沪科版2022-2023学年九年级数学上册第三次月考测试题(附答案)

合集下载

人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)

人教版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)

2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、选择题:共40分1.如图图形中,是中心对称图形的是()A.B.C.D.2.下列事件中,是必然事件的是()A.实心铁球投入水中会沉入水底B.车辆随机到达一个路口,遇到红灯C.打开电视,正在播放《大国工匠》D.抛掷一枚硬币,正面向上3.若x=1是关于x的一元二次方程x2﹣3x+m=0的一个解,则m的值是()A.﹣2B.﹣1C.1D.24.如图,从⊙O外一点P引圆的两条切线P A,PB,切点分别是A,B,若∠APB=60°,P A=5,则弦AB的长是()A.B.C.5D.55.一个均匀的小球在如图所示的水平地板上自由滚动,并随机停在某块方砖上,若每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是()A.B.C.D.16.已知圆锥的母线长为6,侧面展开图的面积是12π,则这个圆锥底面圆的半径是()A.1B.2C.3D.47.对于二次函数y=(x+1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是直线x=1C.顶点坐标是(﹣1,2)D.当x≥﹣1时,y随x增大而减小8.如图,正五边形ABCDE内接于⊙O,则∠CBD的度数是()A.30°B.36°C.60°D.72°9.已知a≠0,函数y=与y=﹣ax2﹣a在同一平面直角坐标系中的大致图象可能是()A.B.C.D.10.已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2+4ax+5上的点,且y1>y2.下列命题正确的是()A.若|x1+2|<|x2+2|,则a<0B.若|x1﹣2|>|x2﹣2|,则a>0C.若|x1+2|>|x2+2|,则a<0D.若|x1﹣2|<|x2﹣2|,则a>0二、填空题:共24分.11.在平面直角坐标系中,点P(﹣2,﹣5)关于原点对称的点的坐标是.12.如图,AB∥CD,AD与BC相交于点E,若AE=3,ED=5,则的值为.13.一个不透明的袋子中放有3个红球和5个白球,这些球除颜色外均相同,随机从袋子中摸出一球,摸到红球的概率为.14.如图,在△ABC中,AB=AC=,BC=2,以点A为圆心作圆弧,与BC相切于点D,且分别交边AB,AC于点E、F,则扇形AEF的面积为.(结果保留π)15.如图,在△ABC中,BA=BC,D为△ABC内一点,将△BDC绕点B逆时针旋转至△BEA处,延长AE,CD交于点F,若∠ABC=70°,则∠AFC的度数为.16.如图,正方形ABCD的顶点A在反比例函数y=(x>0)的图象上,函数y=(x >0)的图象关于直线AC对称,且经过B,D两点,若AB=2,现给出下列结论:①O,A,C三点一定在同一直线上;②点A的横坐标是;③点B的纵坐标是1;④点O关于直线BD的对称点一定在函数y=的图象上.其中正确的是.(写出所有正确结论的序号)三、解答题:共86分.17.解方程:x2﹣2x﹣2=0.18.如图,点D是△ABC的边AB上一点,∠ABC=∠ACD.当AD=2,AB=3时,求AC 的长.19.如图,已知反比例函数y=图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为C,连接AC,AB.(1)求反比例函数的解析式;(2)若△ABC的面积为7,求B点的坐标.20.交通拥堵是城市发展中的顽疾.某市从A地到火车站共有两条道路L1和L2,现准备对其中耗时多的一条道路进行拓宽改造,为此市交通局对从A地到火车站的行驶时间进行调查.现随机抽取驾车从A地到火车站的100人进行调查,调查结果如下:行驶时间(分钟)10~2020~3030~4040~5050~60驾行L1的人数51420183驾行L2的人数1416181(1)抽取行驶时间在50~60分钟到达火车站的人进行座谈,从这4人中随机抽取2人现场填写问卷,请用列表或画树状图法求这2人是选择不同道路到火车站的概率;(2)以A地到达火车站所用时间的平均值作为决策依据,试通过计算说明,从A地到火车站应选择哪条道路进行拓宽改造?21.如图,P A,PB是圆的切线,A,B为切点.(1)求作:这个圆的圆心O(用尺规作图,保留作图痕迹,不写作法和证明);(2)在(1)的条件下,延长AO交射线PB于C点,若AC=4,P A=3,请补全图形,并求⊙O的半径.22.为预防新冠病毒,口罩成了生活必需品,某药店销售一种口罩,每包进价为6元,日均销售量y(包)与每包售价x(元)满足y=﹣5x+80,且10≤x≤16.(1)每包售价定为多少元时,药店的日均利润最大?最大为多少元?(2)当进价提高了a元,且每包售价为13元时,日均利润达到最大,求a的值.23.如图,将矩形ABCD绕点A顺时针旋转,使点E落在BD上,得到矩形AEFG,EF与AD相交于点H,连接AF.(1)求证:BD∥AF;(2)若AB=1,BC=2,求AH的长.24.如图,四边形ACBD内接于⊙O,AB是⊙O的直径,CD平分∠ACB交AB于点E,点P在AB延长线上,∠PCB=∠BDC.(1)求证:PC是⊙O的切线;(2)求证:PE2=PB•P A;(3)若BC=2,△ACD的面积为12,求PB的长.25.已知抛物线y=ax2+bx﹣2经过(2,2),且顶点y轴上.(1)求抛物线解析式;(2)直线y=kx+c与抛物线交于A,B两点.①点P在抛物线上,当k=0,且△ABP为等腰直角三角形时,求c的值;②设直线y=kx+c交x轴于点M(m,0),线段AB的垂直平分线交y轴于点N,当c=1,m>6时,求点N纵坐标n的取值范围.参考答案一、选择题:共40分.1.解:选项A、C、D都不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,选项B能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,故选:B.2.解:A.实心铁球投入水中会沉入水底,这是必然事件,故A符合题意;B.车辆随机到达一个路口,遇到红灯,这是随机事件,故B不符合题意;C.打开电视,正在播放《大国工匠》,这是随机事件,故C不符合题意;D.投掷一枚硬币,正面在上,这是随机事件,故D不符合题意;故选:A.3.解:把x=1代入方程x2﹣3x+m=0得1﹣3+m=0,解得m=2.故选:D.4.解:∵P A,PB为⊙O的两条切线,∴P A=PB,∵∠APB=60°,∴△P AB为等边三角形,∴AB=P A=5,故选:C.5.解:∵总面积为9个小正方形的面积,其中阴影部分面积为4个小正方形的面积,∴小球停留在阴影部分的概率是,故选:A.6.解:设这个圆锥底面圆的半径为r,根据题意得×2πr×6=12π,解得r=2,即这个圆锥底面圆的半径是2.故选:B.7.解:∵二次函数y=(x+1)2+2,∴该函数的图象开口向上,故选项A的说法错误,对称轴是直线x=﹣1,故选项B中的说法错误;顶点坐标为(﹣1,2),故选项C中的说法正确;当x≥﹣1时,y随x增大而增大,故选项D中的说法错误;故选:C.8.解:∵正五边形ABCDE内接于⊙O,∴CD=BC==108°,∴∠CBD=∠CDB=(180°﹣108°)=36°,故选:B.9.解:当a>0时,函数y=的图象位于一、三象限,y=﹣ax2﹣a的开口向下,交y轴的负半轴,D选项符合;当a<0时,函数y=的图象位于二、四象限,y=﹣ax2﹣a的开口向上,交y轴的正半轴,没有符合的选项;故选:D.10.解:由y=ax2+4ax+5=a(x+2)2﹣4a+5知,该抛物线的对称轴为直线x=﹣2,A、若|x1+2|<|x2+2|,则a<0,此选项正确,符合题意;B、若|x1﹣2|>|x2﹣2|,则a的符号不能判断,此选项错误,不符合题意;C、若|x1+2|>|x2+2|,则a>0,此选项错误,不符合题意;D、若|x1﹣2|>|x2﹣2|,则a的符号不能判断,此选项错误,不符合题意.故选:A.二、填空题:共24分.11.解:根据中心对称的性质,得点P(﹣2,﹣5)关于原点对称点的点的坐标是(2,5).故答案为:(2,5).12.解:∵AB∥CD,∴△ABE∽△DCE.∴.∵AE=3,ED=5,∴=.故答案为:.13.解:从中随机摸出一个小球,恰好是红球的概率==.故答案为:.14.解:∵AB=AC=,BC=2,∴AB2+AC2=BC2,∴△ABC是等腰直角三角形,如图,连接AD,∵以点A为圆心作圆弧,与BC相切于点D,∴AD⊥BC.∴AD=BC=1,则S扇形AEF==.故答案是:.15.解:CF和AB交于点M,∵将△BDC绕点B逆时针旋转至△BEA处,∴∠BCD=∠BAE,又∵∠AMF=∠AFC,∴∠ABC=∠AFC=70°.故答案为:70°.16.解:连接OC,AC,过A作AE⊥x轴于点E,如图:∵函数y=的图象关于直线AC对称,∴O,A,C三点在同直线上,且∠COE=45°,故①正确;∵∠COE=45°,∴OE=AE,设OE=AE=a,则A(a,a),∵AD=AB=2,∴D(a,a+2),B(a+2,a),∵点D在反比例函数y=(x>0)的图象上,∴a•(a+2)=3,解得a=1或a=﹣3(舍去),∴点A的横坐标为1,故②错误;∴B(3,1),∴点B的纵坐标是1,故③正确;设直线BD交x轴于G,交y轴于H,作O关于直线BD的对称点为O',连接O'H、O'G,如图:由a=1知D(1,3),而B(3,1),∴直线BD为y=﹣x+4,令x=0得y=4,令y=0得x=4,∴G(4,0),H(0,4),∴OG=OH,∵O关于直线BD的对称点为O',∴OF=O'F,OF⊥HG,∴HF=GF,∴四边形HOGO'是正方形,∴O'G=OH=4,∴O'(4,4),而4×4≠15,∴O'(4,4)不在y=的图象上,故④错误,∴正确的有①③,故答案为:①③.三、解答题:共86分17.解:移项,得x2﹣2x=2,配方,得x2﹣2x+1=2+1,即(x﹣1)2=3,开方,得x﹣1=±.解得x1=1+,x2=1﹣.18.解:∵∠ABC=∠ACD,∠A=∠A,∴△ABC∽△ACD;∴,即AC2=AD•AB,∵AD=2,AB=3,∴AC2=2×3=6,∴AC=(负值已舍),∴AC的长为.19.解:(1)由题意得,k=xy=2×3=6∴反比例函数的解析式为:y=.(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b),∵反比例函数y=的图象经过点B(a,b)∴b=∴AD=3﹣.∴S△ABC=BC•AD=a(3﹣)=7,解得a=,∴b==∴B(,).20.解:(1)用列表法表示所有可能出现的结果如下:共有12种可能出现的结果情况,其中两人选择不同路线的有6种,所以这2人是选择不同道路到火车站的概率为=;(2)驾行L1的所有人用时的平均数为15×+25×+35×+45×+55×=35(分),驾行L2的所有人用时的平均数为15×+25×+35×+45×+55×=38.5(分),∵35<38.5,∴从A地到火车站应选择驾行L2的道路进行拓宽改造.21.解:(1)如图,圆心O即为所求;(2)由(1)知:CA⊥P A,∴∠CAP=90°,∵AC=4,P A=3,∴PC==5,∵P A=PB=3,∴BC=PC﹣PB=2,∵OC=AC﹣OA=4﹣OA=4﹣OB,在Rt△OBC中,根据勾股定理,得OC2=OB2+BC2,∴(4﹣OB)2=OB2+22,解得OB=.∴⊙O的半径为.22.解:(1)设药店的日均利润为w元,由题意得:w=(x﹣6)y=(x﹣6)(﹣5x+80)=﹣5x2+110x﹣480=﹣5(x﹣11)2+125,∵﹣5<0,10≤x≤16,∴当x=11时,w有最大值,最大值为125,∴每包售价定为11元时,药店的日均利润最大,最大为125元;(2)由题意得:w=(x﹣6﹣a)(﹣5x+80)=﹣5x2+(110+5a)x﹣480﹣80a,对称轴为x=﹣=11+a,∴11+a=13,解得:a=4.23.(1)证明:∵将矩形ABCD绕点A顺时针旋转,使点E落在BD上,得到矩形AEFG,∵AE=AB,∴∠AEB=∠ABE,∵∠ABD=∠EAF,∴∠AEB=∠EAF,∴AF∥BD;(2)解:∵BD∥AF,∴∠DEF=∠AFE,∵∠ADE=∠AFE,∴∠DEF=∠ADE,∴EH=DH,设EH=x,则DH=x,AH=2﹣x,∵∠HEA=90°,∴x2+12=(2﹣x)2,解得:x=,∴AH=2﹣=.24.(1)证明:连接OC,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°,∵OC=OB,∴∠OCB=∠OBC,∵∠BDC=∠CAB,∠PCB=∠BDC,∴∠PCB+∠OCB=90°,∴OC⊥PC,∵OC是半径,∴PC是⊙O的切线;(2)证明:∵∠PCB=∠P AC,∠P=∠P,∴△PCB∽△P AC,∴PC2=PB•P A,∵CD平分∠ACB,∴∠ACD=∠BCD=45°,∵∠CEB=∠CAB+45°,∠PCE=45°+∠PCB,∴∠CEB=∠PCE,∴PC=PE,∴PE2=PB•P A;(3)解:作AM⊥CD于M,BN⊥CD于N,∵AB是直径,∴∠ADB=90°,∴∠ADE+∠BDE=90°,∠ADE+∠DAM=90°,∴∠DAM=∠BDN,∵CD平分∠ACB,∴∠ACD=∠BCD,∴AD=BD,又∵∠AMD=∠BND,∴△AMD≌△DNB(AAS),∴BN=DM,DN=AM,∵BC=2,∠BCN=45°,∴BN=CN=2,∴AM=DN=2+MN,CD=4+MN,∵△ACD的面积为12,∴CD•AM=24,∴(4+MN)•(2+MN)=24,解得MN=2(负值舍去),∴AM=4,∴AC=4,由勾股定理得AB=2,∵△AME∽△BNE,∴,∴BE=,由(2)知,PE2=PB•P A,∴(PB+)2=PB•(PB+2),解得PB=.25.解:(1)∵抛物线y=ax2+bx﹣2的顶点y轴上,∴b=0,∵抛物线y=ax2﹣2经过点(2,2),∴2=4a﹣2,∴a=1,∴抛物线解析式为y=x2﹣2.(2)①如图1,直线y=kx+c,当k=0时,则y=c,抛物线y=x2﹣2,当y=c时,则x2﹣2=c,解得x1=﹣,x2=,∴A(﹣,c),B(,c),∵A、B两点关于y轴对称,且抛物线上的点P使△ABP为等腰直角三角形,∴∠APB=90°,P A=PB,∴点P在AB的垂直平分线上,∴点P为抛物线的顶点(0,﹣2),设AB交y轴于点C,则BC=PC,∴=c﹣(﹣2),解得c1=﹣1,c2=﹣2(不符合题意,舍去),∴c的值为﹣1.②如图2,直线y=kx+c,当c=1时,则y=kx+1,∵直线y=kx+1与x轴交于点M(m,0),∴mk+1=0,∴k=﹣,∵m>6,∴﹣<﹣<0,∴﹣<k<0,设A(x1,x12﹣2),B(x2,x22﹣2),由,得x2﹣2=kx+1,整理得x2﹣kx﹣3=0,∵Δ=k2+12>0,∴方程有两个不相等的实数根,∴x1+x2=k,x1x2=﹣3,∴x12+x22=(x1+x2)2﹣2x1x2=k2+6,∵N(0,n),∴AN2=x12+(x12﹣2﹣n)2,BN2=x22+(x22﹣2﹣n)2,∵点N在AB的垂直平分线上,∴AN=BN,∴AN2=BN2,∴x12+(x12﹣2﹣n)2=x22+(x22﹣2﹣n)2,整理得(x12﹣x22)(x12+x22﹣2n﹣3)=0,∵k≠0,∴直线y=kx+1与x轴不平行,∴A,B两点不关于y轴对称,∴x1≠x2,∴x12﹣x22≠0,∴x12+x22﹣2n﹣3=0,∴k2+6﹣2n﹣3=0,∴n=k2+,∴当k<0时,n随k的增大而减小,若k=﹣,则n=,若k=0,则n=,∴点N纵坐标n的取值范围是<n<.。

