对数函数练习题有答案

合集下载

(完整版)对数函数练习题(有答案)

(完整版)对数函数练习题(有答案)

对数函数练习题(有答案)1.函数y =log (2x -1)(3x -2)的定义域是( )A .⎝⎛⎭⎫12,+∞B .⎝⎛⎭⎫23,+∞C .⎝⎛⎭⎫23,1∪(1,+∞)D .⎝⎛⎭⎫12,1∪(1,+∞) 2.若集合A ={ x |log 2x =2-x },且 x ∈A ,则有( )A .1>x 2>xB .x 2>x >1C .x 2>1>xD .x >1>x 23.若log a 3>log b 3>0,则 a 、b 、1的大小关系为( )A .1<a <bB .1 <b <aC .0 <a <b <1D .0 <b <a <14.若log a 45<1,则实数a 的取值范围为( ) A .a >1 B .0<a <45 C .45<a D .0<a <45或a >1 5.已知函数f (x )=log a (x -1)(a >0且 a ≠1)在x ∈(1,2)时,f (x )<0,则f (x )是A .增函数B .减函数C .先减后增D .先增后减6.如图所示,已知0<a <1,则在同一直角坐标系中,函数y =a -x 和y =log a (-x )的图象只可能为( )7.函数y =f (2x )的定义域为[1,2],则函数y =f (log 2x )的定义域为 ( )A .[0,1]B .[1,2]C .[2,4]D .[4,16]8.若函数f (x )=log12()x 3-ax 上单调递减,则实数a 的取值范围是 ( )A .[9,12]B .[4,12]C .[4,27]D .[9,27]9.函数y =a x -3+3(a >0,且a ≠1)恒过定点__________.10.不等式⎝⎛⎭⎫1310-3x<3-2x 的解集是_________________________. 11.(1)将函数f (x )=2x 的图象向______平移________个单位,就可以得到函数g (x )=2x -x 的图象.(2)函数f (x )=⎝⎛⎭⎫12|x -1|,使f (x )是增区间是_________. 12.设 f (log 2x )=2x (x >0).则f (3)的值为 .13.已知集合A ={x |2≤x ≤π,x ∈R}.定义在集合A 上的函数f (x )=log a x (0<a <1)的最大值比最小值大1,则底数a 为__________.14.当0<x <1时,函数y =log (a 2-3)x 的图象在x 轴的上方,则a 的取值范围为________.15.已知 0<a <1,0<b <1,且a log b (x -3)<1,则 x 的取值范围为 . 16.已知 a >1,求函数 f (x )=log a (1-a x )的定义域和值域.17.已知 0<a <1,b >1,ab >1,比较log a 1b ,log a b ,log b 1b的大小.18.已知f (x )=log a x 在[2,+ ∞ )上恒有|f (x )|>1,求实数a 的取值范围.19.设在离海平面高度h m 处的大气压强是x mm 水银柱高,h 与x 之间的函数关系式为:h =k ln x c,其中c 、k 都是常量.已知某地某天在海平面及1000 m 高空的大气压强分别是760 mm 水银柱高和675 mm 水银柱高,求大气压强是720 mm 水银柱高处的高度.20.已知关于x 的方程log 2(x +3)-log 4x 2=a 的解在区间(3,4)内,求实数a 的取值范围.参考答案:1.C 2.B 3.A 4.D 5.A 6.B 7.D 8.A9.(3,4) 10.{x |_x <2} 11.右,2;(-∞,1), 12.25613.2π14.a ∈(-2,-3)∪(3,2) 15.(3,4)16.解 ∵ a >1,1-a x >0,∴ a x <1,∴ x <0,即函数的定义域为(-∞ ,0).∵ a x >0且a x <1,∴ 0<1-a x <1 ∴log a (1-a x )<0,即函数的值域是(-∞ ,0).17.解 ∵ 0<a <1,b >1,∴ log a b <0,log b 1b =-1,log a 1b >0,又ab >1,∴ b >1a >1,log a b <log a 1a=-1,∴ log a b <log b51b <log a 1b.18.解 由|f (x )|>1,得log a x >1或log a x <-1.由log a x >1,x ∈[2,+∞ )得 a >1,(log a x )最小=log a 2,∴ log a 2>1,∴ a <2,∴ 1<a <2;由log a x <-1,x ∈[2,+ ∞ )得 0<a <1,(log a x )最大=log a 2,∴ log a 2<-1,∴ a >12, ∴12<a <1. 综上所述,a 的取值范围为(12,1 )∪(1,2).19.解 ∵ h =k ln x c,当 x =760,h =0,∴ c =760. 当x =675时,h =1 000,∴ 1 000=k ln 675760=k ln0.8907 ∴ k =1000ln0.8907=1000lg e lg0.8907当x =720时,h =1000lg e lg0.8907ln 720760=1000lg e lg0.8907·ln0.9473=1000lg e lg0.8907·lg0.9473lg e≈456 m . ∴ 大气压强为720 mm 水银柱高处的高度为456 m .20.本质上是求函数g (x )=log 2(x +3)-log 4x 2 x ∈(3,4)的值域.∵ g (x )=log 2(x +3)-log 4x 2=log 2(x +3)-log 2x =log 2x +3x =log 2⎝⎛⎭⎫1+1x ∈⎝⎛⎭⎫log 254,log 243 ∴ a ∈⎝⎛⎭⎫log 254,log 243.。

