新人教版七年级下册数学平方根教案.

合集下载

人教版七年级数学下册6.1.1《算术平方根》教案

人教版七年级数学下册6.1.1《算术平方根》教案

人教版七年级数学下册6.1.1《算术平方根》教案一. 教材分析《算术平方根》是人教版七年级数学下册第六章第一节的内容。

本节课主要让学生掌握算术平方根的定义,理解求一个数的算术平方根的方法,以及熟练运用算术平方根解决实际问题。

教材通过引入大量的生活实例,激发学生的学习兴趣,引导学生探究、发现算术平方根的规律,培养学生的抽象思维能力。

二. 学情分析七年级的学生已经掌握了实数的概念,具备了一定的数学基础。

但在计算能力和数学思维方面,学生之间存在较大差异。

因此,在教学过程中,要关注学生的个体差异,引导他们积极参与课堂活动,提高他们的数学素养。

三. 教学目标1.理解算术平方根的定义,掌握求一个数的算术平方根的方法。

2.能够运用算术平方根解决实际问题,提高学生的应用能力。

3.培养学生的抽象思维能力,提高学生的计算能力。

4.激发学生的学习兴趣,培养他们积极探究数学规律的精神。

四. 教学重难点1.算术平方根的定义及其求法。

2.运用算术平方根解决实际问题。

五. 教学方法1.情境教学法:通过生活实例,引导学生发现算术平方根的规律。

2.探究教学法:引导学生积极参与课堂讨论,自主发现算术平方根的求法。

3.练习法:通过大量练习,巩固学生对算术平方根的理解和运用。

六. 教学准备1.教学课件:制作精美的课件,辅助教学。

2.练习题:准备适量的一定难度的练习题,用于课堂练习和课后作业。

3.教学道具:准备一些实物,如正方形、长方形等,用于直观展示。

七. 教学过程1.导入(5分钟)利用生活实例,如衣服的尺码、房屋面积等,引导学生思考:如何快速找到一个数的平方根?从而引出本节课的主题——算术平方根。

2.呈现(10分钟)介绍算术平方根的定义,并通过PPT展示一些图片,让学生直观地感受算术平方根的应用。

3.操练(10分钟)让学生分组讨论,探索如何求一个数的算术平方根。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生独立完成。

平方根人教版数学七年级下册教案3篇

平方根人教版数学七年级下册教案3篇

平方根人教版数学七年级下册教案3篇平方根人教版数学七年级下册教案1 人教版七年级数学下册《10.1平方根》教学设计PPT课件导学案教案课题: 10.1 平方根〔1〕教学目的 1.理解算术平方根的概念,会用根号表示正数的算术平方根,并理解算术平方根的非负性;2.理解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根;3.通过对实际生活中问题的解决,让学生体验数学与生活实际是严密联络着的,通过探究活动培养动手才能和激发学生学习数学的兴趣。

教学难点根据算术平方根的概念正确求出非负数的算术平方根。

知识重点算术平方根的概念。

教学过程〔师生活动〕设计理念情境导入同学们,20xx年10月15日,这是我们每个中国人值得骄傲的日子.因为这一天,“神舟”五号飞船载人航天飞行获得圆满成功,实现了中华民族千年的飞天梦想〔多媒体同时出示“神舟”五号飞船升空时的画面〕.那么,你们知道宇宙飞船分开地球进人轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度〔米/秒〕而小于第二宇宙速度:〔米/秒〕.、的大小满足 .怎样求、呢?这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.请看下面的问题.“神舟”五号成功发射和平安着陆,标志着我国在攀登世界科技顶峰的征程上又迈出具有重大历史意义的一步,是我们伟大祖国的荣耀.此内容有感染力,使学生对本章知识的应用价值有一个感性认识,同时激发学生的好奇心和学习的兴趣.这里的计算实际上是幂和乘方的指数求底数的问题,是乘方的逆运算,学生以前没有见过,由此引出了本章所要研究的主要内容,以及研究这些内容的大体思路.提出问题感知新知多媒体展示教科书第160页的问题〔问题略〕,然后提出问题:你是怎样算出画框的边长等于5dm的呢?〔学生考虑并交流解法〕这个问题相当于在等式扩=25中求出正数x的值.练习:教科书第160页的填表.练习:教科书第160页的填表.这个问题抽象成数学问题就是正方形的面积求正方形的边长,这与学生以前学过的正方形的边长求它的面积的过程互逆,教学时可以让学生初步体会这种互逆的过程,为后面的学习做准备。