沪科版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)

沪科版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)

2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、选择题(满分40分)1.下列说法中正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“两边及其夹角对应相等的两个三角形全等”是必然事件C.“概率为0.0001的事件”是不可能事件D.“长度分别是3cm,3cm,6cm的三根木条能组成一个三角形”是必然事件2.抛物线y=x2﹣6x+9的顶点坐标是()A.(3,0)B.(﹣3,0)C.(﹣3,9)D.(3,9)3.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“山”的概率为()A.B.C.D.4.从﹣1,1,2中任取两个不同的数,分别记为a和b,则a,b是方程x2﹣x﹣2=0的两个根的概率是()A.B.C.D.5.书架上有a本经济类书,7本数学书,b本小说,5本电脑游戏类书.现某人随意从架子上抽取一本书,若得知取到经济类或者数学书的机会为,则a,b的关系为()A.a=b﹣2B.a=b+12C.a+b=10D.a+b=126.如图,△OAB绕点O逆时针旋转85°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()A.35°B.45°C.55°D.65°7.如图,点AB和C、D分别在以点O为圆心的两个同心圆上,若∠AOB=∠COD,∠C =m°,则∠D=()A.m°B.m°C.m°D.2m°8.如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为()A.B.C.D.9.一个盒子里有完全相同的小球,球上分别标有数字1,2,3,从中摸出一个数字记为a,则摸出的数字使抛物线y=x2+ax+1与x轴没有交点的概率是()A.0B.C.D.110.如图,直角三角形的三边分别是a,b,c,且a<b<c,分别以三角形的三条边为边向外作正方形.若在该图形上做随机扎针试验,针头扎在三角形和三个正方形上的概率分别是P1,P2,P3,P4,则下列关系式一定成立的是()A.P3+P2=P4﹣P1B.P2+P3=P4C.P2+P3=P1+P4D.P1+P2+P3=P4二、填空题(满分20分)11.若点P(m﹣1,5)与点Q(3,2﹣n)关于原点成中心对称,则m+n的值是.12.如图,直线y=x+与y轴交于点P,将它绕着点P旋转90°所得的直线对应的函数解析式为.13.如图,AC是⊙O的直径,与弦BD交于E,连接BC,过点O作OF⊥BC于P,若BD =8cm,AE=2cm,则OF的长度是.14.有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a.解答下列问题:(1)关于x的一元二次方程(a﹣3)x2﹣2(a﹣1)x+a=0有两个不等的实数根的概率是;(2)以x为自变量的二次函数y=ax2﹣(a2+2)x+2的图象经过点(1,0)的概率是.三、解答题(满分90分)15.如图,过⊙O内一点P画弦AB使P是AB的中点.16.随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成,现对由三个小正方形组成的“□□□”进行涂色,每个小正方形随机涂成黑色或白色,求恰好是两个黑色小正方形和一个白色小正方形的概率.17.如图,AB是⊙O的直径,C、D是半⊙O的三等分点,CE⊥AB于点E,求∠ACE的度数并指出AC与OD的关系.18.如图,在4×4的正方形网格中,小正方形的边长为1,△PMN绕某点旋转一定的角度,得到△P1M1N1.(1)指出旋转中心及旋转角的度数;(2)求MN1的长.19.新冠病毒的传染性极强,某地因1人患了新冠病毒没有及时隔离治疗,经过两天的传染后共有9人患了新冠病毒,每天平均一个人传染了几人?如果按照这个传染速度,再经过3天的传染后,这个地区一共将会有多少人患新冠病毒?20.刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.设半径为1的圆的面积与其内接正n边形的面积差为△n,如图①,图②,若用圆的内接正八边形和内接正十二边形逼近半径为1的圆,求△8﹣△12的值.21.已知,如图,△ABC的顶点A,C在⊙O上,⊙O与AB相交于点D,连接CD.(1)若⊙O半径为5,∠A=30°,求弦CD的长;(2)在(1)的条件下,求图中阴影部分的面积;(3)若∠ACB+∠ADC=180°,求证:BC是⊙O的切线.22.在一个不透明的口袋里装有颜色不同的红、白两种颜色的球共5只,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,如表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5996116295480601摸到白球的频率0.590.640.580.590.6050.601(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)试估算口袋中红球有多少只?(3)请画树状图或列表计算:从中先摸出一球,不放回,再摸出一球,这两只球颜色不同的概率是多少?23.如图1,地面BD上两根等长立柱AB,CD之间悬挂一根近似成抛物线y=x2﹣x+3的绳子.解答下列问题:(1)两根等长立柱AB,CD的高度是米;并求出绳子最低点离地面的距离.(2)因实际需要,在离AB为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面2米,求MN的长.(3)将立柱MN的长度提升为3米,通过调整MN的位置,使抛物线F2对应函数的二次项系数始终为,设MN离AB的距离为m米,抛物线F2的顶点离地面距离为k米,当2≤k≤时,求m的取值范围.参考答案一、选择题(满分40分)1.解:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误,不符合题意;B、“两边及其夹角对应相等的两个三角形全等”是必然事件,选项正确,符合题意;C、“概率为0.0001的事件”是随机事件,选项错误,不符合题意;D、不能构成三角形,选项错误,不符合题意.故选:B.2.解:∵抛物线y=x2﹣6x+9=(x﹣3)2,∴该抛物线的顶点坐标为(3,0),故选:A.3.解:∵在“绿水青山就是金山银山”这10个字中,“山”字有3个,∴这句话中任选一个汉字,这个字是“山”的概率是;故选:A.4.解:列表如下:﹣112﹣1(1,﹣1)(2,﹣1)1(﹣1,1)(2,1)2(﹣1,2)(1,2)由表知,共有6种等可能结果,其中a,b是方程x2﹣x﹣2=0的两个根的有(﹣1,2)、(2,﹣1)这两种结果,所以a,b是方程x2﹣x﹣2=0的两个根的概率为=,故选:D.5.解:由已知可得a+7=,解得a+2=b,即a=b﹣2.故选A.6.解:由题意可知:∠DOB=85°,由旋转得:△DCO≌△BAO,∴∠D=∠B=40°,∴∠AOB=180°﹣40°﹣110°=30°∴∠α=85°﹣30°=55°故选:C.7.解:∵∠AOB=∠COD,∴∠AOB+∠AOC=∠COD+∠AOC,即∠BOC=∠AOD,证明:在△COB和△DOA中,∴△COB≌DOA(SAS),∴∠C=∠D,∵∠C=m°,∴∠D=m°,故选:B.8.解:设正方形ABCD的边长为2a,针尖落在黑色区域内的概率==.故选:C.9.解:∵抛物线y=x2+ax+1与x轴没有交点,∴Δ=a2﹣4<0,而在1,2,3这3个数中,符合条件的只有1这1个数,∴摸出的数字使抛物线y=x2+ax+1与x轴没有交点的概率是.故选:C.10.解:∵直角三角形的三边分别是a,b,c,且a<b<c,∴a2+b2=c2,∴根据几何概率的定义可知P2+P3=P4.故选:B.二、填空题(满分20分)11.解:∵点P(m﹣1,5)与点Q(3,2﹣n)关于原点成中心对称,∴m﹣1=﹣3,2﹣n=﹣5,解得:m=﹣2,n=7,故m+n=5.故答案为:5.12.解:∵y=x+,∴函数y=x+与x轴的交点是(﹣1,0),与y轴的交点是(0,).∴OA=1,OP=.设函数与x轴交于点A,新函数与x轴交于点B,∵∠APO+∠BPO=90°=∠BPO+∠PBO,∴∠APO=∠PBO,∵∠AOP=∠POB=90°,∴△POA∽△BOP,∴=,即=,∴OB=3,∴点B(3,0).设新函数解析式为y=kx+,把点B代入求得,k=﹣.∴新函数解析式为y=﹣x+,故答案为:y=﹣x+.13.解:连接AB,∵BD⊥AC,∴BE=ED=BD=4(cm),由勾股定理得,AB==2(cm),∵OF⊥BC,∴CF=FB,又CO=OA,∴OF=AB=(cm),故答案为:.14.解:(1)令Δ=[﹣2(a﹣1)]2﹣4a(a﹣3)=4a+4>0,且a﹣3≠0,解得:a>﹣1且a≠3,∴a使关于x的一元二次方程(a﹣3)x2﹣2(a﹣1)x+a=0有两个不相等的实数根的数有0,1,2,则a使关于x的一元二次方程(a﹣3)x2﹣2(a﹣1)x+a=0有两个不相等的实数根的概率是,故答案为:;(2)∵二次函数y=ax2﹣(a2+2)x+2的图象经过点(1,0),∴a﹣(a2+2)+2=0,解得a=0或1,∵a≠0,∴a=1,∴以x为自变量的二次函数y=ax2﹣(a2+2)x+2的图象经过点(1,0)的概率是.故答案为:.三、解答题(满分90分)15.解:连接OP,过点P作AB⊥OP,则弦AB即为所求.16.解:画树状图如下:由树状图知,共有8种等可能结果,其中恰好是两个黑色小正方形和一个白色小正方形的有3种结果,所以恰好是两个黑色小正方形和一个白色小正方形的概率为.17.解:连接OC.∵AB是直径,弧AC=弧CD=弧BD,∴∠AOC=∠COD=∠DOB=60°,∵OA=OC,∴△AOC是等边三角形,∴∠A=60°,∵CE⊥OA,∴∠AEC=90°,∴∠ACE=90°﹣60°=30°.∵△AOC是等边三角形,∴AC=OC=OD.18.解:(1)如图,连接BM、BN、BP、BM1、BN1、BP1,则BP1=BP=1,根据勾股定理得BM1=BM=,BN1=BN=2,∴点B是旋转中心,取格点E,连接BE、NE、N1E,∵BE=NE=N1E,∠BEN=∠BEN1=90°,∴∠EBN1=∠EN1B=45°,∠EBN=∠ENB=45°,∴∠NBN1=∠EBN1+∠EBN=90°,∴旋转角等于90°,(2)根据勾股定理得MN1==,∴MN1的长是.19.解:设每天平均一个人传染了x人,由题意,得x(x+1)+x+1=9,解得:x1=2,x2=﹣4(舍去),三天后共有(x+1)3个人患病,(2+1)3=27(人).故每天平均一个人传染了2人,在经过3天的传染后,这个地区一共将会有27人患病.20.解:如图,由题意,△8﹣△12=(S圆﹣S八边形)﹣(S圆﹣S十二边形)=S十二边形﹣S八边形=12××1×1×sin30°﹣8××1×1×sin45°=3﹣2.21.(1)解:连接OC、OD,如图所示:则OC=OD=5,∵∠A=30°,∴∠DOC=60°,∴△OCD是等边三角形,∴CD=OC=5;(2)解:由(1)得S阴影=S扇形COD﹣S△COD=﹣=﹣.(3)证明:连接CO并延长交⊙O于点M,连AM,如图2所示:则∠MAC=90°,∠M+∠ADC=180°,∴∠M+∠ACM=90°,∵∠ACB+∠ADC=180°,∴∠M=∠ACB,∴∠ACB+∠ACM=90°,即∠BCM=90°,且CM是⊙O的直径,∴BC是⊙O的切线.22.解:(1)当n很大时,摸到白球的频率将会接近0.6;故答案为:0.6;(2)由(1)摸到白球的概率为0.6,则摸到红球的概率为1﹣0.6=0.4,所以可估计口袋中红球的个数为:5×0.4=2(只);(3)画树状图为:共有20种等可能的结果数,其中两只球颜色不同占12种,所以两只球颜色不同的概率==.23.解:(1)抛物线y=x2﹣x+3与y轴交与点A,∴A(0,3),∵两根等长立柱AB,CD,∴CD=3,∵a=>0,∴抛物线顶点为最低点,∵y=x2﹣x+3=(x﹣4)2+,∴绳子最低点离地面的距离为:米;故答案为:3;米;(2)由(1)可知,对称轴为x=4,则BD=8,令x=0得y=3,∴A(0,3),C(8,3),由题意可得:抛物线F1的顶点坐标为:(2,2),设F1的解析式为:y=a(x﹣2)2+2,将(0,3)代入得:4a+2=3,解得:a=0.25,∴抛物线F1为:y=0.25(x﹣2)2+2,当x=3时,y=0.25×1+2=2.25,∴MN的长度为:2.25米;(3)∵MN=DC=3,∴根据抛物线的对称性可知抛物线F2的顶点在ND的垂直平分线上,∴F2的横坐标为:(8﹣m)+m=m+4,∴抛物线F2的顶点坐标为:(m+4,k),∴抛物线F2的解析式为:y=(x﹣m﹣4)2+k,把C(8,3)代入得:(8﹣m﹣4)2+k=3,解得:k=﹣(4﹣m)2+3,∴k=﹣(m﹣8)2+3,∴k是关于m的二次函数,又∵由已知m<8,在对称轴的左侧,∴k随m的增大而增大,∴当k=2时,﹣(m﹣8)2+3=2,解得:m1=4,m2=12(不符合题意,舍去),当k=时,﹣(m﹣8)2+3=,解得:m1=8﹣2,m2=8+2(不符合题意,舍去),∴m的取值范围是:4≤m≤8﹣2.。