对数函数练习题及其答案

对数函数练习题及其答案

对数函数练习题及其答案• 1.已知log a8=,则a等于( )A B C 2 D 4• 2.对数的值为( )A.1 B.1/2 C.-1 D.-1/2• 3.下列各式中,能成立的是( )A log3(6-4)=log36-log34B log3(6-4)=C log35-log36=D log23+log210=log25+log26• 4.以下四个命题:(1)若log x3=3,则x=9;(2)若log4x=,则x=2; (3)若log x=0,则x=;(4)若log x=-3,则x=125,其中真命题的个数是 ( )A 1个B 2个C 3个D 4个• 5.如果,那么的取值范围是 ( ) A. B. C.D.且• 6.函数的反函数是 ( )(A) (B)(C) (D)•7.函数的递增区间是( )A. B. C. D.•8.已知,则的值为 ( )A. 3B. 8C. 4D.•9.若函数的定义域为,则它的值域为( )A. B. C.D.•10.当时,函数和的图象只可能是( )•11.计算:_____________.•12.已知等式, 则x=________.•13.如果对数lga与lgb互为相反数,那么a与b之间应满足_________.•14.函数在区间上的最大值比最小值大1,则__________.•15.已知函数f(x)=a x+k的图象过点(1, 3),其反函数f-1(x)的图象过点(2, 0),则f (x)= .•16.函数y=f (x), x∈(, 3],则f ()的定义域是 .•17.求值 (本题共12分)(1)lg14-2lg+lg7-lg18(2)(3)•18.(12分)已知函数f(x)=log2(-x2+3x-2)的定义域为P,g(x)= +log的定义域为Q,求P Q•19.(14分)函数, (>0, ≠1),若,求的取值范围•20.(16分) 已知函数f (x)=lg(2x2-5x-3),试求:(I)函数y=f (x)的定义域;(II)函数y=f (x)的单调区间•21、(16分)设其中并且仅当在的图象上时,在的图象上。

对数函数习题和的答案解析

对数函数习题和的答案解析

习题课——对数函数及其性质的应用一、A组1.已知函数y=log a(x+c)(a,c为常数,且a>0,a≠1)的图象如图所示,则下列结论成立的是()A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1解析:由题意可知y=log a(x+c)的图象是由y=log a x的图象向左平移c个单位长度得到的,结合题图知0<c<1.根据单调性易知0<a<1.答案:D2.已知a=,b=log2,c=lo,则()A.a>b>cB.a>c>bC.c>b>aD.c>a>b解析:∵0<a=<20=1,b=log2<log21=0,c=lo>lo=1,∴c>a>b.故选D.答案:D3.函数f(x)=的定义域为()A.(3,5]B.[-3,5]C.[-5,3)D.[-5,-3]解析:要使函数有意义,则3-log2(3-x)≥0,即log2(3-x)≤3,∴0<3-x≤8,∴-5≤x<3.答案:C4.函数f(x)=lo(x2-4)的单调递增区间为()A.(0,+∞)B.(-∞,0)C.(2,+∞)D.(-∞,-2)解析:令t=x2-4>0,可得x>2或x<-2.故函数f(x)的定义域为(-∞,-2)∪(2,+∞),当x∈(-∞,-2)时,t随x的增大而减小,y=lo t随t的减小而增大,所以y=lo(x2-4)随x的增大而增大,即f(x)在(-∞,-2)上单调递增.故选D.答案:D5.已知y=log a(2-ax)在区间[0,1]上为减函数,则a的取值范围为()A.(0,1)B.(1,2)C.(0,2)D.[2,+∞)解析:由题设知a>0,则t=2-ax在区间[0,1]上是减函数.因为y=log a(2-ax)在区间[0,1]上是减函数,所以y=log a t在定义域内是增函数,且t min>0.因此故1<a<2.答案:B6.导学号29900104已知函数f(x)=直线y=a与函数f(x)的图象恒有两个不同的交点,则a的取值范围是.解析:函数f(x)的图象如图所示,要使直线y=a与f(x)的图象有两个不同的交点,则0<a≤1.答案:(0,1]7.已知定义域为R的偶函数f(x)在区间[0,+∞)上是增函数,且f=0,则不等式f(log4x)<0的解集是.解析:由题意可知,f(log4x)<0⇔-<log4x<⇔log4<log4x<log4<x<2.答案:8.已知函数f(x)=log a(x+1)(a>0,且a≠1),g(x)=log a(4-2x).(1)求函数f(x)-g(x)的定义域;(2)求使函数f(x)-g(x)的值为正数时x的取值范围.解:(1)由题意可知,f(x)-g(x)=log a(x+1)-log a(4-2x),要使函数f(x)-g(x)有意义,则解得-1<x<2.故函数f(x)-g(x)的定义域是(-1,2).(2)令f(x)-g(x)>0,得f(x)>g(x),即log a(x+1)>log a(4-2x).当a>1时,可得x+1>4-2x,解得x>1.由(1)知-1<x<2,所以1<x<2;当0<a<1时,可得x+1<4-2x,解得x<1,由(1)知-1<x<2,所以-1<x<1.综上所述,当a>1时,x的取值范围是(1,2);当0<a<1时,x的取值范围是(-1,1).9.导学号29900105若-3≤lo x≤-,求f(x)=的最值.解:f(x)==(log2x-1)(log2x-2)=(log2x)2-3log2x+2.令log2x=t,∵-3≤lo x≤-,∴-3≤-log2x≤-,∴≤log2x≤3.∴t∈.∴f(x)=g(t)=t2-3t+2=.∴当t=时,g(t)取最小值-;此时,log2x=,x=2;当t=3时,g(t)取最大值2,此时,log2x=3,x=8.综上,当x=2时,f(x)取最小值-;当x=8时,f(x)取最大值2.二、B组1.(2016·江西南昌二中高一期中)函数y=x·ln |x|的大致图象是()解析:函数f(x)=x·ln |x|的定义域(-∞,0)∪(0,+∞)关于原点对称,且f(-x)=-x·ln |-x|=-x·ln|x|=-f(x),所以f(x)是奇函数,排除选项B;当0<x<1时,f(x)<0,排除选项A,C.故选D.答案:D2.(2016·河南许昌四校高一联考)若函数f(x)=log2(x2-ax+3a)在区间[2,+∞)上是增函数,则实数a的取值范围是()A.a≤4B.a≤2C.-4<a≤4D.-2≤a≤4解析:∵函数f(x)=log2(x2-ax+3a)在区间[2,+∞)上是增函数,∴y=x2-ax+3a在[2,+∞)上大于零且单调递增,故有解得-4<a≤4,故选C.答案:C3.已知函数f(x)在区间[0,+∞)上是增函数,g(x)=-f(|x|),若g(lg x)>g(1),则x的取值范围是()A.B.(0,10)C.(10,+∞)D.∪(10,+∞)解析:因为g(lg x)>g(1),所以f(|lg x|)<f(1).又f(x)在区间[0,+∞)上单调递增,所以0≤|lg x|<1,解得<x<10.答案:A4.已知a=log23.6,b=log43.2,c=log43.6,则a,b,c的大小关系为.解析:∵b=log23.2=log2,c=log23.6=log2,又函数y=log2x在区间(0,+∞)上是增函数,3.6>,∴log23.6>log2>log2,∴a>c>b.答案:a>c>b5.已知函数y=log a x,当x>2时恒有|y|≥1,则a的取值范围是.解析:当a>1时,y=log a x在区间(2,+∞)上是增函数,由log a2≥1,得1<a≤2;当0<a<1时,y=log a x在区间(2,+∞)上是减函数,且log a2≤-1,得≤a<1.故a的取值范围是∪(1,2].答案:∪(1,2]6.导学号29900106若函数f(x)=log a x(a>0,且a≠1)在区间[a,2a]上的最大值是最小值的3倍,则a的值为.解析:当0<a<1时,f(x)在区间(0,+∞)上是减函数,∴f(x)在区间[a,2a]上的最小值为log a(2a),最大值为log a a,∴log a a=3log a(2a),∴log a(2a)=,即=2a,a=8a3,∴a2=,a=.当a>1时,f(x)在区间(0,+∞)上是增函数,∴f(x)在区间[a,2a]上的最小值为log a a,最大值为log a(2a),∴log a(2a)=3log a a,∴log a(2a)=3,即a3=2a,∴a2=2,a=.故a的值为.答案:7.已知函数f(x)=lg(3x-3).(1)求函数f(x)的定义域和值域;(2)设函数h(x)=f(x)-lg(3x+3),若不等式h(x)>t无实数解,求实数t的取值范围.解:(1)由3x-3>0,得x>1,所以f(x)的定义域为(1,+∞).因为(3x-3)∈(0,+∞),所以函数f(x)的值域为R.(2)因为h(x)=lg(3x-3)-lg(3x+3)=lg=lg的定义域为(1,+∞),且h(x)在区间(1,+∞)上是增函数, 所以函数h(x)的值域为(-∞,0).若不等式h(x)>t无实数解,则t的取值范围为t≥0.8.导学号29900107已知函数f(x-1)=lg.(1)求函数f(x)的解析式;(2)解关于x的不等式f(x)≥lg(3x+1).解:(1)令t=x-1,则x=t+1.由题意知>0,即0<x<2,则-1<t<1.所以f(t)=lg=lg.故f(x)=lg(-1<x<1).(2)lg≥lg(3x+1)⇔≥3x+1>0.由3x+1>0,得x>-.因为-1<x<1,所以1-x>0.由≥3x+1,得x+1≥(3x+1)(1-x),即3x2-x≥0,x(3x-1)≥0,解得x≥或x≤0.又x>-,-1<x<1,所以-<x≤0或≤x<1.故不等式的解集为.。

