CF=×6=9,∴CD=CF+FD=6+9=15.故答案为15.15.已知,二次函数f(x)=ax2+bx+c的部分对应值如下表,则f(﹣3)=12.x﹣2﹣1012345y50﹣3﹣4﹣30512【分析】根据二次函数的对称性结合图表数据可知,x=﹣3时的函数值与x=5时的函数值相同.【解答】解:由图可知,f(﹣3)=f(5)=12.故答案为:12.16.如图,点G为△ABC的重心.如果AG=CG,BG=2,AC=4,那么AB的长等于.【分析】根据题意画出图形,延长BG交AC于点H,由等腰三角形的性质可得出BH⊥AC,由重心的性质可得GH的长,最后由勾股定理求出AB的长即可.【解答】解:如图所示:延长BG交AC于点H,∵G是△ABC的重心,AC=4,∴AH=CH=2,∵AG=CG,∴BH⊥AH,∴∠AHB=90°,∵BG=2,∴GH=1,由勾股定理得:AB===.故答案为:.17.如图,矩形ABCD沿对角线BD翻折后,点C落在点E处.联结CE交边AD于点F.如果DF=1,BC=4,那么AE的长等于.【分析】首先根据题意得到EG=CG,CE⊥BD,证明△CDF∽△BCD和△CDG∽△BDC,可计算CD和CG的长,再证明△EFD∽△AED,可得AE的长.【解答】解:由折叠得:CE⊥BD,CG=EG,∴∠DGF=90°,∴∠DFG+∠FDG=90°,∵四边形ABCD是矩形,∴∠ADC=∠BCD=90°,∴∠ADG+∠CDG=90°,∴∠CDG=∠DFG,∵∠CDF=∠BCD=90°,∴△CDF∽△BCD,∴,∵AB=4,DF=1,∴,∴CD=2,由勾股定理得:CF==,BD==2,同理得:△CDG∽△BDC,∴=,∴=,∴CG=,∴CE=2CG=,∴EF=CE﹣CF=﹣=,∵=,==,且∠EDF=∠AED,∴△EFD∽△AED,∴,即,∴AE=.故答案为:.18.如果一条对角线把凸四边形分成两个相似的三角形,那么我们把这条对角线叫做这个凸四边形的相似对角线,在凸四边形ABCD中,AB=AC=,AD=CD=,点E、点F 分别是边AD,边BC上的中点.如果AC是凸四边形ABCD的相似对角线,那么EF的长等于.【分析】利用相似三角形的性质求出BC长,再利用等腰三角形的性质和勾股定理计算出EF的长即可.【解答】解:如图所示:∵AB=AC,AD=CD,△ABC∽△DAC,∴AC2=BC•AD,∵AC=,AD=,∴CB=2,∵△ABC∽△DAC,∴∠ACB=∠CAD,∴CB∥AD,∵AB=AC,F为BC中点,∴AF⊥CB,BF=CF=1,∴∠AFC=90°,∵CB∥AD,∴∠F AE=∠AFC=90°,∵AC=,∴AF=,∵AD=,E为AD中点,∴AE=,∴EF===.故答案为:.三、解答题(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上]19.(10分)已知二次函数y=﹣x2﹣x+.(1)用配方法把该二次函数的解析式化为y=a(x+m)2+k的形式;(2)写出该二次函数图象的开口方向、顶点坐标和对称轴,并说明函数值y随自变量x 的变化而变化的情况.【分析】(1)直接利用配方法进而将二次函数的解析式化为y=a(x+m)2+k的形式;(2)根据二次函数的二次项系数判断该函数图象的开口方向,由二次函数的顶点式关系式找出其顶点坐标、对称轴,由二次函数的单调性来判断y随自变量x的变化而变化的情况.【解答】解:(1)y=﹣x2﹣x+.=﹣(x2+2x+1)++,=﹣(x+1)2+4;(2)∵a=﹣<0,∴二次函数图象的开口向下,顶点坐标为(﹣1,4),对称轴为直线x=﹣1,图象在直线x=﹣1左侧,y随x的增大而增大,在直线x=﹣1右侧,y随x的增大而减小.20.(10分)如图,四边形ABCD是平行四边形,点E是边AD的中点AC、BE相交于点O.设=,=.(1)试用、表示;(2)在图中作出在、上的分向量,并直接用、表示.(不要求写作法,但要保留作图痕迹,并写明结论)【分析】(1)首先证明BO=BE,求出即可解决问题.(2)证明OC=AC,求出即可解决问题.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=EC,∴==,∴BP=BE,∴==(+)=(﹣)=﹣.(2)∵AE∥BC,∴==,∴==(+)=(+)=+.如图,在、上的分向量分别为和.21.(10分)如图,在△ABC中,点D在边AB上,点E、点F在边AC上,且DE∥BC,=.(1)求证:DF∥BE;(2)如果AF=2,EF=4,AB=6,求的值.【分析】(1)先由平行线分线段成比例定理得=,再证=,即可得出结论;(2)先证=,再证△ADE∽△AEB,即可得出答案.【解答】(1)证明:∵DE∥BC,∴=,∵=,∴=,∴DF∥BE;(2)解:∵AF=2,EF=4,∴AE=AF+EF=6,==,∴=,∴AD=AB=2,BD=2AD=4,∴==,∵==,∴=,又∵∠A=∠A,∴△ADE∽△AEB,∴==.22.(10分)某校为检测师生体温,在校门安装了某型号的测温门,如图为该“测温门”截面示意图.身高1.6米的小聪做了如下实验:当他在地面M处时“测温门”开始显示额头温度,此时在额头B处测得A的仰角为30°;当他在地面N处时,“测温门”停止显示额头温度,此时在额头C处测得A的仰角为53°.如果测得小聪的有效测温区间MN的长度是0.98米,求测温门顶部A处距地面的高度约为多少米?(注:额头到地面的距离以身高计,sin53°≈0.8,cos53°=0.6,cot53°≈0.75,≈1.73.)【分析】延长BC交AD于点E,构造直角△ABE和矩形EDNB,设AE=x米.通过解直角三角形分别表示出BE、CE的长度,根据BC=BE﹣CE得到1.73x﹣0.75x=0.98,解得即可求得AE进而即可求得.【解答】解:延长BC交AD于点E,设AE=x米.∵,∴CE=≈0.75x,BE=≈1.73x,∴BC=BE﹣CE=1.73x﹣0.75x=0.98.解得x=1,∴AE=1,∴AD=AE+ED=1+1.6=2.6(米).答:测温门顶部A处距地面的高度约为2.6米.23.(12分)已知:如图,在Rt△ABC中,∠ACB=90°,CH⊥AB,垂足为点H.点D在边BC上,联结AD,交CH于点E,且CE=CD.(1)求证:△ACE∽△ABD;(2)求证:△ACD的面积是△ACE的面积与△ABD的面积的比例中项.【分析】(1)根据同角的余角相等得到∠ACH=∠CBH,根据等腰三角形的性质得到∠CED=∠CDE,进而得到∠AEC=∠ADB,根据相似三角形的判定定理证明结论;(2)过点B作BG∥AC交AD的延长线于点G,根据相似三角形的性质得到=,根据相似三角形的面积公式计算,证明结论.【解答】证明:(1)∵AC⊥BC,CH⊥AB,∴∠ACB=∠AHC=90°,∴∠ACH=∠CBH,∵CE=CD,∴∠CED=∠CDE,∴∠AEC=∠ADB,∴△ACE∽△ABD;(2)过点B作BG∥AC交AD的延长线于点G,∴∠CAD=∠G,∵△ACE∽△ABD,∴=,∠CAD=∠BAD,∴∠BAD=∠G,∴AB=BG,∵BG∥AC,∴△ADC∽△GDB,∴=,∴=,∴=,∴△ACD的面积是△ACE的面积与△ABD的面积的比例中项.24.(12分)已知在平面直角坐标系xOy中,抛物线y=ax2+bx+2经过点A(﹣3,﹣6)、B (6,0),与y轴交于点C.(1)求抛物线的表达式;(2)点D是抛物线上的点,且位于线段BC上方,联结CD.①如果点D的横坐标为2.求cot∠DCB的值;②如果∠DCB=2∠CBO,求点D的坐标.【分析】(1)将点A,B坐标代入抛物线解析式中,解方程组,即可得出结论;(2)①先求出点D坐标,进而求出BC,CD,DB,判断出△BDC是直角三角形,即可得出结论;②构造出等腰三角形,利用对称性求出点F的坐标,进而求出直线CF的解析式,进而联立抛物线解析式,解方程组,即可得出结论.【解答】解:(1)∵抛物线y=ax2+bx+2经过点A(﹣3,﹣6)、B(6,0),∴,∴,∴抛物线的表达式为y=﹣x2+x+2;(2)①如图1,由(1)知,抛物线的解析式为y=﹣x2+x+2,当x=0时,y=2,∴C(0,2),当x=2时,y=﹣×4+×2+2=4,∴D(2,4),∵B(6,0),∴CD2=(2﹣0)2+(4﹣2)2=8,BC2=(6﹣0)2+(0﹣2)2=40,DB2=(6﹣2)2+(0﹣4)2=32,∴CD2+BC2=DB2,∴△BCD是直角三角形,∠BDC=90°,在Rt△BDC中,CD=2,BD=4,∴cot∠DCB===;②如图2,过点C作CE∥x轴,则∠BCE=∠CBO,∵∠DCB=2∠CBO,∴∠DCE=∠BCE,过点B作BE⊥CE,并延长交CD的延长线于F,∵C(0,2),B(6,0),∴F(6,4),设直线CF的解析式为y=kx+2,∴6k+2=4,∴k=,∴直线CF的解析式为y=x+2①,∵抛物线的解析式为y=﹣x2+x+2②,联立①②,解得或,∴D(4,).25.(14分)已知,在矩形ABCD中,点M是边AB上的一个点(与点A、B不重合),联结CM,作∠CMF=90°,且MF分别交边AD于点E、交边CD的延长线于点F.点G 为线段MF的中点,联结DG.(1)如图1,如果AD=AM=4,当点E与点G重合时,求△MFC的面积;(2)如图2,如果AM=2,BM=4.当点G在矩形ABCD内部时,设AD=x,DG2=y,求y关于x的函数解析式,并写出定义域;(3)如果AM=6,CD=8,∠F=∠EDG,求线段AD的长.(直接写出计算结果)【分析】(1)由“AAS”可证△AGM≌△DGF,可得AM=DF=4,AG=GD=AD=2,由勾股定理可求GF的长,由锐角三角函数可求MC的长,即可求解;(2)过点M作MH⊥CD于H,过点G作GP⊥CD于P,通过证明△FHM∽△MHC,可得,可求FH=,PH=,DP=2﹣,GP=x,由勾股定理可求解;(3)分两种情况讨论,通过全等三角形的性质和相似三角形的性质可求解.【解答】解:(1)∵点G为线段MF的中点,∴GF=MG,又∵∠A=∠FDG=90°,∠AGM=∠FGD,∴△AGM≌△DGF(AAS),∴AM=DF=4,AG=GD=AD=2,∴GF===2,∴FM=2GF=4,∵tan F=,∴,∴MC=2,∴S△MFC=×FM×MC=×4×2=20;(2)过点M作MH⊥CD于H,过点G作GP⊥CD于P,∴GP∥MH,MH=AD=x,∴=,∴GP=MH=x,FP=FH=FH,∵∠CMF=90°=∠FHM=∠CHM,∴∠F+∠FCM=90°=∠F+∠FMH=∠FCM+∠CMH,∴∠F=∠CMH,∠FCM=∠CMH,∴△FHM∽△MHC,∴,∴MH2=FH•HC,∴FH=,∴PH=,∴DP=2﹣,GP=x,∵DG2=DP2+GP2,∴y=+4(2<x<4);(3)如图3,当点G在矩形的外部时,延长DG交AB于J,连接AG,AF,∵∠FMC=90°,∴∠AME+∠CMB=90°=∠CMB+∠BCM,∴∠AME=∠MCB,∵∠EDG=∠EFD=∠AME=∠MCB,AD=BC,∠DAJ=∠B=90°,∴△ADJ≌△BCM(ASA),∴AJ=BM=2,∴JM=4,∵AB∥CD,∴,∴MJ=FD=4,GJ=DG,∴AG=DG=GJ,∴∠GAD=∠GDA=∠GFD,又∵∠AEG=∠FED,∴∠AGE=∠FDE=90°,又∵FG=GM,∴AF=AM=6,∴AD===2,当点G在矩形的外部时,延长DG交BA的延长线于L,连接DM,同理可求AD=2,综上所述:AD=2或2.。
2020年上海市中考数学模拟试题及答案(解析版) (2)

∵ ,
∴ ,
∴抛物线 开口向上;对称轴为y轴(即x=0);在y轴左侧;y随x的增大而减小;在y轴右侧;y随x的增大而增大
A(-3; );B(-1; );
点A距对称轴的距离为|-3|=3;点B距对称轴的距离为|-1|=1.
又 抛物线开口向上;抛物线上的点距对称轴越远;y值越大;
> .
故答案:>.
11.函数 的图象是开口向下的抛物线.(______)
12.如果向量 、 、 之间满足关系式 ,那么 _________(用向量 、 表示)
13.鄂尔多斯市成陵旅游区到响沙湾旅游区之间的距离为100km,在一张比例尺为 的交通旅游图上,它们之间的距离相当于_____cm.
14.若 ,则 ______.
本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.
5.已知二次函数 自变量x与函数值y之间满足下列数量关系:
x
2
4
5
y
0.37
0.37
4
那么 的值为()
A.24B.20C.10D.4
(2)如图3,∠ACB≠ 90°,若当点M为线段AB上不与点A重合的一个动点,MP⊥CM交线段BN于点P,且∠CBA=45°,BC= ,当BM=时,BP的最大值为.
21.为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图(如
22.如图,直线EF分别交△ABC的边AC,AB于点E,F,交边BC的延长线于点D,且AB·BF=BC·BD.求证:AE·EC=EF·ED.
