三相异步电动机的启动方式
三相异步电动机启动方式

三相异步电动机启动方式
三相异步电动机的启动方式:
1.直接启动:直接将电动机连接在三相电源上,电动机会瞬间启动。
这种方式简单,但启动电流大,容易损坏电动机和电源设备。
2.自耦降压启动:利用自耦变压器降低电动机启动电流,降低电动机和电源设备的损坏风险。
3.周期变换启动:利用星三角变换等方法,将电动机的起动电流降低到较小的电流。
4.变频调速启动:通过变频器调节电源频率和电压,将电动机的起动电流降低到最小,并实现电机的调速控制。
以上是三相异步电动机的主要启动方式,应根据具体情况选择合适的方式。
三相异步电动机的起动方法

三、三相绕线式异步电动机起动电阻的计算(略)
三相异步电动机起动
~ ~
KM1 KM2
W1 U1 I 2 a 1 W2 U 2 I1
起动时接触器KM2和KM3 的主触头闭合,转速上升到 一定值时,KM2和KM3断开 KM1闭合,电机全压运行。
M 3~
KM3
三相异步电动机起动
起动电流和起动转矩
I st U1 U1 U1 a 1 a U1 U 2 I 2 U1
三相异步电动机起动
二、转子串频敏变阻器起动
三相异步电动机起动
铁心损耗越大,则Rm越大。而铁耗与磁通的频率(等于转 子频率f2=sf1)的平方成比例。开始起动时,s较大,故f2较 大,Rm也较大;随着起动过程的进行,s逐渐变小,所以f2 变小,所以Rm变小。 起动完毕后,将转子回路短路。 频敏变阻器静止无触点,结构简单,成本低,所以应用较 为广泛
~~
三相异步电动机起动
M 3~
三相异步电动机起动
1C闭合,2C,3C,4C断开,额定电压,串入电阻 (R'+R''+R'''),起动点在3的a点,起动转矩T2<TM; 转速上升到b时,T=T1,闭合2C,切除电阻R''',则工作点 从3的b跳到2的c,T=T2 转速上升到d时,T=T1,闭合3C,切除电阻R'',则工作点 从2的d跳到1的e,T=T2 转速上升到f时,T=T1,闭合4C,切除电阻R',则工作点 从1的f跳到0的g,T=T2 转速继续上升经h到达稳定运行点j。 起动电阻器有金属丝电阻器/铸铁电阻器/水电阻器等,但 都按短时方式设计。
三相鼠笼式异步电动机的起动方法 起动方法有:直接起动/降压起动 一、直接起动(全压起动) 通过三相闸刀或磁力起动器直接接通额定电压电源 方法简单,操作方便,起动电流大(4~7倍额定电流)
三相异步电动机工作过程

三相异步电动机工作过程
三相异步电动机工作过程可以分为四个阶段:启动、加速、稳定运行和停止。
1. 启动阶段:将三相异步电动机连接到电源,并通过某种方式提供启动电流,使电动机开始转动。
启动电流可以通过不同的方法实现,如直接启动、星角转换启动或者自耦变压器启动等。
2. 加速阶段:一旦启动电流通过电动机,可以通过电磁感应引起的转矩使电动机加速。
在这个阶段,电动机的转速逐渐增加,直至达到额定转速。
3. 稳定运行阶段:当电动机达到额定转速后,它会继续以稳定的速度运行,维持恒定的转速。
在这个阶段,电动机的转矩与负载相匹配,维持稳定的运行状态。
4. 停止阶段:在需要停止电动机运行时,可以通过切断电源或者减少供电频率等方式实现电动机的停止。
停止后,电动机将逐渐停下来并停止运动。
需要注意的是,在三相异步电动机的运行过程中,电动机的转子并不与电源产生直接的电连接,而是通过电磁感应的方式进行传输和转动。
这是因为在异步电动机中,转子的绕组是由电源供电的,而定子绕组则是通过电磁感应工作。
三相笼型异步电动机的降压启动

三相笼型异步电动机的降压启动笼型异步电动机常用的降压启动方法有:星-三角形降压启动、定子绕组串电阻降压启动、自耦变压器降压启动等。
1.星-三角形(Y-Δ)降压启动星-三角形(Y-Δ)降压启动用于正常工作时定子绕组作三角形连接的电动机。
在电动机启动时将定子绕组接成星形,实现降压启动。
此时加在电动机每相绕组上的电压为额定电压的 1/ 3,从而减小了启动电流。
待启动后过了预先设定的时间,电动机转速接近额定转速,将定子绕组接线方式由星形改接成三角形,使电动机在额定电压下运行。
它的优点是启动设备成本低、方法简单、容易操作,但启动转矩只有额定转矩的1/3,如图所示。