沪科版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)

沪科版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)

沪科版2022-2023学年第一学期九年级数学第三次月考测试题(附答案)一、选择题(本大题共10小题,满分40分)1.下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.已知锐角α满足tan(α+20°)=1,则锐角α的度数为()A.10°B.25°C.40°D.45°3.已知点A(1,﹣3)关于x轴的对称点A'在反比例函数y=的图象上,则实数k的值为()A.3B.C.﹣3D.﹣4.若(2,m)、(4,m)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是直线()A.x=5B.x=1C.x=2D.x=35.如图,AB为⊙O的直径,C、D为⊙O上两点,若∠CAB=35°,则∠D等于()A.35°B.55°C.65°D.70°6.如图,在▱ABCD中,F是BC边上一点,延长DF交AB的延长线于点E,若AB=3BE,则BF:CF等于()A.1:2B.1:3C.2:3D.2:57.如图,Rt△ABC中,∠BAC=90°,AD⊥BC于点D,若AB=4,AC=3,则BD为()A.1.8B.3.2C.2.4D.58.点A(m,n)在二次函数y=x2﹣4的图象上,则2m﹣n的最大值是()A.4B.5C.﹣4D.﹣59.如图,在△ABC中,∠ACB=90°,D点在BC边上,,P为AB边上一点,当PC=PD时,的值为()A.B.C.D.10.如图,直线l为抛物线y=﹣x2+2x+3的对称轴,点P为抛物线上一动点(在顶点或顶点的右侧),过点P作P A⊥x轴于点A,作PB∥x轴交抛物线于点B,设P A=h,PB=m,则h与m的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,满分20分)11.已知=,则=.12.如图,⊙O的弦AB=6,半径OD⊥AB交AB于点D、交弧AB于点C.若CD=1,则⊙O的半径为.13.如图,点A在双曲线y=上,点B在双曲线y=上,AB∥x轴,过点A作AD⊥x 轴于D,连接OB,与AD相交于点C,若AB=2OD,则k的值为.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠P AQ的大小为°;(2)当四边形APCD是平行四边形时,的值为.三、解答题(本大题共9小题,总计90分)15.计算:cos245°+sin60°•tan30°﹣tan45°.16.已知当x=1时,二次函数有最大值5,且图象过点(0,﹣3),求此函数关系式.17.已知,如图,一次函数y=﹣2x+1,与反比例函数y=的图象有两个交点A点、B点,过点A作AE⊥x轴于点E,点E坐标为(﹣1,0),过点B作BD⊥y轴于点D,直线AB 交y轴于点C.(1)求k的值;(2)求tan∠CBD.18.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)﹒(1)画出△ABC以点O为中心,顺时针方向旋转90°,得到的A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是.19.学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形AEFD为矩形,点B、C分别在EF、DF上,∠ABC=90°,∠BAD=53°,AB=10cm,BC=6cm.求零件的截面面积.参考数据:sin53°≈0.80,cos53°≈0.60.20.如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.(1)求证:AE•BC=BD•AC;(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.21.如图,圆O中两条互相垂直的弦AB,CD交于点E.(1)M是CD的中点,OM=3,CD=12,求圆O的半径长;(2)点F在CD上,且CE=EF,求证:AF⊥BD.22.规定:不相交的两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离”(1)求抛物线y=x2﹣2x+3与x轴的“亲近距离”;(2)在探究问题:求抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由.(3)若抛物线y=x2﹣2x+3与抛物线y=+c的“亲近距离”为,求c的值.23.如图1,△ABC中,∠ACB=90°,AC=BC,E为△ABC的中线BD上的一点,将线段AE以E点为中心逆时针旋转90度得到线段EF,EF恰好经过点C.如图1.(1)若∠CAF=α,则∠CBE=(用含α的代数式表示);(2)若BH平分∠EBC,交EC于点G,交AF于点H,如图2.①求证:△BEG∽△ACF;②若EG=1,求CF的长.参考答案一、选择题(本大题共10小题,满分40分)1.解:A.不是中心对称图形,是轴对称图形,故此选项不符合题意;B.不是中心对称图形,是轴对称图形,故此选项不符合题意;C.不是中心对称图形,是轴对称图形,故此选项不符合题意;D.既是中心对称图形,又是轴对称图形,故此选项符合题意;故选:D.2.解:∵tan45°=1,∴a+20°=45°,则a=25°.故选:B.3.解:点A(1,﹣3)关于x轴的对称点A'的坐标为(1,3),把A′(1,3)代入y=得k=1×3=3.故选:A.4.解:∵(2,m)、(4,m)是抛物线y=ax2+bx+c上的两个点,且(2,m)、(4,m)关于直线x=3对称,∴抛物线对称轴为直线x=3.故选:D.5.解:∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°﹣∠CAB=90°﹣35°=55°,∴∠D=∠B=55°.故选:B.6.解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴△DCF∽△EBF,∴,且AB=CD=3BE,∴BF:CF=1:3,故选:B.7.解:由勾股定理得,BC===5,由射影定理得,AB2=BD•BC,则BD==3.2,故选:B.8.解:把(m,n)代入y=x2﹣4得n=m2﹣4,∴2m﹣n=2m﹣(m2﹣4)=﹣m2+2m+4=﹣(m﹣1)2+5,∴m=1时,2m﹣n的最大值是5,故选:B.9.解:过P作PE⊥AC于E,PF⊥BC于F,∴四边形PECF为矩形,PE=CF,∵PF⊥BC,∴CF=DF,∴△APE∽△ABC,∴,∴,故选:A.10.解:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线y=﹣x2+2x+3的对称轴为直线x=1.令y=0,则﹣x2+2x+3=0,解得:x=﹣1或x=3.∴抛物线y=﹣x2+2x+3与x轴交于(﹣1,0)和(3,0).设直线l与PB交于点C,与x轴交于点D,与y轴交于点E,如图,则OD=CE=1.∵PB∥x轴,抛物线y=﹣x2+2x+3关于直线x=1对称,∴PC=PB.∵PB=m,∴PC=.∴PE=OA=PC+CE=+1.∴点P的横坐标为+1.∵点P为抛物线上一动点(在顶点或顶点的右侧),∴+1≥1.∴m≥0.①当点P在x轴及x轴上方时,1≤+1≤3,即当0≤m≤4时,∵点P为抛物线上一动点,∴P点的纵坐标为:﹣+3=﹣+4,∴P A=h=﹣+4;②当点P在x轴的下方时,+1>3,即m>4时,∵P点的纵坐标为:﹣+3=﹣+4,∴P A=h=﹣(﹣+4)=﹣4;∴h与m的函数关系式为:h=.∵函数h=﹣+4和h=﹣4是抛物线的一部分,∴正确的选项是:A.故选:A.二、填空题(本大题共4小题,满分20分)11.解:∵=,∴5(a﹣b)=3(a+b),∴5a﹣5b=3a+3b,∴a=4b,∴==.故答案为:.12.解:∵⊙O的弦AB=6,半径OD⊥AB,∴AD=AB=×6=3,设⊙O的半径为r,则OD=r﹣CD=r﹣1,连接OA,在Rt△OAD中,OA2=OD2+AD2,即r2=(r﹣1)2+32,解得r=5.故选:5.13.解:过点B作BE⊥x轴于E,延长线段BA,交y轴于F,∵AB∥x轴,∴AF⊥y轴,∴四边形AFOD是矩形,四边形OEBF是矩形,∴AF=OD,BF=OE,∴AB=DE,∵点A在双曲线y=上,∴S矩形AFOD=6,同理S矩形OEBF=k,∵AB=2OD,∴DE=2OD,∴S矩形OEBF=3S矩形AFOD=18,∴k=18,故答案是:18.14.解:(1)由折叠的性质可得:∠B=∠AQP,∠DAQ=∠QAP=∠P AB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,∵∠QRA+∠QRP=180°,∴∠D+∠C=180°,∴AD∥BC,∴∠B+∠DAB=180°,∵∠DQR+∠CQR=180°,∴∠DQA+∠CQP=90°,∴∠AQP=90°,∴∠B=∠AQP=90°,∴∠DAB=90°,∴∠DAQ=∠QAP=∠P AB=30°,故答案为:30;(2)由折叠的性质可得:AD=AR,CP=PR,∵四边形APCD是平行四边形,∴AD=PC,∴AR=PR,又∵∠AQP=90°,∴QR=AP,∵∠P AB=30°,∠B=90°,∴AP=2PB,AB=PB,∴PB=QR,∴=,故答案为:.三、解答题(本大题共9小题,总计90分)15.解:原式=()2+×﹣1=+﹣1=0.16.解:根据题意,设二次函数的解析式为y=a(x﹣1)2+5,把(0,﹣3)代入得a(0﹣1)2+5=﹣3,解得a=﹣8,所以二次函数的解析式为y=﹣8(x﹣1)2+5.17.解:(1)∵一次函数y=﹣2x+1的图象经过点A,∴y=2+1=3,∴A(﹣1,3),∵反比例函数y=的图象经过A(﹣1,3),∴k=﹣1×3=﹣3;(2)∵一次函数y=﹣2x+1的图象经过点C,∴y=0+1=1,∴C(0,1),联立一次函数与反比例函数得,解得,;∴B(,﹣2),D(0,﹣2),∴BD=,CD=3,∴tan∠CBD===2.18.解:(1)如图,△A1B1C1为所作,点C1的坐标是(2,﹣2);故答案为:(2,﹣2);(2)如图,△A2B2C2为所作,点C2的坐标是(1,0);故答案为:(1,0).19.解:法一、如图,∵四边形AEFD为矩形,∠BAD=53°,∴AD∥EF,∠E=∠F=90°,∴∠BAD=∠EBA=53°,在Rt△ABE中,∠E=90°,AB=10cm,∠EBA=53°,∴sin∠EBA=≈0.80,cos∠EBA=≈0.60,∴AE=8cm,BE=6cm,∴∠FBC=90°﹣∠EBA=37°,∴∠BCF=90°﹣∠FBC=53°,在Rt△BCF中,∠F=90°,BC=6cm,∴sin∠BCF=≈0.80,cos∠BCF=≈0.60,∴BF=4.8cm,FC=3.6cm,∴EF=6+4.8=10.8cm,∴S四边形EFDA=AE•EF=8×10.8=86.4(cm2),S△ABE==×8×6=24(cm2),S△BCF=•BF•CF=×4.8×3.6=8.64(cm2),∴截面的面积=S四边形EFDA﹣S△ABE﹣S△BCF=86.4﹣24﹣8.64=53.76(cm2).法二、如图,延长AB交DC的延长线于点M,∴∠BCM=∠A=53°,∴cos53°=≈0.6,∴CM=10,∴BM=8,∴AM=AB+BM=18,∵AD=AM•sin A=14.4,DM=AM•cos A=10.8,∴截面的面积=S△ADM﹣S△BCM==AD•DM﹣BC•BM=53.76(cm2).20.(1)证明:∵BE平分∠ABC,∵DE∥BC,∴∠DEB=∠CBE∴∠ABE=∠DEB.∴BD=DE,∵DE∥BC,∴△ADE∽△ABC,∴∴,∴AE•BC=BD•AC;(2)解:设△ABE中边AB上的高为h.∴,∵DE∥BC,∴.∴,∴BC=10.21.解:(1)连接OD,如图:∵M是CD的中点,CD=12,∴DM=CD=6,OM⊥CD,∠OMD=90°,Rt△OMD中,OD=,且OM=3,∴OD==3,即圆O的半径长为3;(2)连接AC,延长AF交BD于G,如图:∵AB⊥CD,CE=EF,∴AB是CF的垂直平分线,∴AF=AC,即△ACF是等腰三角形,∵CE=EF,∴∠F AE=∠CAE,∵=,∴∠CAE=∠CDB,∴∠F AE=∠CDB,Rt△BDE中,∠CDB+∠B=90°,∴∠F AE+∠B=90°,∴∠AGB=90°,∴AG⊥BD,即AF⊥BD.22.解:(1)∵y=(x﹣1)2+2,∴抛物线上的点到x轴的最短距离为2,∴抛物线y=x2﹣2x+3与x轴的“亲近距离”为2;(2)不同意他的看法.理由如下:如图,P点为抛物线y=x2﹣2x+3任意一点,作PQ∥y轴交直线y=x﹣1于Q,设P(t,t2﹣2t+3),则Q(t,t﹣1),∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,当t=时,PQ有最小值,最小值为,∴抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”为,而过抛物线的顶点向x轴作垂线与直线相交,抛物线顶点与交点之间的距离为2,∴不同意他的看法;(3)M点为抛物线y=x2﹣2x+3任意一点,作MN∥y轴交抛物线y=+c于N,设M(t,t2﹣2t+3),则N(t,t2+c),∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,当t=时,MN有最小值,最小值为﹣c,∴抛物线y=x2﹣2x+3与抛物线y=+c的“亲近距离”为﹣c,∴﹣c=,∴c=1.23.解:(1)∵D为AC的中点,∠AEC=90°,∴AD=DE=DC,∴∠DAE=∠AED,∵AE=EF,∴∠EAF=45°,∴∠EAD=45°﹣α,∴∠DEA=∠EAD=45°﹣α,∴∠BCA=90°,∵∠EDC=90°﹣2α,∴∠CBE=2α;故答案为:2α;(2)①由(1)可知,∠CBE=2α,∠CAF=α,∵BH平分∠EBC,∴∠EBG=α,即∠EBG=∠CAF=α,∵DE=EC,∴∠DEC=∠DCE,则∠DEC+∠GEB=∠DCE+∠ACF=180°,∴∠GEB=∠ACF,∴△BEG∽△ACF;②设ED=x,则AD=DC=x,BC=2x,∴BD=,∴BE=(﹣1)x,即,∴EG=CF,∵EG=1,∴CF=.。