七年级下册6.1平方根教案(第二课时)-经典教学教辅文档

七年级下册6.1平方根教案(第二课时)-经典教学教辅文档

6.2平方根(第2课时)的教学设计一.学习目标知识与技能:1.了解平方根、开平方的概念.2.明确算术平方根与平方根的区别和联系.3.进一步明确平方与开平方是互逆的运算关系.过程与方法:1.经历平方根概念的构成过程,让先生不仅掌握概念,而且进步和巩固所学知识的运用能力.2.培养先生求同与求异的思想,经过比较进步考虑成绩、辨析成绩的能力.情感、态度与价值观1.在学习中互相帮助、交流、合作、培养团队的精神.2.在学习的过程中,培养先生严谨的科学态度.二.教学重点、难点重点:1.了解平方根开、平方根的概念.2.了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.3.了解平方根与算术平方根的区别与联系.难点:1.平方根与算术平方根的区别和联系.2.负数没有平方根,即负数不能进行平方根的运算.三.学习方法:自主 合作 探求四.学习过程设计检查先生完成情况(:教师经行抽查,找出典型的成绩经行讲解)(一).自学范围:请自学教材第3页至第5页;(二).知识回顾:1. 64.0的算术平方根是 ;16 的算术平方根是 ;2. =-2)6( ;=971(二)算术平方根的平方:(1) 的平方等于3; (2)比较大小:32与23;平方根与算术平方根的联系与区别:联系:1.平方根包含算术平方根,算术平方根是平方根的一种.2.只需非负数才有平方根和算术平方根.3. 0的平方根是0,算术平方根也是0.区别:1.个数不同:一个正数有两个平方根,但只需一个算术平方根.2.表示法不同:平方根表示为 a ± ,而算术平方根表示为a1 .以下说法正确的是①3-②25的平方根是5;③-36的平方根是-6;④平方根等于0的数是0;⑤64的平方根是8.2.以下说法不正确的是( ) .(A)0的平方根是0 (B)22-的平方根是2±(C)非负数的平方根是互为相反数 (D)一个正数的算术平方根必然大于这个数的相反数3. 已知一个自然数的算术平方根是a,则该自然数的下一个自然数的算术平方根是().(C) a2+14. 指出以下各数的算术平方根:(1)0.04 (2)1645. 面积为9的正方形,边长=;面积为7的正方形,边长=;6.比较大小:8313-与81本节小结先生自主总结,先生畅谈本人的学习播种。