A. ∥ B.
2020-2021学年上海市杨浦区中考数学三模试卷及答案解析

上海市杨浦区中考数学三模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.下列实数中,无理数是()A.B.C.D.2.0200200022.下列运算正确的是()A.B.C.D.3.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定的4.下列关于向量的等式中,正确的是()A.=B.+=C.+=+D.+(﹣)=5.顺次连结矩形四边中点所得的四边形一定是()A.菱形B.矩形C.正方形D.等腰梯形6.已知半径分别是3和5的两个圆没有公共点,那么这两个圆的圆心距d的取值范围是()A.d>8 B.d>2 C.0≤d<2 D.d>8或d<2二、填空题:(本大题共12题,每题4分,满分48分)7.化简:﹣= .8.a6÷a2= .9.如果关于x二次三项式x2﹣6x+m在实数范围内不能分解因式,那么m的取值范围是.10.不等式组的解集是.11.函数的定义域是.12.当k>2时,一次函数y=kx+k﹣1的图象经过象限.13.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市收银台排队付款的等待时间,并绘制成如图所示的频数分布直方图(图中等待时间0分钟到1分钟表示大于或等于0分钟而小于1分钟,其他类同).这个时间段内顾客等待时间不少于6分钟的人数为.14.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为.15.如果一个正多边形的内角和等于1440°,那么这个正多边形的内角是度.16.如图,一人乘雪橇沿坡比1:的斜坡笔直滑下72米,那么他下降的高度为米.17.如图,矩形ABCD中,AB=2,BC=4,点A、B分别在y轴、x轴的正半轴上,点C在第一象限,如果∠OAB=30°,那么点C的坐标是.18.把图一的矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点P处(如图二).已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD的面积为.三、解答题:(本大题共7题,满分78分)19.化简:,并求当时的值.20.解方程:21.如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=6,求⊙O的半径长.22.甲乙两人同时登山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是每分钟米,乙提速时距地面的高度b为米;(2)若乙提速后,乙的速度是甲登山速度的3倍,请求出乙提速后,登山时距地面的高度y(米)与登山时间x(分)之间的函数关系式,并写出相应的定义域.23.如图所示,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.求证:(1)四边形AFCE是平行四边形;(2)FG•BE=CE•AE.24.矩形OABC在平面直角坐标系中的位置如图所示,AC两点的坐标分别为A(6,0),C(0,3),直线与BC边相交于点D.(1)求点D的坐标;(2)若上抛物线y=ax2+bx(a≠0)经过A,D两点,试确定此抛物线的解析式;(3)设(2)中的抛物线的对称轴与直线AD交点M,点P为对称轴上一动点,以P、A、M为顶点的三角形与△ABD相似,求符合条件的所有点P的坐标.25.如图1,已知AB⊥BM,AB=2,点P为射线BM上的动点,联结AP,作BH⊥AP,垂足为H,∠APM的平分线交BH的延长线于点D,联结AD.(1)若∠BAP=30°,求∠ADP的度数;(2)若S△ADP :S△ABP=3:2,求BP的长;(3)若AD∥BM(如图2),求BP的长.上海市杨浦区中考数学三模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.下列实数中,无理数是()A.B.C.D.2.020020002【考点】无理数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、=3是有理数,故A错误;B、=2是有理数,故B错误;C、是无理数,故C正确;D、2.0020002是有理数,故D错误;故选:C.【点评】本题考查了无理数,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列运算正确的是()A.B.C.D.【考点】分数指数幂.【专题】推理填空题.【分析】求出=≠,即不等于3,即可判断A、B;求出==3,即可判断C、D.【解答】解:A、=≠3,故本选项错误;B、=≠±3,故本选项错误;C、==3,故本选项正确;D、=3≠±3,故本选项错误;故选C.【点评】本题考查了对分数指数幂的应用,主要考查了学生的辨析能力和计算能力,题目比较好,但是一道比较容易出错的题目.3.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定的【考点】根的判别式.【专题】计算题.【分析】先计算△=(﹣m)2﹣4×1×(﹣1)=m2+4,由于m2为非负数,则m2+4>0,即△>0,根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义即可判断方程根的情况.【解答】解:△=(﹣m)2﹣4×1×(﹣1)=m2+4,∵m2≥0,∴m2+4>0,即△>0,∴方程有两个不相等的实数根.故选A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.下列关于向量的等式中,正确的是()A.=B.+=C.+=+D.+(﹣)=【考点】*平面向量.【分析】根据相反向量的定义可知=﹣;由三角形法则可得+==﹣,根据平面向量的交换律可得+=+;又由+(﹣)=0,即可求得答案;注意掌握排除法在选择题中的应用.【解答】解:A、=﹣,故本选项错误;B、+==﹣,故本选项错误;C、+=+,故本选项正确;D、+(﹣)=0,故本选项错误.故选C.【点评】此题考查了平面向量的知识.注意掌握相反向量的定义与三角形法则的应用.5.顺次连结矩形四边中点所得的四边形一定是()A.菱形B.矩形C.正方形D.等腰梯形【考点】中点四边形.【分析】因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.【解答】解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选:A.【点评】本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.6.已知半径分别是3和5的两个圆没有公共点,那么这两个圆的圆心距d的取值范围是()A.d>8 B.d>2 C.0≤d<2 D.d>8或d<2【考点】圆与圆的位置关系.【分析】没有公共点的两个圆的位置关系,应该是内含和外离,外离,则d>R+r;内含,则d <R﹣r.【解答】解:没有公共点的两个圆的位置关系,应该是内含和外离,当内含时,这两个圆的圆心距d的取值范围是d<R﹣r,即d<2;当外离时,这两个圆的圆心距d的取值范围是d>R+r,即d>8.故选D.【点评】本题难度中等,主要是考查圆与圆的位置关系与数量关系间的联系.二、填空题:(本大题共12题,每题4分,满分48分)7.化简:﹣= .【考点】二次根式的加减法.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式=3﹣2=.故答案为:.【点评】本题考查了二次根式的加减运算,解答本题得关键是掌握二次根式的化简及同类二次根式的合并.8.a6÷a2= a4.【考点】同底数幂的除法.【分析】根据同底数幂的除法,可得答案.【解答】解:a6÷a2=a4.故答案为:a4.【点评】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.9.如果关于x二次三项式x2﹣6x+m在实数范围内不能分解因式,那么m的取值范围是m>9 .【考点】实数范围内分解因式.【专题】计算题.【分析】由题意知,二次三项式在实数范围内不能分解因式,所以方程x2﹣6x+m=0无解,即△<0,代入解答出即可.【解答】解:根据题意得,二次三项式在实数范围内不能分解因式,∴方程x2﹣6x+m=0无解,即△<0.∴△=b2﹣4ac=(﹣6)2﹣4m=36﹣4m<0,解得,m>9.故答案为m>9.【点评】本题主要考查了实数范围内分解因式,二次三项式在实数范围内不能分解因式,即方程无解,也就是△<0,读懂题意是解答本题的关键.10.不等式组的解集是x>2 .【考点】解一元一次不等式组.【专题】计算题.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>;由②得,x>2,故此不等式组的解集为:x>2.故答案为:x>2.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.函数的定义域是x≥﹣3 .【考点】函数自变量的取值范围.【专题】函数思想.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:x+3≥0,解得:x≥﹣3.故答案为:x≥﹣3.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.当k>2时,一次函数y=kx+k﹣1的图象经过一、二、三象限.【考点】一次函数图象与系数的关系.【分析】根据k>2,得出k>0,k﹣1>0进行解答即可.【解答】解:因为k>2,可得k>0,k﹣1>0,所以一次函数y=kx+k﹣1的图象经过一、二、三象限,故答案为:一、二、三【点评】本题考查的是一次函数的图象与系数的关系,解答此题时要根据k>2,得出k>0,k ﹣1>0进行解答.13.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市收银台排队付款的等待时间,并绘制成如图所示的频数分布直方图(图中等待时间0分钟到1分钟表示大于或等于0分钟而小于1分钟,其他类同).这个时间段内顾客等待时间不少于6分钟的人数为7 .【考点】频数(率)分布直方图.【专题】数形结合.【分析】利用频数分布直方图,最后2组的等待时间都不少于6分钟,而且可得它们的频数分别为5,2,然后计算这两组的人数之和.【解答】解:根据频数分布直方图得到最后2组的等待时间不少于6分钟,而它们的频数分别为5,2,所以这个时间段内顾客等待时间不少于6分钟的人数为5+2=7(人).故答案为7.【点评】本题考查了频数(率)分布直方图:频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率.各组频率的和等于1,即所有长方形面积的和等于1;频数分布直方图可以清楚地看出落在各组的频数,各组的频数和等于总数.14.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为.【考点】概率公式;轴对称图形;中心对称图形.【分析】四边形,三角形,正方形,梯形,平行四边形,圆中任取一个图形共有6个结果,且每个结果出现的机会相同,其中既是轴对称图形又是中心对称图形的正方形和圆两个.【解答】解:∵在四边形,三角形,正方形,梯形,平行四边形,圆6个图形中,既是轴对称图形又是中心对称图形的正方形和圆两个.∴从中任取一个图形既是轴对称图形又是中心对称图形的概率为.【点评】正确认识轴对称图形和中心对称图形以及理解列举法求概率是解题的关键.用到的知识点为:概率=所求情况数与总情况数之比.15.如果一个正多边形的内角和等于1440°,那么这个正多边形的内角是144 度.【考点】多边形内角与外角.【分析】首先设此多边形为n边形,根据题意得:180(n﹣2)=1440,即可求得n=10,再由多边形的内角和除以10,即可求得答案.【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=1440,解得:n=10,∴这个正多边形的每一个内角等于:1440°÷10=144°.故答案为:144.【点评】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°.16.如图,一人乘雪橇沿坡比1:的斜坡笔直滑下72米,那么他下降的高度为36 米.【考点】解直角三角形的应用-坡度坡角问题.【专题】计算题.【分析】因为其坡比为1:,则坡角为30度,然后运用正弦函数解答.【解答】解:因为坡度比为1:,即tanα=,∴α=30°.则其下降的高度=72×sin30°=36(米).【点评】此题主要考查学生对坡度坡角的理解及运用.17.如图,矩形ABCD中,AB=2,BC=4,点A、B分别在y轴、x轴的正半轴上,点C在第一象限,如果∠OAB=30°,那么点C的坐标是(1+2,2).【考点】矩形的性质;坐标与图形性质.【专题】推理填空题.【分析】根据30°角所对的直角边等于斜边的一半求出OB的长度,然后过点C作CE⊥x轴于点E,根据直角三角形的性质求出∠CBE=30°,在Rt△BCE中求出CE、BE的长度,再求出OE的长度,即可得解.【解答】解:∵AB=2,∠OAB=30°,∴OB=AB=1,在矩形ABCD中,∠ABC=90°,∴∠OAB+∠ABO=90°,∠AB0+∠CBE=90°,∴∠CBE=∠OAB=30°,点C作CE⊥x轴于点E,在Rt△BCE中,CE=BC=×4=2,BE===2,∴OE=OB+BE=1+2,∴点C的坐标是(1+2,2).故答案为:(1+2,2).【点评】本题考查了矩形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,作辅助线构造出直角三角形是解题的关键.18.把图一的矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点P处(如图二).已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD的面积为.【考点】翻折变换(折叠问题).【专题】压轴题.【分析】利用折叠的性质和勾股定理可知.【解答】解:由勾股定理得,MN=5,设Rt△PMN的斜边上的高为h,由矩形的宽AB也为h,根据直角三角形的面积公式得,h=PM•PN÷MN=,由折叠的性质知,BC=PM+MN+PN=12,∴矩形的面积=AB•BC=.【点评】本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②勾股定理,直角三角形和矩形的面积公式求解.三、解答题:(本大题共7题,满分78分)19.化简:,并求当时的值.【考点】分式的化简求值;零指数幂;负整数指数幂.【专题】探究型.【分析】先根据负整数指数幂及0指数幂的计算法则计算出各数,再根据分式混合运算的法则把原式进行化简,把x的值代入进行计算即可.【解答】解:原式=++1===.当x=+1时,原式===【点评】本题考查分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.解方程:【考点】换元法解分式方程;解一元二次方程-因式分解法.【专题】计算题;换元法.【分析】此题用换元法解答,设y=,把分式方程化为整式方程求解.【解答】解:设y=,则原方程化为y﹣﹣2=0,∴y2﹣2y﹣3=0,解得:y1=3,y2=﹣1.当y1=3时,=3,解得x1=﹣;当y2=﹣1时,=﹣1,解得x2=﹣.经检验,原方程的解是x1=﹣,x2=﹣.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.21.如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=2,ED=6,求⊙O的半径长.【考点】垂径定理;勾股定理.