启动运行:按下启动按钮SB2,KM1、KT、KM Y线圈同时得电并自锁,即KM1、KM Y主触点闭合时,绕组接成星形,进行降压启动。
当电动机转速接近额定转速时,时间继电器KT常闭触头断开,KM Y线圈断电,同时时间继电器KT常开触头闭合,KM△线圈得电并自锁,电动机绕组接成三角形全压运行。
两种接线方式的切换要在很短的时间内完成,在控制电路中采用时间继电器定时自动切换。
KM Y、KM△常闭触头为互锁触头,以防同时接通造成电源短路。
停止运行:按下停止按钮SB1,KM1、KM△线圈失电,电动机停止运转。
2.定子绕组串电阻降压启动下图所示为定子绕组串接电阻降压启动控制线路。
在电动机启动时,在三相定子电路串接电阻,使电动机定子绕组电压降低,启动结束后再将电阻短接,电动机在额定电压下正常运行。
启动过程如下:按下启动按钮 SB2,接触器KM1与时间继电器KT的线圈同时通电,KM1主触点闭合,电动机定子绕组串电阻R启动。
时间继电器 KT 延时预定时间后,其延时闭合常开触点闭合,接触器KM2 线圈通电,KM2 主触点闭合,短接R,电动机投入正常运行;KM2常闭辅助触头断开,接触器KM1与时间继电器KT的线圈同时断电。
该电路结构简单、启动功率因数高,缺点是电阻上功率消耗大。
三相异步电动机启动方法

三相异步电机的启动方法三相异步电动机的起动方法主要有直接起动、传统减压启动和软启动三种启动方法。
下面就分别做详细介绍。
2.2.1直接起动直接起动,也叫全压起动。
起动时通过一些直接起动设备,将全部电源电压(即全压)直接加到异步电动机的定子绕组,使电动机在额定电压下进行起动。
一般情况下,直接起动时起动电流为额定电流的3〜8倍,起动转矩为额定转矩的1〜2倍。
根据对国产电动机实际测量,某些笼型异步电动机起动电流甚至可以达到8〜12倍。
直接起动的起动线路是最简单的,如图2-2所示。
然而这种起动方法有诸多不足。
对于需要频繁起动的电动机,过大的起动电流会造成电动机的发热,缩短电动机的使用寿命;同时电动机绕组在电动力的作用下,会发生变形,可能引起短路进而烧毁电动机;另外过大的起动电流,会使线路电压降增大,造成电网电压的显著下降,从而影响同一电网的其他设备的正常工作,有时甚至使它们停下来或无法带负载起动。
这是因为Ts及Tm均与电网电压的平方成正比,电网电压的显著下降,可使Ts及Tm均下降到低于Tz0一般情况下,异步电动机的功率小于7.5kW时允许直接起动。
如果功率大于7.5kW,而电源总容量较大,能符合下式要求的话,电动机也可允许直接起动。
I1st1:电源总容量(kv八)1K3I1N4起动电动总功率(kw)如果不能满足上式的要求,则必须采用减压启动的方法,通过减压,把启动电流Ist限制到允许的数值。
图2-2直接启动原理图2.2.2传统减压起动减压起动是在起动时先降低定子绕组上的电压,待起动后,再把电压恢复到额定值。
减压起动虽然可以减小起动电流,但是同时起动转矩也会减小。
因此,减压起动方法一般只适用于轻载或空载情况。
传统减压起动的具体方法很多,这里介绍以下三种减压起动的方法:(1)定子用接电阻或电抗起动定子绕组用电阻或电抗相当于降低定子绕组的外加电压。
由三相异步电动机的等效电路可知:起动电流正比于定子绕组的电压,因而定子绕组用电阻或电抗可以达到减小起动电流的目的。
绕线式三相异步电动机启动方式

绕线式三相异步电动机启
动方式
LELE was finally revised on the morning of December 16, 2020
绕线式三相异步电动机启动方式
1、回路串接电阻起动:绕线式可以在回路中串入电阻进行起动,这样就减小了起动电流。
一般采用起动变阻器起动,起动时全部电阻串入电路中,随着电动机转速逐渐加快,利用控制器逐级切除起动电阻,最后将全部起动电阻从转子电路中切除。
适用于中小功率低压电动机。
2、转子回路串接频敏变阻器起动:频敏变阻器的电阻()随线圈中所通过的电流频率而变。
刚起动时,电机最大,转子电流(即频敏电阻线圈通过的电流)频率最高,等于电源频率。
因此,频敏变阻器的电阻最大,这就相当于起动时在转子回路中串接一个较大电阻,从而使起动电流减小。
随着电动机转速的加快,逐渐减小,转子电流频率逐渐降低,频敏变阻器电阻也逐渐减小,最后把电动机的转子短接,频敏变阻器从转子电路中切除。