平方根人教版数学七年级下册教案

平方根人教版数学七年级下册教案

平方根一、教学目标1.知识与技能:理解平方根的概念,掌握平方根的性质,会求一个正数的平方根。

2.过程与方法:通过自主探究、合作交流,发展学生的推理能力和解决问题的能力。

3.情感态度与价值观:培养学生对数学的兴趣,增强学生学好数学的信心。

二、教学重难点1.重点:平方根的概念和性质。

2.难点:求一个正数的平方根。

三、教学过程1.导入新课师:同学们,我们已经学习了算术平方根,那么什么是平方根呢?今天我们就来学习平方根。

2.自主探究(1)写出下列各数的平方根:1,4,9,16。

(2)观察上面的结果,你发现了什么规律?生1:我发现,一个正数有两个平方根,它们互为相反数。

生2:我还发现,0的平方根是0,而负数没有平方根。

3.例题讲解例1:求下列各数的平方根:(1)49(2)0.01(3)0.25师:请同学们先独立思考,然后和同桌交流一下。

生1:对于(1)49,我们可以直接写出它的平方根为±7。

生2:对于(2)0.01,我们可以先求出它的算术平方根,再写出它的平方根为±0.1。

生3:对于(3)0.25,我们同样可以先求出它的算术平方根,再写出它的平方根为±0.5。

生1:一个正数有两个平方根,它们互为相反数。

生2:0的平方根是0。

生3:负数没有平方根。

5.练习巩固师:请同学们完成下面的练习题,巩固平方根的知识。

(1)求下列各数的平方根:①64②0.04③1(2)判断题:①9的平方根是3。

()②0的平方根是0。

()③负数有平方根。

()6.课堂小结师:今天我们学习了平方根,大家掌握得怎么样?请同学们分享一下自己的收获。

生1:我学会了平方根的概念和性质。

生2:我会求一个正数的平方根了。

生3:我对平方根有了更深的理解。

7.作业布置(1)教材P20习题1、2。

(2)预习下一节内容:立方根。

四、课后反思重难点补充:1.重点:平方根的概念和性质师:同学们,我们之前学过平方,比如2的平方是4,那么你们能告诉我,哪个数的平方是4吗?生:2的平方是4。

人教版《平方根》教案设计

人教版《平方根》教案设计

人教版《平方根》教案设计一、教学目标1、知识与技能目标(1)理解平方根的概念,能正确地表示一个数的平方根。

(2)掌握平方根的性质,会求一个非负数的平方根。

2、过程与方法目标(1)通过对平方根概念的探究,培养学生的数学思维能力和探究精神。

(2)通过平方根的计算,提高学生的运算能力和解题技巧。

3、情感态度与价值观目标(1)让学生在学习过程中体验数学的严谨性和逻辑性,培养学生对数学的兴趣和热爱。

(2)通过小组合作学习,培养学生的团队合作意识和交流能力。

二、教学重难点1、教学重点(1)平方根的概念和性质。

(2)求一个非负数的平方根。

2、教学难点(1)对平方根概念的理解,特别是负数没有平方根的理解。

(2)平方根与算术平方根的区别与联系。

三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课通过复习算术平方根的概念,引出平方根的问题。

例如,已知正方形的面积为 9 平方厘米,那么它的边长是多少?如果正方形的面积是16 平方厘米呢?如果面积是 a 平方厘米呢?从而引出本节课的主题——平方根。

2、讲授新课(1)平方根的概念如果一个数的平方等于 a ,那么这个数叫做 a 的平方根。

即如果 x²= a ,那么 x 叫做 a 的平方根。

例如,因为 3²= 9 ,所以 3 是 9 的平方根;因为(-3)²= 9 ,所以-3 也是 9 的平方根。

(2)平方根的表示方法一个正数 a 的平方根记作±√a ,读作“正负根号a ”,其中√a 叫做 a 的算术平方根。

例如,9 的平方根记作±√9 = ±3 。

(3)平方根的性质①一个正数有两个平方根,它们互为相反数。

② 0 的平方根是 0 。

③负数没有平方根。

(4)平方根与算术平方根的区别与联系区别:①个数不同:一个正数的算术平方根只有一个,而平方根有两个。

②表示方法不同:正数 a 的算术平方根记作√a ,正数 a 的平方根记作±√a 。

七年级数学下《平方根》教案

七年级数学下《平方根》教案

七年级数学下《平方根》教案一、教学目标1.知识与技能:学生能够理解平方根的概念,掌握平方根的基本性质,能够进行简单的平方根运算。

2.过程与方法:通过观察、思考和探究,培养学生的数学思维能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的好奇心和探究欲,培养他们认真思考、勇于探索的精神。