浙江省杭州市萧山区义桥实验学校2022-2023学年上学期九年级数学第三次月考测试题(含解析)

浙江省杭州市萧山区义桥实验学校2022-2023学年上学期九年级数学第三次月考测试题(含解析)

浙江省杭州市萧山区义桥实验学校2022-2023学年九年级数学上册第三次月考测试题一、仔细选一选(共30分)1.一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大2.抛物线y=x2﹣2x的图象与x轴交点的横坐标分别是()A.0,1B.1,2C.0,2D.﹣1,﹣23.如图,两条直线被三条平行线所截,AB=4,BC=6,EF=5.4,则DE的长为()A.3.2B.3.6C.4D.4.24.如图,四边形ABCD内接于⊙O,已知∠ADC=150°,则∠AOC的大小是()A.80°B.100°C.60°D.40°5.在指定的5个男生和3个女生中,随机抽调1人参加“湘湖”志愿服务队,恰好抽到男生的概率是()A.1B.C.D.6.若A(﹣5,y1),B(1,y2),C(2,y3)为二次函数y=x2+2x+m的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y1<y27.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为()A.2B.4C.6D.88.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A.B.C.D.9.如图,⊙O是Rt△ABC的外接圆,OE⊥AB交⊙O于点E,垂足为点D,AE、CB的延长线交于点F.若ED=4,AB=16,则FC的长是()A.19B.20C.21D.2210.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b2>4ac;③a(m2﹣1)+b(m﹣1)<0(m≠1);④关于x的方程|ax2+bx+c|=1有四个根,且这四个根的和为4,其中正确的结论有()A.1个B.2个C.3个D.4个二、认真填一填(共24分)11.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是.12.点B是线段AC的黄金分割点,且AB<BC.若AC=2,则BC的长为.13.二次函数y=(x﹣2)2﹣3的图象向右平移2个单位,再向上平移3个得到新图象的函数表达式是.14.如图,AB是⊙O的直径,C、D在⊙O上,∠D=60°,AB=10,则AC长为.15.不论k取何值,抛物线y=kx2+3kx﹣1都必定经过的定点为.16.如图,以C为公共顶点的Rt△ABC和Rt△CED中,∠ACB=∠CDE=90°,∠A=∠DCE=30°,且点D在线段AB上,则∠ABE=,若AC=10,CD=9,则BE =.三、全面答一答(共66分)17.小红的爸爸积极参加社区抗疫志愿服务工作.根据社区的安排,志愿者被随机分到A 组(体温检测)、B组(便民代购)、C组(环境消杀).(1)小红的爸爸被分到B组的概率是;(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)18.如图,在△AOB中,OA=2,OB=5,将△AOB绕点O顺时针旋转90°后得△A'OB'.(1)求点B扫过的弧的长;(2)求线段AB扫过的面积.19.如图▱ABCD中,点E在BA的延长线上,连接EC、BD交于点G,EC交AD于F,已知EA:AB=1:2.(1)求EF:EC;(2)求FG:GC.20.某商场以每件42元的价格购进一批商品,经试销发现,若每件商品售价60元,则每天可卖出50件,若售价每降低2元,则每天可多卖10件,根据相关规定,每件售价60元已达到毛利润上限,不能再涨价,但也不能以低于进价销售,在销售过程中,商场每天还需支付其它费用共200元.(1)写出每天的销售量y(件)与销售单价m(元)之间的函数关系式,并指出自变量m的取值范围.(2)商场应把售价定为多少元才能使每天获得的利润最大?最大利润是多少元?21.如图,矩形ABCD中,P为AB上一点,且PB>BC,连接PC,把矩形ABCD沿着PC 折叠,点B落到B',延长B'C交AB延长线于Q,已知AB=10,BC=4.(1)若PB=6,求BQ.(2)若DP⊥PC,求BQ.22.已知函数y1=ax2+2ax+c和y2=4ax+c(a、c为常数,a≠0).(1)若a=1,比较y1和y2的大小;(2)设y=y1+y2.①若a>0,用a、c表示y的最小值;②设t>0,当x=1﹣t时,y=m,当x=1+2t时,y=n,则当1﹣t<x<1+2t时,求y的取值范围(用m、n、a、c表示).23.如图,矩形ABCD中,点M在对角线BD上,过点A、B、M的圆与BC交于点E.(1)若AM=4,EB=EM=3,求BM.(2)若AB=6,BC=8,①求AM:ME.②若BM=7,求BE.参考答案一、仔细选一选(共30分)1.解:A.摸到红球是随机事件,故A选项错误;B.摸到白球是随机事件,故B选项错误;C.摸到红球比摸到白球的可能性相等,根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故C选项错误;D.根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故D选项正确;故选:D.2.解:∵抛物线y=x2﹣2x,∴当y=0时,0=x2﹣2x,解得x1=0,x2=2,即抛物线y=x2﹣2x的图象与x轴交点的横坐标分别是0,2,故选:C.3.解:∵AD∥BE∥CF,∴,∴,∵EF=5.4,∴,5DE=2DE+10.8∴DE=3.6,故选:B.4.解:∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠ADC=180°,∴∠ABC=180°﹣150°=30°.∴∠AOC=2∠ABC=60°.故选:C.5.解:∵随机抽调1人参加“湘湖”志愿服务队共有8种等可能结果,其中恰好抽到男生的有5种结果,∴恰好抽到男生的概率是,故选:C.6.解:∵y=x2+2x+m,∴抛物线开口向上,对称轴为直线x=﹣=﹣1,∵1﹣(﹣1)<2﹣(﹣1)<﹣1﹣(﹣5),∴y2<y3<y1,故选:B.7.解:∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴=,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选:B.8.解:A、由直线与y轴的交点在y轴的负半轴上可知,n2<0,错误;B、由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m>0,错误;C、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选:D.9.解:由题知,AC为直径,∴∠ABC=90°,∵OE⊥AB,∴OE∥BC,∵OA=OC,∴OE为三角形AFC的中位线,∴DE=BF=4,∴BF=8,又∵OD=BC,AD=AB=8,∴OA==,∴OE=OA=DE+DO=4+,∴4+=,∴BC=12,∴FC=BF+BC=8+12=20.故选:B.10.解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=1,∴﹣=1,∴b=﹣2a>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc<0,①错误;∵抛物线与x轴有2个交点,∴b2﹣4ac>0,∴b2>4ac,②正确;∵x=1时函数取最大值,∴am2+bm+c<a+b+c(m≠1),∴am2﹣a+bm﹣b<0,即a(m2﹣1)+b(m﹣1)<0(m≠1),③正确.∴由图象可得函数最大值大于2,∴ax2+bx+c=1有两个不相等的实数根x1,x2,ax2+bx+c=﹣1有两个不相等的实数根x3,x4,∵图象对称轴为直线x=1,∴x1+x2=2,x3+x4=2.∴x1+x2+x3+x4=4,∴④正确.故选:C.二、认真填一填(共24分)11.解:∵正方形的一条对角线将正方形分成面积相等的两个三角形,即两个黑色三角形的面积等于一个小正方形的面积,∴黑色区域的面积为1个和半个小正方形的面积,而共有4个小正方形,则有小球停留在黑色区域的概率是.故答案为:.12.解:如图,∵点B是线段AC的黄金分割点,且AB<BC,∴=,∵AC=2,∴BC=﹣1,故答案为:﹣1.13.解:由“左加右减,上加下减”知:将抛物线y=(x﹣2)2﹣3的图象向右平移2个单位,再向上平移3个单位,则新的抛物线函数解析式为y=(x﹣4)2.故答案为:y=(x﹣4)2.14.解:如图,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵∠D=60°=∠B,∴AC=AB•sin B=10×=5,故答案为:5.15.解:∵y=kx2+3kx﹣1=kx(x+3)﹣1,∴无论k为何值,当x=﹣3时,y=﹣1,∴这个定点坐标是(﹣3,﹣1).故答案为:(﹣3,﹣1).16.解:∵∠ACB=∠CDE=90°,∠A=∠DCE=30°,∴∠DBC=∠DEC=60°,∴B、C、D、E四点共圆,∴∠DBE=∠DCE=30°,∴∠ABE=30°,设BC=x,则AB=2x,在Rt△ABC中,由勾股定理得AB2=AC2+BC2,∵AC=10,∴(2x)2=102+x2,解得:x=,∴BC=,设DE=a,则CE=2a,在Rt△CED中,由勾股定理得CE2=DE2+CD2,∵CD=9,∴(2a)2=a2+92,解得:a=,∴DE=,CE=,∵∠ABC=60°,∠ABE=30°,∴∠CBE=∠ABC+∠ABE=90°,在Rt△CBE中,由勾股定理得=.三、全面答一答(共66分)17.解:(1)共有3种等可能出现的结果,被分到“B组”的有1种,因此被分到“B组”的概率为;(2)用列表法表示所有等可能出现的结果如下:共有9种等可能出现的结果,其中“他与小红的爸爸”在同一组的有3种,∴P(他与小红爸爸在同一组)==.18.解:(1)由旋转得:∠BOB'=90°,OB=OB',∴点B扫过的弧的长==;(2)根据旋转的性质可得:△AOB的面积=△A'OB'的面积,∴线段AB扫过的面积=S扇形B'OB+S△AOB﹣S扇形A'OA﹣S△A'B'O=S扇形B'OB﹣S扇形A'OA=﹣=.19.解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,AD∥BC,AD=BC.(1)∵EA:AB=1:2,∴=.∵AD∥BC,∴==.(2)∵AB∥CD,∴△EAF∽△CDF.∴===.∴==.∵AD∥BC,∴△FDG∽△CBG.∴==.20.解:(1)根据题意知,y=50+10(30﹣m)=﹣10m+350,其中21≤m≤30;(2)设商场每天获得的利润为W,则W=(m﹣21)(﹣10m+350)﹣100=﹣10m2+560m﹣7450=﹣10(m﹣28)2+390,∵﹣10<0,∴当m=28时,W max=390,答:商场应把售价定为28元才能使每天获得的利润最大,最大利润是390元.21.解:(1)∵把矩形ABCD沿着PC折叠,点B落到B',延长B'C交AB延长线于Q,∴∠B'=∠ABC=90°=∠CBQ,PB=PB'=6,B'C=BC=4,∵∠BQC=∠B'QP,∴△BQC∽△B'QP,∴==,即==,解得BQ=9.6,∴BQ的长为9.6;(2)∵DP⊥PC,∴∠DP A=90°﹣∠CPB=∠PCB,∵∠A=∠PBC=90°,∴△P AD∽△CBP,∴=,即=,解得PB=2或PB=8,∵PB>BC,∴PB=8,∴PB'=8,同(1)可得△BQC∽△B'QP,∴==,即==,解得BQ=.22.解:(1)若a=1,则y1=x2+2x+c,y2=4x+c,令x2+2x+c=4x+c,解得x=0或x=2,∵a=1>0,∴函数y1=ax2+2ax+c开口向上,∴当x<0或x>2时,y1>y2,当x=0或x=2时,y1=y2,当0<x<2时,y1<y2;(2)①∵y=y1+y2=ax2+2ax+c+4ax+c=a(x+3)2﹣9a+2c,a>0,∴y的最小值是﹣9a+2c;②∵y=a(x+3)2﹣9a+2c,∴函数的对称轴为直线x=﹣3,最值为﹣9a+2c,∵t>0,﹣3﹣(1﹣t)<﹣3+2t﹣1,∴当a>0时,在1﹣t<x<1+2t范围内,y的最大值为n,则y的取值范围是﹣9a+2c≤y <n;当a<0时,在1﹣t<x<1+2t范围内,y的最小值为n,则y的取值范围是n<y≤﹣9a+2c;综上,当1﹣t<x<1+2t时,y的取值范围是﹣9a+2c≤y<n或n<y≤﹣9a+2c.23.解:(1)连接AE交BM于点F,∴∵四边形ABCD是矩形,∴∠ABC=90°,∴AE是圆的直径,∴∠AME=90°,∵AM=4,EM=3,∴AE===5,∵EB=EM=3,∴=,∴AE⊥BM,BF=FM=BM,∵△AME的面积=AM•EM=AE•FM,∴AM•EM=AE•FM,∴5FM=4×3,∴FM=,∴BM=2FM=,∴BM的长为;(2)①过点M作MP⊥AD,垂足为P,延长PM交BC于点Q,∴∠APM=90°,∵四边形ABCD是矩形,∴∠C=90°,AB=CD=6,AD∥BC,∴∠MQB=180°﹣∠APM=90°,∴∠MEQ+∠EMQ=90°,由(1)得:∠AME=90°,∴∠AMP+∠EMQ=180°﹣∠AME=90°,∴∠AMP=∠MEQ,∵∠APM=∠MQE=∠ABC=90°,∴四边形ABQP是矩形,△APM∽△MQE,∴AP=BQ,=,∵∠BQM=∠C=90°,∠MBQ=∠DBC,∴△BQM∽△BCD,∴===,∴==,∴AM:ME=4:3;②在Rt△BCD中,BD===10,由①得:△BQM∽△BCD,∴==,∴==,∴MQ=4.2,BQ=5.6,由①得:四边形ABQP是矩形,∴AB=PQ=6,∴PM=PQ﹣MQ=6﹣4.2=1.8,由①得:△APM∽△MQE,∴=,∴=,∴QE=1.35,∴BE=BQ﹣QE=5.6﹣1.35=4.25,∴BE的长为4.25.。