【分析】过点O分别作AB、CD的垂线OM、ON,则四边形OMEN是正方形,利用垂径定理即可求得OM,AM的长度,然后在直角△AOM中利用勾股定理即可求得OA的长度.【解答】解:过点O分别作AB、CD的垂线OM、ON,则四边形OMEN是矩形,连接OA.∵AB=CD,AB⊥CD,∴OM=ON,∴矩形OMEN是正方形.∵CE=2,ED=6,∴CD=2+6=8,∵ON⊥CD∴CN=CD=4,∴EN=OM=2,同理:AM=4.在直角△AMO中,OA===2.∴⊙O的半径长为2.【点评】本题考查了垂径定理,利用垂径定理可以把求弦长以及半径的计算转化成求直角三角形的边长的计算.22.甲乙两人同时登山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是每分钟10 米,乙提速时距地面的高度b为30 米;(2)若乙提速后,乙的速度是甲登山速度的3倍,请求出乙提速后,登山时距地面的高度y(米)与登山时间x(分)之间的函数关系式,并写出相应的定义域.【考点】一次函数的应用.【分析】(1)甲的速度=(300﹣100)÷20=10,根据图象知道一分的时间,走了15米,然后即可求出A地提速时距地面的高度;(2)乙提速后,乙的速度是甲登山速度的3倍,所以乙的速度是30米/分.那么求出点B的坐标,加上点A的坐标代入一次函数解析式即可求出乙的函数解析式,把C、D坐标代入一次函数解析式可求出甲的函数解析式.【解答】解:(1)甲的速度为:(300﹣100)÷20=10米/分,根据图中信息知道乙一分的时间,走了15米,那么2分时,将走30米;故答案为:10;30(2)由图知:x=+2=11,∵C(0,100),D(20,300)=10x+100(0≤x≤20);∴线段CD的解析式:y甲∵A(2,30),B(11,300),=∴折线OAB的解析式为:y乙【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,关键是正确理解题意.23.如图所示,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.求证:(1)四边形AFCE是平行四边形;(2)FG•BE=CE•AE.【考点】相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的判定与性质.【分析】(1)根据已知首先证明△ADF≌△EDC,再利用AF=CE,AF∥BC得出即可;(2)利用已知得出△AFG∽△BEA,进而得出比例式,再利用平行四边形的性质求出即可.【解答】(1)证明:∵AF∥BC,∴∠AFD=∠DEC,∵∠FDA=∠CDE,D是AC的中点,∴△ADF≌△EDC,∴AF=CE,∵AF∥BC,∴四边形AFCE是平行四边形;(2)证明:∵四边形AFCE是平行四边形,∴∠AFC=∠AEC,AF=CE,∵AF∥BC,∴∠FAB=∠ABE,∴△AFG∽△BEA,∴,∴FG•BE=AF•AE,∴FG•BE=CE•AE.【点评】此题主要考查了平行四边形的判定与性质和相似三角形的判定与性质,根据已知得出证明等积式需证明△AFG∽△BEA是解决问题的关键.24.矩形OABC在平面直角坐标系中的位置如图所示,AC两点的坐标分别为A(6,0),C(0,3),直线与BC边相交于点D.(1)求点D的坐标;(2)若上抛物线y=ax2+bx(a≠0)经过A,D两点,试确定此抛物线的解析式;(3)设(2)中的抛物线的对称轴与直线AD交点M,点P为对称轴上一动点,以P、A、M为顶点的三角形与△ABD相似,求符合条件的所有点P的坐标.【考点】二次函数综合题.【专题】应用题;综合题.【分析】(1)有题目所给信息可以知道,BC线上所有的点的纵坐标都是3,又有D在直线上,代入后求解可以得出答案.(2)A、D,两点坐标已知,把它们代入二次函数解析式中,得出两个二元一次方程,联立求解可以得出答案.(3)由题目分析可以知道∠B=90°,以P、A、M为顶点的三角形与△ABD相似,所以应有∠APM、∠AMP或者∠MAP等于90°,很明显∠AMP不可能等于90°,所以有两种情况.【解答】解:(1)∵四边形OABC为矩形,C(0,3)∴BC∥OA,点D的纵坐标为3.∵直线与BC边相交于点D,∴.∴x=2,故点D的坐标为(2,3)(2)∵若抛物线y=ax2+bx经过A(6,0)、D(2,3)两点,∴解得:∴抛物线的解析式为.(3)∵抛物线的对称轴为x=3,设对称轴x=3与x轴交于点P1,∴BA∥MP1,∴∠BAD=∠AMP1.M=∠ABD=90°,∴△ABD∽△MP1A.①∵∠AP1(3,0).∴P1=∠ABD=90°时,△ABD∽△MAP2.②当∠MAP2M=∠ADB∴∠AP2=AB,∠AP1P2=∠ABD=90°,∵AP1P2≌△ABD∴△AP1P2=BD=4.∴P1在第四象限,∴P2(3,﹣4).∵点P2答:符合条件的点P有两个,P1(3,0)、P2(3,﹣4).【点评】本题主要考查了二次函数的实际应用,以及三角形的性质等相关知识,属于综合类题目.25.如图1,已知AB⊥BM,AB=2,点P为射线BM上的动点,联结AP,作BH⊥AP,垂足为H,∠APM的平分线交BH的延长线于点D,联结AD.(1)若∠BAP=30°,求∠ADP的度数;(2)若S△ADP :S△ABP=3:2,求BP的长;(3)若AD∥BM(如图2),求BP的长.【考点】相似形综合题.【分析】(1)根据AB⊥BM、∠BAP=30°可得∠APB=60°、∠APM=120°,再由BH⊥AP、BH平分∠APM得∠BPA=∠DPA、PB=PD,证△ABP≌△ADP可得∠ADP=∠ABP=90°;(2)S △ADP :S △ABP =3:2可得HD :BH=3:2,设BH=2x ,DH=3x ,根据角平分线性质得DN=DH=3x ,在RT △BDN 中表示出tan ∠DBN ,由∠BAP=∠HBP 可得AB=,由AB=2可求出x的值;(3)过点D 作DN ⊥BM 于N ,根据已知条件知四边形ABND 是矩形可得DN=AB ,由角平分线性质得DH=DN ,故可证得△ABP ≌△DHA ,有BP=HA ,设BP=x ,再证△ABH ∽△APB 得AB 2=AH •AP ,可列出关于x 的方程,解方程即得.【解答】解:(1)∵AB ⊥BH ,∴∠ABP=90°,∵∠BAP=30°,∴∠APB=60°,∴∠APM=180°﹣60°=120°,∵PD 平分∠APM ,∴∠DPM=∠APM=60°,∵BH ⊥AP ,∴∠BHP=90°,∴∠HBP=30°,∵∠PBD+∠PDB=∠DPM ,∴∠PDB=60°﹣30°=30°,∴PB=PD ,在△ABP 和△ADP 中,∵,∴△ABP≌△ADP(SAS),∴∠ADP=∠ABP=90°;(2)如图1,过点D作DN⊥BM于N,∵BH⊥AP,∴S△ADP =AP•HD,S△ABP=AP•BH,∵S△ADP :S△ABP=3:2,∴HD:BH=3:2,设BH=2x,DH=3x,∵PD平分∠APM,BH⊥AP,DN⊥BM,∴DN=DH=2x,在△BND中,BD=5x,DN=3x,则BN=4x,∴tan∠DBN=,∴HP=2x•=x,∴BP=x,∵AB⊥BP,∴∠BAP+∠BPH=90°=∠HBP+∠APB,∴∠BAP=∠HBP,∴AB=,∵AB=2,∴x=,∴BP=x=;(3)如图2,过点D作DN⊥BM于N,∵AB⊥BN,AD∥BM,∴∠ABN=∠DNB=∠BAD=90°,∴四边形ABND是矩形,∴DN=AB=2,∵PD平分∠APM,∴DH=DN=2,在△ABP和△DHA中,,∴△ABP≌△DHA(ASA),∴BP=HA,设BP=x,∵∠BAH=∠PAB,∠ABP=∠AHB,∴△ABH∽△APB,∴AB2=AH•AP,∴4=x•,解得:x2=2﹣2,(负根已舍)∴BP=.【点评】本题主要考查全等三角形判定与性质、相似三角形的判定与性质、角平分线性质等知识点,将待求角和线段通过全等或相似转化到求另一个相等量是关键也是难点.。
2020-2021学年上海市浦东新区九年级中考一模数学试卷(含解析)

2020-2021学年上海市浦东新区九年级一模数学试卷一、选择题(共6小题).1.A、B两地的实际距离AB=250米,如果画在地图上的距离A′B′=5厘米,那么地图上的距离与实际距离的比为()A.1:500B.1:5000C.500:1D.5000:12.已知在Rt△ABC中,∠C=90°,∠B=α,AC=2,那么AB的长等于()A.B.2sinαC.D.2cosα3.下列y关于x的函数中,一定是二次函数的是()A.y=(k﹣1)x2+3B.y=+1C.y=(x+1)(x﹣2)﹣x2D.y=2x2﹣7x4.已知一个单位向量,设、是非零向量,那么下列等式中正确的是()A.||=B.||=C.=D.=5.如图,在△ABC中,点D、F是边AB上的点,点E是边AC上的点,如果∠ACD=∠B,DE∥BC,EF∥CD,下列结论不成立的是()A.AE2=AF•AD B.AC2=AD•AB C.AF2=AE•AC D.AD2=AF•AB 6.已知点A(1,2)、B(2,3)、C(2,1),那么抛物线y=ax2+bx+1可以经过的点是()A.点A、B、C B.点A、B C.点A、C D.点B、C二、填空题(共12小题).7.如果线段a、b满足=,那么的值等于.8.已知线段MN的长为4,点P是线段MN的黄金分割点,那么较长线段MP的长是.9.计算:2sin30°﹣tan45°=.10.如果从某一高处甲看低处乙的俯角为36度,那么从低处乙看高处甲的仰角是度.11.已知AD、BE是△ABC的中线,AD、BE相交于点F,如果AD=3,那么AF=.12.如图,已知平行四边形ABCD的对角线AC与BD相交于点O,设=,=,那么向量关于、的分解式为.13.如果抛物线y=(m+4)x2+m经过原点,那么该抛物线的开口方向.(填“向上”或“向下”)14.如果(2,y1)(3,y2)是抛物线y=(x+1)2上两点,那么y1y2.(填“>”或“<”)15.如图,矩形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知△ABC的边BC长60厘米,高AH为40厘米,如果DE=2DG,那么DG=厘米.16.秦九韶的《数书九章》中有一个“峻积验雪”的例子,其原理为:如图,在Rt△ABC 中,∠C=90°,AC=12,BC=5,AD⊥AB,AD=0.4,过点D作DE∥AB交CB的延长线于点E,过点B作BF⊥CE交DE于点F,那么BF=.17.如果将二次函数的图象平移,有一个点既在平移前的函数图象上又在平移后的函数图象上,那么称这个点为“平衡点”.现将抛物线C1:y=(x﹣1)2﹣1向右平移得到新抛物线C2,如果“平衡点”为(3,3),那么新抛物线C2的表达式为.18.如图,△ABC中,AB=10,BC=12,AC=8,点D是边BC上一点,且BD:CD=2:1,联结AD,过AD中点M的直线将△ABC分成周长相等的两部分,这条直线分别与边BC、AC相交于点E、F,那么线段BE的长为.三、解答题(共7小题).19.已知向量关系式()=,试用向量、表示向量.20.已知抛物线y=x2+2x+m﹣3的顶点在第二象限,求m的取值范围.21.如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F,且AB =6,BC=8.(1)求的值;(2)当AD=5,CF=19时,求BE的长.22.如图,燕尾槽的横断面是等腰梯形ABCD,现将一根木棒MN放置在该燕尾槽中,木棒与横断面在同一平面内,厚度等不计,它的底端N与点C重合,且经过点A.已知燕尾角∠B=54.5°,外口宽AD=180毫米,木棒与外口的夹角∠MAE=26.5°,求燕尾槽的里口宽BC(精确到1毫米).(参考数据:sin54.5°≈0.81,cos54.5°≈0.58,tan54.5°≈1.40,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)23.Rt△ABC中,∠ACB=90°,点D、E分别为边AB、BC上的点,且CD=CA,DE⊥AB.(1)求证:CA2=CE•CB;(2)联结AE,取AE的中点M,联结CM并延长与AB交于点H,求证:CH⊥AB.24.二次函数y=ax2+bx+c(a≠0)的图象经过点A(2,4)、B(5,0)和O(0,0).(1)求二次函数的解析式;(2)联结AO,过点B作BC⊥AO于点C,与该二次函数图象的对称轴交于点P,联结AP,求∠BAP的余切值;(3)在(2)的条件下,点M在经过点A且与x轴垂直的直线上,当△AMO与△ABP 相似时,求点M的坐标.25.四边形ABCD是菱形,∠B≤90°,点E为边BC上一点,联结AE,过点E作EF⊥AE,EF与边CD交于点F,且EC=3CF.(1)如图1,当∠B=90°时,求S△ABE与S△ECF的比值;(2)如图2,当点E是边BC的中点时,求cos B的值;(3)如图3,联结AF,当∠AFE=∠B且CF=2时,求菱形的边长.参考答案一、选择题(共6小题).1.A、B两地的实际距离AB=250米,如果画在地图上的距离A′B′=5厘米,那么地图上的距离与实际距离的比为()A.1:500B.1:5000C.500:1D.5000:1解:取米作为共同的长度单位,那么AB=250米,A'B'=5厘米=0.05米,所以==,所以地图上的距离与实际距离的比为1:5000.故选:B.2.已知在Rt△ABC中,∠C=90°,∠B=α,AC=2,那么AB的长等于()A.B.2sinαC.D.2cosα解:∵sin B=sinα=,AC=2,∴AB==,故选:A.3.下列y关于x的函数中,一定是二次函数的是()A.y=(k﹣1)x2+3B.y=+1C.y=(x+1)(x﹣2)﹣x2D.y=2x2﹣7x解:A、当k=1时,不是二次函数,故此选项不合题意;B、含有分式,不是二次函数,故此选项不合题意;C、化简后y=﹣x﹣2,不是二次函数,故此选项不合题意;D、是二次函数,故此选项符合题意;故选:D.4.已知一个单位向量,设、是非零向量,那么下列等式中正确的是()A.||=B.||=C.=D.=解:A、||=计算正确,故本选项符合题意.B、||与的模相等,方向不一定相同,故本选项不符合题意.C、与的模相等,方向不一定相同,故本选项不符合题意.D、与的模相等,方向不一定相同,故错误.故选:A.5.如图,在△ABC中,点D、F是边AB上的点,点E是边AC上的点,如果∠ACD=∠B,DE∥BC,EF∥CD,下列结论不成立的是()A.AE2=AF•AD B.AC2=AD•AB C.AF2=AE•AC D.AD2=AF•AB 解:∵DE∥BC,EF∥CD,∴∠AEF=∠ACD,∠ADE=∠B,又∵∠ACD=∠B,∴∠AEF=∠ADE,∴△AEF∽△ADE,∴,∴AE2=AF•AD,故选项A不合题意;∵∠ACD=∠B,∠DAC=∠BAC,∴△ACD∽△ABC,∴,∴AC2=AB•AD,故选项B不合题意;∵DE∥BC,EF∥CD,∴,,∴,∴AD2=AB•AF,故选项D不合题意;由题意无法证明AF2=AE•AC,故选项C符合题意,故选:C.6.已知点A(1,2)、B(2,3)、C(2,1),那么抛物线y=ax2+bx+1可以经过的点是()A.点A、B、C B.点A、B C.点A、C D.点B、C解:∵B、C两点的横坐标相同,∴抛物线y=ax2+bx+1只能经过A,C两点或A、B两点,把A(1,2),C(2,1),代入y=ax2+bx+1得.解得,;把A(1,2),B(2,3),代入y=ax2+bx+1得.解得,(不合题意);∴抛物线y=ax2+bx+1可以经过的A,C两点,故选:C.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.如果线段a、b满足=,那么的值等于.解:∵=,∴可设a=5k,则b=2k,∴==.故答案为:.8.已知线段MN的长为4,点P是线段MN的黄金分割点,那么较长线段MP的长是2﹣2.解:∵线段MN的长为4,点P是线段MN的黄金分割点,MP>NP,∴MP=MN=×4=2﹣2,故答案为:2﹣2.9.