空压机节能技改方案
空压机节能改造方案

空压机节能改造方案
背景
空气压缩机是现代工业中必不可少的设备,但运行中会消耗大量电能,造成能源浪费。
因此,如何在保证正常生产的前提下降低空压机能耗和提高能源利用率就成了一项重要的问题。
节能改造方案
1. 实施压缩机内部节能措施
•更换高效节能变频机组:采用电子软启动进行马达启动,运行稳定,避免了传统压缩机随即启停过程中的能耗损失。
•优化制冷系统:增加冷却水,减少啤酒扭矩和背压。
•安装热回收系统:将空气产生的热量转换为热水等能源,提高能源利用效率。
2. 控制空压机使用条件
•采用ICT以及电子式恒压控制:通过电子控制完成压力上下浮动的调控,节省能源消耗。
3. 更换高效节能设备
•更换压缩机主机和空压机各级机组,效率可提升20%~30%。
•用高效干燥系统代替传统冷却水或制冷干燥机,能耗可降低30%以上。
•用高效精密过滤器代替传统粗过滤器,能耗可降低10%~20%。
节能改造效果
空压机节能改造方案可大大降低能源消耗,提高能源利用率,具有显著的节能效果,从而达到减少污染物排放和改善环境的目的。
同时,能有效降低生产成本,提高经济效益。
空压机节能改造方案

空压机节能改造方案1. 背景目前,伴随着社会经济的发展和环境保护意识的增强,能源和环境问题越来越引起人们的关注。
在工业生产中,空压机作为重要的动力设备,其能源消耗和排放量也成为工业生产中的重要问题。
因此,对于空压机的节能改造提升其能源利用率和降低排放量,具有重要的意义。
2. 空压机的节能改造方案2.1 安装变频器安装变频器是目前较为常见的节能改造方案。
通过安装变频器,空压机可以根据负荷的实际情况调整转速,从而降低空压机的能耗并延长其使用寿命。
同时,变频器还可以监测和控制空压机的运行状态,提高设备的效率和稳定性。
2.2 安装节能回收系统空压机通常会产生大量的热量,而这些热量在传统工艺中往往被浪费。
安装节能回收系统可以将这些热量重新回收利用,提高能源利用率。
目前,常见的节能回收系统包括热交换器、热泵等。
2.3 安装高效过滤器空气过滤器是空压机重要的附件设备。
安装高效过滤器可以有效地减少空气中的杂质和污染物,降低设备的维护费用和运行成本。
同时,高效过滤器还可以保护设备,提高设备的使用寿命。
2.4 采用高效节能电机空压机的电机是其关键部件之一。
采用高效节能电机可以降低能源消耗和运行成本。
在选用电机时,应该根据实际需要选择合适的型号和功率,并结合前期的实地调研和设备运行状况,进行合理配置和调整。
2.5 安装能量储存设备能量储存设备是提高能源利用效率和平衡供需之间差异的一种方法。
目前,常见的能量储存设备包括超级电容器和电池。
安装能量储存设备可以对电力系统进行辅助控制和调节,减小空压机对电网的影响,提高其节能和环保效果。
3. 改造前与改造后的效益分析通过对空压机进行节能改造,可以取得明显的效益。
首先,节能改造可以降低能源消耗和运行成本。
其次,节能改造可以提高设备的效率和稳定性,缩短停机时间,提高生产效率和质量。
最后,节能改造可以减少对环境的影响,提高企业的社会形象和品牌影响力。
4. 总结综上所述,空压机的节能改造是一个系统性的工程,需要综合考虑技术、经济、环保和社会等因素。
浅析空压机系统节能改造方案

浅析空压机系统节能改造方案随着工业的快速发展,空压机已经成为现代工业生产中不可缺少的设备之一。
由于长期使用以及技术更新缓慢,许多企业的空压机系统存在能耗高、效率低的问题,给企业带来了巨大的能源浪费和生产成本压力。
空压机节能改造已经成为许多企业迫切需要解决的问题之一。
一、改进空压机系统结构1. 更新空压机空压机更新换代是最直接有效的节能改造措施之一。
选择能效更高、工作稳定的新型空压机替代旧设备,可以有效降低能耗,提高生产效率。
旧空压机的维护、运行成本也会逐渐增加,更新换代还可以减少维护成本和故障率,提高系统可靠性。