浙江省衢州2022-2023学年九年级数学上册第三次月考测试题(附答案)

浙江省衢州2022-2023学年九年级数学上册第三次月考测试题(附答案)

2022-2023学年九年级数学上册第三次月考测试题(附答案)一、选择题(共30分)1.下列成语所描述的事件为必然事件的是()A.水中捞月B.瓮中捉鳖C.守株待兔D.拔苗助长2.若,则等于()A.B.C.D.3.如图,在矩形ABCD中,AB=6,AD=8,若以点D为圆心,8为半径作⊙D,则下列各点在⊙D外的是()A.点A B.点B C.点C D.点D4.两个相似三角形的面积之比为1:4,较小的三角形的周长为4,则另一个三角形的周长为()A.16B.8C.2D.15.如图,在小正方形组成的网格中,△ABC的顶点都是格点(网格线的交点),则tan∠ABC 等于()A.B.C.D.6.如图,点A,B,C,D在⊙O上,AC是⊙O的直径,若∠CAD=25°,则∠ABD的度数为()A.25°B.50°C.65°D.75°7.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是()A.60°B.65°C.70°D.75°8.竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是()A.第3秒B.第3.5秒C.第4.2秒D.第6.5秒9.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径10.如图,在直角梯形ABCD中,∠ABC=90°,AB=8,AD=3,BC=4,点P为边AB 上一动点,若△P AD与△PBC是相似三角形,则满足条件的点P的个数是()A.1B.2C.3D.4二、填空题(共24分)11.计算:sin45°=.12.已知P是线段AB的黄金分割点,P A>PB,AB=2cm,则P A=.13.已知扇形的圆心角为120°,面积为12π,则扇形的半径是.14.如图,点A(2,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是.15.如图,在Rt△ABC中,∠C=90°,AC=12,BC=5,则此Rt△ABC的重心P与外心Q之间的距离为.16.如图,AC平分∠BAD,∠BAD=∠BCD.(1)∠DBC=.(2)若AD=6,AB=8,那么AC的长是.三、解答题(共66分)17.计算:sin30°•tan45°+sin260°﹣2cos60°.18.(1)解一元一次不等式组;(2)解方程:.19.如图,已知D,E分别是△ABC的边AC,AB上的点,∠AED=∠C,AE=5,AC=9,DE=6.(1)求证:△ABC∽△ADE.(2)求BC的长.20.面对新冠疫情,衢州教育人同心战“疫”因有不少师生居家健康监测,无法到校工作、学习,各校师生通过“云端”相连,停课不停教,停课不停学.某校在疫情期间的教学方式主要包括直播授课、录播投课、自主学习、在线答疑四种形式.为了了解学生的需求,该校随机对部分学生进行了“你对哪种教学方式最感兴趣”的调查(每人只选其中的一种),并根据调查结果绘制成如图所示的统计图.(1)本次调查的人数是人;(2)请补全条形统计图;(3)明明和强强参加了此次调查,均选择了其中一种教学方式,求明明和强强选择同一种教学方式的概率.21.一个长方体木箱沿斜面下滑,当木箱滑至如图所示位置时,AB=2m.已知木箱高度BE =1m,斜面坡角∠BAC为30°,求木箱端点E距地面AC的高度.22.利用网格图,仅用无刻度的直尺来完成几何作图.(注:以下点A、B、M、N均在格点上.)(1)如图1、2是由边长为1的小正方形构成的网格图.①在图1中,AM∥BN,连结MN交AB于点P,此时BP=2AP,请说明理由.②在图2中的线段AB上,求作一点P,使得BP=2AP.(不写作法,保留作图痕迹)(2)如图3、4是由边长为1的小正六边形构成的网格图.请在线段AB上求作点P.①在图3中,过格点M作线段MN与AB交于点P,使得AP=BP.(作出图形)②在图4中,求作点P,使得AP=BP(要求:方法与①有别,不写作法,但保留作图痕迹)23.根据以下素材,探索完成任务.如何确定隧道的限高?素材1从小清家到附近山区的一条双行线公路上有一个隧道,在隧道口有一个限高标志(如图1),表示禁止装载高度(车顶最高处到地面)超过3.5m的车辆通行.那么这个限高3.5m是如何确定的呢?素材2小清通过实地调查和查阅相关资料,获得以下信息:①隧道的横截面成轴对称,由一个矩形和一个弓形构成.②隧道内的总宽度为8m,双行车道宽度为6m,隧道圆拱内壁最高处距路面5m,矩形的高为2m,车道两侧的人行道宽1m.③为了保证安全,交通部门要求行驶车辆的顶部(设为平顶)与隧道圆拱内壁在竖直方向上的高度差相差最少0.2m.问题解决任务1计算半径求图1中弓形所在圆的半径.任务2确定限高如图2,在安全的条件下,3.5m的限高是如何确定的?请通过计算说明理由.(参考数据:≈17.35,结果保留一位小数)任务3尝试设计如果要使高度不超过3.3m,宽为2.5m的货车能顺利通过这个隧道,且不改变隧道内的总宽度(8m)和矩形的高(2m),如何设计隧道的弓形部分(求弓形所在圆的半径至少为多少米?)(参考数据:≈9.44,结果保留一位小数)24.如图1,在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=90°,AC=,AB=,AE=,AD=1,将△DAE绕点A在平面内顺时针旋转α(0°≤α≤360°),连接CE,BD.(1)求证:△ADB∽△AEC;(2)请判断线段CE和BD的位置关系,并说明理由;(3)当点B、D、E在同一条直线上时,求线段CE的长;(4)如图2,在Rt△ABC中,∠ACB=90°,AB=6,过A点作AP∥BC,在射线AP 上取一点D,连接CD,使得tan∠ACD=,请直接写出线段BD的最值.参考答案一、选择题(共30分)1.解:A、水中捞月是不可能事件,故本选项错误;B、翁中捉鳖是必然事件,故本选项正确;C、守株待兔是随机事件,故本选项错误;D、拔苗助长是不可能事件,故本选项错误.故选:B.2.解:∵,∴=,故选:D.3.解:连接BD,在矩形ABCD中,AB=6,AD=8,∴CD=AB=6,∠A=90°,∴BD==10,∵CD=6<8,BD=10>8,AD=8,∴点A在⊙D上,点B在⊙D外,点C在⊙D内.故选:B.4.解:设另一个三角形的周长为x,则4:x=,解得:x=8.故另一个三角形的周长为8,故选:B.5.解:如图:在Rt△ABD中,AD=2,BD=4,∴tan∠ABC===,故选:D.6.解:∵AC是⊙O的直径,∴∠ADC=90°,∴∠ACD=90°﹣∠CAD=90°﹣25°=65°,∴∠ABD=∠ACD=65°.故选:C.7.解:由题意知△ABC≌△DEC,则∠ACB=∠DCE=30°,AC=DC,∴∠DAC===75°,故选:D.8.解:由题意可知:h(2)=h(6),即4a+2b=36a+6b,解得b=﹣8a,函数h=at2+bt的对称轴t=﹣=4,故在t=4s时,小球的高度最高,题中给的四个数据只有C第4.2秒最接近4秒,故在第4.2秒时小球最高故选:C.9.解:由作图痕迹可以看出O为AB的中点,以O为圆心,AB为直径作圆,然后以B为圆心BC=a为半径画弧与圆O交于一点C,故∠ACB是直径所对的圆周角,所以这种作法中判断∠ACB是直角的依据是:直径所对的圆周角是直角.故选:B.10.解:∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=180°﹣∠B=90°,∴∠P AD=∠PBC=90°.AB=8,AD=3,BC=4,设AP的长为x,则BP长为8﹣x.若AB边上存在P点,使△P AD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则AP:BP=AD:BC,即x:(8﹣x)=3:4,解得x=;②若△APD∽△BCP,则AP:BC=AD:BP,即x:4=3:(8﹣x),解得x=2或x=6.∴满足条件的点P的个数是3个,故选:C.二、填空题(共24分)11.解:根据特殊角的三角函数值得:sin45°=.12.解:∵P是线段AB的黄金分割点,P A>PB,∴P A=AB=×2=(﹣1)cm,故答案为:(﹣1)cm.13.解:根据扇形的面积公式,得R===6,故答案为6.14.解:过点A作AB⊥x轴于B,∵点A(2,t)在第一象限,∴AB=t,OB=2,又∵tanα===,∴t=3.故答案为:3.15.解:根据题意可知,C、P、Q三点共线.在Rt△ABC中,∠C=90°,AC=12,BC=5,∴AB===13,∵Rt△ABC的外心为Q,∴Q为斜边AB的中点,∴CQ=AB=,∵Rt△ABC的重心为P,∴PQ=CQ=.故答案为:.16.解:(1)∵∠BAD=∠BCD,∠BAD+∠BCD=180°,∴∠BAD=∠BCD=90°,∵AC平分∠BAD,∴∠BAC=∠DAC=45°,∴∠DBC=∠BAC=45°,故答案为:45°;(2)在Rt△ABD中,BD===10,∵∠BCD=90°,∠DBC=45°,∴△BCD为等腰直角三角形,∴CD=BD=×10=5,过D点作DH⊥AC于H点,如图,∵∠DAH=45°,∴△ADH为等腰直角三角形,∴AH=DH=AD=3,在Rt△CDH中,CH===4,∴AC=AH+CH=3+4=7.故答案为:7.三、解答题(共66分)17.解:原式=×1+()2﹣2×=+﹣1=.18.解:(1),解不等式①得:x<2,解不等式②得:x<1,∴原不等式组的解集为:x<1;(2),x﹣3=2x﹣1,解得:x=﹣2,检验:当x=﹣2时,2x﹣1≠0,∴x=﹣2是原方程的根.19.(1)证明:∵∠AED=∠C,∠A=∠A,∴△ABC∽△ADE;(2)解:由(1)得:△ABC∽△ADE,∴=,∵AE=5,AC=9,DE=6,∴=,∴BC=.20.解:(1)本次调查的人数有20÷25%=80(人),故答案为:80;(2)自主学习的人数有:80﹣35﹣20﹣15=10(人),补全条形统计图如下:(3)把直播授课、录播授课、自主学习、在线答疑四种形式分别记为A、B、C、D,画树状图如下:共有16种等可能情况,其中明明和强强选择同一种教学方式的结果有4种,∴明明和强强选择同一种教学方式的概率为=.21.解:如图,过点E作ED⊥AC于点D,交AB于点F,根据题意可知:EB⊥AB,∴∠EBF=90°,∴∠ADF=∠EBF=90°,∵∠AFD=∠EFB,∴∠F AD=∠BEF=30°,在Rt△EFB中,BF=BE•tan30°=1×tan30°=,EF=,在Rt△ADF中,AF=AB﹣BF=2﹣,∴DF=AF•sin30°=1﹣,∴ED=EF+FD=+1﹣=(+1)(m).答:木箱端点E距地面AC的高度约为()m.22.解:(1)①∵AM∥BN,∴△AMP∽△BNP,∴==,∴BP=2AP;②如图:点P即为所求;(2)①如图:点P即为所求;②如图:点P即为所求.23.解:(1)如图所示:点O为弓形所在圆的圆心,OA、OC为半径,BC是弓形高,且BC=5﹣2=3(m)∴OC⊥AB,∴OA2=AB2+OB2,即OA2=42+(OA﹣3)2,解得OA=(m)(2)根据车行道的宽度和弓形半径规定的,理由如下,如图所示:半径OE、OB为m(由①知),EF=3mEF⊥OB,BF=OB﹣OF,∴OF2=OE2﹣EF2=﹣32=,∴OF=≈2.89(m),BF=﹣2.89≈1.3(m),AF=5﹣1.3=3.7m,为了保证安全,交通部门要求行驶车辆的顶部(设为平顶)与隧道圆拱内壁在竖直方向上的高度差相差最少0.2m.故限高为:3.5m.(3)如图所示:为了保证安全,交通部门要求行驶车辆的顶部(设为平顶)与隧道圆拱内壁在竖直方向上的高度差相差最少0.2m.要使高度不超过3.3m,宽为2.5m的货车能顺利通过这个隧道,故CD=3.5m,设弓形的半径为R,OB=x,CE=2.5m,AB=4m,BE=3.5﹣2=1.5(m),OE=x+1.5,∵OE2+CE2=OC2,OB2+AB2=OA2,OA=OC,∴(x+1.5)2+(2.5)2=x2+42,x=2.5(m),∴OA2=(2.5)2+42=,OA=4.7m24.(1)证明:设直线AB交CE于点M,直线CE交BD于点N,∵,=,∴,∵∠CAB=∠EAD=90°,∴∠CAE=∠DAB,∴△ADB∽△AEC;(2)解:CE⊥BD,理由:∵△ADB∽△AEC,∴∠ECA=∠ABD,∵∠BME=∠CMA,∴∠BNM=∠BAC=90°,∴CE⊥BD;(3)解:在Rt△ADE中,AD=1,AE=,则DE=2,∠EDA=60°,由(1)知,△ADB∽△AEC,∴=,则CE=BD;①当B、E、D三点共线时,如图1,过点A作AH⊥BD于点H,在Rt△ADH中,AD=1,∠D=60°,则DH=,AH=,在Rt△AHB中,HB===,则BD=BH+DH==3,则EC=,BD=3;②当B、D、E共线时,如图2,过点A作AH⊥BD交于点H,在Rt△AHE中,AE=,∠E=30°,则AH=AE=,EH=,在Rt△ADE中,AD=1,∠E=30°,则ED=2,在Rt△ABH中,BH===,则BE=BH+EH==4,则BD=BE﹣DE=4﹣2=2,∵CE=BD,即CE=2;综上,CE=3或2;(4)解:过点A作AE⊥AB,使AE=AB=6,取AB的中点R,连接CR、CE、BE、ER,则CR=AR=AB=3,∵∠DAC=∠BAE=90°,∴∠CAE=∠DAB,∵tan∠ACD====,∴△ADB∽△ACE,∴,∴BD=CE,∴RE﹣CR≤CE≤RE+CR,在Rt△AER中,ER===9,则6≤CE≤12,∴3≤BD≤6,即BD的最小值和最大值分别为:3和6.。

人教版2022-2023学年九年级数学上册第三次月考测试题(附答案)

人教版2022-2023学年九年级数学上册第三次月考测试题(附答案)

