沉淀反应名词解释

合集下载

沉淀反应

沉淀反应

二、 絮状沉淀试验
絮状沉淀试验:是将抗原与相应抗体混合, 在电解质存在的条件下,抗原抗体结合形成肉 眼可见的絮状沉淀物。 方法评价:敏感度较低、简便、受抗原抗体 比例的影响非常明显 应用:性病研究实验室试验(VDRL)、USR、 RPR,本实验只能作为定性或半定量实验方法。
絮 Ag
1:2

沉淀线靠近谁浓度则小,沉淀弧趋向谁分子量则大
1表示待检Ag 2表示标准Ag 两条沉淀线互相吻合相连,表明两个抗 原完全相同。 两条沉淀线呈部分相切,表明两个抗
原之间有部分相同。
两条沉淀线交叉而过,表明两个抗原 完全不同。 待检Ag与标准Ag性质相同;但含量较 低;
1.周围6个孔放不同稀释度的相应Ab。


对流免疫电泳
• 优点及应用 • 电场限制了抗原抗体运动方向,加速了 反应速度,使反应时间大大缩短了,灵 敏度显著提高了,本法主要用于一些病 原微生物及其他蛋白质抗原的检测。
二、火箭免疫电泳
rocket immnoelectrophoresis,RIE
1、原理
单向免疫扩散+电泳,定量检测技术 电泳时凝胶中抗体不移动,样品孔中的抗原 向正极泳动,随着抗原量的逐渐减少,抗原泳动 的基底区越来越窄,抗原抗体分子复合物形成的 沉淀线逐渐变窄,形成一个形状如火箭的不溶性 复合物沉淀峰,抗体浓度固定时,峰的高度与抗 原量呈正相关。
体量固定,所测吸光度与复合物的量成正比,与
待测抗原量成正比。用已知浓度的抗原标准品建 立标准曲线,根据待测样品的吸光度可得出抗原
的含量。
2、方法:
1) 稀释检测标本和标准抗原(5个浓度) 2) 将稀释标本和标准抗原与适当过量的抗血清混 合反应 3) 在340nm处测各管吸光度(IC:35~100nm,选择 范围:290~410nm)

沉淀反应

沉淀反应

s Ksp
MmAn型:MmAn(s) ⇆ mMn+ + nAm-
Ksp= [Mn+ ]m[Am-]n = (ms)m(ns)n
s

mn
Ksp mmnn
§1 微溶化合物的溶度积和溶解度
例 25oC时,Ag2CrO4的Ksp=2.010-12,求其溶解度。
解:
Ag2CrO 4 (s)
2Ag
[Ag+] = cAg+ / Ag(NH3) = s / Ag(NH3) Ksp=[I-] ·[Ag+] = s ·s / Ag(NH3) Ksp· Ag(NH3) = s2 s =( Ksp· Ag(NH3) )1/2 = ( 9.0×10-17 ×1.0 ×103)1/2
= 1.0 × 10-7(mol/L)
Ba
2
(aq)

SO
2 4
(aq)
§1 微溶化合物的溶度积和溶解度
实验证明:
1、在一定温度下,BaSO4溶解的速度v与晶体表面 积S成正比,即:v1∝ S v1= k1S
2、沉淀的生成速度与晶体的表面积及溶液中Ba2+和SO42浓度的乘积成正比,即:
v2 ∝ [Ba2+] [SO42-] S
平衡时:v1 = v2
CaC2O4 ⇆ Ca2+ + C2O42-
↓ HC2O4-
↓ H2C2O4
例2 计算CaC2O4沉淀在下列三种情况下的溶解度:① 在纯水, 忽略草酸根离子与水的作用。② pH=3时; ③ pH=3,过量草 酸盐的浓度为0.01mol/L时。 已知Ksp=2.0×10-9,H2C2O4的Ka1=5.9×10-2,Ka2=6.4×10-5 或

沉淀反应

沉淀反应

第六章沉淀反应沉淀反应是指可溶性抗原与相应抗体在特定条件下发生特异性结合时出现的沉淀现象。

第一节沉淀反应的特点沉淀反应中的抗原多为蛋白质、多糖、血清、毒素等可溶性物质。

沉淀反应分两个阶段,第一阶段为抗原抗体发生特异性结合,几秒到几十秒即可完成,出现可溶性小的复合物,肉眼不可见;第二阶段为形成可见的免疫复合物,约需几十分钟到数小时才能完成,如沉淀线、沉淀环。