2. 运用变频技术利用变频技术对原有的空压机系统进行改造,通过调整电机的输出频率,实现空压机的自动调速,使其能够根据实际需求进行动态调整,减少能耗。
特别是在产气量需求不稳定的情况下,变频技术可以更好地满足生产需求。
二、优化管网布局1. 管网优化设计合理规划、设计和布局管网结构,尽量减少管路阻力和压力损失,提高管网输送效率。
合理设置管网分支和阀门,减少管线阻力和泄漏,实现气体输送的平稳、高效。
2. 密封管路对空压机系统管路进行全面检修和维护,确保管路处于良好的工作状态,并对暗排气、气体泄漏进行及时修补,减少漏气损耗。
三、提高系统控制精度1. 更新控制系统对空压机系统的控制系统进行更新改造,提高系统控制精度和响应速度。
通过安装更先进的控制设备和传感器,实现对空压机系统的全面监控和智能化控制,精确调节工作状态,避免能源浪费。
2. 定期维护检查加强对空压机控制系统的定期维护和检查,确保控制系统各部件运行正常,及时发现故障隐患并进行修复,避免因控制系统故障导致的能源浪费。
四、优化压缩空气系统1. 合理设计压缩空气系统在设计压缩空气系统时,应根据实际生产需求和生产工艺,合理确定压缩空气系统的工作压力和生产容量,并在实施改造过程中根据实际需求进行合理调整,避免系统过载和能源浪费。
2. 联合利用余热对空压机系统中产生的余热进行回收利用,可以通过余热回收系统将余热用于加热供暖、热水生产以及工艺用水预热等,有效降低能耗同时提高能源利用率。
空压机节能改造方案

空压机节能改造方案XXX空压机系统节能改造方案目录一、前言XXX是一家专业从事食品生产加工的企业。
为了提高生产效率和降低能源消耗,公司决定对空压机系统进行节能改造。
本方案旨在介绍改造方案和预期效果。
二、现状分析目前,XXX的空压机系统存在以下问题:1.能源消耗高:空压机系统运行时能源消耗较高,造成能源浪费。
2.维护成本高:空压机系统的维护成本较高,需要经常进行维护和检修。
3.噪音污染严重:空压机系统运行时噪音较大,影响员工的工作环境和身体健康。
三、改造方案针对以上问题,我们提出以下改造方案:1.更换高效空压机:将原有的低效空压机更换为高效空压机,降低能源消耗和维护成本。
2.安装变频器:在空压机系统中安装变频器,可以根据生产需求自动调节空压机的运行状态,进一步降低能源消耗。
3.加装隔音设备:在空压机系统中加装隔音设备,降低噪音污染,改善员工的工作环境。
四、预期效果通过以上改造方案,预计可以达到以下效果:1.能源消耗降低:更换高效空压机和安装变频器可以降低能源消耗。
2.维护成本降低:更换高效空压机可以降低维护成本。
3.噪音污染减轻:加装隔音设备可以降低噪音污染。
五、总结本方案旨在解决XXX空压机系统存在的问题,提高生产效率和降低能源消耗。
通过改造方案的实施,预计可以达到预期效果。
用户概况1.1 压缩空气系统运行概况该系统是用于生产过程中的压缩空气供应,主要应用于工厂的各种生产设备。
目前该系统运行情况良好,但存在能耗过高的问题。
1.2 目前系统现状分析通过对系统的分析,发现系统存在以下问题:压缩空气的生产过程中存在大量能量的浪费,系统的能效较低,设备的维护成本较高。
1.3 系统设备及参数该系统包括三台空压机、一台冷干机、一台储气罐等设备。
其中,空压机的额定功率分别为55kW、75kW和90kW,储气罐容积为10m³,系统额定流量为25m³/min。
系统组建原则为了提高系统的能效,降低运行成本,我们将采取以下组建原则:优化设备组合,提高设备的能效;优化系统的控制策略,降低系统的能耗;采用先进的节能技术,提高系统的能效。
空压机节能改造方案

空压机节能改造方案
背景
在工业生产中,空气压缩机(空压机)是必不可少的设备之一。
但是,空压机在使用中会产生大量的能源浪费,因此进行节能改造是非常必要的。
节能技术方案
下面介绍一些常见的空压机节能技术方案。
1. 定期维护
对空压机进行定期维护和保养是非常重要的一步,因为未经维护的设备通常会浪费更多的能源。
定期的维护包括更换损坏的零件、替换滤芯、清洁冷却器、定期检测气体泄漏等。