2022-2023学年九年级数学上册第三次月考测试题(附答案)一、选择题(共16分)1.在下列四个图案中,是中心对称图形的是()A.B.C.D.2.若方程x2+kx﹣6=0的一个根是﹣3,则k的值是()A.﹣1B.1C.2D.﹣23.抛物线y=(x+3)2﹣1的顶点坐标是()A.(3,﹣1)B.(3,1)C.(﹣3,1)D.(﹣3,﹣1)4.如图,将含有30°角的三角尺ABC(∠BAC=30°),以点A为中心,顺时针方向旋转,使得点C,A,B′在同一直线上,则旋转角的大小是()A.30°B.60°C.120°D.150°5.如图,在一块长30m,宽20m的矩形苗圃基地上修建两横一纵三条等宽的道路,剩余空地种植花苗,设道路的宽为xm,若种植花苗的面积为522m2,依题意列方程()A.20x+30×2x=600﹣522B.20x+30×2x﹣x2=600﹣522C.(20﹣2x)(30﹣x)=522D.(20﹣x)(30﹣2x)=5226.如图,已知AB是⊙O的直径,CD是弦,若∠BCD=24°,则∠ABD=()A.54°B.56°C.64°D.66°7.投掷一枚质地均匀的硬币m次,正面向上n次,下列表达正确的是()A.的值一定是B.的值一定不是C.m越大,的值越接近D.随着m的增加,的值会在附近摆动,呈现出一定的稳定性8.已知二次函数y=ax2+bx+c中y与x的部分对应值如表:x…﹣2﹣1012…y…﹣1232﹣1…关于此函数的图象和性质有如下判断:①抛物线开口向下.②当x>0时,函数图象从左到右上升.③方程ax2+bx+c=0的一个根在﹣2与﹣1之间.其中正确的是()A.①②B.①③C.②③D.①②③二、填空题(共16分)9.一元二次方程x2﹣9=0的根为.10.点A(﹣5,3)关于原点的对称点A'的坐标为.11.把抛物线y=先向右平移6个单位长度,再向上平移3个单位长度,所得抛物线的函数表达式为.12.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(3,0),对称轴为直线x=1,则当y<0时,x的取值范围是.13.有两把不同的锁和三把钥匙,其中两把钥匙分别能打开其中一把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率为.14.如图,P A、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知△PCD 的周长等于10cm,则P A=cm.15.已知:如图,半圆O的直径AB=12cm,点C,D是这个半圆的三等分点,则∠CAD的度数是,弦AC,AD和围成的图形(图中阴影部分)的面积S是.16.新年联欢,某公司为员工准备了A、B两种礼物,A礼物单价a元、重m千克,B礼物单价(a+1)元,重(m﹣1)千克,为了增加趣味性,公司把礼物随机组合装在盲盒里,每个盲盒里均放两样,随机发放,小林的盲盒比小李的盲盒重1千克,则两个盲盒的总价钱相差元,通过称重其他盲盒,大家发现:称重情况重量大于小林的盲盒的与小林的盲盒一样重重量介于小林和小李之间的与小李的盲盒一样重重量小于小李的盲盒的盲盒个数05094若这些礼物共花费2018元,则a=元.三、解答题(满分68分)17.解方程.(1)x2﹣8x﹣2=0;(2)2x2﹣x﹣3=0.18.2021年6月17日,神舟十二号成功发射,标志着我国载人航天踏上新征程.某学校举办航天知识讲座,需要两名引导员,决定从A,B,C,D四名志愿者中通过抽签的方式确定两人.抽签规则:将四名志愿者的名字分别写在四张完全相同且不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.(1)“A志愿者被选中”是事件(填“随机”、“不可能”或“必然”);(2)用画树状图或列表的方法求出A,B两名志愿者同时被选中的概率.19.下面是小明设计的“作圆的内接等腰直角三角形”的尺规作图过程.已知:⊙O.求作:⊙O的内接等腰直角三角形ABC.作法:如图,①作直径AB;②分别以点A,B为圆心,以大于AB的长为半径作弧,两弧交于M点;③作直线MO交⊙O于点C,D;④连接AC,BC.所以△ABC就是所求的等腰直角三角形.根据小明设计的尺规作图过程,解决下面的问题:(1)使用直尺和圆规、补全图形:(保留作图痕迹)(2)完成下面的证明.证明:连接MA,MB.∵MA=MB,OA=OB,∴MO是AB的垂直平分线.∴AC=∵AB是直径,∴∠ACB=()(填写推理依据).∴△ABC是等腰直角三角形.20.已知关于x的方程x2﹣2x+2k﹣1=0有两个实数根.(1)求k的取值范围;(2)若k为正整数,求此时方程的解.21.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请在图中作出△ABC绕点A逆时针方向旋转90°后得到的图形△A1B1C1:(2)求点C运动到点C1所经过的路径的长(结果保留π).22.如图,已知抛物线y=x2+bx+c经过A(﹣1,0),B(2,0)两点.(1)求该抛物线的解析式和顶点坐标.(2)直接写出当0<x<2时,求y的取值范围.23.如图,一条公路的转弯处是一段圆弧,点O是的圆心,E为上一点,OE⊥CD,垂足为F.已知CD=300m,EF=50m,求这段弯路的半径.24.如图在Rt△ABC中,∠C=90°,BD是△ABC的角平分线,点O在AB上,以点O为圆心,OB长为半径的圆经过点D,交BC于点E,交AB于点F.(1)求证:AC是⊙O的切线;(2)若CE=2,CD=4,求半径的长.25.某公园在垂直于湖面的立柱上安装了一个多孔喷头,从喷头每个孔喷出的水柱形状都相同,可以看作是抛物线的一部分,当喷头向四周同时喷水时,形成一个环状喷泉.安装后,通过测量其中一条水柱,获得如下数据,在距立柱水平距离为d米的地点,水柱距离湖面的高度为h米.d(米)0 1.0 3.0 5.07.0h(米) 3.2 4.2 5.0 4.2 1.8请解决以下问题:(1)在网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接;(2)结合表中所给数据或所画图象,直接写出这条水柱最高点距离湖面的高度;(3)求所画图象对应的函数表达式;(4)从安全的角度考虑,需要在这个喷泉外围设立一圈正方形护栏,这个喷泉的任何一条水柱在湖面上的落点到护栏的距离不能小于1米,请通过计算说明公园至少需要准备多少米的护栏(不考虑接头等其他因素)26.已知抛物线y=ax2+2ax+3a2﹣4(a≠0).(1)该抛物线的对称轴为;(2)若该抛物线的顶点在x轴上,求抛物线的解析式;(3)设点M(m,y1),N(2,y2)在该抛物线上,若y1>y2,求m的取值范围.27.如图,在等边△ABC中点D在BA的延长线上,点P是BC边上的一个动点(点P不与点B重合),将线段PD绕点P逆时针旋转60°得到线段PE,连接BE和DE.(1)依据题意补全图形;(2)比较∠BDE与∠BPE的大小,并证明;(3)用等式表示线段BE、BP与BD之间的数量关系,并证明.28.如图,在平面直角坐标系xOy中,C(0,2),⊙C的半径为1.如果将线段AB绕原点O逆时针旋转α(0°<α<180°)后的对应线段A'B'所在的直线与⊙C相切,且切点在线段A′B′上,那么线段AB就是⊙C的“关联线段”,其中满足题意的最小α就是线段AB与⊙C的“关联角”.(1)如图1,如果A(2,0),线段OA是⊙C的“关联线段”,那么它的“关联角”为°.(2)如图2,如果A1(﹣3,3)、B1(﹣2,3),A2(1,1)、B2(3,2),A3(3,0)、B3(3,﹣2).那么⊙C的“关联线段”有(填序号,可多选).①线段A1B1②线段A2B2③线段A3B3(3)如图3,如果B(1,0)、D(t,0),线段BD是⊙C的“关联线段”,那么t的取值范围是.(4)如图4,如果点M的横坐标为m,且存在以M为端点,长度为的线段是⊙C的“关联线段”,那么m的取值范围是.参考答案一、选择题(共16分)1.解:A、绕圆心旋转180°,不能与自身重合,不是中心对称图形,不合题意;B、绕圆心旋转180°,不能与自身重合,不是中心对称图形,不符合题意;C、绕圆心旋转180°,不能与自身重合,不是中心对称图形,不合题意;D、绕圆心旋转180°,能与自身重合,是中心对称图形,符合题意.故选:D.2.解:把x=﹣3代入方程x2+kx﹣6=0得:9﹣3k﹣6=0,解得:k=1,故选:B.3.解:∵抛物线y=(x+3)2﹣1,∴该抛物线的顶点坐标为(﹣3,﹣1),故选:D.4.解:旋转角是∠BAB′,∠BAB′=180°﹣30°=150°.故选:D.5.解:设道路的宽为xm,则种植花苗的部分可合成长(30﹣x)m,宽(20﹣2x)m的矩形,依题意得:(30﹣x)(20﹣2x)=522,故选:C.6.解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠A=∠BCD=24°,∴∠ABD=90°﹣∠A=90°﹣24°=66°.故选:D.7.解:投掷一枚质地均匀的硬币m次,正面向上n次,随着m的增加,的值会在附近摆动,呈现出一定的稳定性,故选:D.8.解:∵x=﹣1和x=1时的函数值相同,都是2,∴抛物线的对称轴为直线x==0,∴抛物线的顶点为(0,3),∴y=3是函数的最大值,∴抛物线的开口向下,当x<0时,y随x的增大而增大,即当x<0时,函数图象从左到右上升,所以①正确,②错误;∵x=﹣2时,y=﹣1;x=﹣1时,y=2,∴方程ax2+bx+c=0的一个根在﹣2与﹣1之间,所以③正确.综上所述:其中正确的结论有①③.故选:B.二、填空题(共16分)9.解:x2﹣9=0,x2=9,∴x1=3,x2=﹣3,故答案为:x1=3,x2=﹣3.10.解:点A(﹣5,3)关于原点对称的点的坐标是A'(5,﹣3),故答案为:(5,﹣3).11.解:将抛物线先向右平移6个单位长度,得:;再向上平移3个单位长度,得:.故答案为:.12.解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(3,0),对称轴为直线x =1,∴抛物线与x轴的另一个交点为(﹣1,0),由图象可知,当y<0时,x的取值范围是﹣1<x<3.