第二节液体内沉淀试验一、絮状沉淀试验抗原抗体溶液在电解质的存在下结合,形成絮状沉淀物,这种絮状沉淀受抗原和抗体比例的直接影响,因此常用来作为测定抗原抗体反应最适比例的方法,常见类型有:(一)抗原稀释法抗原进行一系列稀释与恒定浓度抗血清反应。

(二)抗体稀释法抗体进行一系列稀释与恒定浓度抗原反应。

(三)方阵滴定法方阵滴定法即棋盘滴定法。

二、免疫浊度测定属于液体内沉淀反应,其特点是将现代光学测量仪器与自动化检测系统相结合应用于沉淀反应,可进行液体中微量抗原、抗体及小分子半抗原定量检测。

(一)免疫比浊测定的影响因素1.抗原抗体的比例是浊度形成的关键因素。

当抗原过量时,形成的IC分子小,而且会发生再解离,使浊度反而下降,光散射亦减少,这就是高剂量钩状效应。

当抗体过量时,IC的形成随着抗原递增而增加,至抗原、抗体最适比例处达最高峰,这就是经典的海德堡曲线理论。

在反应体系中保持抗体适当过量,如形成抗原过量则造成测定的准确性降低。

2.抗体的质量对免疫比浊测定法的抗体要求(1)特异性强:抗血清最核心的要求是单价特异性,即该抗体只针对某一种抗原,与其他无关抗原不发生交叉反应,特异性抗体和相应抗原结合后形成的浊度代表真实的试验结果。

(2)效价高:低效价(<1:20)抗体会增加非特异性浊度(伪浊度)的产生。

(3)亲和力强:则抗体的活性高,不仅可以加快抗原抗体反应的速度,而且形成的IC较牢固,不易发生解离。

在速率比浊法中尤为重要。

(4)R型和H型抗体:根据抗血清来源的动物种类不同,分为R型抗体和H型抗体。

临床检验免疫学重点名词解释

临床检验免疫学重点名词解释

一、名词解释1.ANA(抗核抗体):是一组将自身各种细胞核成分作为靶细胞的自身抗体总称。

2.BAS(生物素–亲合素系统):基于生物素和亲合素既能偶联抗原(或抗体)分子,又能偶联酶、荧光素等示踪物质,可桥联抗原抗体系统和示踪物质指示系统。

3.包被:将抗体或抗原结合在固体载相上的过程。

4.CH50试验:绵羊红细胞与溶血素结合形成的免疫复合物激活血清中的补体,引起红细胞溶血,以50%溶血为判断终点来测定血清总补体活性。

5.CD分子(簇分化抗原):有核细胞在不同发育阶段其在细胞膜表面均可表达不同的分化抗原,形成不同的细胞类群。

6.沉淀反应:是指可溶性抗原与相应抗体在适当条件下发生特异性结合而出现可见的沉淀现象。

7.多克隆抗体:在含有多种抗原表位的抗原刺激下,体内多个B细胞克隆被激活并产生针对多种不同表位的抗体,其混合物为多克隆抗体。

8.单克隆抗体:单个B细胞参与融合形成的单个杂交瘤细胞经分离克隆化,产生针对单一表位、结构相同、功能均一的抗体,具有性质纯、效价高、特异性强、少或无血清交叉反应等优点。

9.等价带:当抗体过量时,IC(免疫复合物)的形成随着抗原递增至抗原、抗体比例最适处达最高峰。

前带:高峰区域左侧,抗体浓度过高,沉淀反应不明显后带:高峰区域右侧,抗原浓度过高,沉淀反应不明显10.封闭:加入的血清标本和酶结合物中的蛋白质部分地非特异性吸附于固相载体表面,加入1%~5%牛血清白蛋白或5%~20%小牛血清再包被一次,消除此干扰的过程。