适用于中小功率低压电动机。
3、转子回路串液体变阻器启动:液体变阻器俗称水电阻,顾名思义,在特制的水箱内装有电阻值的液体,液体一般用纯净水加入适量的电解粉按一定比例配制,在水箱的底部有一组静极板,水箱顶部有一组动极板,动极板在驱动装置的驱动下,在一定时间内下降到与静极板接触,接触后由外部将水电阻切除,从而实现平滑启动。
适用于大功率高压电动机。
串电阻启动降压启动变频启动直接启动共四种。
三相异步电动机全压启动原理
三相异步电动机全压启动原理
三相异步电动机的全压启动原理是先通过星形连接降低定子绕组上的电压以限制起动电流,然后在电动机转速上升到一定值后,切换为三角形连接,使电动机在全压下正常运行。
具体来说,当电动机起动时,将开关置于“起动”位置,电动机定子绕组被接成星形降压起动。
当电动机转速上升到一定值后,再将开关置于“运行”位置,使电动机定子绕组接成三角形,此时电动机进入全压运行。
此外,还有一种方法是利用自耦变压器分接头来降低电动机的电压,待转速升到一定值时,自耦变压器自动切除,电动机与电源相接,在全压下正常运行。
这种起动方式可以选择自耦变压器的分接头位置来调节电动机的端电压,而起动转矩比星三角降压启动大。
但是,自耦变压器的投资较大,且不允许频繁启动。
它主要适用于星形或三角形连接、容量较大的电动机。
三相异步电机星三角降压启动原理
三相异步电机星三角降压启动原理三相异步电机是工业中常用的一种电动机,它具有结构简单、可靠性高、维护方便等优点,广泛应用于各个领域。
在启动三相异步电机时,为了避免电机启动时的过大电流冲击,常使用星三角降压启动方式。
星三角降压启动是一种常见的电动机起动方法,通过降低电源电压来减少电机启动时的电流冲击,保护电动机和电网设备。
其原理是将三相异步电机的绕组连接方式从星型切换到三角形,从而降低电机的起动电流,然后再切换回星型连接,使电机正常运行。
具体来说,星三角降压启动包括两个阶段:降压启动阶段和正常运行阶段。
在降压启动阶段,电机的绕组以星型连接,即将电源的三相电压分别接到电机的三个绕组端子上,此时电压是较低的,可以减小电机的起动电流。
这是因为在星型连接下,电机的线电流只有相电压的1/√3倍,从而使得电机的起动电流减小到了原来的1/√3倍。
接下来是正常运行阶段,电机的绕组切换到三角形连接,即将电源的三相电压分别接到电机的三个绕组端子上。
此时电压恢复到额定电压,电机可以正常运行。
需要注意的是,在切换连接方式时,应注意避免断开电源或者造成短路,这可能会对电机和电网设备造成损坏。
因此,在实际应用中,通常会采用专门的星三角切换装置,通过控制器控制切换过程,确保切换的安全可靠。
星三角降压启动方式在很大程度上减小了电机启动时的电流冲击,保护了电机和电网设备。
但是,由于在启动过程中电机的转矩较小,因此星三角降压启动主要适用于无负载或者轻载启动的场合。
对于重载启动,可能需要采用其他启动方式。
星三角降压启动是一种常用的电动机启动方法,通过降低电源电压来减小电机启动时的电流冲击,保护电机和电网设备。
在实际应用中,需要注意切换连接方式的安全可靠,以及启动方式的适用范围。
三相异步电动机的启动控制
2、优点: 启动转矩和启动电流可以调节 3、缺点: 设备庞大,成本较高 4、适用范围: 适用于额定电压为220/380V,接法为△/Y形,容量较大
的三相异步电动机的降压启动
Y—△降压启动控制线路
1、定义: 电动机启动时,把定子绕组接成Y形,以降低 启动电压,限制启动电流。待电动机启动后, 再把定子绕组改接成△形,使电动机全压运 行。
当电动机M全压正常运转时,接触器 KM1和KM2、时间继电器KT的线圈均 需长时间通电,从而使能耗增加,电 器寿命缩短。
接触器KM1和时间继电器KT只作短 时间的降压启动用,待电动机全压 运转后就全部从线路中切除,从而 延长了KM1和KT的使用寿命,节省 了电能,提高了电路的可靠性。
启动电阻R的选用 启动电阻R一般采用ZX1、ZX2毓系列铸铁电阻。铸铁电阻能够 通过较大电流,功率大。启动电阻R可按下列近似公式确定:
利用启动设备将电压适当降低后加到电动机的定子绕组 1、定义: 上进行启动,待电动机启动运转后,再使其电压恢复到 额定值正常运转。
常见的降压启动方法有四种: 2、方法: 定子绕组串接电阻降压启动;自耦变压器降压启动; Y—△降压启动;延边△降压启动