计算:2sin30°﹣tan45°=0.解:原式=2×﹣1=0.10.如果从某一高处甲看低处乙的俯角为36度,那么从低处乙看高处甲的仰角是36度.解:如图所示:∵甲处看乙处为俯角36°,∴乙处看甲处为:仰角为36°,故答案为:36.11.已知AD、BE是△ABC的中线,AD、BE相交于点F,如果AD=3,那么AF=2.解:连接DE,∵AD、BE是△ABC的中线,∴DE是△ABC的中位线,∴DE=AB,DE∥AB,∴△AFB∽△DFE,∴==2,∴AF=2FD,∵AD=3,∴AF=2,故答案为:2.12.如图,已知平行四边形ABCD的对角线AC与BD相交于点O,设=,=,那么向量关于、的分解式为﹣.解:如图所示,=,=,则=﹣=﹣.故答案是:﹣.13.如果抛物线y=(m+4)x2+m经过原点,那么该抛物线的开口方向向上.(填“向上”或“向下”)解:∵抛物线y=(m+4)x2+m经过原点,∴m=0,∴a=4>0,∴该抛物线的开口方向向上.故答案为:向上.14.如果(2,y1)(3,y2)是抛物线y=(x+1)2上两点,那么y1<y2.(填“>”或“<”)解:∵y=(x+1)2,∴a=1>0,∴抛物线开口向上,∵抛物线y=(x+1)2对称轴为直线x=﹣1,∵﹣1<2<3,∴y1<y2.故答案为<.15.如图,矩形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知△ABC的边BC长60厘米,高AH为40厘米,如果DE=2DG,那么DG=15厘米.解:∵四边形DEFG是矩形,∴DG∥BC,AH⊥BC,DG=EF,∴AP⊥DG.设DG=EF=x,则GF=DE=2x,∵DG∥BC,∴△ADG∽△ABC,∴=,∵AH=40厘米,BC=60厘米,∴=,解得x=15.∴DG=15厘米,故答案为:15.16.秦九韶的《数书九章》中有一个“峻积验雪”的例子,其原理为:如图,在Rt△ABC 中,∠C=90°,AC=12,BC=5,AD⊥AB,AD=0.4,过点D作DE∥AB交CB的延长线于点E,过点B作BF⊥CE交DE于点F,那么BF=.解:如图,作CH⊥AB,BG⊥DE于点H,G,∵DE∥AB,∴BG⊥AB,∵AD⊥AB,∴∠DAB=∠ABG=∠BGD=90°,∴四边形ADGB是矩形,∴BG=AD=0.4,在Rt△ABC中,∠C=90°,AC=12,BC=5,∴AB===13,∵S△ABC=BC•AC=AB•CH,∴CH===,∵DE∥AB,∴∠E=∠ABC,∵∠FBE=∠ACB=90°,∴△FBE∽△ACB,∵CH⊥AB,BG⊥DE,∴=,∴=,∴BF=.故答案为:.17.如果将二次函数的图象平移,有一个点既在平移前的函数图象上又在平移后的函数图象上,那么称这个点为“平衡点”.现将抛物线C1:y=(x﹣1)2﹣1向右平移得到新抛物线C2,如果“平衡点”为(3,3),那么新抛物线C2的表达式为y=(x﹣3)2﹣1或y=(x﹣7)2﹣1.解:设将抛物线C1:y=(x﹣1)2﹣1向右平移m个单位,则平移后的抛物线解析式是y =(x﹣1﹣m)2﹣1,将(3,3)代入,得(3﹣1﹣m)2﹣1=3.整理,得4﹣m=±2解得m1=2,m2=6.故新抛物线C2的表达式为y=(x﹣3)2﹣1或y=(x﹣7)2﹣1.故答案是:y=(x﹣3)2﹣1或y=(x﹣7)2﹣1.18.如图,△ABC中,AB=10,BC=12,AC=8,点D是边BC上一点,且BD:CD=2:1,联结AD,过AD中点M的直线将△ABC分成周长相等的两部分,这条直线分别与边BC、AC相交于点E、F,那么线段BE的长为2.解:如图,∵点D是BC的中点,BC=12,∴BD:CD=2:1,∴BD=8,CD=4,过点M作MH∥AC交CD于H,∴△DHM∽△DAC,∴==,∴点M是AD的中点,∴AD=2DM,∵AC=8,∴==,∴MH=4,DH=2,过点M作MG∥AB交BD于G,同理得,BG=DE=4,∵AB=10,BC=12,AC=8,∴△ABC的周长为10+12+8=30,∵过AD中点M的直线将△ABC分成周长相等的两部分,∴CE+CF=15,设BE=x,则CE=12﹣x,∴CF=15﹣(12﹣x)=3+x,EH=CE﹣CH=CE﹣(CD﹣DH)=12﹣x﹣2=10﹣x,∵MH∥AC,∴△EHM∽△ECF,∴,∴,∴x=2或x=9,当x=9时,CF=12>AC,点F不在边AC上,此种情况不符合题意,即BD=x=2,故答案为:2.三、解答题:(本大题共7题,满分78分)19.已知向量关系式()=,试用向量、表示向量.解:由()=,得=2,所以7=﹣2.所以=(﹣2).20.已知抛物线y=x2+2x+m﹣3的顶点在第二象限,求m的取值范围.解:∵y=x2+2x+m﹣3=(x+1)2+m﹣4,∴抛物线的顶点坐标为(﹣1,m﹣4),∵抛物线y=x2+2x+m﹣3顶点在第二象限,∴m﹣4>0,∴m>4.故m的取值范围为m>4.21.如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F,且AB =6,BC=8.(1)求的值;(2)当AD=5,CF=19时,求BE的长.解:(1)∵AD∥BE∥CF,∴===;(2)过D点作DM∥AC交CF于M,交BE于N,如图,∵AD∥BN∥CM,AC∥DM,∴四边形ABND和四边形ACMD都是平行四边形,∴BN=AD=5,CM=AD=5,∴MF=CF﹣CM=19﹣5=14,∵NF∥MF,∴==,∴NE=MF=×14=6,∴BE=BN+NE=5+6=11.22.如图,燕尾槽的横断面是等腰梯形ABCD,现将一根木棒MN放置在该燕尾槽中,木棒与横断面在同一平面内,厚度等不计,它的底端N与点C重合,且经过点A.已知燕尾角∠B=54.5°,外口宽AD=180毫米,木棒与外口的夹角∠MAE=26.5°,求燕尾槽的里口宽BC(精确到1毫米).(参考数据:sin54.5°≈0.81,cos54.5°≈0.58,tan54.5°≈1.40,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)解:如图,过点B作BG⊥DE于G,过点C作CH⊥AD于H.∵四边形ABCD是等腰梯形,∴AB=DC,∠BAD=∠CDA,∴∠BAG=∠CDH,∵∠BGA=∠CHD=90°,∴△BGA≌△CHD(AAS),∴AG=DH,设AG=DH=x毫米,CH=y毫米,则有,解得,∴BC=GH=AG+AD+DH=100+180+100=380(毫米).23.Rt△ABC中,∠ACB=90°,点D、E分别为边AB、BC上的点,且CD=CA,DE⊥AB.(1)求证:CA2=CE•CB;(2)联结AE,取AE的中点M,联结CM并延长与AB交于点H,求证:CH⊥AB.【解答】证明:(1)∵DE⊥AB,∴∠EDB=∠ACB=90°,∴∠A+∠B=90°=∠B+∠DEB,∴∠A=∠DEB,∵CA=CD,∴∠A=∠CDA,∴∠CDA=∠DEB,∴∠CDB=∠CED,又∵∠DCE=∠DCB,∴△DCE∽△BCD,∴=,∴CD2=CE•CB,∴CA2=CE•CB;(2)如图,∵∠ACE是直角三角形,点M是AE中点,∴AM=ME=CM,∴∠MCE=∠MEC,∵∠ACB=∠ADE=90°,∴点A,点C,点E,点D四点共圆,∴∠AEC=∠ADC,∴∠AEC=∠MCE=∠ADC=∠CAD,又∵∠MCE+∠ACH=90°,∴∠CAD+∠ACH=90°,∴CH⊥AB.24.二次函数y=ax2+bx+c(a≠0)的图象经过点A(2,4)、B(5,0)和O(0,0).(1)求二次函数的解析式;(2)联结AO,过点B作BC⊥AO于点C,与该二次函数图象的对称轴交于点P,联结AP,求∠BAP的余切值;(3)在(2)的条件下,点M在经过点A且与x轴垂直的直线上,当△AMO与△ABP 相似时,求点M的坐标.解:(1)二次函数y=ax2+bx+c(a≠0)的图象经过点B(5,0)和O(0,0),∴设二次函数的解析式为y=ax(x﹣5),将点A(2,4)代入y=ax(x﹣5)中,得4=a×2(2﹣5),∴a=﹣,∴二次函数的解析式为y=﹣x(x﹣5)=﹣x2+x;(2)如图1,连接OP,过点P作PD⊥x轴于D,∴∠ODP=90°,∵A(2,4)、B(5,0)和O(0,0),∴OB=5,AB==5,∴OB=AB,∵BC⊥OA,∴AC=OC,∠OBC=∠ABC,∵BP=BP,∴△OBP≌△ABP(SAS),∴∠BOP=∠BAP,∵AC=OC,A(2,4),∴点C(1,2),∴直线BC的解析式为y=﹣x+①,由(1)知,二次函数的解析式为y=﹣x2+x②,联立①②解得,或,∴P(,),∴OD=,PD=,∴cot∠BAP=cot∠BOP===;(3)设M(2,m),∵A(2,4),B(5,0),P(,),∴AM=|m﹣4|.OA=2,AB=5,BP==,∵BC⊥OA,∴∠ACP=∠BCP=90°,∴∠ABP<90°,∠APC<90°,∵∠BOP<90°,∴∠BAP<90°,∴△ABP是锐角三角形,∵△AMO与△ABP相似,∴△AMO为锐角三角形,∴点M在点A的下方,∴AM=4﹣m,如图2,AM与x轴的交点记作点E,与BC的交点记作点F,∵AM⊥x轴,∴∠AEB=90°,∴∠OBP+∠BFE=90°,∵∠AFP=∠BFE,∴∠OBP+∠AFP=90°,∵BC⊥OA,∴∠AFP+∠OAE=90°,∴∠OAE=∠OBP,由(2)知,∠OBP=∠ABP,∴∠OAE=∠ABP,∵△AMO与△ABP相似,∴①当△OAM∽△ABP时,∴,∴,∴m=﹣,∴M(2,﹣),②当△MAO∽△ABP时,∴,∴,∴m=﹣,∴M(2,﹣),即满足条件的点M的坐标为(2,﹣)或(2,﹣).25.四边形ABCD是菱形,∠B≤90°,点E为边BC上一点,联结AE,过点E作EF⊥AE,EF与边CD交于点F,且EC=3CF.(1)如图1,当∠B=90°时,求S△ABE与S△ECF的比值;(2)如图2,当点E是边BC的中点时,求cos B的值;(3)如图3,联结AF,当∠AFE=∠B且CF=2时,求菱形的边长.解:(1)∵四边形ABCD是菱形,∠B=90°,∴四边形ABCD是正方形,∴∠B=∠C=90°,∵EF⊥AE,∴∠AEB+∠CEF=∠AEB+∠BAE=90°,∴∠BAE=∠CEF,∴△ABE≌△CEF,∴,∵EC=3CF,设CF=x,AB=a,则EC=3x,BE=a﹣3x,∴,解得,a=4.5x,∴;(2)过点A作AM⊥BC于点M,过点F用FN⊥BC于点H,如图2,则∠AME=∠CNF=90°,∵四边形ABCD是菱形,∴AB=BC,AB∥CD,∴∠B=∠FCN,设CF=x,则CE=3x,∵E是BC的中点,∴BE=CE=3x,AB=BC=2CE=6x,∴BM=AB•cos B=6x cos B,AM=AB•sin B=6x sin B,CN=CF•cos∠FCN=x cos B,FN=CF•sin∠FCN=x sin B,∴ME=BE﹣BM=3x﹣6x cos B,EN=EC+CN=3x+x cos B,∵∠AEF=90°,∴∠AEM+∠NEF=∠AEM+∠MAE=90°,∴∠MAE=∠NEF,∴△AME∽△ENF,∴,即,即,整理得,2sin2B=3﹣5cos B﹣2cos2B,∴2=3﹣5cos B,∴cos B=;(3)过点A作AM⊥BC于点M,过点F用FN⊥BC于点H,如图3,则∠AME=∠CNF=90°,∵四边形ABCD是菱形,∴AB=BC,AB∥CD,∴∠B=∠FCN,∵∠AEF=90°,∴∠AEM+∠NEF=∠AEM+∠MAE=90°,∴∠MAE=∠NEF,∴△AME∽△ENF,∴=,∵∠AFE=∠B,tan B=,tan∠AFE=,∴,∴,∴BM=EN,设菱形ABCD的边长为a,则AB=BC=a,∴BM=a cos B,CN=CF•cos∠FCN=CF•cos B,∴a cos B=EC+CF•cos B,∵CF=2,EC=3CF,∴EC=6,∴a cos B=6+2cos B,∴cos B=,∵,AM=AB•sin B=a sin B,EN=6+2cos B,ME=a﹣a cos B﹣6,NF=CF•sin∠FCN=2sin B,∴,化简得,2a(sin2B+cos2B)=6a﹣4a cos B﹣12cos B﹣36,2a=6a﹣4a cos B﹣12cos B﹣36,a﹣a cos B﹣3cos B﹣9=0,∵cos B=,∴a﹣﹣﹣9=0,解得,a=17,或a=0(舍),∴菱形的边长为17.。
2020-2021全国备战中考数学一元二次方程组的综合备战中考模拟和真题汇总含答案
2020-2021全国备战中考数学一元二次方程组的综合备战中考模拟和真题汇总含答案一、一元二次方程1.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)【答案】详见解析【解析】试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.试题解析:(1)设年平均增长率为x,根据题意得:10(1+x)2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量最多不超过y万辆,根据题意得:2009年底汽车数量为14.4×90%+y,2010年底汽车数量为(14.4×90%+y)×90%+y,∴(14.4×90%+y)×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.考点:一元二次方程—增长率的问题2.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P 21,2);②P (﹣32,154) 【解析】试题分析:(1)将B 、C 的坐标代入已知的抛物线的解析式,由对称轴为1x =-即可得到抛物线的解析式;(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可. 试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0{312a b c c b a++==-=-,解得:1{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得21(舍去)或x=21-,∴点P (21-,2);②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形 =12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222x y -+ =2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P(32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.3.解方程: 2212x x 6x 9-=-+()【答案】124x x 23==-, 【解析】试题分析:先对方程的右边因式分解,直接开平方或移项之后再因式分解法求解即可.试题解析:因式分解,得2212x x 3-=-()()开平方,得12x x 3-=-,或12x x 3-=--()解得124x x 23==-,4.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC 和△DEF ,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF的斜边DE 与△ABC 的斜边AC 重合在一起,并将△DEF 沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合). (1)请回答李晨的问题:若CD=10,则AD= ;(2)如图2,李晨同学连接FC ,编制了如下问题,请你回答: ①∠FCD 的最大度数为 ; ②当FC ∥AB 时,AD= ;③当以线段AD 、FC 、BC 的长度为三边长的三角形是直角三角形,且FC 为斜边时,AD= ; ④△FCD 的面积s 的取值范围是 .【答案】(1)2;(2)① 60°;②;③;④.