对数函数精选练习题(带答案)

对数函数精选练习题(带答案)

对数函数精选练习题(带答案)1.函数y =log 23(2x -1)的定义域是( )A .[1,2]B .[1,2) C.⎣⎡⎦⎤12,1 D.⎝⎛⎦⎤12,1答案 D解析 要使函数解析式有意义,须有log 23(2x -1)≥0,所以0<2x -1≤1,所以12<x ≤1,所以函数y =log 23(2x -1)的定义域是⎝⎛⎦⎤12,1.2.函数f (x )=log a (x +b )的大致图象如图,则函数g (x )=a x -b 的图象可能是( ) 答案 D解析 由图象可知0<a <1且0<f (0)<1,即⎩⎪⎨⎪⎧0<a <1, ①0<log a b <1, ②解②得log a 1<log a b <log a a ,∵0<a <1,∴由对数函数的单调性可知a <b <1, 结合①可得a ,b 满足的关系为0<a <b <1,由指数函数的图象和性质可知,g (x )=a x -b 的图象是单调递减的,且一定在y =-1上方.故选D.3.(2017·北京高考)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN 最接近的是( ) (参考数据:lg 3≈0.48)A .1033B .1053C .1073D .1093 答案 D解析 由题意,lg M N =lg 33611080=lg 3361-lg 1080=361lg 3-80lg 10≈361×0.48-80×1=93.28. 又lg 1033=33,lg 1053=53,lg 1073=73,lg 1093=93,故与MN 最接近的是1093.故选D.4.已知函数f (x )是偶函数,定义域为R ,g (x )=f (x )+2x ,若g (log 27)=3,则g ⎝⎛⎭⎫log 217=( )A .-4B .4C .-277 D.277 答案 C解析 由g (log 27)=3可得,g (log 27)=f (log 27)+7=3,即f (log 27)=-4,则g ⎝⎛⎭⎫log 217=f (-log 27)+17=-4+17=-277.5.已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,则f (log 49)=( ) A .-13 B .-12 C.12 D.32 答案 A解析 因为log 49=log 29log 24=log 23>0,f (x )为奇函数,且当x <0时,f (x )=2x ,所以f (log 49)=f (log 23)=-f (-log 23)=-2-log 23=-2log2 13=-13.6.设a =log 54-log 52,b =ln 23+ln 3,c =1012 lg 5,则a ,b ,c 的大小关系为( )A .a <b <cB .b <c <aC .c <a <bD .b <a <c答案 A解析 由题意得,a =log 54-log 52=log 52,b =ln 23+ln 3=ln 2,c =10 12 lg 5=5,得a =1log 25,b =1log 2e ,而log 25>log 2e>1,所以0<1log 25<1log 2e <1,即0<a <b <1.又c =5>1.故a <b <c .故选A.7.(2017·全国卷Ⅰ)已知函数f (x )=ln x +ln (2-x ),则( ) A .f (x )在(0,2)单调递增 B .f (x )在(0,2)单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称 答案 C解析 f (x )的定义域为(0,2).f (x )=ln x +ln (2-x )=ln [x (2-x )]=ln (-x 2+2x ).设u =-x 2+2x ,x ∈(0,2),则u =-x 2+2x 在(0,1)上单调递增,在(1,2)上单调递减.又y =ln u 在其定义域上单调递增,∴f (x )=ln (-x 2+2x )在(0,1)上单调递增,在(1,2)上单调递减. ∴选项A ,B 错误.∵f (x )=ln x +ln (2-x )=f (2-x ),∴f (x )的图象关于直线x =1对称,∴选项C 正确.∵f (2-x )+f (x )=[ln (2-x )+ln x ]+[ln x +ln (2-x )]=2[ln x +ln (2-x )],不恒为0, ∴f (x )的图象不关于点(1,0)对称,∴选项D 错误.故选C. 8.已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( )A .(a -1)(b -1)<0B .(a -1)(a -b )>0C .(b -1)(b -a )<0D .(b -1)(b -a )>0 答案 D解析 因为log a b >1,所以a >1,b >1或0<a <1,0<b <1,所以(a -1)(b -1)>0,故A 错误; 当a >1时,由log a b >1,得b >a >1,故B ,C 错误.故选D.9.(2019·北京模拟)如图,点A ,B 在函数y =log 2x +2的图象上,点C 在函数y =log 2x 的图象上,若△ABC 为等边三角形,且直线BC ∥y 轴,设点A 的坐标为(m ,n ),则m =( ) A .2 B .3 C. 2 D.3 答案 D解析 因为直线BC ∥y 轴,所以B ,C 的横坐标相同;又B 在函数y =log 2x +2的图象上,点C 在函数y =log 2x 的图象上,所以|BC |=2.即正三角形ABC 的边长为2.由点A 的坐标为(m ,n ),得B (m +3,n +1),C (m +3,n -1),所以⎩⎪⎨⎪⎧n =log 2m +2,n +1=log 2(m +3)+2,所以log 2m +2+1=log 2(m +3)+2,所以m = 3.10.(2018·湖北宜昌一中模拟)若函数f (x )=log 0.9(5+4x -x 2)在区间(a -1,a +1)上递增,且b =lg 0.9,c =20.9,则( )A .c <b <aB .b <c <aC .a <b <cD .b <a <c 答案 B解析 由5+4x -x 2>0,得-1<x <5, 又函数t =5+4x -x 2的对称轴方程为x =2, ∴复合函数f (x )=log 0.9(5+4x -x 2)的增区间为(2,5),∵函数f (x )=log 0.9(5+4x -x 2)在区间(a -1,a +1)上递增,∴⎩⎪⎨⎪⎧a -1≥2,a +1≤5,则3≤a ≤4,而b =lg 0.9<0,1<c =20.9<2,所以b <c <a .11.(2019·石家庄模拟)设方程10x =|lg (-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=0 C .x 1x 2>1 D .0<x 1x 2<1答案 D解析 作出y =10x 与y =|lg (-x )|的大致图象,如图.显然x 1<0,x 2<0.不妨设x 1<x 2,则x 1<-1,-1<x 2<0, 所以10 x 1=lg (-x 1),10 x 2=-lg (-x 2), 此时10 x 1<10 x 2, 即lg (-x 1)<-lg (-x 2), 由此得lg (x 1x 2)<0,所以0<x 1x 2<1.12.函数y =log a (x -1)+2(a >0,且a ≠1)的图象恒过的定点是________. 答案 (2,2)解析 令x =2得y =log a 1+2=2,所以函数y =log a (x -1)+2的图象恒过定点(2,2).13.(2019·成都外国语学校模拟)已知2x =3,log 483=y ,则x +2y 的值为________.答案 3解析 因为2x =3,所以x =log 23.又因为y =log 483=12log 283,所以x +2y =log 23+log 283=log 28=3. 14.(2018·兰州模拟)已知函数y =log a x (2≤x ≤4)的最大值比最小值大1,则a 的值为________. 答案 2或12解析 ①当a >1时,y =log a x 在[2,4]上为增函数. 由已知得log a 4-log a 2=1,所以log a 2=1,所以a =2. ②当0<a <1时,y =log a x 在[2,4]上为减函数. 由已知得log a 2-log a 4=1,所以log a 12=1,a =12.综上知,a 的值为2或12.15.若函数f (x )=log a ⎝⎛⎭⎫x 2+32x (a >0,且a ≠1)在区间⎝⎛⎭⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为________.答案 (0,+∞)解析 令M =x 2+32x ,当x ∈⎝⎛⎭⎫12,+∞时,M ∈(1,+∞),f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =⎝⎛⎭⎫x +342-916,因此M 的单调递增区间为⎝⎛⎭⎫-34,+∞.又x 2+32x >0,所以x >0或x <-32,所以函数f (x )的单调递增区间为(0,+∞).16.(2019·江苏南京模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 12 x ,x ≥2,2a x -3a ,x <2(其中a >0,且a ≠1)的值域为R ,则实数a 的取值范围为________. 答案 ⎣⎡⎭⎫12,1解析 由题意,分段函数的值域为R ,故其在(-∞,2)上应是单调递减函数,所以0<a <1,根据图象可知,log 122≥2a 2-3a ,解得12≤a ≤1.综上,可得12≤a <1.。

2024年数学七年级上册对数基础练习题(含答案)

2024年数学七年级上册对数基础练习题(含答案)

2024年数学七年级上册对数基础练习题(含答案)试题部分一、选择题:1. 下列哪个数是2的对数?()A. 1B. 2C. 4D. 0.52. 如果3^x = 27,那么x的值是多少?()A. 2B. 3C. 4D. 53. 已知log₂x = 3,那么x的值是()A. 6B. 8C. 9D. 274. 下列哪个式子是对数式?()A. 2^3 = 8B. 3^x = 9D. 5 × 5 = 255. 计算log₃(3^4)的值是多少?()A. 12B. 16C. 4D. 36. 下列哪个对数式是错误的?()A. log₄16 = 2B. log₂32 = 5C. log₁₀100 = 2D. log₃9 = 27. 已知log₅x = 2,那么x等于多少?()A. 25B. 15C. 10D. 58. 如果log₂x = 4,那么2^x等于多少?()A. 16B. 64C. 128D. 2569. 下列哪个对数式成立?()A. log₃27 = 3C. log₅25 = 2D. log₁₀1000 = 310. 计算log₂(1/8)的值是多少?()A. 3B. 2C. 1D. 0二、判断题:1. 对数函数是单调递增的。