3、应用: 降压启动需要在空载或轻载下启动
定子绕组串接电阻降压启动控制线路
三相异步电动机的启动控制
一、直接启动
1、定义: 启动时,加在电动机定子绕组上的电压为电动机的额定电
压,属于全压启动,也称直接启动。
2、优点: 电气设备少,线路简单,维修量较小 3、缺点: 启动电流一般为额定电流的4~7倍
直接启动导致电源变压器输出电压下降,减小了电机启动 转矩,且会影响同一供电线路中其他电气设备工作
R=190×(Ist-Ist’)/IstIst‘ Ist——未串电阻前的启动电流(A),一般Ist =(4~7)IN; Ist‘——串联电阻后的启动电流(A),一般Ist‘=(2~3)IN;
三相异步电动机y-△降压启动控制电路工作原理
三相异步电动机y-△降压启动控制电路工作原理
三相异步电动机Y-Δ降压启动控制电路是一种常见的电动机
启动方式,多用于大功率电动机的启动过程中。
其工作原理如下:
1. 电源供电:当三相异步电动机需要启动时,通过主控制开关将电源连接到电动机的三相输入端。
2. Δ连接:在启动过程中,控制电路将电动机的三个定子绕组
分别连接成一个Δ形状,即将每个定子绕组的一个端子与另
一个定子绕组的另一个端子连接在一起。
3. 降压启动:通过一个时间继电器或者其他启动控制器来控制一个对应的继电器,使得在启动过程中,电动机的每个定子绕组通过一个降压启动器,即一个定子绕组与外部电阻串联连接,以降低电动机的电压。
4. 加载转矩:在降压启动的过程中,电动机的电压被降低,电机的转矩也被降低。
这样可以减轻电动机启动时的机械冲击,并且可以避免过大的电流冲击对线路和电机的损坏。
5. 过渡到Y连接:当电动机达到设定的启动时间或者转速后,控制电路将继电器动作,切断降压启动器的连接,在短时间内,使得电动机的三个定子绕组组成Y形状连接,使得电动机能
够正常运行。
总的来说,Y-Δ降压启动控制电路通过降低电动机的电压,减
小启动时的机械冲击,确保电动机的安全启动,并在启动后切换为正常运行状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三相异步电动机的启动方式
一、前言
三相异步电动机是工业生产中常用的一种电动机,其启动方式有多种。
本文将详细介绍三相异步电动机的启动方式,包括直接启动、星角变
压器启动、自耦变压器启动、软起动器启动和变频器启动。
二、直接启动
直接启动是最简单的一种三相异步电动机的启动方式,其原理是将电
源直接连接到电机的三个相线上。
这种方式适用于小功率电机,但对
于大功率电机来说,由于起始电流较大,容易引起系统过载,甚至损
坏设备。
因此,在实际应用中,直接启动往往只适用于小功率电机。
三、星角变压器启动
星角变压器是一种常用的三相异步电动机起始装置。
其原理是通过一
个特殊的变压器将高压供应转换为低压供应,并在低压侧形成一个星
形结构和一个角形结构。
在起始时,先将三个绕组接在星形结构上,
并通过开关控制转换到角形结构上。
这样可以降低起始时的电流和转矩,并保护设备不受过载损坏。
四、自耦变压器启动
自耦变压器启动是一种常用的三相异步电动机起始装置。
其原理是通
过一个特殊的变压器将高压供应转换为低压供应,并在低压侧形成一
个自耦结构。
在起始时,先将电机接在高压侧上,然后逐步降低电源
电压,直到达到额定电流和转矩。
这种方式可以降低起始时的电流和
转矩,并保护设备不受过载损坏。
五、软起动器启动
软起动器是一种新型的三相异步电动机起始装置。
其原理是通过一个
特殊的晶闸管控制器逐步升高电源电压,并控制起始时的电流和转矩。
这种方式可以有效地降低起始时的冲击和噪声,并保护设备不受过载
损坏。
六、变频器启动
变频器是一种常用的三相异步电动机启动装置。
其原理是通过一个特
殊的变频控制器将高频交流供应转换为低频交流供应,并控制其输出
频率和幅度,以达到控制转速和扭矩的目的。
这种方式可以实现无级
调速和精确控制,适用于需要频繁启停和调速的应用场合。
七、总结
三相异步电动机的启动方式有多种,每种方式都有其适用范围和特点。
在选择启动方式时,需要根据电机的功率、负载特性和运行环境等因
素进行综合考虑,并选择最合适的方式来保护设备并提高生产效率。