故答案为:﹣1<x<3.13.解:第一次打开锁的概率为.14.解:如图,设DC与⊙O的切点为E;∵P A、PB分别是⊙O的切线,且切点为A、B;∴P A=PB;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=P A+PB=10(cm);∴P A=PB=5cm,故答案为:5.15.解:连接CO、OD,CD,∵C、D是这个半圆的三等分点,∴CD∥AB,∠COD=60°,∴∠CAD的度数为:30°,∵OC=OD,∴△OCD是等边三角形,CD=OC=AB=6cm,∴△OCD与△CDA是等底等高的三角形,∴S阴影=S扇形OCD=π×62=6πcm2.故答案为:30°,6πcm2.16.解:∵A礼物重m千克,B礼物重(m﹣1)千克,∴A礼物比B礼物重1千克,∵每个盲盒里均放两样,小林的盲盒比小李的盲盒重1千克,∴小李的盲盒中为1件A礼物和1件B礼物,小林的盲盒中为2件A礼物;或小李的盲盒中为2件B礼物,小林的盲盒中为1件A礼物和1件B礼物;∴不管以上哪种情况,两个盲盒的礼物总价格都相差a+1﹣a=1(元),由表格中数据可知,重量小于小李的盲盒的有4盒可知小李的盲盒中为1件A礼物和1件B礼物,不可能为2件B礼物,∴小李的盲盒中为1件A礼物和1件B礼物,小林的盲盒中为2件A礼物,∴重量小于小李的盲盒为2件B礼物,∵与小林的盲盒一样重盲盒有5盒,与小李的盲盒一样重的盲盒有9盒,重量小于小李的盲盒有4盒,∴2件B礼物的有4盒,1件A礼物和1件B礼物有10盒,2件A礼物有6盒,∴2×4(a+1)+10×a+10(a+1)+2×6a=2018,解得a=50,故答案为:1,50.三、解答题(满分68分)17.解:(1)x2﹣8x﹣2=0,x2﹣8x=2,x2﹣8x+16=2+16,即(x﹣4)2=18,∴x﹣4=,∴x1=4+3,x2=4﹣3;(2)2x2﹣x﹣3=0,(2x﹣3)(x+1)=0,∴2x﹣3=0或x+1=0,∴x1=,x2=﹣1.18.解:(1)“A志愿者被选中”是随机事件,故答案为:随机;(2)画树状图如下:共有12种等可能的结果,其中A,B两名志愿者同时被选中的结果有2种,∴A,B两名志愿者同时被选中的概率为=.19.解:(1)如图所示:(2)证明:连接MA,MB.∵MA=MB,OA=OB,∴MO是AB的垂直平分线.又∵直线MO交⊙O于点C,∴AC=BC.∵AB是直径,∴∠ACB=90°(直径所对的圆周角是直角),∴△ABC是等腰直角三角形.故答案为:BC、90°,直径所对的圆周角是直角.20.解:(1)∵x2﹣2x+2k﹣1=0有两个实数根,∴Δ≥0,∴(﹣2)2﹣4×1•(2k﹣1)≥0,解得k≤1;(2)由(1)知k≤1,∵k为正整数,∴k=1,∴原方程为:x2﹣2x+1=0,∴(x﹣1)2=0,∴x1=x2=1.21.解:(1)△A1B1C1如图所示;(2)∵,∴点C运动到点C1所经过的路径的长为:.22.解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(2,0)两点,∴,解得:,∴抛物线的解析式为y=x2﹣x﹣2,∵y=x2﹣x﹣2=(x﹣)2﹣,∴抛物线的顶点坐标为(,﹣).(2)∵抛物线的顶点坐标为(,﹣).∴函数有最小值y=﹣,∵x=2时,y=0,∴当0<x<2时,y的取值范围﹣≤y<0.23.解:连接OC.设这段弯路的半径为Rm,则OF=OE﹣EF=(R﹣50)m,∵OE⊥CD,∴CF=CD=×300=150(m).根据勾股定理,得OC2=CF2+OF2,即R2=1502+(R﹣50)2,解得R=250,所以这段弯路的半径为250m.24.(1)证明:如图,连接OD,∵OD=OB,∴∠ODB=∠OBD,∵BD是△ABC的角平分线,∴∠OBD=∠DBC,∴∠ODB=∠DBC,∴OD∥BC,∴∠ODA=∠C=90°,∵AC经过⊙为的半径OD的端点D,且AC⊥OD,∴AC是⊙O的切线.(2)如图,设⊙O的半径为r,则OB=OD=r,作OG⊥BE于点G,则BG=EG,∠OGB=90°,∵∠ODC=∠C=∠OGC=90°,∴四边形ODCG是矩形,∵CE=2,CD=4,∴OG=CD=4,CG=OD=r,∴BG=EG=r﹣2,∵OB2=OG2+BG2,∴r2=42+(r﹣2)2,解得r=5,∴⊙O的半径长为5.25.解:(1)如图,(2)由(1,4.2)和(5,4.2)可知,抛物线的对称轴为d=3,当d=3时,h=5,∴水柱最高点距离湖面的高度是5米;(3)由图象可得,顶点(3,5),设二次函数的关系式为h=a(d﹣3)2+5,把(0,3.2)代入可得a=﹣0.2,∴h=﹣0.2(d﹣3)2+5;(4)当h=0时,即﹣0.2(d﹣3)2+5=0,解得d=﹣2(舍去)或d=8,∴正方形的边长为2×(8+1)=18(米),∴至少需要准备栏杆4×18=72(米),∴公园至少需要准备72米的护栏.26.解:(1)∵抛物线y=ax2+2ax+3a2﹣4.∴对称轴为直线x==﹣1,故答案为:直线x=﹣1;(2)y=ax2+2ax+3a2﹣4=a(x+1)2+3a2﹣a﹣4,∵抛物线顶点在x轴上,即当x=﹣1时,y=0,∴3a2﹣a﹣4=0,解得.∴抛物线解析式为y=﹣x2﹣2x﹣1或.(3)∵抛物线的对称轴为直线x=﹣1,∴N(2,y2)关于直线x=﹣1的对称点为N’(﹣4,y2).(ⅰ)当a>0时,若y1>y2,则m<﹣4或m>2;(ⅱ)当a<0时,若y1>y2,则﹣4<m<2.27.解:(1)如图所示:(2)∠BDE=∠BPE,理由如下:∵将线段PD绕点P逆时针旋转60°得到线段PE,∴PD=PE,∠DPE=60°,∴△PDE是等边三角形,∴∠DPE=∠PDE=60°,∴∠BPE+∠DPC=120°,∴∠BPE=120°﹣∠DPC,∵∠BDP=∠DPC﹣60°,∴∠BDE=60°﹣∠BDP=60°﹣(∠DPC﹣60°)=120°﹣∠DPC,∴∠BDE=∠BPE;(3)BD=BE+BP,理由如下:如图,在BD上截取DF=BP,连接EF,由(2)可知:∠BDE=∠BPE,在△DEF和△PEB中,,∴△DEF≌△PEB(SAS),∴EF=BF,∠EBP=∠EFD,∴∠EBF=∠EFB,∵∠EFB+∠EFD=2∠EBF+∠DBC=180°,∴∠EBF=60°,∴△BEF是等边三角形,∴BE=BF,∵BD=BF+DF,∴BD=BE+BP.28.解:(1)如图1,作OD与⊙C相切于点D,∴CD⊥OD,∵sin∠COD==,∴∠COD=30°,∴∠AOD=60°,OD=<2,∴OA的“关联角”为60°,故答案为:60;(2)如图2,连接OB1,OA2,OB2,OB3,∵OB1=3>3,∴A1B1绕O旋转无法与⊙C相切,故A1B1不是⊙C的“关联线段”,∵OA2=,OB2=,<3<,∴A2B2是⊙C的“关联线段”,∵OA3=3,∴A3B3是⊙C的“关联线段”,故答案为:②③;(3)如图3,∴B点旋转路线在半径为1的⊙O上,当OD与⊙C相切时,由(1)知,OD=,∴当t≥时,线段BD是⊙C的“关联线段”,故答案为:t≥;(4)如图4,当m取最大值时,M点运动最小半径是O到过(m,0)的直线l的距离是m,∵CD=1,M'D=,∴M'C=2,∴OM'=4,∴m的最大值为4,如图5,当m取最小值时,开始时存在ME与⊙C相切,∵CE=1,ME=,∴MC=2,∵0°<α<180°,∴m>﹣2,综上,m的取值为﹣2<m≤4,故答案为:﹣2<m≤4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022-2023学年九年级数学上册第三次月考测试题(附答案)一、选择题(满分40分)1.如果α是锐角,且cosα=,那么sinα的值是()A.B.C.D.22.下列判断正确的是()A.不全等的三角形一定不是相似三角形B.不相似的三角形一定不是全等三角形C.相似三角形一定不是全等三角形D.全等三角形不一定是相似三角形3.如图,点D在△ABC的边AC上,添加下列一个条件仍不能判断△ADB与△ABC相似的是()A.∠ABD=∠C B.∠ADB=∠ABC C.BC2=CD•AC D.AB2=AD•AC 4.若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的两个根,则实数x1,x2,a,b 的大小关系为()A.x1<x2<a<b B.x1<a<x2<b C.x1<a<b<x2D.a<x1<b<x2 5.已知在△ABC中,∠C=90°且△ABC不是等腰直角三角形,设sin B=n,当∠B是最小的内角时,n的取值范围是()A.B.C.D.6.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=与一次函数y=bx﹣c 在同一坐标系内的图象大致是()A.B.C.D.7.如图,在平行四边形ABCD中,E为CD上一点,DE:CE=2:3,连接AE,BD交于点F,则S△DEF:S△ADF:S△ABF等于()A.2:3:5B.4:9:25C.4:10:25D.2:5:258.如图,在△ABC中,CD平分∠ACB,过D作BC的平行线交AC于M,若BC=m,AC =n,则DM=()A.B.C.D.9.如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C 不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值()A.不变B.增大C.减小D.先变大再变小10.如图,在梯形ABCD中,AB=BC=10cm,CD=6cm,∠C=∠D=90°,动点P、Q 同时以每秒1cm的速度从点B出发,点P沿BA、AD、DC运动,点Q沿BC、CD运动,P点与Q点相遇时停止,设P、Q同时从点B出发x秒时,P、Q经过的路径与线段PQ 围成的图形的面积为y(cm2),则y与x之间的函数关系的大致图象为()A.B.C.D.二、填空题(满分20分)11.若点A(2,m)在函数y=x2﹣1的图象上,则A点的坐标是.12.在△ABC中,若∠A=30°,∠B=45°,AC=,则BC=.13.