【解析】试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.∵CD=10,∴AD=2.(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."② 如图,过点F作FH⊥AC于点H,∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.∵AC=12,∴AD=.③如图,过点F作FH⊥AC于点H,设AD=x,由②知DH=3,FH=,则HC=.在Rt△CFH中,根据勾股定理,得.∵以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边,∴,即,解得.④设AD=x ,易知,即. 而,当时,;当时,.∴△FCD 的面积s 的取值范围是.考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.5.已知关于x 的方程221(1)104x k x k -+++=有两个实数根. (1)求k 的取值范围;(2)若方程的两实数根分别为1x ,2x ,且221212615x x x x +=-,求k 的值. 【答案】(1)32k ≥ (2)4 【解析】 试题分析:根据方程的系数结合根的判别式即可得出230k ∆=-≥ ,解之即可得出结论. 根据韦达定理可得:212121114x x k x x k ,+=+⋅=+ ,结合221212615x x x x +=- 即可得出关于k 的一元二次方程,解之即可得出k 值,再由⑴的结论即可确定k 值. 试题解析:因为方程有两个实数根,所以()22114112304k k k ⎛⎫⎡⎤∆=-+-⨯⨯+=-≥ ⎪⎣⎦⎝⎭, 解得32k ≥. 根据韦达定理,()221212111141 1.114k k x x k x x k +-++=-=+⋅==+,因为221212615x x x x +=-,所以()212128150x x x x +-+=,将上式代入可得()2211811504k k ⎛⎫+-++= ⎪⎝⎭,整理得2280k k --= ,解得 1242k k ,==- ,又因为32k ≥,所以4k =.6.解下列方程: (1)2x 2-4x -1=0(配方法); (2)(x +1)2=6x +6.【答案】(1)x 1=1x 2=11=-1,x 2=5. 【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可. 试题解析:(1)由题可得,x 2-2x =12,∴x 2-2x +1=32.∴(x -1)2=32.∴x -1=∴x 1=1x 2=1 (2)由题可得,(x +1)2-6(x +1)=0,∴(x +1)(x +1-6)=0. ∴x +1=0或x +1-6=0. ∴x 1=-1,x 2=5.7.已知关于x 的一元二次方程x 2+(2m+3)x+m 2=0有两根α,β. (1)求m 的取值范围; (2)若111αβ+=-,则m 的值为多少?【答案】(1)14m ≥;(2)m 的值为3. 【解析】 【分析】(1)根据△≥0即可求解, (2)化简11αβ+,利用韦达定理求出α+β,αβ,代入解方程即可.【详解】解:(1)由题意知,(2m+3)2﹣4×1×m 2≥0, 解得:m≥-34; (2)由根与系数的关系得:α+β=﹣(2m+3),αβ=m 2, ∵111αβ+=-,即αβαβ+=-1, ∴2m 3m2+﹣()=-1,整理得m 2﹣2m ﹣3=0解得:m 1=﹣1,m 1=3, 由(1)知m≥-34, ∴m 1=﹣1应舍去, ∴m 的值为3. 【点睛】本题考查了一元二次方程根的判别式以及韦达定理,对根进行判断是正确解题的关键.8.已知两条线段长分别是一元二次方程28120x x -+=的两根, (1)解方程求两条线段的长。
2021年上海市松江区九年级中考一模数学试卷(含解析)
2020-2021学年上海市松江区九年级中考一模数学试卷一、选择题(共6小题).1.如果两个相似三角形对应边的比为1:4,那么它们的周长比是()A.1:2B.1:4C.1:8D.1:162.在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AC的长为()A.2sinαB.2cosαC.2tanαD.2cotα3.将抛物线y=2x2向右平移3个单位,能得到的抛物线是()A.y=2x2+3 B.y=2x2﹣3 C.y=2(x+3)2 D.y=2(x﹣3)2 4.已知=2,下列说法中不正确的是()A.﹣2=0B.与方向相同C.∥D.||=2||5.如图,一艘船从A处向北偏东30°的方向行驶10千米到B处,再从B处向正西方向行驶20千米到C处,这时这艘船与A的距离()A.15千米B.10千米C.10千米D.5千米6.如图,已知在Rt△ABC中,∠C=90°,点G是△ABC的重心,GE⊥AC,垂足为E,如果CB=8,则线段GE的长为()A.B.C.D.二、填空题(共12小题).7.已知,则=.8.已知线段MN的长是4cm,点P是线段MN的黄金分割点,则较长线段MP的长是cm.9.计算:sin30°•cot60°=.10.在Rt△ABC中,∠C=90°,AC=6,cos A=,那么AB的长为.11.一个边长为2厘米的正方形,如果它的边长增加x(x>0)厘米,则面积随之增加y平方厘米,那么y关于x的函数解析式为.12.已知点A(2,y1)、B(3,y2)在抛物线y=x2﹣2x+c(c为常数)上,则y1y2(填“>”、“=”或“<”).13.如图,已知直线l1、l2、l3分别交直线l4于点A、B、C,交直线l5于点D、E、F,且l1∥l2∥l3,AB=4,AC=6,DF=10,则DE=.14.如图,△ABC在边长为1个单位的方格纸中,△ABC的顶点在小正方形顶点位置,那么∠ABC的正弦值为.15.如图,已知点D、E分别在△ABC的边AB和AC上,DE∥BC,=,四边形DBCE 的面积等于7,则△ADE的面积为.16.如图,在梯形ABCD中,AD∥BC,BC=2AD,设向量=,=,用向量、表示为.17.如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上.已知△ABC的边BC=16cm,高AH为10cm,则正方形DEFG的边长为cm.18.如图,已知矩形纸片ABCD,点E在边AB上,且BE=1,将△CBE沿直线CE翻折,使点B落在对角线AC上的点F处,联结DF,如果点D、F、E在同一直线上,则线段AE的长为.三、解答题(共7题,满分78分)19.(10分)用配方法把二次函数y=3x2﹣6x+5化为y=a(x+m)2+k的形式,并指出这个函数图象的开口方向、对称轴和顶点坐标.20.(10分)如图,已知AB∥CD,AD、BC相交于点E,AB=6,BE=4,BC=9,联结AC.(1)求线段CD的长;(2)如果AE=3,求线段AC的长.21.(10分)如图,已知在Rt△ABC中,∠C=90°,sin∠ABC=,点D在边BC上,BD=4,联结AD,tan∠DAC=.(1)求边AC的长;(2)求cot∠BAD的值.22.(10分)如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处(点A、B、C在同一直线上).某测量员从悬崖底C点出发沿水平方向前行60米到D点,再沿斜坡DE方向前行65米到E点(点A、B、C、D、E在同一平面内),在点E处测得5G信号塔顶端A的仰角为37°,悬崖BC的高为92米,斜坡DE的坡度i=1:2.4.(1)求斜坡DE的高EH的长;(2)求信号塔AB的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)23.(12分)如图,已知在▱ABCD中,E是边AD上一点,联结BE、CE,延长BA、CE 相交于点F,CE2=DE•BC.(1)求证:∠EBC=∠DCE;(2)求证:BE•EF=BF•AE.24.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣2经过点A(2,0)和B(﹣1,﹣1),与y轴交于点C.(1)求这个抛物线的表达式;(2)如果点P是抛物线位于第二象限上一点,PC交x轴于点D,.①求P点坐标;②点Q在x轴上,如果∠QCA=∠PCB,求点Q的坐标.25.(14分)如图,已知在等腰△ABC中,AB=AC=5,tan∠ABC=2,BF⊥AC,垂足为F,点D是边AB上一点(不与A,B重合).(1)求边BC的长;(2)如图2,延长DF交BC的延长线于点G,如果CG=4,求线段AD的长;(3)过点D作DE⊥BC,垂足为E,DE交BF于点Q,联结DF,如果△DQF和△ABC 相似,求线段BD的长.参考答案一、选择题(共6小题).1.如果两个相似三角形对应边的比为1:4,那么它们的周长比是()A.1:2B.1:4C.1:8D.1:16解:∵两个相似三角形对应边的比为1:4,∴它们的周长比是:1:4.故选:B.2.在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AC的长为()A.2sinαB.2cosαC.2tanαD.2cotα【分析】根据锐角三角函数的意义求解后,再做出判断即可.解:∵cot A=,BC=2,∴AC=BC•cotα=2cotα,故选:D.3.将抛物线y=2x2向右平移3个单位,能得到的抛物线是()A.y=2x2+3B.y=2x2﹣3C.y=2(x+3)2 D.y=2(x﹣3)2解:由“左加右减”的原则可知,抛物线y=2x2向右平移3个单位,能得到的抛物线是y=2(x﹣3)2.故选:D.4.已知=2,下列说法中不正确的是()A.﹣2=0B.与方向相同C.∥D.||=2||解:A、由=2得到:﹣2=,故本选项说法不正确.B、由=2知,与方向相同,故本选项说法正确.C、由=2知,与方向相同,则∥,故本选项说法正确.D、由=2知,||=2||,故本选项说法正确.故选:A.5.如图,一艘船从A处向北偏东30°的方向行驶10千米到B处,再从B处向正西方向行驶20千米到C处,这时这艘船与A的距离()A.15千米B.10千米C.10千米D.5千米解:如图,∵BC⊥AE,∴∠AEB=90°,∵∠EAB=30°,AB=10米,∴BE=5米,AE=5米,∴CE=BC﹣CE=20﹣5=15(米),∴AC=(米),故选:C.6.如图,已知在Rt△ABC中,∠C=90°,点G是△ABC的重心,GE⊥AC,垂足为E,如果CB=8,则线段GE的长为()A.B.C.D.解:延长AG交BC于D,如图,∵点G是△ABC的重心,∴CD=BD=BC=4,AG=2GD,∵GE⊥AC,∴∠AEG=90°,而∠C=90°,∴GE∥CD,∴△AEG∽△ACD,∴===,∴EG=CD=×4=.故选:C.二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.已知,则=.解:由题意,设x=5k,y=3k,∴==.故答案为:.8.已知线段MN的长是4cm,点P是线段MN的黄金分割点,则较长线段MP的长是(2﹣2)cm.解:∵P是线段MN的黄金分割点,∴MP=MN,而MN=4cm,∴MP=4×=(2﹣2)cm.故答案为(2﹣2).9.计算:sin30°•cot60°=.解:原式=×=.故答案为:.10.在Rt△ABC中,∠C=90°,AC=6,cos A=,那么AB的长为8.解:∵cos A==,AC=6,∴AB==8,故答案为:8.11.一个边长为2厘米的正方形,如果它的边长增加x(x>0)厘米,则面积随之增加y平方厘米,那么y关于x的函数解析式为y=x2+4x.解:由题意得,y=(2+x)2﹣22=x2+4x,故答案为:y=x2+4x.12.已知点A(2,y1)、B(3,y2)在抛物线y=x2﹣2x+c(c为常数)上,则y1<y2(填“>”、“=”或“<”).解:∵y=x2﹣2x+c,∴抛物线的开口向上,对称轴是直线x=﹣=1,∴在对称轴的右侧,y随x的增大而增大,∵1<2<3,∴y1<y2,故答案为:<.13.如图,已知直线l1、l2、l3分别交直线l4于点A、B、C,交直线l5于点D、E、F,且l1∥l2∥l3,AB=4,AC=6,DF=10,则DE=.解:∵l1∥l2∥l3,∴=,即=,∴DE=.故答案为.14.如图,△ABC在边长为1个单位的方格纸中,△ABC的顶点在小正方形顶点位置,那么∠ABC的正弦值为.解:由图可得,AC==,AB==,BC==2,∴AC2+BC2=AB2,∴△ACB是直角三角形,∴sin∠ABC==,故答案为:.15.如图,已知点D、E分别在△ABC的边AB和AC上,DE∥BC,=,四边形DBCE 的面积等于7,则△ADE的面积为9.解:∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∴=,∵四边形DBCE的面积等于7,∴S△ADE=9.故答案为:9.16.如图,在梯形ABCD中,AD∥BC,BC=2AD,设向量=,=,用向量、表示为+2.解:如图,在梯形ABCD中,∵AD∥BC,BC=2AD,=,∴=2=2,∴=+=+2,故答案是:+2.17.如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上.已知△ABC的边BC=16cm,高AH为10cm,则正方形DEFG的边长为cm.解:如图,设正方形DEFG的边长为xcm,则DE=PH=xcm,∴AP=AH﹣PH=(10﹣x)cm,∵DG∥BC,∴△ADG∽△ABC,∴=,即=,∴x=(cm),故答案为.18.如图,已知矩形纸片ABCD,点E在边AB上,且BE=1,将△CBE沿直线CE翻折,使点B落在对角线AC上的点F处,联结DF,如果点D、F、E在同一直线上,则线段AE的长为.解:∵四边形ABCD是矩形,∴AD=BC,AB=CD,∠ADC=∠B=∠DAE=90°,∵把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,∴CF=BC,∠CFE=∠B=90°,EF=BE=1,∠CEB=∠CEF,∵矩形ABCD中,DC∥AB,∴∠DCE=∠CEB,∴∠CEF=∠DCE,∴DC=DE,设AE=x,则AB=CD=DE=x+1,∵∠AFE=∠CFD=90°,∴∠AFE=∠DAE=90°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴,∴,解得x=或x=(舍去),∴AE=.故答案为:.三、解答题(本大题共7题,满分78分)19.(10分)用配方法把二次函数y=3x2﹣6x+5化为y=a(x+m)2+k的形式,并指出这个函数图象的开口方向、对称轴和顶点坐标.解:y=3x2﹣6x+5=3(x2﹣2x)+5=3(x2﹣2x+1﹣1)+5=3(x﹣1)2+2,开口向上,对称轴为直线x=1,顶点(1,2).20.(10分)如图,已知AB∥CD,AD、BC相交于点E,AB=6,BE=4,BC=9,联结AC.(1)求线段CD的长;(2)如果AE=3,求线段AC的长.解:(1)∵AB∥CD,∴△ABE∽△DCE,∴,∵AB=6,BE=4,BC=9,∴,∴CD=;(2)∵AE=3,△ABE∽△DCE,∴,∴,∴DE=,∵,=,∴,∵AB∥DC,∴∠ECD=∠ABC,∴△ABC∽△ECD,∴,∴,∴AC=.21.(10分)如图,已知在Rt△ABC中,∠C=90°,sin∠ABC=,点D在边BC上,BD=4,联结AD,tan∠DAC=.(1)求边AC的长;(2)求cot∠BAD的值.【分析】(1)根据题意和锐角三角函数,可以求得AC的长;(2)根据(1)中的结果,可以得到AC、CD的长,然后根据勾股定理可以得到AD的长,再根据等面积法可以求得DE的长,从而可以求得AE的长,然后即可得到cot∠BAD 的值.