11.HLA:是引起同种异体移植排斥反应最强的抗原,与HVGR或GVHR有关。

12.化学发光剂:在化学发光反应中参与能量转移并最终以发射光子的形式释放能量的化合物。

13.胶体金:是金盐被还原成金原子后形成的金颗粒悬液。

14.间接凝集反应:可溶性抗原/抗体先吸附于颗粒性载体表面,与相应抗体/抗原作用,在适宜的电解质存在条件下出现特异性凝集现象。

15.抗原抗体结合的可逆性:抗原与相应抗体结合形成复合物后,在一定条件下又可解离为游离的抗原与抗体的特性。

凝集反应、沉淀反应

凝集反应、沉淀反应
2
当抗原与相应抗体结合时,抗体的交联作 用克服了抗原颗粒表面的Z电位,而使颗粒 相互靠拢,聚集在一起。 当抗体的分子太少或分子量小,不能克服 相当厚度的离子云层时,则不能使颗粒聚 集。在凝集反应中IgM的作用远大于IgG。 为促使凝集现象的出现,可采取以下措施: 1、增加蛋白质和电解质,缩短颗粒间的距 离;2、增加溶液的黏稠度;3、用胰酶和 神经氨酸酶处理;4:以离心的方式克服颗 粒间的排斥力。
第五章
凝集反应
颗粒性抗原与特异性抗原结合后,在适当 的电解质存在下,形成肉眼可见的凝集现 象,称为凝集反应。 可溶性抗原或抗体与载体颗粒结合形成致 敏颗粒后,与相应的抗原或抗体结合,也 能发生凝集反应。
1
第一节 凝集反应的特点 凝集反应的发生分为两个阶段:1、抗原抗 体的特异性结合阶段;2、出现肉眼可见的 凝集现象。 颗粒性抗原在悬液中带负电荷,周围吸引 一层与之牢固结合的正离子,外面又排列 一层松散的负离子,构成一个双层电子云。 在松散层内界和外界间的电位差形成Z电位。 溶液中负离子强度越大,Z电位也越大,Z 电位使颗粒间互相排斥。
示意图
标准品抗原浓度测定
抗原浓度 1.测定沉淀环直径 2.在标准曲线上查找
不同病人抗原浓度测定
相应抗原浓度
35
单向扩散试验 (平板法)
沉淀环的直径与待测标本含量两种计算方法
Mancini曲线: 大分子抗原 时间扩散>48h, 常数K=C∕d2 普通坐标纸曲线
Fahey曲线: 小分子抗原 扩散时间24h 常数K=logC∕d 半对数坐标纸曲线
C为抗原浓度, d为沉淀环直径
36
Mancini曲线
Fahey曲线
T1为16~24h;T2为24~48h;T3为48h以 上,可见T3为直线,T1为反抛物线

第七章 沉淀反应

第七章 沉淀反应

第七章沉淀反应沉淀反应(precipitation)是可溶性抗原与相应抗体特异性结合所出现的反应。

早在1897年Kraus就发现,细菌培养液与相应抗血清混合时可发生沉淀反应。

1905年Bechhold把抗体放在明胶中,将抗原加于其上,发现沉淀反应可在凝胶中进行。

Oudin (1946)报告了试管免疫扩散技术,Mancini(1965)提出单向免疫扩散技术,使定性免疫试验向定量化发展。

另一方面,免疫浊度法的出现,使沉淀反应达到快速、微量、自动化的新阶段。

沉淀反应分两个阶段,第一阶段发生抗原抗体特异性结合,第二阶段形成可见的免疫复合物(参见第九章)。

经典的沉淀反应在第二阶段观察或测量沉淀线或沉淀环等来判定结果,称为终点法;而快速免疫浊度法则在第一阶段测定免疫复合物形成的速率,称为速率法。

现代免疫技术(如各种标记免疫技术)多是在沉淀反应的基础上建立起来的,因此沉淀反应是免疫学方法的核心技术。

第一节液体内沉淀试验一、絮状沉淀试验絮状沉淀试验为历史较久、又较有用的方法。

该法要点是:将抗原与抗体溶液混合在一起,在电解质存在下,抗原与抗体结合,形成絮状沉淀物。

这种沉淀试验受到抗原和抗体比例的直接影响,因而产生了两种最适比例的基本测定方法。

(一)抗原稀释法(Dean-Webb法)抗原稀释法是将可溶性抗原作一系列稀释,与恒定浓度的抗血清等量混合,置室温或37℃反应后,产生的沉淀物随抗原量的变化而不同。