()2. log₂1 = 0。

()3. log₅125 = 3。

()4. 对数式log₂x = 3和2^3 = x是等价的。

()5. 任何正数都有对数。

()6. log₁₀10 = 1。

()7. log₃(1/27) = 3。

()8. 对数函数的定义域是全体实数。

()9. log₂0 = 0。

()10. log₅1 = 0。

()三、计算题:1. 已知log₂x = 5,求x的值。

2. 如果log₃(3x 2) = 2,求x的值。

3. 计算log₁₀100的值。

4. 已知log₄16 = x,求x的值。

5. 如果3^(2x 1) = 27,求x的值。

6. 计算log₂(1/32)的值。

2023-2024学年高一上数学必修一:对数函数(附答案解析)

2023-2024学年高一上数学必修一:对数函数(附答案解析)

第1页共6页2023-2024学年高中数学必修一:对数函数一、选择题(每小题5分,共40分)1.已知a =log 213,b =5-3,c =212,则a ,b ,c 的大小关系为(A )A .a <b <cB .a <c <bC .c <b <aD .c <a <b解析:∵log 213<log 21=0,0<5-3<50=1,212=2>1,∴a <b <c .故选A.2.若a >b ,则(C )A .ln(a -b )>0B .3a <3bC .a 3-b 3>0D .|a |>|b |解析:法一:不妨设a =-1,b =-2,则a >b ,可验证A ,B ,D 错误,只有C 正确.法二:由a >b ,得a -b >0.但a -b >1不一定成立,则ln(a -b )>0不一定成立,故A 不一定成立.因为y =3x 在R 上是增函数,当a >b 时,3a >3b ,故B 不成立.因为y =x 3在R 上是增函数,当a >b 时,a 3>b 3,即a 3-b 3>0,故C 成立.因为当a =3,b =-6时,a >b ,但|a |<|b |,所以D 不一定成立.故选C.3.若log 34·log 8m =log 416,则m 等于(D )A .3B .9C .18D .27解析:原式可化为log 8m =2log 34,∴13log 2m =2log 43,∴m 13=3,m =27.4.下列函数中,随着x 的不断增大,增长速度最慢的是(B )A .y =5x B .y =log 5x C .y =x 5D .y =5x。

对数函数基础题

1、已知 logₐ2 < 1,则下列哪个选项是正确的?A. a > 2B. 0 < a < 1C. a = 2D. a < 0(答案)B2、若 log₃x = -2,则 x 的值为?A. 1/9B. 9C. -1/9D. 3(答案)A3、设 log₂(5 - x) 的定义域为 A,log₂(x + 1) 的定义域为 B,则A ∩ B =?A. (-1, 5)B. (-∞, 5)C. (0, +∞)D. (-∞, +∞)(答案)A4、若 log₅(x - 2) + log₅(x - 3) = 1,则 x 的取值范围是?A. (2, 3)B. (3, 6)C. (5, +∞)D. (2, 5)(答案)B5、已知 log₇49 = x,则 7x =?A. 7B. 49C. 343D. 2(答案)B6、下列哪个等式成立?A. log₂(3 + 4) = log₂3 + log₂4B. log₂(3 × 4) = log₂3 + log₂4C. log₂(3 - 4) = log₂3 - log₂4D. log₂(3 / 4) = log₂3 × log₂4(答案)B7、若 logₙm = p,则下列表达式正确的是?A. m = npB. n = mpC. p = mnD. m = pn(答案)A8、设 f(x) = logₐx (a > 0, a ≠ 1),若 f(x₁) + f(x₂) = f(x₁x₂),则下列哪个选项描述了 a 的取值范围?A. a > 1B. 0 < a < 1C. a < 0D. a 可以是任意正数,但不等于 1(答案)D(注:实际上根据对数性质,此题更严谨的答案应为 a > 0 且 a ≠ 1,但根据选项,D 最接近正确答案,意在考察对数运算的基本法则)。

高一数学对数函数经典题及详细答案

高一数学对数函数经典题及详细答案1、已知3a=2,那么log3 8-2log3 6用a表示是()A、a-2.B、5a-2.C、3a-(1+a)。

D、3a-a2/2答案:A。

解析:由3a=2,可得a=log3 2,代入log3 8-2log3 6中得:log3 8-2log3 6=log3 2-2log3 (2×3)=3log3 2-2(log3 2+log33)=3a-2(a+1)=a-2.2、2loga(M-2N)=logaM+logaN,则M的值为()A、N/4.B、M/4.C、(M+N)2.D、(M-N)2答案:B。

解析:2loga(M-2N)=logaM+logaNloga(M-2N)2=logaMNM-2N=MNM=4N3、已知x+y=1,x>0,y>0,且loga(1+x)=m,loga(1-y)=n,则loga y等于()A、m+n-2.B、m-n-2.C、(m+n)/2.D、(m-n)/2答案:D。

解析:由已知可得1-x=y,代入loga(1+x)=m中得loga(2-x)=m,两式相减得loga[(2-x)/(1+x)]=m-n,化简得loga[(1-x)/x]=m-n,即loga y=m-n,所以答案为D。