2. 空压机控制系统
空压机控制系统可以控制空压机的运行状态,并使其在运行时达到最佳节能状况。
空压机控制系统的常见技术包括:
•变频控制:可以通过调整电机转速,使空压机只产生需要的压缩空气,从而减少能源浪费。
•节流控制:可以通过控制节流阀来调节空气的流量,从而达到节能的目的。
3. 换热器
换热器可以用来回收空压机产生的热量,并将其用于加热水或空气。
这样就可以减少加热设备的能源消耗,并有效地利用空气压缩机的余热,从而达到节能的目的。
4. 优化气源
使用高质量的空气源可以显著降低空压机的能源消耗。
为了优化气源,可以加装空气干燥器、过滤器和油水分离器,以确保压缩空气的质量,并减少能源浪费。
结语
空气压缩机在工业生产中起着至关重要的作用,但是空压机的运行也会浪费大量的能源。
通过上述空压机节能技术方案,可以有效减少能源的浪费,从而降低生产成本,并提高生产效率。
因此,我们应该及时采取措施,优化空压机的运行状态,并确保设备的长期稳定性和安全性。
空压机节能方案

2.时间安排
(1)设备选型与改造:1个月;
(2)系统优化:2个月;
(3)管理措施:3个月;
(4)培训与宣传:贯穿整个项目周期。
3.质量保障
(1)选用符合国家标准的设备和材料;
(2)严格按照设计方案和施工规范进行施工;
(3)加强施工过程中的质量监督,确保项目质量。
4.风险防范
(1)制定应急预案,应对设备故障、安全事故等突发情况;
(2)加强与供应商、施工方的沟通协调,确保项目进度不受影响。
五、预期效果
1.节能效果:预计空压机系统整体节能率达到10%以上;
2.经济效益:降低企业生产成本,提高经济效益;
3.社会效益:符合国家节能政策,减少能源消耗,降低环境污染。
本方案旨在为企业提供一份合法合规的空压机节能优化方案,助力企业实现节能减排、降本增效的目标。在方案实施过程中,需根据实际情况进行调整和优化,确保项目顺利推进。
第2篇
空压机节能方案
一、引言
空气压缩机(以下简称空压机)是工业生产中广泛使用的动力设备,其能源消耗在企业总能耗中占有较大比重。为实现能效提升,降低运营成本,本方案针对空压机系统进行节能优化,确保方案的科学性、实用性和合法性。
二、目标设定
1.显著降低空压机的能源消耗,提升能源使用效率。
2.优化空压机运行状态,延长设备寿命,减少维护成本。
2.系统优化
-采用群控技术,根据用气需求自动调节空压机运行台数,避免无效运行。
-优化空气管路设计,降低系统阻力,减少压力损失。
-定期对空压机进行保养,确保设备高效运行。
3.管理与监控
-制定空压机操作规程,提升操作人员的节能意识和操作技能。
浅析空压机系统节能改造方案

浅析空压机系统节能改造方案随着工业化的快速发展和能源的紧缺,节能减排已经成为了各行各业必须要面对的问题。
在工业生产中,空压机系统是一个非常耗电的设备,因此对空压机系统进行节能改造是非常必要和重要的。
本文将从空压机系统的节能意义、节能改造的技术方案以及节能改造的效果等方面对空压机系统的节能改造进行浅析。
一、空压机系统的节能意义空压机是工业生产中常用的一种设备,其作用是利用电能或其他能源,将大气中的气体压缩为高压气体,然后将其用于工业生产中的各种设备。
通常情况下,空压机系统的能耗占整个厂房的能耗比重非常高,因此进行空压机系统的节能改造可以有效降低工厂的能耗,从而达到节能减排的目的。
通过节能改造,还可以延长设备的使用寿命,减少设备的损耗,提高设备的稳定性和可靠性,提高生产效率,减少维护成本等。
空压机系统的节能改造不仅可以降低能源消耗,还可以提高企业的经济效益和社会效益,具有非常重要的意义。
二、节能改造的技术方案1. 更换高效节能设备:可以考虑更换高效节能的空压机设备,比如采用新型的变频空压机、螺杆空压机、离心空压机等,这些高效节能的设备可以在保证气源供应的情况下,降低能耗,提高空压机的运行效率。
2. 压缩空气系统的优化:对压缩空气系统进行合理的优化设计,包括管道的布局、曲线设计、配气系统的优化等,可以降低管道阻力,减小压缩空气的能耗。