解:(1)设AC=3x,∵∠C=90°,sin∠ABC=,∴AB=5x,BC=4x,∵tan∠DAC=,∴CD=2x,∵BD=4,BC=CD+BD,∴4x=2x+4,解得x=2,∴AC=3x=6;(2)作DE⊥AB于点E,由(1)知,AB=5x=10,AC=6,BD=4,∵,∴,解得DE=,∵AC=6,CD=2x=4,∠C=90°,∴AD==2,∴AE===,∴cot∠BAD===,即cot∠BAD的值是.22.(10分)如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处(点A、B、C在同一直线上).某测量员从悬崖底C点出发沿水平方向前行60米到D点,再沿斜坡DE方向前行65米到E点(点A、B、C、D、E在同一平面内),在点E处测得5G信号塔顶端A的仰角为37°,悬崖BC的高为92米,斜坡DE的坡度i=1:2.4.(1)求斜坡DE的高EH的长;(2)求信号塔AB的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)【分析】(1)过点E作EM⊥DC交DC的延长线于点M,根据斜坡DE的坡度(或坡比)i=1:2.4可设EH=x,则DH=2.4x,利用勾股定理求出x的值,进而可得出EH;(2)结合(1)得DH的长,故可得出CH的长.由矩形的判定定理得出四边形EHCM 是矩形,故可得出EM=HC,CM=EH,再由锐角三角函数的定义求出AM的长,进而可得出答案.解:(1)过点E作EM⊥AC于点M,∵斜坡DE的坡度(或坡比)i=1:2.4,DE=65米,CD=60米,∴设EH=x,则DH=2.4x.在Rt△DEH中,∵EH2+DH2=DE2,即x2+(2.4x)2=652,解得,x=25(米)(负值舍去),∴EH=25米;答:斜坡DE的高EH的长为25米;(2)∵DH=2.4x=60(米),∴CH=DH+DC=60+60=120(米).∵EM⊥AC,AC⊥CD,EH⊥CD,∴四边形EHCM是矩形,∴EM=CH=120米,CM=EH=25米.在Rt△AEM中,∵∠AEM=37°,∴AM=EM•tan37°≈120×0.75=90(米),∴AC=AM+CM=90+25=115(米).∴AB=AC﹣BC=115﹣92=23(米).答:信号塔AB的高度为23米.23.(12分)如图,已知在▱ABCD中,E是边AD上一点,联结BE、CE,延长BA、CE 相交于点F,CE2=DE•BC.(1)求证:∠EBC=∠DCE;(2)求证:BE•EF=BF•AE.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DEC=∠BCE,∵CE2=DE•BC,∴,∴△DEC∽△ECB,∴∠EBC=∠DCE;(2)∵AD∥BC,AB∥CD,∴∠AEB=∠EBC,∠F=∠ECD,∴∠AEB=∠F,又∵∠ABE=∠EBF,∴△ABE∽△EBF,∴,∴BE•EF=BE•AE.24.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣2经过点A(2,0)和B(﹣1,﹣1),与y轴交于点C.(1)求这个抛物线的表达式;(2)如果点P是抛物线位于第二象限上一点,PC交x轴于点D,.①求P点坐标;②点Q在x轴上,如果∠QCA=∠PCB,求点Q的坐标.解:(1)∵抛物线y=ax2+bx﹣2经过点A(2,0)和B(﹣1,﹣1),∴,解得:,∴抛物线解析式为:y=x2﹣x﹣2;(2)①如图1,过点P作PE⊥x轴于E,∵抛物线y=ax2+bx﹣2与y轴交于点C,∴点C(0,﹣2),∴OC=2,∵PE∥OC,∴=,∴PE=,∴=x2﹣x﹣2,∴x=﹣2或x=(不合题意舍去),∴点P(﹣2,);②如图2,过点B作BH⊥CO于H,由①可知DO==,∵B(﹣1,﹣1),点C(0,﹣2),A(2,0)∴OA=OC=2,BH=CH=1,∴∠BCH=45°=∠OCA,∴∠BCA=90°,当点Q在线段AO上时,∵∠QCA=∠PCB,∴∠DCO=∠QCO,又∵CO=CO,∠DOC=∠QOC=90°,∴△DOC≌△QOC(ASA),∴DO=QO=,∴点Q坐标为(,0),当点Q'在射线OA上时,∵∠Q'CA=∠PCB,∴∠DCQ'=90°,∴∠CDO+∠DQ'C=90°,∠DCO+∠CDO=90°,∴∠DQ'C=∠DCO,又∵∠DOC=∠Q'OC=90°,∴△DOC∽△COQ',∴,∴4=×Q'O,∴Q'O=,∴点Q'(,0),综上所述:点Q坐标为(,0)或(,0).25.(14分)如图,已知在等腰△ABC中,AB=AC=5,tan∠ABC=2,BF⊥AC,垂足为F,点D是边AB上一点(不与A,B重合).(1)求边BC的长;(2)如图2,延长DF交BC的延长线于点G,如果CG=4,求线段AD的长;(3)过点D作DE⊥BC,垂足为E,DE交BF于点Q,联结DF,如果△DQF和△ABC 相似,求线段BD的长.【解答】解(1)如图1,过点A作DH⊥BC于H,∴∠AHB=90°,∵AB=AC=5,∴BC=2BH,在Rt△AHB中,tan∠ABC==2,∴AH=2BH,根据勾股定理得,AH2+BH2=AB2,∴(2BH)2+BH2=(5)2,∴BH=5,∴BC=2BH=10;(2)∵AB=AC,∴∠ABC=∠ACB,∵tan∠ABC=2,∴tan∠ACB=2,由(1)知,BC=10,∵BF⊥AC,∴∠BFC=90°,在Rt△BFC中,tan∠ACB==2,∴BF=2CF,根据勾股定理得,BF2+CF2=BC2,∴(2CF)2+CF2=102,∴CF=2,∴AF=AC﹣CF=5﹣2=3,如图2,过点C作CK∥AB交FG于K,∴△CFK∽△AFD,∴,∴=,∴△CGK∽△BGD,∴,∴CG=4,∴=,∴,∴,∴AD=AB=×5=;(3)如备用图,在Rt△BFC中,根据勾股定理得,BF===4,∵DE⊥BC,∴∠BEQ=90°=∠BFC,∵∠EBQ=∠FBC,∴△BEQ∽△BFC,∴,∵CF=2,BC=10,∴,∴,∴设EQ=m,则BQ=5m,根据勾股定理得,BE=2m,在Rt△BEQ中,tan∠ABC==2,∴DE=2BE=4m,根据勾股定理得,BD=10m,∴DQ=DE﹣EQ=3m,∵DE⊥BC,∴∠BEQ=90°,∴∠CBF+∠BQE=90°,∵∠BQE=∠DQF,∴∠CBF+∠DQF=90°,∵∠BFC=90°,∴∠CBF+∠C=90°,∴∠DQF=∠C,∵AB=AC,∴∠ABC=∠C=∠DQF,∵△DQF和△ABC相似,∴①当△DQF∽△ACB时,∴,∴,∴QF=6m,∵BF=4,∴5m+6m=4,∴m=,∴BD=10m=,②当△DQF∽△BCA时,,∴,∴FQ=m,∴m+5m=4,∴m=,∴BD=10m=,即BD的长为或.。
2023年中考数学模拟试题及答案(教师版)
上的一次壮举.火星与地球的最近距离约为 5500 万千米,该数据用科学记数法可表示为(
A.5.5×108
B.5.5×107
C.0.55×109
D.0.55×108
【答案】B
)千米
【解析】【解答】解:5500 万=
.
.
故答案为:B.
【分析】用科学记数法表示绝对值较大的数,一般表示成 a×10n 的形式,其中 1≤∣a∣<10,n 等于原数的
10
∴CB=OC+OB=4x,
∵OF∥BD,
∴△COF∽△CBD,
∴은ठठ 은 ,
∴
푥 푥
,
∴OF=9,
∴EF=OF−OE=9−6=3.
【解析】【分析】(1)先证明∠ODC=90°,即 OD⊥CD,从而可得 CD 与⊙O 相切于点 D;
(2)先证明△COF∽△CBD,可得은ठठ 段的和差可得 EF 的长。
【解析】【分析】由坡度可得 AB:BC=5:6,可设 AB=5x 米,BC=6x 米,则 BD=(140+6x)米 由 tanD=은은
9
可建立关于 x 方程并解之即可. 19.如图,AB 为⊙O 的直径,C 为 BA 延长线上一点,D 为⊙O 上一点,OF⊥AD 于点 E,交 CD 于点 F, 且∠ADC=∠AOF.
直角边长为 12,则小正方形 ABCD 的面积的大小为
.
6
【答案】49 【解析】【解答】解∶如图
根据勾股定理,得
.
所以 AB=12﹣5=7.
所以正方形 ABCD 的面积为:7×7=49.
故答案是:49
【分析】由勾股定理求出 AF=5,从而求出 AB=BF-AF=7,根据正方形的面积公式即可求解.
2023届上海市区域中考数学模拟试题分层分类汇编专项真题练习—解答题(基础题)含解析
2023届上海市区域中考数学模拟试题分层分类汇编专项真题试卷练习—解答题(基础题)目录一.实数的运算(共2小题) (1)二.二次根式的性质与化简(共1小题) (2)三.反比例函数与一次函数的交点问题(共1小题) (2)四.二次函数的性质(共1小题) (2)五.二次函数图象与几何变换(共1小题) (3)六.待定系数法求二次函数解析式(共2小题) (3)七.抛物线与x轴的交点(共1小题) (4)八.三角形的重心(共1小题) (4)九.*平面向量(共1小题) (4)一十.圆心角、弧、弦的关系(共1小题) (5)一十一.作图—应用与设计作图(共1小题) (5)一十二.相似三角形的判定与性质(共6小题) (5)一十三.特殊角的三角函数值(共4小题) (7)一十四.解直角三角形(共1小题) (8)一十五.解直角三角形的应用(共1小题) (8)一十六.解直角三角形的应用-坡度坡角问题(共1小题) (8)一十七.解直角三角形的应用-仰角俯角问题(共1小题) (9)一.实数的运算(共2小题)1.(2023•宝山区一模)计算:.2.(2023•青浦区一模)计算:.二.二次根式的性质与化简(共1小题)3.(2023•长宁区一模)计算:.三.反比例函数与一次函数的交点问题(共1小题)4.(2023•普陀区一模)如图,在平面直角坐标系xOy中,正比例函数y=kx(k≠0)的图象与反比例函数y=(x>0)的图象交于点A(3,a).(1)求这个正比例函数的解析式;(2)将这个正比例函数的图象向上平移m(m>0)个单位,新函数的图象与反比例函数y=(x>0)的图象交于点B,如果点B的纵坐标是横坐标的3倍,求m的值.四.二次函数的性质(共1小题)5.(2023•松江区一模)已知二次函数y=2x2﹣4x﹣1.(1)用配方法求这个二次函数的顶点坐标;(2)在所给的平面直角坐标系xOy中(如图),画出这个二次函数的图象;(3)请描述这个二次函数图象的变化趋势.五.二次函数图象与几何变换(共1小题)6.(2023•奉贤区一模)已知抛物线y=﹣x2+2x+3,将这条抛物线向左平移3个单位,再向下平移2个单位.(1)求平移后新抛物线的表达式和它的开口方向、顶点坐标、对称轴,并说明它的变化情况;(2)在如图所示的平面直角坐标系内画出平移后的抛物线.六.待定系数法求二次函数解析式(共2小题)7.(2023•杨浦区一模)在平面直角坐标系xOy中,点A(1,m)、B(3,n)在抛物线y=ax2+bx+2上.(1)如果m=n,那么抛物线的对称轴为直线;(2)如果点A、B在直线y=x﹣1上,求抛物线的表达式和顶点坐标.8.(2023•长宁区一模)已知y关于x的函数﹣2tx﹣3是二次函数.(1)求t的值并写出函数解析式;(2)用配方法把该二次函数的解析式化为y=a(x+m)2+k的形式,并写出该二次函数图象的开口方向、顶点坐标和对称轴.七.抛物线与x轴的交点(共1小题)9.(2023•徐汇区一模)已知二次函数y=﹣3x2+6x+9.(1)用配方法把二次函数y=﹣3x2+6x+9化为y=a(x+m)2+k的形式,并指出这个函数图象的开口方向、对称轴和顶点的坐标;(2)如果将该函数图象向右平移2个单位,所得的新函数的图象与x轴交于点A、B(点A在点B左侧),与y轴交于点C,顶点为D,求四边形DACB的面积.八.三角形的重心(共1小题)10.(2023•杨浦区一模)如图,已知△ABC中,点D、E分别在边AB和AC上,DE∥BC,且DE经过△ABC的重心G.(1)设,=(用向量表示);(2)如果∠ACD=∠B,AB=9,求边AC的长.九.*平面向量(共1小题)11.(2023•奉贤区一模)如图,在△ABC中,点D在边BC上,BD=AB=BC,E是BD的中点.(1)求证:∠BAE=∠C;(2)设=,=,用向量、表示向量.一十.圆心角、弧、弦的关系(共1小题)12.(2023•宝山区一模)如图,已知圆O的弦AB与直径CD交于点E,且CD平分AB.(1)已知AB=6,EC=2,求圆O的半径;(2)如果DE=3EC,求弦AB所对的圆心角的度数.一十一.作图—应用与设计作图(共1小题)13.(2023•杨浦区一模)新定义:由边长为1的小正方形构成的网格图形中,每个小正方形的顶点称为格点.如图,已知在5×5的网格图形中,△ABC的顶点A、B、C都在格点上.请按要求完成下列问题:=;sin∠ABC=;(1)S△ABC=S△ABC.(不要求写作法,(2)请仅用无刻度的直尺在线段AB上求作一点P,使S△ACP但保留作图痕迹,写出结论)一十二.相似三角形的判定与性质(共6小题)14.(2023•普陀区一模)如图,已知梯形ABCD中,AD∥BC,E是BC上一点,AE∥CD,AE、BD相交于点F,EF:CD=1:3.(1)求的值;(2)联结FC,设,,那么=,=.(用向量、表示)15.(2023•奉贤区一模)已知:如图,在梯形ABCD中,AD∥BC,点E在对角线BD上,∠EAD=∠BDC.(1)求证:AE•BD=AD•DC;(2)如果点F在边DC上,且,求证:EF∥BC.16.(2023•长宁区一模)已知:如图,在△ABC中,点D在边BC上,且AD=AB,边BC的垂直平分线EF交边AC于点E,BE交AD于点G.(1)求证:△BDG∽△CBA;(2)如果△ADC的面积为180,且AB=18,DG=6,求△ABG的面积.17.(2023•松江区一模)如图,已知△ABC中,点D、E分别在边AB、AC上,DE∥BC,AD =2DB.(1)如果BC=4,求DE的长;(2)设=,=,用、表示.18.(2023•青浦区一模)如图,在平行四边形ABCD中,点F在边AD上,射线BA、CF相交于点E,DF=2AF.(1)求EA:AB的值;(2)如果,,试用、表示向量.19.(2023•青浦区一模)已知:如图,在△ABC中,点D、E分别在边BC、AC上,AD、BE 相交于点F,∠AFE=∠ABC,AB2=AE•AC.(1)求证:△ABF∽△BCE;(2)求证:DF•BC=DB•CE.一十三.特殊角的三角函数值(共4小题)20.(2023•崇明区一模)计算:4cos30°﹣cos45°tan60°+2sin245°.21.(2023•金山区一模)计算:+2cot30°•sin60°.22.(2023•普陀区一模)计算:﹣4cot30°•cos230°.23.(2023•奉贤区一模)计算:4cos30°•sin60°+.一十四.解直角三角形(共1小题)24.(2023•松江区一模)如图,已知△ABC中,AB=AC=10,BC=12,D是AC的中点,DE ⊥BC于点E,ED、BA的延长线交于点F.(1)求∠ABC的正切值;(2)求的值.一十五.解直角三角形的应用(共1小题)25.(2023•杨浦区一模)如图,某条道路上通行车辆限速为60千米/小时,在离道路50米的点P处建一个监测点,道路的AB段为监测区.在△ABP中,已知∠A=45°,∠B=30°,车辆通过AB段的时间在多少秒以内时,可认定为超速?(精确到0.1秒)(参考数据:=1.732)一十六.解直角三角形的应用-坡度坡角问题(共1小题)26.(2023•崇明区一模)如图,一根灯杆AB上有一盏路灯A,路灯A离水平地面的高度为9米,在距离路灯正下方B点15.5米处有一坡度为i=1:的斜坡CD.如果高为3米的标尺EF竖立在地面BC上,垂足为F,它的影子的长度为4米.(1)当影子全在水平地面BC上(图1).求标尺与路灯间的距离;(2)当影子一部分在水平地面BC上,一部分在斜坡CD上(图2),求此时标尺与路灯间的距离为多少米?一十七.解直角三角形的应用-仰角俯角问题(共1小题)27.(2023•松江区一模)小明想利用测角仪测量操场上旗杆AB的高度.如图,他先在点C处放置一个高为1.6米的测角仪(图中CE),测得旗杆顶部A的仰角为45°,再沿BC的方向后退3.5米到点D处,用同一个测角仪(图中DF),又测得旗杆顶部A的仰角为37°.