4、若x1,x2是方程lg2x+(lg3+lg2)lgx+lg3·lg2=0的两根,则x1x2=()A、1/3.B、1/6.C、1/9.D、1/36答案:B。

解析:将lg2x+(lg3+lg2)lgx+lg3·lg2=0化为对数形式,得:log2x+(log23+log22)logx+log32=0log2x+(log2×3+log22)logx+log3+log2=0XXXlog2x+log2xlog23+log32+log2=0log2x(1+log23)+log32+log2=0log2x=log32+log2/(1+log23)x=2log32+log2/(1+log23)x1x2=2log32+log2/(1+log23)×2log32+log2/(1+log23)2log32+log2/(1+log23)22log32+2log2/(1+log23)2log2(3/2)2/(1+log23)2log2(9/4)/(1+log23)2log29/(1+log23)2log29/(1+log2+log23)2log29/(3+log23)2log29/(3+log2+log3)2log29/(3+1+log3)2log29/(4+log3)2log29/(4+log3/log10)2log29/(4+0.4771)1/61.答案D,已知lg2x+(lg2+lg3)lgx+lg2lg3=0的两根为x1、x2,则x1•x2的值为16.2.答案C,已知log7[log3(log2x)]=0,则x等于2^3=8,x-1/2=2^3-1/2=15/2,x1•x2=2^3•15/2=60.3.答案C,lg12=2a+b,lg15=b-a+1,比值为(2a+b)/(1-a+b),化简得到2a+b/(1-a+b)。

高中数学对数试题及答案

高中数学对数试题及答案一、选择题1. 对数函数y=log_a x的定义域是:A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞)2. 如果log_a b = c,那么a的值为:A. b^cB. c^bC. b^(1/c)D. b^c3. 对于任意正数a和b,下列哪个等式是正确的?A. log_a a = 1B. log_a b = log_b aC. log_a b^2 = 2log_a bD. log_a b = log_b a二、填空题4. 根据换底公式,我们可以将log_10 100转换为以e为底的对数,其结果为 _______。

5. 如果log_5 25 = x,那么x的值为 _______。

三、解答题6. 解对数方程:log_3 x + log_3 (x - 1) = 1。

7. 已知log_2 8 = y,求以2为底的对数3的值。

四、证明题8. 证明:对于任意正数a(a≠1),log_a a = 1。

答案一、选择题1. 答案:A. (0, +∞) 对数函数的定义域是正实数。

2. 答案:C. b^(1/c) 根据对数的定义,log_a b = c 意味着 a^c = b。

3. 答案:C. log_a b^2 = 2log_a b 根据对数的幂运算法则。

二、填空题4. 答案:2 因为换底公式 log_a b = log_c b / log_c a,将log_10 100转换为以e为底的对数,即log_e 100 = log_10 100 / log_10 e = 2 / log_10 e = 2。

5. 答案:2 因为25是5的平方,所以log_5 25 = 2。

三、解答题6. 解:由题意得 log_3 x + log_3 (x - 1) = log_3 (x(x - 1)) = 1,根据对数的乘积法则,我们得到 x(x - 1) = 3^1,即 x^2 - x - 3 = 0。

对数函数基础习题(有答案)