3. 冷却系统的改造:通过改造冷却系统,采用高效节能的冷却设备,或者改进冷却系统的运行方式,可以降低冷却系统的能耗。
4. 控制系统的优化:空压机系统的控制系统也是一个重要的节能改造方面,通过优化控制系统的运行方式,实现精确控制气源供应,避免空压机系统的过多启停,可以降低能耗,延长设备使用寿命。
5. 废热利用:将空压机系统产生的废热进行有效利用,比如用于供暖、热水、蒸汽发生等,可以降低能耗,提高能源利用率。
通过对空压机系统进行节能改造,可以获得明显的节能效果和经济效益。
通过更换高效节能的空压机设备,可以降低能耗,提高空压机的运行效率,降低生产成本。
空压机节能改造方案

空压机节能改造方案
目录
1. 节能改造的必要性
1.1 空压机的能耗情况
1.2 环保意识的普及
1.3 节能改造带来的效益
2. 节能改造方法
2.1 定期维护保养
2.2 更新陈旧设备
2.3 优化系统设计
3. 节能改造的实施步骤
3.1 评估现有系统
3.2 制定节能改造方案
3.3 实施改造措施
4. 节能改造的效果评估
4.1 监测能耗变化
4.2 比较前后成本
4.3 评估环保效益
节能改造的必要性
空压机是工业生产中必不可少的设备,其能耗在整个生产过程中占据重要地位。
随着环保意识的普及,越来越多的企业开始关注能源的节约利用。
通过对空压机进行节能改造,不仅可以减少能耗,还可以降低对环境的影响,提高企业的形象和竞争力。
节能改造方法
空压机的节能改造主要包括定期维护保养、更新陈旧设备和优化系统设计。
定期维护可以保持设备正常运转,降低故障率;更新设备可以提高设备效率,降低能耗;优化系统设计可以根据实际生产情况进行调整,降低系统阻力,提高效率。
节能改造的实施步骤
要实施空压机的节能改造,首先需要评估现有系统的运行情况,了解能耗情况和存在的问题;然后制定详细的节能改造方案,包括具体的改造措施和预期效果;最后按照方案实施改造措施,确保改造的顺利进行。
节能改造的效果评估
改造完成后,需要对节能效果进行评估。
通过监测能耗的变化,可以直观地了解改造效果;比较前后的成本,可以 quant 实际节约了多少费用;评估环保效益,可以 quant 知道改造对环境的影响,为企业形象加分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空压机节能技改方案——开山BKHE250-54/8-Ⅱ节能技改方案方案:环保设备组:条线审核:江门华尔润玻璃有限责任公司环保设备组二○一三年十一月目录一、概述二、Kaitain JN系列两级压缩螺杆空气压缩机简介三、现空压机系统运行情况四、节能方案及效果分析五、投资成本分析一、概述随着社会的进步,企业的发展,节能环保也是成为国家的一个发展方向。
国家近期也出台了一些优惠政策,对于在节能环保做出贡献的企业给予一定的补助及奖励,较多企业也在不遗余力的寻找一些新技术、新设备、新工艺,并进行适当的改造就能产生直接经济效益。
为此,我们也根据企业实际情况有针对性的挖掘企业的节能增效能力。
通过分析研究,公司针对用电方面还可以有很大的挖掘潜力,特别是在NH站压缩空气方面。
空压机的运行电费占公司总电费的近50%,并且从设备实际运行情况来看,有部分老旧设备已经处于高耗能低产出频繁维修状态,运行成本非常高,已经不适合继续运行。
为此,选择了6台已经运行9年并且产出率比较低,故障频繁,维修成本高的空压机进行改造。
从而为公司降低成本创造效益。
通过市场寻找,真正在空压机上有节能功能的并不多。
市场上只有“开山”和“寿力”具备本体节能功能,其它品牌的空压机主要通过集中控制,精确调节等手段来降低运行能耗。
因此,通过对比分析,选择最优的“开山”空压机作为技改机型。
(一)改造的设备:(1)拆除1-6#空压机(1-4#喷油螺杆机、5-6#无油螺杆机,其中1#机43m³/min及3#机³/min处于备用状态)共281m³/min,实际产气量为³/min,电功率1300KW;(2)7#、8#两台无油螺杆机作氮站备用机,共118m³/min,电功率710KW。