表7-1系以牛血清白蛋白为例的实验结果。

表7-1 Dean-webb 定量沉淀试验──────────────────────────────────管号抗原抗体总沉淀量反应抗原沉淀抗体沉淀沉淀中(mgN) (mgN) (mgN) 过剩物量(mgN) 量(mgN) Ab/Ag ──────────────────────────────────1 0.003 0.68 0.093 Ab 0.003 0.090 30.02 0.005 0.68 0.145 Ab 0.005 0.140 28.03 0.011 0.68 0.249 Ab 0.011 0.238 21.74 0.021 0.68 0.422 Ab 0.021 0.401 19.15 0.032 0.68 0.571 Ab 0.032 0.539 16.86 0.043 0.68 0.734 —0.043 0.691 16.17 0.064 0.68 0.720 Ag ———8 0.085 0.68 0.601 Ag ———9 0.171 0.68 0.464 Ag ———\par10 0.341 0.68 0.386 Ag ———─────────────────────────────────从表7-1可以看出,1~5管为抗体过剩管,7~10管为抗原过剩管,唯第6管沉淀物最多,两者之比为16:1,即最适比。

凝集、沉淀反应


实验注意事项: 实验注意事项:
1直接凝集反应玻片法摇动玻片时不要把两凹 直接凝集反应玻片法摇动玻片时不要把两凹 内液体混在一起。 内液体混在一起。 2双向琼脂。 出为止。
作业
1 写出实验报告 2 分析凝集反应的结果和意义 3 绘出双向琼脂扩散试验结果图
实验用品
琼脂板,打孔器,酒精灯,毛细吸管, 琼脂板,打孔器,酒精灯,毛细吸管,诊断血 对照抗原,待检血清,湿盒, ℃温箱, 清,对照抗原,待检血清,湿盒,37℃温箱, 双凹玻片,伤寒诊断血清,生理盐水, 双凹玻片,伤寒诊断血清,生理盐水,待检菌 液等。 液等。
实验方法
直接凝集反应玻片法 1 先标记双凹玻片,两侧分别为 ,2号,在1号 先标记双凹玻片,两侧分别为1, 号 号 凹内加入伤寒诊断血清1滴 凹内加入伤寒诊断血清 滴,在2号凹内加入生理 号凹内加入生理 盐水1滴 盐水 滴。 2 分别加入待检菌液于两凹内各 滴 分别加入待检菌液于两凹内各1滴 3 摇动混匀 分钟,观察结果 摇动混匀2分钟 分钟,
凝集、 凝集、沉淀反应
实验目的
1 掌握直接凝集反应的原理意义及操作方法 2 了解双向琼脂扩散试验的原理意义及操作方 法
实验内容
1 直接凝集反应玻片法 2 双向琼脂扩散试验
实验原理
直接凝集反应:颗粒性抗原悬液与其相应抗体, 直接凝集反应:颗粒性抗原悬液与其相应抗体, 在有适量电解质的环境中, 在有适量电解质的环境中,两者直接特异性结 进一步凝集成肉眼可见的凝集块。 合,进一步凝集成肉眼可见的凝集块。 沉淀反应:可溶性抗原与相应抗体特异性结合, 沉淀反应:可溶性抗原与相应抗体特异性结合, 两者比例适当并有电解质存在及其一定的温度 条件下,经一定的时间, 条件下,经一定的时间,可形成肉眼可见的沉 淀物,在琼脂板上双方结合出现白色沉淀线。 淀物,在琼脂板上双方结合出现白色沉淀线。