1.log 5b =2,化为指数式是 ( )A .5b =2B .b 5=2C .52=bD .b 2=5 答案:C2.在b =log (a -2)(5-a )中,实数a 的取值范围是 ( )A .a >5或a <2B .2<a <3或3<a <5C .2<a <5D .3<a <4 答案:B3.以下结论正确的选项是 ( )①lg(lg10)=0 ②lg(lne)=0 ③假设10=lg x 那么x =10 ④假设e =ln x ,那么x =e 2A .①③B .②④C .①②D .③④ 答案:C4.假设log 31-2x 9=0,那么x =________.答案:-4 5.假设a >0,a 2=49,那么log 23a =________.答案:1 1.log x 8=3,那么x 的值为 ( )B .2C .3D .4 答案:B2.方程2log 3x =14的解是 ( )A .9 答案:D3.假设log x 7y =z 那么 ( )A .y 7=x zB .y =x 7zC .y =7xD .y =z 7x 答案:B 4.log 5[log 3(log 2x )]=0,那么x 12-等于 ( )答案:C5.log 6[log 4(log 381)]=________. 答案:06.log 23278=________.答案:-3 7.函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1-x ,x >1,假设f (x )=2,那么x =________.答案:log 32 8.假设log a 2=m ,log a 3=n ,那么a 2m +n =________.答案:129.求x . (1)log 2x =-23; (2)log 5(log 2x )=0. 解:(1)x =223-=(12)23 (2)log 2x =1,x =2. 10.二次函数f (x )=(lg a )x 2+2x +4lg a 的最大值为3,求a 的值. ∴a =1014-.1.假设a >0,且a ≠1,x ∈R ,y ∈R ,且xy >0,那么以下各式不恒成立的是 ( )①log a x 2=2log a x ; ②log a x 2=2log a |x |;③log a (xy )=log a x +log a y ;④log a (xy )=log a |x |+log a |y |.A .②④B .①③C .①④D .②③ 答案:B2计算log 916·log 881的值为 ( )A .18 答案:C3.lg2=a ,lg3=b ,那么log 36= ( )答案:B4.log 23=a,3b =7,那么log 1256=________. 答案:ab +3a +2 5.假设lg x -lg y =a ,那么lg(x 2)3-lg(y 2)3=________. 6.求值.(1)log 2748+log 212-12log 242; (2)log 225·log 34·log 59. 解:(1)-12. (2) 8. 一、1.lg8+3lg5的值为 ( )A .-3B .-1C .1D .3 答案:D2.假设log 34·log 8m =log 416,那么m 等于 ( )A .3B .9C .18D .27 答案:D3.a =log 32,用a 来表示log 38-2log 36 ( )A .a -2B .5a -2C .3a -(1+a )2D .3a -a 2-1 答案:A4.方程x 2+x log 26+log 23=0的两根为α、β,那么(14)α·(14)β= ( ) B .36 C .-6 D .6 答案:B5.2(lg 2)2+lg 2·lg 5+(lg 2)2-lg 2+1=________. 答案:16.设g (x )=⎩⎪⎨⎪⎧e x ,x ≤0ln x ,x >0,那么g (g (12))=________ .答案:12 7.方程log 3(x -1)=log 9(x +5)的解是________ .答案:x =48.x 3=3,那么3log 3x -log x 23=________. 答案:-129.求值(1)log 34log 98; (2)lg2+lg50+31-log 92;解:(1) 43. (2) 2+322. (3) 2. (3)221log 4+(169)12-+lg20-lg2-(log 32)·(log 23)+(2-1)lg1.10.设3x =4y =36,求2x +1y 的值. =1.1.函数f (x )=3x 21-2x+lg(2x +1)的概念域是 ( ) A .(-12,+∞) B .(-12,1) C .(-12,12) D .(-∞,-12答案C 2.函数y =log a x 的图像如以下图,那么实数a 的可能取值是( )A .5答案:A3.设a =log 123,b =(13),c =213,那么a ,b ,c 的大小关系是 ( ) A .a <b <c B .c <b <a C .c <a <b D .b <a <c 答案:A4.函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,那么f (f (14))=________.答案:19 5.(x +2)>(1-x ),那么实数x 的取值范围是________.答案:(-2,-12) 6.函数y =log a (x +b )的图像如以下图,求实数a 与b 的值.b =4,a =2.1.函数f (x )=11-x 的概念域为M ,g (x )=ln(1+x )的概念域为N ,那么M ∩N 等于( )A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅ 答案:C2.函数f (x )=log 2(3x +3-x )是 ( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .不是奇函数又不是偶函数答案:B3.如图是三个对数函数的图像,那么a 、b 、c 的大小关系是 ( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b 答案:D4.函数f (x )=|lg x |.假设a ≠b ,且f (a )=f (b ),那么a +b 的取值范围是 ( )A .(1,+∞)B .[1,+∞)C .(2,+∞)D .[2,+∞) 答案:C5.对数函数的图像过点(16,4),那么此函数的解析式为________.答案:f (x )=log 2x6.函数y =3+log a (2x +3)(a >0且a ≠1)的图像必通过定点P ,那么P 点坐标________.答案:(-1,3)7.方程x 2=log 12x 解的个数是________.答案:18.假设实数a 知足log a 2>1,那么a 的取值范围为________.答案:1<a <29.(1)函数y =lg(x 2+2x +a )的概念域为R ,求实数a 的取值范围;(1,+∞).(2)函数f (x )=lg[(a 2-1)x 2+(2a +1)x +1],假设f (x )的概念域为R ,求实数a 的取值范围.a <-54. 10.函数f (x )=log a x +1x -1(a >0,且a ≠1). (1)求f (x )的概念域:此函数的概念域为(-∞,-1)∪(1,+∞),关于原点对称.(2)判定函数的奇偶性.f (x )为奇函数.1.(2021·天津高考)设a =log 54,b =(log 53)2,c =log 45,那么 ( )A .a <c <bB .b <c <aC .a <b <cD .b <a <c解析:由于b =(log 53)2=log 53·log 53<log 53<a =log 54<1<log 45=c ,故b <a <c .