(3)改造设备的产气量为³/min,电功率2010KW。
(二)拟采用的新设备:开山空压机BKHE250-54/8-Ⅱ(,250KW,54m³/min)6台,共324m³/min,电功率1500KW,其中两台采用变频控制,全套系统加装能效管理工业控制系统。
(三)节能效果:与国家1级能效的开山空压机BKHE250-54/8-Ⅱ的生产成本元/m³相比,1~6#三个型号实际生产成本分别增加了%、%、%。
(四)产生利润:每年节能费用收益超过331万元(详见详细技术方案)。
二、Kaitain JN系列两级压缩螺杆空气压缩机简介1、两级压缩原理:采用两级压缩主机,就是采用大小不同的两组SKY螺杆转子,实现合理的压力分配,降低了每次压缩的压缩比。
经过一级压缩后,冷却剂会通过机体上的多个喷射孔,形成雾状喷射帘,对热的压缩空气进行近乎完美的冷却,大大降低了进入二级压缩阶段前的压缩空气温度,起到接近了等温压缩过程、节约压缩所需能量的效果(等温压缩最省功)。
2、低压缩比的两个特别优点:1、减少了内泄漏,提高了容积效率;2、大大降低了轴承的负荷,提高了轴承寿命,延长了主机寿命3、技术特点:两级常压有完善的级间冷却设计和二级压缩过程的冷却的完善性使用角接触球轴承而没有使用圆锥滚子轴承第二级压比的分配经过优化第二级转子的几何参数都经过优化第二级的吸排气孔口都经过优化总喷油量及其分配经过优化齿轮箱的回油经过优化(专利技术)高效的螺杆转子型线:第一级使用Y-1或Y-2;第二级使用Y-2两级压缩降低了每一级的轴承载荷一级及二级螺杆转子均运行在最佳齿顶速度3、能耗优点KAITAIN两级压缩螺杆空压机每一台都可以达到1级能效,比2级能效省电15%,比3级能效省电30%。
国家为了推进节能减排工作,在空压机上施行能效标识制度,本方案型号BKHE250-54/8-Ⅱ是节能产品惠民工程高效节能容积式空气压缩机推广目录(第一批)》1级能耗产品,享受200元/KW的节能补贴。
大致上2级能效产品会比3级能效产品节省15%的电力,1级能效产品又比2级能效产品节省10%的电力,平均能耗低于元/m³。
KAITAIN-JN系列两级压缩螺杆空气压缩机技术参数:型号:JN250-54/8-Ⅱ,排气压力:,排气量:54m3/min,电机功率:250Kw。
三、现空压机系统运行情况1. 空压机的运行及备用情况目前氮氢车间共有13台空压机用于压缩空气供气及4台离心压缩机用于制氮。
压缩空气母管压力,其中空压机5#~8#是无油螺杆压缩机,可作为制氮系统离心压缩机的备用设备。
现生产线设备正常时,空压机的开启情况如下:2、空压机的维修情况1)、5台寿力,外包正常维护31万元,另外其他配件约10万元,平均大修费用10万元/年,每年的维修保养费用为51万元。
2)、4台锡压无油螺杆机,每年有2台空压机进行大修,大修费用17万/台,正常维护保养费用每年6万/台,4台无油机每年的维修保养费用为58万元。
3)、4台锡压喷油螺杆机,每年有2台空压机进行大修,常规大修费用5万/台(转子大修17万,基本上每年一次),正常维护保养费用每年6万/台,4台喷油机每年的维修保养费用为51万元。
3、空压机改造的必要性1)、1-6#空压机(其中1-4#喷油螺杆机和5-6#无油螺杆机)已经运行9年,设备已逐渐老化,配件较难买,并且维修费用有所增加。
2)、1~2空压机(型号LGD-36/8-X)额定产气量43m³/min,功率250kw/h,目前实际产气量³/min,实际使用功率h左右,效率仅为³/kw,产量下降了30%,平均每立方压缩空气的生产成本元。
3~4空压机(型号LGD-30/10-X)额定产气量³/min,功率250kw/h,目前实际产气量³/min,实际使用功率h左右,效率仅为³/kw,产量没有明显下降,平均每立方压缩空气的生产成本元。