如图所示,在一个直角三角形的内部作一个长方形ABCD,其中AB和BC分别在两直角边上.设AB=xm,长方形的面积为ym2,要使长方形的面积最大,其边长x应为.14.设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB 的面积记为S2;…,依此类推,则S n可表示为.(用含n的代数式表示,其中n 为正整数)三、解答题(满分90分)15.计算:+sin45°.16.已知线段a、b、c满足,且a+2b+c=26.(1)求a、b、c的值;(2)若线段x是线段a、b的比例中项,求x.17.如图,Rt△ABC中,斜边AB上一点M,MN⊥AB交AC于N,若AM=3cm,AB:AC =5:4,求MN的长.18.如图,在矩形ABCD中,E是AD边上的一点,BE⊥AC,垂足为点F.求证:△AEF ∽△CAB.19.如图,两幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15m,CD=20m.AB和CD 之间有一景观池,小双在A点测得池中喷泉处E点的俯角为42°,在C点测得E点的俯角为45°,点B、E、D在同一直线上.求两幢建筑物之间的距离BD.(结果精确到0.1m)【参考数据:sin42°=0.67,cos42°=0.74,tan42°=0.90】20.如图所示,已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x(cm).(1)写出▱ABCD的面积y(cm2)与x的函数关系式,并求自变量x的取值范围.(2)当x取什么值时,y的值最大?并求最大值.21.在△ABC中,点D、E分别在边AB、AC上,且AD:DB=3:2,AE:EC=1:2,直线ED和CB的延长线交于点F,求:FB:FC.22.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.(1)求这个二次函数的解析式;(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.23.问题提出:数学课本上有这样一道题目:如图①,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm.把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?初步思考:(1)试计算出正方形零件的边长;深入探究:(2)李华同学通过探究发现如果要把△ABC按照图②加工成三个相同大小的正方形零件,△ABC的边BC与高AD需要满足一定的数量关系.则这一数量关系是:.(直接写出结论,不用说明理由);(3)若△ABC可以按照图③加工成四个大小相同的正方形,且∠B=30°,求证:AB=BC.参考答案一、选择题(满分40分)1.解:∵sin2α+cos2α=1,∴sinα===.故选:C.2.解:A,不正确,两个相似的三角形相似但不全等;B,正确,因为全等三角形是特殊的相似三角形,不相似即不构成全等的前提;C,不正确,因为相似三角形可以是全等三角形,全等三角形是特殊的相似三角形;D,不正确,因为全等三角形一定是相似三角形;故选:B.3.解:∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似);故A与B正确;当=,即AB2=AC•AD时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似);故D正确;当=,即BC2=CD•AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误.故选:C.4.解:用作图法比较简单,首先作出y=(x﹣a)(x﹣b)图象,任意画一个(开口向上的,与x轴有两个交点),再向下平移一个单位,就是y=(x﹣a)(x﹣b)﹣1,这时与x轴的交点就是x1,x2,画在同一坐标系下,很容易发现:答案是:x1<a<b<x2.故选:C.5.解:根据题意,知0°<∠B<45°.又sin45°=,∴0<n<.故选:A.6.解:观察二次函数图象可得出:a>0,﹣>0,c>0,∴b<0.∴反比例函数y=的图象在第一、三象限,一次函数y=bx﹣c的图象经过第二、三、四象限.故选:A.7.解:∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∵DE:CE=2:3,∴DE:AB=2:5,∵DC∥AB,∴△DEF∽△BAF,∴=()2=,==,∴===(等高的三角形的面积之比等于对应边之比),∴S△DEF:S△ADF:S△ABF等于4:10:25,故选:C.8.解:∵CD平分∠ACB,过D作BC的平行线交AC于M,∴∠MDC=∠MCD,∴DM=MC,∴AM=AC﹣MC=n﹣DM,又∵DM∥BC,∴,即,解得DM=.故选:C.9.解:∵BE⊥AD于E,CF⊥AD于F,∴CF∥BE,∴∠DCF=∠DBE,设∠DCF=∠DBE=α,∴CF=DC•cosα,BE=DB•cosα,∴BE+CF=(DB+DC)cosα=BC•cosα,∵∠ABC=90°,∴O<α<90°,当点D从B向C运动时,α是逐渐增大的,∴cosα的值是逐渐减小的,∴BE+CF=BC•cosα的值是逐渐减小的.故选C.面积法:S△ABC=•AD•CF+•AD•BE=•AD(CF+BE),∴CF+BE=,∵点D沿BC自B向C运动时,AD是增加的,∴CF+BE的值是逐渐减小.故选:C.10.解:过点P作PE⊥BC于E,设P、Q同时从点B出发x秒时,△BPQ的面积是y,∴PE=BP•sin B,∴当点P在AB上,即0<x≤10时,y=BQ•BP sin∠B=x2×=x2;∴当点P在AD上,即10≤x≤12时,y=梯形ABCD面积﹣△PDQ面积=36﹣PD•QD.而PD=12﹣x,QD=16﹣x,则y=﹣x2+14x﹣60;P到D之后,面积达到最大36cm2,且不变.故选:C.二、填空题(满分20分)11.解:把A(2,m)代入y=x2﹣1得m=4﹣1=3,所以A点坐标为(2,3).故答案为(2,3).12.解:作AB边的高CE.在Rt△ACE中,∵∠A=30°,AC=,∴CE=AC=.在等腰Rt△CBE中,BC=CE,故BC=.13.解:∵四边形ABCD为矩形,∴AD∥BC,∴△EAD∽△EBF,∴=,即=,解得,AD=12﹣x,∴y=x(12﹣x)=﹣x2+12x=﹣(x﹣)2+15,∴当x=时,长方形的面积最大,故答案为:.14.解:如图,连接D1E1,设AD1、BE1交于点M,∵AE1:AC=1:(n+1),∴S△ABE1:S△ABC=1:(n+1),∴S△ABE1=,∵==,∴=,∴S△ABM:S△ABE1=(n+1):(2n+1),∴S△ABM:=(n+1):(2n+1),∴S n=.故答案为:.三、解答题(满分90分)15.解:原式=+=1+=16.解:(1)设===k,则a=3k,b=2k,c=6k,所以,3k+2×2k+6k=26,解得k=2,所以,a=3×2=6,b=2×2=4,c=6×2=12;(2)∵线段x是线段a、b的比例中项,∴x2=ab=6×4=24,∴线段x=2.17.解:由题意得:△AMN∽△ACB∴AB:AC=AN:AM=5:4∴可知AN=,根据勾股定理得AM2+MN2=AN2∴MN=.18.证明:∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB.19.解:由题意得:∠AEB=42°,∠DEC=45°,∵AB⊥BD,CD⊥BD,∴在Rt△ABE中,∠ABE=90°,AB=15,∠AEB=42°,∴BE=≈15÷0.90=,在Rt△DEC中,∠CDE=90°,∠DEC=∠DCE=45°,CD=20,∴ED=CD=20,∴BD=BE+ED=+20≈36.7(m).答:两幢建筑物之间的距离BD约为36.7m.20.解:(1)过A作AE⊥BC于E,如图,∵∠B=30°,AB=x,∴AE=x,又∵平行四边形ABCD的周长为8cm,∴BC=4﹣x,∴y=AE•BC=x(4﹣x)=﹣x2+2x(0<x<4);(2)y=﹣x2+2x=﹣(x﹣2)2+2,∵a=﹣,∴当x=2时,y有最大值,其最大值为2.21.解:过B作BG∥AC交EF于G,∴△DBG∽△ADE,∴==,∵AE:EC=1:2,∴BG:CE=,∵BG∥AC,∴△BFG∽△CFE,22.解:①∵函数的图象与x轴相交于O,∴0=k+1,∴k=﹣1,∴y=x2﹣3x,②假设存在点B,过点B做BD⊥x轴于点D,∵△AOB的面积等于6,∴AO•BD=6,当0=x2﹣3x,x(x﹣3)=0,解得:x=0或3,∴AO=3,∴BD=4即4=x2﹣3x,解得:x=4或x=﹣1(舍去).又∵顶点坐标为:(1.5,﹣2.25).∵2.25<4,∴x轴下方不存在B点,∴点B的坐标为:(4,4);③∵点B的坐标为:(4,4),∴∠BOD=45°,BO==4,当∠POB=90°,∴∠POD=45°,设P点横坐标为:x,则纵坐标为:x2﹣3x,即﹣x=x2﹣3x,解得x=2 或x=0,∴在抛物线上仅存在一点P(2,﹣2).∴OP==2,使∠POB=90°,∴△POB的面积为:PO•BO=×4×2=8.23.解:(1)设正方形零件的边长为x mm,则KD=EF=x,AK=80﹣x,∵EF∥BC,∴△AEF∽△ABC,∵AD⊥BC,∴,∴,解得x=48.答:正方形零件的边长为48mm.(2)BC=AD,如图2由已知条件得:EF∥GH∥BC,在△GBN与△EGM中,,∴△GBN≌△EGM,∴EG=BG,∵△AEF∽△AGH,∴,∴AE=EG,∴AE=EG=GB,∴△AEF∽△ABC,∴,∵PD=2x,∴AD=3x,BC=3x,∴AD=BC,故答案为:AD=BC;(3)如图3,过点A作AD⊥BC于D,分别交EF、GH于点M、N,设每个正方形的边长为a,∵EF∥GH∥BC,∴△AEF∽△AGH∽△ABC,∴,∴,解得AD=2.5a,BC=5a,∴BC=2AD.∵∠B=30°,AD⊥BC,∴AB=2AD,∴AB=BC.。

相关文档
最新文档