答案:D2.函数y =log 3x -3的概念域是 ( )A .(9,+∞)B .[9,+∞)C .[27,+∞)D .(27,+∞) 答案:C3.假设<<0,那么m ,n 知足的条件是 ( )A .m >n >1B .n >m >1C .0<n <m <1D .0<m <n <1 答案:C4.不等式log 13 (5+x )<log 13(1-x )的解集为________.答案:{x |-2<x <1}5.y =(log 12a )x 在R 上为减函数,那么a 的取值范围是________.答案:(12,1) 6.函数f (x )=log a (3-ax ),当x ∈[0,2]时,函数f (x )恒成心义,求实数a 的取值范围. ∴a 的取值范围是(0,1)∪(1,32). 1.与函数y =(14)x 的图像关于直线y =x 对称的函数是 ( ) A .y =4x B .y =4-x C .y =log 14x D .y =log 4x 答案:C2.函数y =2+log 2x (x ≥1)的值域为 ( )A .(2,+∞)B .(-∞,2)C .[2,+∞)D .[3,+∞) 答案:C3.假设log a (a 2+1)<log a 2a <0,那么a 的取值范围是 ( )A .(0,1)B .(12,1)C .(0,12)D .(1,+∞) 答案:B4.函数y =log a (2-ax )在[0,1]上为减函数,那么a 的取值范围为 ( )A .(0,1)B .(1,2)C .(0,2)D .(2,+∞) 答案:B5.函数f (x )=⎩⎪⎨⎪⎧ax +b (x ≤0)log c (x +19)(x >0)的图像如以下图,那么a +b +c =________.答案:133 ∴a =2,b =2.∴c =13. 6.集合A ={x |log 2x ≤2},B =(-∞,a )假设A ⊆B ,那么a 的取值范围是(c ,+∞),其中c =________. 答案:47.函数f (x )=log a x (a >0且a ≠1)在[2,3]上的最大值为1,那么a =________.答案:38.关于函数f (x )=lg x x 2+1有以下结论:①函数f (x )的概念域是(0,+∞);②函数f (x )是奇函数;③函数f (x )的最小值为-lg2;④当0<x <1时,函数f (x )是增函数;当x >1时,函数f (x )是减函数.其中正确结论的序号是________.答案:①④9.对a ,b ∈R 概念运算“*〞为a *b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b ),假设f (x )=[log 12(3x -2)]*(log 2x ),试求f (x )的值域.解:f (x )=⎩⎨⎧ log 12(3x -2) (x ≥1),log 2x (23<x <1) 当x ≥1时,log 12(3x -2)≤0,当23<x <1时,1-log 23<log 2x <0, 故f (x )的值域为(-∞,0].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数函数练习题(有答案)
1.函数y =log (2x -1)(3x -2)的定义域是( )
A .⎝⎛⎭⎫12,+∞
B .⎝⎛⎭⎫23,+∞
C .⎝⎛⎭⎫23,1∪(1,+∞)
D .⎝⎛⎭⎫1
2,1∪(1,+∞)
2.若集合A ={ x |log 2x =2-
x },且 x ∈A ,则有( )
A .1>x 2>x
B .x 2>x >1
C .x 2>1>x
D .x >1>x 2 3.若log a 3>log b 3>0,则 a 、b 、1的大小关系为( )
A .1<a <b
B .1 <b <a
C .0 <a <b <1
D .0 <b <a <1 4.若log a 4
5
<1,则实数a 的取值范围为( )
A .a >1
B .0<a <45
C .45<a
D .0<a <4
5 或a >1
5.已知函数f (x )=log a (x -1)(a >0且 a ≠1)在x ∈(1,2)时,f (x )<0,则f (x )是
A .增函数
B .减函数
C .先减后增
D .先增后减
6.如图所示,已知0<a <1,则在同一直角坐标系中,函数y =a -
x 和y =log a (-x )的图象只可能为( )
7.函数y =f (2x )的定义域为[1,2],则函数y =f (log 2x )的定义域为 ( ) A .[0,1] B .[1,2] C .[2,4] D .[4,16] 8.若函数f (x )=log
12()x 3-ax 上单调递减,则实数a 的取值范围是 ( )
A .[9,12]
B .[4,12]
C .[4,27]
D .[9,27]
9.函数y =a x -
3+3(a >0,且a ≠1)恒过定点__________.
10.不等式⎝⎛⎭⎫1310-3x
<3-2x
的解集是_________________________.
11.(1)将函数f (x )=2x 的图象向______平移________个单位,就可以得到函数g (x )=2x -
x 的图象.(2)函数
f (x )=⎝⎛⎭⎫12|x -1| ,使f (x )是增区间是_________.
12.设 f (log 2x )=2x (x >0).则f (3)的值为 .
13.已知集合A ={x |2≤x ≤π,x ∈R}.定义在集合A 上的函数f (x )=log a x (0<a <1)的最大值比最小值大1,
则底数a 为__________. 14.当0<x <1时,函数y =log
(a 2-3)
x 的图象在x 轴的上方,则a 的取值范围为________.
15.已知 0<a <1,0<b <1,且a
log b (x -3)
<1,则 x 的取值范围为 .
16.已知 a >1,求函数 f (x )=log a (1-a x )的定义域和值域.
17.已知 0<a <1,b >1,ab >1,比较log a 1b ,log a b ,log b 1
b 的大小.
18.已知f (x )=log a x 在[2,+ ∞ )上恒有|f (x )|>1,求实数a 的取值范围.
19.设在离海平面高度h m 处的大气压强是x mm 水银柱高,h 与x 之间的函数关系式为:h =k ln x
c
,其中c 、k 都是常量.已知某地某天在海平面及1000 m 高空的大气压强分别是760 mm 水银柱高和675 mm 水
银柱高,求大气压强是720 mm 水银柱高处的高度.
20.已知关于x 的方程log 2(x +3)-log 4x 2=a 的解在区间(3,4)内,求实数a 的取值范围.
参考答案:
1.C 2.B 3.A 4.D 5.A 6.B 7.D 8.A
9.(3,4) 10.{x |_x <2} 11.右,2;(-∞,1), 12.256
13.2
π
14.a ∈(-2,-3)∪(3,2) 15.(3,4)
16.解 ∵ a >1,1-a x >0,∴ a x <1,∴ x <0,即函数的定义域为(-∞ ,0).∵ a x >0且a x <1,∴ 0
<1-a x <1 ∴log a (1-a x )<0,即函数的值域是(-∞ ,0).
17.解 ∵ 0<a <1,b >1,∴ log a b <0,log b 1b =-1,log a 1b >0,又ab >1,∴ b >1a >1,log a b <log a 1
a