生物碱显色反应名词解释

生物碱显色反应名词解释1、生物碱名词解释:是天然产的一类含氮有机化合物,大多数具有氮杂环结构,呈碱性并有较强的生物活性。

2、两性生物碱名词解释:分子中有酚羟基和羧基等酸性基团的生物碱。

3、隐性酚羟基名词解释:由于空间效应使酚羟基不能显示其的酚酸性,不能溶于氢氧化钠水溶液。

4、生物碱沉淀反应名词解释:生物碱在酸性水或稀醇中与某些试剂生成难溶于水的复盐或络合物的反应称为生物碱沉淀反应。

5、生物碱显色反应名词解释:某些试剂能与个别生物碱反应生成不同颜色溶液的反应。

6、雷氏铵盐名词解释:即硫氰酸铬铵,其组成为NH4[Cr ((NH3)2SCN)4],其与季铵型生物碱反应生成红色沉淀或结晶。

7、Dragendorff试剂名词解释:即碘化铋钾,其组成为KbiI4,与生物碱反应生成橘红色至黄色无定形沉淀(B*HbiI4)。

8、诱导效应名词解释:生物碱分子中的氮原子上的电子云密度受到氮原子附近供电基(如烷基)和吸电基(如各类含氧基团、芳环、双键)诱导效应的影响。

供电诱导使氮原子上电子云密度增加,碱性增强;吸电诱导使氮原子上电子云密度减小,碱性降低。

9、共轭效应名词解释:生物碱分子中氮原子的孤电子对与π-电子基团共轭时一般使生物碱的碱性减弱的效应。

10、空间效应名词解释:在生物碱中氮原子由于附近取代基的空间立体障碍或分子构象因素,而使质子难于接近氮原子,碱性减弱的效应。

11、诱导-场效应名词解释:生物碱中一个氮原子质子化后,就产生一个强的吸电基团-N+HR2,它对另外氮原子产生两种碱性降低的效应,即诱导效应和静电场效应。

12、氢键效应名词解释:当生物碱成盐后,氮原子附近如羟基、羰基,并处于有利于形成稳定的分子内氢键时,氮上的质子不易离去,碱性强的效应。

沉淀反应

Ag等电点为pH4-5,带负电多,Mr较Ab小,电泳速度快,向正极泳动。 Ab等电点pH6-7,带负电少,Mr较大,抵不过电渗力,向负极泳动。
对流免疫电泳图
-
Ag
+
Ab
4.火箭电泳 (rocket electrophoresis) 单扩+电泳技术
5.免疫电泳(immuno_electrophrosis) 双扩+区带电泳 分辨力及特异性高,用于纯化抗原及抗体 成分的分析及正常和异常体液蛋白的识 别。
终点法是让抗原和相应抗体作用一定时 间,使反应达到平衡后,用散射比浊仪 测量其散射光值。
免疫浊度法影响因素: 抗原抗体比例
基本原则是在反应体系中保持抗体过量 抗体质量
特异性 效价 亲和力 R型和H型抗体 抗原抗体反应的溶液:磷酸盐缓冲液 增浊剂的使用:PEG—消除蛋白质分子
周围的电子云和水化层,促进IC的形成
“1” 为单一抗原抗体系统。 “n” 为多个抗原抗体系统。 *可以用混合抗原鉴定抗体纯度。 *可以用混合抗体鉴定抗原纯度。
2.单向扩散(single diffusion)
在琼脂胶中混入一定量抗体,使待测抗 原从局部向琼脂内自由扩散,在一定区 域内形成可见的沉淀环。
沉淀环的直径与抗原浓度成正比。
定量试验,用于测定标本中IgG、IgM、 IgA。
沉淀反应(Precipitation)
概念
可溶性抗原与相应抗体特异性结合所 出现的反应。 反应分两个阶段:
第一阶段发生抗原抗体特异性结合 速率法
第二阶段形成可见的免疫复合物 终点法
类型
(一)环状试验(ring test) 将已知的抗血清放入小口径玻璃管内, 小心加入适当稀释的抗原溶液于抗血清 表面,使两溶液成为界面清晰的两层, 数分钟后界面处出现白色沉淀环即为阳 性。用于血迹鉴定等。