试求旗杆AB的高度.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)上海市2023年各地区中考数学模拟(一模)试题按题型难易度分层分类汇编(11套)-03解答题(基础题)答案与试题解析一.实数的运算(共2小题)1.(2023•宝山区一模)计算:.【正确答案】﹣3﹣2.解:原式=2×﹣|1﹣|+=1﹣(﹣1)+=1﹣+1﹣2(+2)=2﹣﹣2﹣4=﹣3﹣2.2.(2023•青浦区一模)计算:.【正确答案】.解:===.二.二次根式的性质与化简(共1小题)3.(2023•长宁区一模)计算:.【正确答案】﹣1.解:原式=+=+(2﹣)=+﹣=﹣1.三.反比例函数与一次函数的交点问题(共1小题)4.(2023•普陀区一模)如图,在平面直角坐标系xOy中,正比例函数y=kx(k≠0)的图象与反比例函数y=(x>0)的图象交于点A(3,a).(1)求这个正比例函数的解析式;(2)将这个正比例函数的图象向上平移m(m>0)个单位,新函数的图象与反比例函数y =(x>0)的图象交于点B,如果点B的纵坐标是横坐标的3倍,求m的值.【正确答案】(1)y=x;(2).解:(1)根据题意,将点A(3,a)代入反比例函数y=,得3a=3,解得a=1,∴点A坐标为(3,1),将点A(3,1)代入正比例函数y=kx,得3k=1,解得k=,∴正比例函数解析式为y=x;(2)这个正比例函数的图象向上平移m(m>0)个单位,得y=,设点B横坐标为t,则纵坐标为,∵点B的纵坐标是横坐标的3倍,∴=3t,解得t=1或t=﹣1(舍),∴点B坐标为(1,3),将点B坐标代入y=,得3=+m,解得m=.四.二次函数的性质(共1小题)5.(2023•松江区一模)已知二次函数y=2x2﹣4x﹣1.(1)用配方法求这个二次函数的顶点坐标;(2)在所给的平面直角坐标系xOy中(如图),画出这个二次函数的图象;(3)请描述这个二次函数图象的变化趋势.【正确答案】(1)二次函数y=2x2﹣4x﹣1图象的顶点坐标为(1,﹣3);(2)画图象见解答过程;(3)当x≤1时,y随x的增大而减小;当x>1时,y随x的增大而增大.解:(1)∵y=2x2﹣4x﹣1=2(x﹣1)2﹣3,∴二次函数y=2x2﹣4x﹣1图象的顶点坐标为(1,﹣3);(2)由(1)知抛物线顶点为(1,3),由y=2x2﹣4x﹣1可得抛物线过(0,﹣1),(2,﹣1),(3,5),(﹣1,5),如图:(3)当x≤1时,y随x的增大而减小,当x>1时,y随x的增大而增大.五.二次函数图象与几何变换(共1小题)6.(2023•奉贤区一模)已知抛物线y=﹣x2+2x+3,将这条抛物线向左平移3个单位,再向下平移2个单位.(1)求平移后新抛物线的表达式和它的开口方向、顶点坐标、对称轴,并说明它的变化情况;(2)在如图所示的平面直角坐标系内画出平移后的抛物线.【正确答案】(1)平移后新抛物线的表达式为y=﹣(x+2)2+2,抛物线开口方向向下,顶点坐标为(﹣2,2),对称轴为直线x=﹣2,当x>﹣2时,y随x的增大而减小,当x<﹣2时,y随x的增大而增大;(2)图象见解答.解:(1)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴将抛物线向左平移3个单位,再向下平移2个单位得新抛物线解析时为y=﹣(x﹣1+3)2+4﹣2,即y=﹣(x+2)2+2,∴抛物线开口方向向下,顶点坐标为(﹣2,2),对称轴为直线x=﹣2,当x>﹣2时,y随x的增大而减小,当x<﹣2时,y随x的增大而增大;(2)∵抛物线的顶点为(﹣2,2),对称轴为x=﹣2,当x=﹣1或﹣3时,y=1,当x=0或﹣4时,y=﹣2,∴用五点法画出函数图象,如图所示:六.待定系数法求二次函数解析式(共2小题)7.(2023•杨浦区一模)在平面直角坐标系xOy中,点A(1,m)、B(3,n)在抛物线y=ax2+bx+2上.(1)如果m=n,那么抛物线的对称轴为直线x=2;(2)如果点A、B在直线y=x﹣1上,求抛物线的表达式和顶点坐标.【正确答案】(1)x=2;解:(1)∵A(1,m)、B(3,n),m=n,∴点A和点B为抛物线上的对称点,∴抛物线的对称轴为直线x=2;故x=2;(2)把A(1,m)、B(3,n)分别代入y=x﹣1得m=0,n=2,∴A(1,0)、B(3,2),把A(1,0)、B(3,2)分别代入y=ax2+bx+2得,解得,∴抛物线解析式为y=x2﹣3x+2,∵y=x2﹣3x+2=(x﹣)2﹣,∴抛物线的顶点坐标为(,﹣).8.(2023•长宁区一模)已知y关于x的函数﹣2tx﹣3是二次函数.(1)求t的值并写出函数解析式;(2)用配方法把该二次函数的解析式化为y=a(x+m)2+k的形式,并写出该二次函数图象的开口方向、顶点坐标和对称轴.【正确答案】(1)t=2,y=4x2﹣4x﹣3;(2)开口向上,顶点坐标为(,﹣4),对称轴为直线x=.解:(1)根据题意得t+2≠0且t2﹣2=2,解得t=2,所以抛物线解析式为y=4x2﹣4x﹣3;(2)y=4x2﹣4x﹣3=4(x﹣)2﹣4,∵a=4>0,∴该二次函数图象的开口向上,顶点坐标为(,﹣4),对称轴为直线x=.七.抛物线与x轴的交点(共1小题)9.(2023•徐汇区一模)已知二次函数y=﹣3x2+6x+9.(1)用配方法把二次函数y=﹣3x2+6x+9化为y=a(x+m)2+k的形式,并指出这个函数图象的开口方向、对称轴和顶点的坐标;(2)如果将该函数图象向右平移2个单位,所得的新函数的图象与x轴交于点A、B(点A 在点B左侧),与y轴交于点C,顶点为D,求四边形DACB的面积.【正确答案】(1)y=﹣3(x﹣1)2+12,图象开口向下,对称轴x=1,顶点坐标为(1,12);(2)54.解:(1)y=﹣3x2+6x+9=﹣3(x2﹣2x)+9=﹣3(x2﹣2x+1﹣1)+9=﹣3(x﹣1)2+12,∴y=﹣3(x﹣1)2+12,∵﹣3<0,∴图象开口向下,则对称轴x=1,顶点坐标为(1,12);(2)根据题意可得平移后的解析式为:y=﹣3(x﹣3)2+12,∴顶点坐标为(3,12),即D(3,12),当y=0时,即﹣3(x﹣3)2+12=0,解得:x1=1,x2=5,∵新函数的图象与x轴交于点A、B(点A在点B左侧),∴A(1,0),B(5,0),当x=0是,y=﹣15,∴点C的坐标为(0,﹣15),=S△ABD+S△ABC如图所示S四边形ACBD=×4×12+×4×15=54,∴四边形DACB的面积为54.八.三角形的重心(共1小题)10.(2023•杨浦区一模)如图,已知△ABC中,点D、E分别在边AB和AC上,DE∥BC,且DE经过△ABC的重心G.(2)如果∠ACD=∠B,AB=9,求边AC的长.(2)边AC的长为3.解:(1)连接AG并延长交BC于M,如图:∵G是△ABC的重心,∴AG=2MG,∴=,∵DE∥BC,∴△ADG∽△ABM,△ADE∽△ABC,∴===,∴DE=BC,∵=,DE∥BC,∴=;故;(2)∵AB=9,由(1)知=,∴AD=6,∵∠A=∠A,∠ACD=∠B,∴△ACD∽△ABC,∴=,即AC2=AB•AD,∴AC2=9×6,解得AC=3(负值已舍去),∴边AC的长为3.九.*平面向量(共1小题)11.(2023•奉贤区一模)如图,在△ABC中,点D在边BC上,BD=AB=BC,E是BD的中点.(1)求证:∠BAE=∠C;(2)设=,=,用向量、表示向量.【正确答案】(1)证明见解答;(2)=2﹣.(1)证明:∵BD=AB=BC,E是BD的中点,∴BE=BD,∴=,==,又∵∠ABE=∠CBA,∴△ABE∽△CBA,∴∠BAE=∠C;(2)解:∵=,=,∴=﹣=﹣,∵BD=AB=BC,∴BD=DC,∴==﹣,∴=+=+﹣=2﹣.一十.圆心角、弧、弦的关系(共1小题)12.(2023•宝山区一模)如图,已知圆O的弦AB与直径CD交于点E,且CD平分AB.(1)已知AB=6,EC=2,求圆O的半径;(2)如果DE=3EC,求弦AB所对的圆心角的度数.【正确答案】(1);(2)120°.解:(1)连接OA,如图,设⊙O的半径为r,则OA=r,OE=r﹣2,∵CD平分AB,∴AE=BE=3,CD⊥AB,在Rt△OAE中,32+(r﹣2)2=r2,解得r=,即⊙O的半径为;(2)连接OB,如图,∵DE=3EC,∴OC+OE=3EC,即OE+CE+OE=3CE,∴OE=CE,∴OE=OC=OA,在Rt△OAE中,∵sin A==,∴∠A=30°,∵OA=OB,∴∠B=∠A=30°,∴∠AOB=180°﹣∠A﹣∠B=120°,即弦AB所对的圆心角的度数为120°.一十一.作图—应用与设计作图(共1小题)13.(2023•杨浦区一模)新定义:由边长为1的小正方形构成的网格图形中,每个小正方形的顶点称为格点.如图,已知在5×5的网格图形中,△ABC的顶点A、B、C都在格点上.请按要求完成下列问题:=4;sin∠ABC=;(1)S△ABC=S△ABC.(不要求写作法,(2)请仅用无刻度的直尺在线段AB上求作一点P,使S△ACP但保留作图痕迹,写出结论)【正确答案】(1)4,;(2)作图见解答过程.解:(1)由图可得:S△ABC=3×3﹣×1×3﹣×3×1﹣×2×2=4,过A作AD⊥BC于D,如图:∵וAD=4,∴AD=,∴sin∠ABC===,故4,;(2)如图:点P即为所求点.一十二.相似三角形的判定与性质(共6小题)14.(2023•普陀区一模)如图,已知梯形ABCD中,AD∥BC,E是BC上一点,AE∥CD,AE、BD相交于点F,EF:CD=1:3.(1)求的值;(2)联结FC,设,,那么=,=.(用向量、表示)【正确答案】(1);(2),.解:∵AD∥BC,AE∥CD,∴四边形AECD为平行四边形,∴AE=CD,∵EF:CD=1:3,∴EF:AE=1:3,EF:AF=1:2,∵AD∥BC,∴△BEF∽△DAF,∴;(2)联结FC,如图,由(1)可得AF=2EF,∵,∴,,∴=,=,∵,AD=EC,∴,∴==,∴==.故,.15.(2023•奉贤区一模)已知:如图,在梯形ABCD中,AD∥BC,点E在对角线BD上,∠EAD=∠BDC.(1)求证:AE•BD=AD•DC;(2)如果点F在边DC上,且,求证:EF∥BC.【正确答案】(1)(2)证明见解析.证明:(1)∵AD∥BC,∴∠ADB=∠DBC,又∵∠EAD=∠BDC,∴△ADE∽△DBC,∴AE:AD=DC:BD,∴AE•BD=AD•DC;(2)∵AE:AD=DC:BD,且,∴=,而∠EDF=∠BDC,∴△DEF∽△DBC,∴∠DEF=∠DBC,∴EF∥BC.16.(2023•长宁区一模)已知:如图,在△ABC中,点D在边BC上,且AD=AB,边BC的垂直平分线EF交边AC于点E,BE交AD于点G.(1)求证:△BDG∽△CBA;(2)如果△ADC的面积为180,且AB=18,DG=6,求△ABG的面积.【正确答案】(1)证明见解答过程;(2)60.(1)证明:∵AB=AD,∴∠ABD=∠ADB,∵EF垂直平分BC,∴EB=EC,∴∠EBC=∠C,∵∠GBD=∠C,∠BDG=∠CBA,∴△BDG∽△CBA;(2)解:由(1)知△BDG∽△CBA,∴=,∵AB=18,DG=6,∴==,∴=,∴=,=180,∵S△ADC=90,∴S△ABD∵AC=AB=18,DG=6,∴AG=12,∴=,∴=,=S△ABD=×90=60.∴S△ABG17.(2023•松江区一模)如图,已知△ABC中,点D、E分别在边AB、AC上,DE∥BC,AD =2DB.(1)如果BC=4,求DE的长;(2)设=,=,用、表示.【正确答案】(1)DE=;(2)=+.解:(1)∵DE∥BC,∴∠ADE=∠B,∵∠A=∠A,∴△ADE∽△ABC,∴=,∵AD=2DB,∴=,∴=,∴DE=BC,∵BC=4,∴DE=;(2)由(1)知DE=BC,∴BC=DE,∵DE∥BC,=,∴=,∴=+=+.18.(2023•青浦区一模)如图,在平行四边形ABCD中,点F在边AD上,射线BA、CF相交于点E,DF=2AF.(1)求EA:AB的值;(2)如果,,试用、表示向量.【正确答案】(1)EA:AB的值为;(2).解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴△AEF∽△DCF,∴,∴,∵DF=2AF,∴,∴;(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF=2AF,∴,∵,,∴,,∴.19.(2023•青浦区一模)已知:如图,在△ABC中,点D、E分别在边BC、AC上,AD、BE 相交于点F,∠AFE=∠ABC,AB2=AE•AC.(1)求证:△ABF∽△BCE;(2)求证:DF•BC=DB•CE.【正确答案】(1)证明见解析;(2)证明见解析.证明:(1)∵AB2=AE•AC,∴,∵∠BAE=∠CAB,∴△ABE∽△ACB,∴∠ABF=∠C,∠ABC=∠AEB,∵∠ABC=∠AFE,∴∠AFE=∠AEB,∴180°﹣∠AFE=180°﹣∠AEB,即∠AFB=∠BEC,∴△ABF∽△BCE;(2)∵△ABF∽△BCE,∴,∠CBE=∠BAF,∵∠BDF=∠ADB,∴△DBF∽△DAB,∴,∴=,∴DF•BC=DB•CE.一十三.特殊角的三角函数值(共4小题)20.(2023•崇明区一模)计算:4cos30°﹣cos45°tan60°+2sin245°.【正确答案】2﹣+1.解:原式=4×﹣×+2×()2=2﹣+2×=2﹣+1.21.(2023•金山区一模)计算:+2cot30°•sin60°.【正确答案】4.解:原式=+2××=+3=1+3=4.22.(2023•普陀区一模)计算:﹣4cot30°•cos230°.【正确答案】﹣4.解:原式=﹣4×=﹣3=﹣﹣3=﹣4.23.(2023•奉贤区一模)计算:4cos30°•sin60°+.【正确答案】5+.解:原式=4××+=3+=3+2+=5+.一十四.解直角三角形(共1小题)24.(2023•松江区一模)如图,已知△ABC中,AB=AC=10,BC=12,D是AC的中点,DE ⊥BC于点E,ED、BA的延长线交于点F.(1)求∠ABC的正切值;(2)求的值.【正确答案】(1)tan B=;(2)=2.解:(1)过A作AH⊥BC于H,如图:∵AB=AC=10,BC=12,∴BH=CH=BC=6,在Rt△ABH中,AH===8,∴tan B===;(2)由(1)知tan B=,∴tan C=,∴=,∵D是AC的中点,AC=10,∴CD=5,∴DE=4,CE=3,∴BE=BC﹣CE=12﹣3=9,∵tan B=,∴=,∴EF=12,∴DF=EF﹣DE=12﹣4=8,∴==2.一十五.解直角三角形的应用(共1小题)25.(2023•杨浦区一模)如图,某条道路上通行车辆限速为60千米/小时,在离道路50米的点P处建一个监测点,道路的AB段为监测区.在△ABP中,已知∠A=45°,∠B=30°,车辆通过AB段的时间在多少秒以内时,可认定为超速?(精确到0.1秒)(参考数据:=1.732)【正确答案】见试题解答内容解:过P作PH⊥AB于H,如图:由已知可得,PH=50米,在Rt△APH中,∵∠PAH=45°,∴∠APH=∠PAH=45°,∴AH=PH=50米,在Rt△BPH中,tan30°=,∴BH==50≈86.6米,∴AB=AH+BH≈136.6米,∵60千米/小时=米/秒,而136.6÷≈8.2(秒),∴车辆通过AB段的时间在8.2秒以内时,可认定为超速.一十六.解直角三角形的应用-坡度坡角问题(共1小题)26.(2023•崇明区一模)如图,一根灯杆AB上有一盏路灯A,路灯A离水平地面的高度为9米,在距离路灯正下方B点15.5米处有一坡度为i=1:的斜坡CD.如果高为3米的标尺EF竖立在地面BC上,垂足为F,它的影子的长度为4米.(1)当影子全在水平地面BC上(图1).求标尺与路灯间的距离;(2)当影子一部分在水平地面BC上,一部分在斜坡CD上(图2),求此时标尺与路灯间的距离为多少米?