-1,∴ log a b <log b51b <log a 1
b

18.解 由|f (x )|>1,得log a x >1或log a x <-1.由log a x >1,x ∈[2,+∞ )得 a >1,
(log a x )最小=log a 2,∴ log a 2>1,∴ a <2,∴ 1<a <2;
由log a x <-1,x ∈[2,+ ∞ )得 0<a <1,(log a x )最大=log a 2,∴ log a 2<-1,∴ a >1
2,
∴1
2
<a <1. 综上所述,a 的取值范围为(1
2
,1 )∪(1,2).
19.解 ∵ h =k ln x
c
,当 x =760,h =0,∴ c =760.
当x =675时,h =1 000,∴ 1 000=k ln 675760=k ln0.8907 ∴ k =1000ln0.8907=1000lg e
lg0.8907
当x =720时,h =1000lg e lg0.8907ln 720
760=错误!=错误!≈456 m .
∴ 大气压强为720 mm 水银柱高处的高度为456 m .
20.本质上是求函数g (x )=log 2(x +3)-log 4x 2 x ∈(3,4)的值域.
∵ g (x )=log 2(x +3)-log 4x 2=log 2(x +3)-log 2x =log 2x +3x =log 2⎝⎛⎭⎫1+1x ∈⎝⎛⎭⎫log 254,log 24
3
∴ a ∈⎝⎛⎭⎫log 254,log 24
3.
对数化简求值专练
1、.
2、已知,求;
3、.
4、log2[log3(log5125)]
5、.
6、已知lg2=a,lg3=b,试用a,b表示log125。

7、。

8、lg14-2lg+lg7-lg18;
9、lg25+lg2·lg50+(lg2)2;
10、+2lg3+lg49。

11、解方程4x-2x+2-12=0。

12、。

13、解不等式:;
14、;
15、设,求的值。

16、。

17、.
18、log3+lg4+lg25+6log62+(-2)0
19、。

20、
对数化简求值专练答案1、在中,
分子=lg5(3+3lg2)+3(lg2)2=3lg5+3lg2(lg5+lg2)=3;
分母=.
∴==1.
2、;
3、.
4、原式=log2(log33)=log21=0
5、原式===
6、。

7、原式=。

8、0;
9、原式=;
10、2
11、解:设2x=t(t>0),则原方程可化为:t2-4t-12=0,解之得:t=6或t=-2(舍),
∴x=log26=1+log23,∴原方程的解集为{x|x=1+log23}。

12、原式==1+2。

13、
即不等式的解集为(3,1+)。

14、原式。

15、化简,得。

16、原式==lg10-1=0。

17、=
==52.
18、原式=+lg(25×4)+2+1=+lg102+3=+2+3=
19、原式=1
20、原式。

相关文档
最新文档