沉淀反应的应用及意义

沉淀反应的应用及意义沉淀反应是一种常见的化学反应,它涉及到溶液中发生的固体物质的形成。

沉淀反应有着广泛的应用和重要的意义。

首先,沉淀反应在分析化学中有着重要的用途。

通过观察溶液中是否出现沉淀物,可以确定溶液中是否存在特定的离子。

例如,当我们想要确定溶液中是否含有氯离子时,可以加入少量的银离子,若产生白色沉淀则说明溶液中存在氯离子。

这种方法被广泛用于鉴定化学品的成分和测定未知样品中某种离子的存在。

其次,沉淀反应在环境保护中有着重要的作用。

许多沉淀反应可以将溶液中的污染物转化为固体沉淀物,从而达到去除污染物的目的。

例如,在水处理中,当水中含有过多的重金属离子时,可以通过与适当的沉淀剂反应形成沉淀物,从而去除水中的有害物质。

这对于净化水源、维护生态环境起到了至关重要的作用。

另外,沉淀反应在冶金工业中也扮演着重要的角色。

在矿石的提取和矿石冶炼过程中,常常需要通过沉淀反应来分离和提取目标金属。

以提取铜为例,矿石中的铜通常以硫酸铜的形式存在,需要经过沉淀反应转化为固体的氧化铜,然后通过其他工艺步骤将其提纯和提取出来。

类似的沉淀反应在冶炼过程中也广泛用于提取其他金属,如铁、铅、锌等。

沉淀反应还在制备纯化化学品中扮演着重要角色。

许多化学品需要以固体的形式存在,而无法直接通过普通的合成方法合成。

这时,可以通过选择适当的反应条件,使合成反应产生固体沉淀物,然后通过过滤和干燥等工艺步骤得到目标化合物。

这种方法被广泛用于制备纯化无机化合物,如无水盐、金属氧化物等。

此外,沉淀反应还在药物制剂中有着重要的应用。

许多药物可以通过沉淀反应来制备或改善其制剂性质。

例如,某些药物在溶液中不稳定,难以长期储存和使用。

而将这些药物制备成沉淀物后,可以提高其稳定性和贮存性,使药物更便于使用。

另外,沉淀反应还可以用于制备缓释药物,通过将药物制备成微小的沉淀物,在体内释放药物,从而实现长效治疗。

综上所述,沉淀反应在分析化学、环境保护、冶炼工业、制备纯化化学品和药物制剂等方面都具有广泛的应用和重要的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沉淀反应名词解释
沉淀反应是指化学反应中生成的固体物质从溶液中沉积出来形成悬浮物的过程。

通常情况下,沉淀反应发生在两种溶液中的离子相互反应后,生成不溶于水的固体产物。

这个固体产物由于其密度较大,从溶液中沉积出来,并在溶液中形成一层或多层颗粒沉淀。

沉淀反应是一种重要的化学反应,在生产和实验室中有很广泛的应用。

在沉淀反应中,通常有两个溶液反应发生,其中一个溶液中存在两种离子,其一是阳离子,通常是金属阳离子,另一个是阴离子,通常是非金属阴离子或一些复杂阴离子。

当这两种溶液中的离子相互反应时,产生的产物往往是不溶于水的,从而形成悬浮在溶液中的固体沉淀。

沉淀反应的主要步骤包括反应物的混合、反应的进行和沉淀物的形成。

两种溶液中的离子在混合后,通过离子间的化学反应形成沉淀物。

反应的进行通常需要一定的时间,这取决于反应物的浓度、温度和反应速率等因素。

一般情况下,反应物浓度越高,温度越高,反应速率越快。

当反应物耗尽时,沉淀物开始从溶液中沉积出来,并逐渐形成固体物质。

沉淀反应是化学实验室中常用的鉴别离子或分析物质的方法之一。

通过不同离子在特定条件下生成特定的沉淀物,可以确定其他离子的存在或分析物质的浓度。

例如,在鉴别阳离子中,可以通过与钡离子反应来确认钡阳离子的存在,钡离子与硫酸根离子反应生成不溶于水的硫酸钡沉淀。

此外,沉淀反应还可以用于分离和纯化特定的物质,通过调整溶液条件,使特定的
产物沉淀出来,从而实现物质的分离。

总之,沉淀反应是化学反应中生成固体物质的一种常见过程。

通过不同离子之间的反应,生成不溶于水的固体产物,从而形成悬浮在溶液中的固体沉淀。

沉淀反应在实验室和生产中有广泛应用,用于鉴别离子、分析物质和分离纯化物质等。

相关文档
最新文档