【正确答案】(1)标尺与路灯间的距离为8米;(2)此时标尺与路灯间的距离为14米.解:如图1,连接AE并延长,交BC于点G,由题意可知,AB=9米,EF=3米,FG=4米,∵AB⊥BC,EF⊥BC,∴AB∥EF,∴△GEF∽△GAB,∴,即,∴BG=12米,∴BF=BG﹣FG=12﹣4=8(米),∴标尺与路灯间的距离为8米;(2)如图2,连接AE并延长,交CD于点H,过点H作HN⊥AB于点N,交EF于点M,过点H作HP⊥BC交BC延长线于点P,由题意可得,CF+CH=4米,,设CH=x米,则CF=(4﹣x)米,HP=米,CP=米,∴MF=BN=HP=米,MH=米,∴AN=米,ME=米,∵BC=15.5米,∴NH=米,∵AB⊥BC,EF⊥BC,∴AB∥EF,∴∠EMH=∠ANH,∠HEM=∠HAN,∴△HEM∽△HAN,∴,即,整理得:2x2+9x﹣35=0,解得:x1=﹣7(不符合题意,舍去),,则CF=4﹣x=4﹣=1.5(米),∴BF=BC﹣CF=15.5﹣1.5=14(米),∴此时标尺与路灯间的距离为14米.一十七.解直角三角形的应用-仰角俯角问题(共1小题)27.(2023•松江区一模)小明想利用测角仪测量操场上旗杆AB的高度.如图,他先在点C处放置一个高为1.6米的测角仪(图中CE),测得旗杆顶部A的仰角为45°,再沿BC的方向后退3.5米到点D处,用同一个测角仪(图中DF),又测得旗杆顶部A的仰角为37°.试求旗杆AB的高度.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)【正确答案】旗杆AB的高度是12.1米.解:设直线EF交AB于G,如图:根据题意,∠AEG=45°,∠AFG=37°,EF=3.5米,∴△AEG的等腰直角三角形,∴AG=GE,设AG=GE=x米,则旗杆AB高度为(x+1.6)米,∴GF=GE+EF=(x+3.5)米,在Rt△AGF中,tan∠AFG=,∴tan37°=,即0.75=,解得:x=10.5,∴x+1.6=10.5+1.6=12.1,答:旗杆AB的高度是12.1米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市黄浦区最新九年级中考三模数学卷一、选择题:(本大题共6题,每题4分,满分24分) 1.下列各数中无理数是().(A )2π; (B )227; (C (D 2.下列根式中是最简根式的是().(A(B C ; (D 3.将样本容量为100的样本编制成组号①~⑧的八个组,简况如下表所示:(A )14; (B )15; (C )0.14; (D )0.15.4.在长方体ABCD-EFGH 中,与面ABCD 平行的棱共有(). (A )1条; (B )2条; (C )3条; (D )4条.5.下列事件中,是必然事件的是().(A )购买一张彩票中奖一百万元;(B )打开电视机,任选一个频道,正在播新闻; (C )在地球上,上抛的篮球会下落;(D )掷两枚质地均匀的正方体骰子,点数之和一定小于6. 6.下列命题中正确的是 ( ).(A )平分弦的直径垂直于弦;(B )与直径垂直的直线是圆的切线;(C )对角线互相垂直的四边形是菱形;(D )联结等腰梯形四边中点的四边形是菱形. 二、填空题:(本大题共12题,每题4分,满分48分) 7.因式分解:228x -=.8.如果直线31y x a =+-在y 轴上的截距是3,那么a =.9.掷一枚质地均匀的正方体骰子,骰子的六个面分别标有1到6的点数,那么掷两次所得的点数之和等于5的概率为.10.以线段AB 为底边的等腰三角形顶点C 的轨迹是.11.函数()2f x x =-的定义域是.12.二次函数266y x x =-+图像的顶点坐标是.13.如图,已知在△ABC 中,点D 在边AC 上,CD ∶AD=1∶2,a BA =,b BC =,试用向量b a ,表示向量BD =.14.已知点C 是AB 的黄金分割点()AC BC <,AC =4,则BC 的长. 15.已知在ABC ∆中,点D 、E 分别在边AB 和AC 的反向延长线上,DE ∥BC ,31=AB AD ,那么ADE ∆与ABC ∆的面积之比是.16.已知正六边形的边长为6,那么边心距等于.17.将等腰ABC ∆绕着底边BC 的中点M 旋转30°后,如果点B 恰好落在原ABC ∆的边AB 上,那么∠A 的余切值等于. 18.如图,相距2cm 的两个点A 、B 在直线l 上,它们分别以2cm/s 和1cm/s 的速度在l 上同时向右平移,当点A 、B 分别平移到点A 1、B 1的位置时,半径为1cm 的圆A 1与半径为BB 1的圆B 相切,则点A 平移到点A 1所用的时间为s . 三、解答题:(本大题共7题,满分78分)19.127219-︒⎛⎫-+ ⎪⎝-⎭.20.解方程:213(2)4221x x x x -++=+-.21.(本题满分10分)已知:如图,Rt ABC ∆中,∠ACB=90°,P 是边AB 上一点,AD ⊥CP ,BE ⊥CP ,垂足分别为D 、E ,已知AB=63,BC=53,BE=5.求DE 的长.22.(本题满分10分,第(1)、(2)小题满分各5分)如图,折线表示一个水槽中的水量Q (升)与时间t (分)的函数关系。
水槽有甲进水口和乙、丙两个出水口,它们各自每分钟的进、出水量不变.当水槽内的水位降低时甲进水,乙、丙不出水;20分钟后,甲进水,乙出水;又过20分钟,甲进水,乙、丙同时出水;又过40分钟,甲不进水,乙、丙同时出水,已知丙每分钟的出水量是乙的2倍. (1)求线段CD 的函数解析式和定义域;(2)求甲进口分钟进水多少升?乙出口每分钟出水多少升?23.(本题满分12分,第(1)、(2)小题满分各6分)如图,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE ∆是等边三角形.(1)求证:四边形ABCD 是菱形;(2)若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.B A24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)如图,已知抛物线2y x bx c =++经过()01A -,、()43B -,两点. (1)求抛物线的解析式;(2 求tan ABO ∠的值;(3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标.25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)在Rt △ABC 中,∠ACB = 90°,经过点B 的直线l (l 不与直线AB 重合)与直线BC 的夹角等于∠ABC ,分别过点C 、点A 作直线l 的垂线,垂足分别为点D 、点E .(1)如图1,当点E 与点B 重合时,若AE=4,判断以C 点为圆心CD 长为半径的圆C 与直线AB 的位置关系并说明理由;(2)如图2,当点E 在DB 延长线上时,求证:AE=2CD ; (3)记直线CE 与直线AB 相交于点F ,若56CF EF =,CD = 4,求BD 的长.评分标准参考一、选择题:(本大题共6题,每题4分,满分24分) 1.A 2.B 3.D 4.D 5.C 6.D二、填空题:(本大题共12题,每题4分,满分48分)7.()()222x x -+; 8. 4; 9.19; 10. AB 的中垂线(AB 的中点除外); 11.x ≥-3且x ≠2 ; 12.()3,3-; 13.13a r +23b r;+2 ; 15.1:9;16.17. ; 18.3或13.三、解答题:(本大题共7题,满分78分)19127219-︒⎛⎫+ ⎪⎝-⎭129()1)125-+-………………………………………………………………(5分)=32115-+-………………………………………………………………………………(3分)35.………………………………………………………………………………………(2分) 20.解:方程两边同时乘以(2)(21)x x +-,得22(21)3(2)4(2)(21)x x x x -++=+-.…………………………(4分)整理后得 24210x x +-=.解得 17x =-,23x =.…………………………………………………(4分) 经检验:17x =-,23x =是原方程的根.………………………………………(1分) 所以,原方程的根是17x =-,23x =.…………………………………………(1分)另解:设212x y x -=+, ……………………………………………………………(1分) 则原方程可化为34y y+=,∴2430y y -+=………………………………(1分)解,得121,3y y ==………………………………………………………………(2分)当2112x x -=+时,3x =,…………………………………………………………(2分)当2132x x -=+时,7x =-,………………………………………………………(2分) 经检验:17x =-,23x =是原方程的根.………………………………………(1分)所以,原方程的根是17x =-,23x =.…………………………………………(1分) 21.解:在Rt △ABC 中,∵∠ACB=90°,63=AB ,53=BC ,∴AC=3.………(2分)在Rt △BCE 中,∵∠E=90°,BC =5BE =,52=CE . ……………………(2分) ∵∠ACD+∠BCE=90°,∠CBE+∠BCE=90°,∴∠ACD=∠CBE . ……………………(1分) ∴Rt △ACD ∽Rt △CBE .……………………………………………………………………(1分) ∴BC BE AC CD =,即5353=CD .……………………………………………………………(2分)∴5=CD .∴DE CE CD =-= …………………………………………………(2分) 22.解:(1)设线段CD 的函数解析式:Q kt b =+,把(40,600)C 、(80,400)D 代入,得:6004040080k bk b =+⎧⎨=+⎩………………………………………………………………(2分)解,得∴5800k b =-⎧⎨=⎩…………………………………………………………………(1分)∴线段CD 的函数解析式为:5800(4080)Q t t =-+≤≤.……………………(2分) (2)设:甲进口每分钟进水x 升,乙出口每分钟出水y 升.………………………(1分)∴()202010040240200x y y y x -=⎧⎪⎨+-=⎪⎩…………………………………………………(2分)∴105x y =⎧⎨=⎩………………………………………………………………………(1分)∴甲进口每分钟进水10升,乙出口每分钟出水5升.…………………………(1分)23.证明:(1)Q 四边形ABCD 是平行四边形,AO CO ∴=. ……………………(2分)又ACE ∆Q 是等边三角形,EO AC ∴⊥,即DB AC ⊥. ……………………………(2分) ∴平行四边形ABCD 是菱形;……………………………………………………………(2分) (2)ACE ∆Q 是等边三角形,60AEC ∴∠=o . ………………………………………(1分)EO AC ⊥Q ,1302AEO AEC ∴∠=∠=o .……………………………………………(1分) 2AED EAD ∠=∠Q ,15EAD ∴∠=o.45ADO EAD AED ∴∠=∠+∠=o.…………(1分)Q 四边形ABCD 是菱形,290ADC ADO ∴∠=∠=o .………………………………(2分) ∴四边形ABCD 是正方形.………………………………………………………………(1分)24.解:(1)将A (0,-1)、B (4,-3)分别代入2y x bx c =++得1,1643c b c =-⎧⎨++=-⎩, ………………………………………………………………(1分)解,得9,12b c =-=-…………………………………………………………………(1分)所以抛物线的解析式为2912y x x =--……………………………………………(1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分)在Rt AOH ∆中,OA=1,4sin sin ,5AOH OBC ∠=∠=……………………………(1分)∴4sin 5AH OA AOH =∠=g ,∴322,55OH BH OB OH ==-=, ………………(1分) 在Rt ABH ∆中,4222tan 5511AH ABO BH ∠==÷=………………………………(1分)(3)直线AB 的解析式为112y x =--, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1(,1)2m m --那么MN=2291(1)(1)422m m m m m -----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN=BC=3解方程24m m -=3得2m = ……………………………………………(1分)解方程243m m -+=得1m =或3m =; ………………………………………(1分)所以符合题意的点N 有4个35(22),(22),(1,),(3,)2222----- ……………………………………………………………………………………(1分) 25.解:(1)过点C 作CF ⊥AB ,垂足为点F.……………………………………………(1分) ∵∠AED=90°,∠ABC=∠CBD ,∴∠ABC=∠CBD =45°,∵∠ACB=90°,∠ABC=45°,AE=4,∴CF=2,BC=1分) 又∵∠CBD=∠ABC=45°,CD ⊥l ,∴CD=2, …………………………………………(1分) ∴CD=CF=2,∴圆C 与直线AB 相切.……………………………………………………(1分) (2)证明:延长AC 交直线l 于点G . ………………………………………………(1分)∵∠ACB = 90°,∠ABC =∠GBC ,∴∠BAC =∠BGC .∴AB = GB .…………………………………………………………………………………(1分) ∴AC = GC .…………………………………………………………………………………(1分) ∵AE ⊥l ,CD ⊥l ,∴AE ∥CD . ∴12CD GC AE GA ==. …………………………………………………………………………(1分) ∴AE = 2CD . ………………………………………………………………………………(1分) (3)(I )如图1,当点E 在DB 延长线上时:过点C 作CG ∥l 交AB 于点H ,交AE 于点G ,则∠CBD =∠HCB . ∵∠ABC =∠CBD ,∴∠ABC =∠HCB .∴CH = BH .………(1分) ∵∠ACB = 90°,∴∠ABC +∠BAC =∠HCB +∠HCA = 90°. ∴∠BAC =∠HCA .∴CH = AH = BH . ∵CG ∥l ,∴56CH CF BE EF ==. 设CH = 5x ,则BE = 6x ,AB = 10x .在Rt △ABE 中,8AE x ==. 由(2)知AE = 2CD = 8,∴88x =,得1x =. ∴CH = 5,BE = 6,AB = 10. ∵CG ∥l ,∴12HG AH BE AB ==,∴HG=3.……………………(1分) ∴CG = CH + HG = 8.易证四边形CDEG 是矩形,∴DE = CG = 8.∴2BD DE BE =-=.…………………………………………(1分) (II )如图2,当点E 在DB 上时:同理可得CH = 5,BE = 6,HG = 3.…………………………(1分) ∴2DE CG CH HG ==-=.∴BD=DE + BE = 8.…………………………………………………………………………(1分) 综上所述,BD 的长为2或8.。