5~6空压机(型号LGW-56/8-X)效率仅为³/kw,产量下降了5%,平均每立方压缩空气的生产成本元,6台空压力机的整体综合效率下降约10%,平均每立方压缩空气的生产成本元。
这四个型号存在电耗高,油耗高,产能降低等情况。
3)、与国家1级能效的开山空压机BKHE250-54/8-Ⅱ的生产成本元/m³相比,1~6#三个型号生产成本分别增加了%、%、%。
4)、改造后,保留7#、8#两台无油机作氮站备用机。
每年的无油机维修保养费用可节约29万元;4台喷油机每年的维修保养费用可节约51万元,每年可节约的维修保养费用不低于80万元。
同时还可减少寿力机的使用时间,降低外协维保费用。
所以,考虑到运行费用相对较高,维修成本较大,对现能耗高的压缩空气系统(主要是无锡空压机)进行改造是必须的!四、节能方案及效果分析1、节能改造方案在不减少现有空压机系统产量的情况下,以提高空压机能效为本次改造方案目标。
本次方案改造后满足以下控制要求:1)鉴于现系统供气量比较稳定,采用下表的开机方式一刚好满足现生产用气需求,改造后可能会出现开机数量配比问题,拟5#、6#两台空压机采用变频器控制(变频器安装在低压配电室),可实现PID在线自动调节母管压力。
2)改造后的每台空压机出口加装流量变送器及具有485通讯功能仪表,现场安装有流量数字仪表。
3)改造后的每台空压机电机装有485通讯功能电力仪表,可实时监测电机电流、功率及功率因素等参数监控。
4)6台空压机具有在线监控及开停机操作功能,并可实现能源监控管理。
2、空压机节能改造前能耗对比表3、预计改造后的开机情况(根据铭牌测算)4、改造后的综合效果分析根据现生产用气情况,启用9台机即可满足生产需要,平均产气量为³/kw。
现拟计划改造1~6#共6台锡压空压机,保留两台无油螺杆机为氮站备用机。
根据生产情况,选择开机台数,如用气量不大量增加改造后平均产气量可提高至³/kw。
最终节能效果与压缩空气的使用量有关,将根据用量调整开机方式,如果在目前的480m³/min供气量下,如采用改造后开机方式一生产可节电615KW/h(2982-2367KW/h),年节省电费万元;采用改造后开机方式二生产可节电549KW/h(2982-2433KW/h),年节省电费万元。
五、投资成本分析(一)采购成本测算表(二)合作方方案:1、根据前期深圳市康普斯节能科技有限公司方案,前期设备改造由深圳市康普斯节能科技有限公司投入,待改造完成产生效益后与我公司共享节能利润分成,预计年节能费用超过331万元,综合节能率不低于25%,每套设备均加装电表,以抄电表计算电量方式结算电费,结算期最长为36个月(如公司生产线冷修原因影响开机,投资回收期顺延)。
2、本次改造方案总计投入约600万元(其中项目成本443万元,合同能源管理费用85万元,三年维保费用72万元,共600万元,由合作单位支出),含6台开山BKHE250-54/8-Ⅱ高效空压机及其能效管理控制系统。
3、利润分析:(1)创造节能费用超过331万元/年,三年合计993万元。
若按照六四效益分成(投资公司占六成,我公司占四成),三年内需要支出收益528万元,我公司实际可产生节能效益465万元。
(2)实施项目后,减少维修维护费用56万元/年(现6台空压机维修费用80万/年,采用开山空压机后24万/年),三年节省维修费用合计168万元。
(3)实施项目后三年内预计可产生效益633万元。
结论:实施该方案一是我公司不存在投资风险;二是每年有超过331万元的节能效益;三是将老旧设备淘汰后更有利于设备正常运行,拆除的6台旧压机产权归我公司所有,可变卖获取收益,按照5万元/台价格出售,可得30万元;四是可完成一部分节能指标,KHE250-54/8-Ⅱ是《节能产品惠民工程高效节能容积式空气压缩机推广目录(第一批)》产品,可顺利申请到节能专项资金5万/台(共计约30万元);五是具体的效益分享时间、分享比例、节能指标可与合作单位进一步商谈,为我公司争取最大利益。
环保设备组2013年11月27日。