二、教学内容与过程1.导入:通过回顾正方形的面积,引出平方根的概念。

教师可提出一些问题,如:“如果一个正方形的面积为8平方米,那么它的边长是多少?”引导学生思考并引出平方根的概念。

2.知识讲解:详细讲解平方根的定义、性质和运算方法。

通过实例进行解释,帮助学生深入理解平方根的概念。

同时,强调平方根与算术平方根的区别与联系。

3.探究活动:设计探究活动,让学生自己动手操作,探索平方根的基本性质和运算方法。

探究活动可以包括求一些数的平方根、比较不同数的平方根的大小等。

4.应用实践:设计实际问题,让学生运用所学知识解决,如求一些实际问题中的平方根等。

同时,可以引导学生探索平方根在实际生活中的应用。

5.总结与提升:总结平方根的主要知识点,强调重点和难点。

通过综合性题目,提升学生运用知识解决实际问题的能力。

同时,可以引导学生思考平方根与其他数学知识的联系,为后续学习打下基础。

三、教学方法与手段1.教学方法:采用启发式、探究式和合作学习的方法,引导学生主动探索和思考。

同时,注重实例教学,通过实例帮助学生理解抽象的数学概念。

2.教学手段:利用实物模型、PPT演示、数学软件等辅助教学工具,帮助学生更好地理解平方根的概念和性质。

同时,鼓励学生动手操作,培养他们的实践能力。

四、教学评价与反馈1.课堂互动:通过课堂提问、小组讨论等方式,及时了解学生的学习情况,调整教学策略。

同时,鼓励学生积极参与课堂活动,发表自己的观点和见解。

2.作业评价:布置相关练习题,要求学生按时完成,并进行批改和反馈。

同时,关注学生的作业完成情况,对有困难的学生进行个别辅导。

平方根教学设计

平方根教学设计

平方根教学设计平方根教学设计篇一教材分析:《算术平方根》是人教版七年级下第六章第一节,本节通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。

通过对这一节课的学习,既可以让学生了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性,将为学生学习算术平方根奠定基础。

引入算术平方根的知识,要借助具体的生活情境,这样才能加深对引入平方根知识必要性的认识。

注意引导学生发现被开方数与对应的算术平方根之间的关系。

本节课的开始就设置了一个问题情境,把这个问题情境抽象成数学问题就是已知正方形的面积求正方形的边长,这是典型的求算术平方根的问题。

由于所选数字简单,可见其设计目的,并不着眼于计算,而在于巩固概念。

因此本节课的关键是抓住算术平方根概念的本质特征,逐层深入,多个角度展示。

课标要求:在实际情境中理解算术平方根的概念及求法,并能解决简单的问题,体验数学与日常生活密切相关,认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流。

本节突出概念形成过程的教学,首先列举学生熟悉的例子,从生活问题中抽象出数学本质,引导学生观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,再引导学生运用概念并及时反馈。

同时在概念的形成过程中,着意培养学生观察、分析、抽象、概括的能力。

在本节课中,我利用学生的已有经验,通过思考、讨论、探究等活动,使学生感受到做数学、用数学的价值。

策略分析:根据教材内容和编排特点,为了更有效地突出重点、突破难点、抓住关键,本节课按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的原则,采用“自主探究法”和“引导发现法”为主,并根据学法指导自主性和差异性要求,让学生在探究过程中理解理解算术平方根的概念。

教学目标:1、经历算术平方根概念的形成过程,会用根号表示算术平方根,并了解算术平方根的非负性。

2、会用平方运算求非负数的算术平方根,包括完全平方数的算术平方根和部分非完全平方数的算术平方根。

人教版七年级数学下册实数《平方根(第1课时)》示范教学设计

人教版七年级数学下册实数《平方根(第1课时)》示范教学设计

平方根(第1课时)教学目标1.了解算术平方根的概念,会用根号表示一个非负数的算术平方根.2.了解求一个非负数的平方运算与求一个非负数的算术平方根互为逆运算的关系,会通过平方运算求某些非负数的算术平方根.教学重点通过平方运算求某些非负数的算术平方根.教学难点通过平方运算求某些非负数的算术平方根.教学过程新课导入【问题】学校要举行美术作品比赛,小鸥想裁出一块面积为25 dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?【师生活动】学生思考,教师追问:你一定会算出边长应取5 dm,说一说,你是怎样算出来的?【答案】因为52=25,所以这个正方形画布的边长应取5 dm.【设计意图】从学生已知的正方形面积入手,让学生能根据面积求边长,为下文探究算术平方根做准备.新知探究一、探究学习【问题】填表:你能指出它们的共同特点吗?【师生活动】学生独立回答,教师引导补充.【答案】填表如下:上面的问题,实际上是已知一个正数的平方,求这个正数的问题.【新知】一般地,如果一个正数x的平方等于a,即2x a=,那么这个正数x叫做a的算术平方根.a a”,a叫做被开方数.规定:0的算术平方根是0.=(x≥0),则x所以,若2x a【设计意图】由正方形的边长与面积的关系引出算术平方根和被开方数的概念,让学生更容易理解和记忆.【思考】由2x a=和x=(1)a的取值范围是什么?(2)算术平方根x的取值范围是什么?【师生活动】教师引导,小组讨论,然后找学生代表回答.【答案】(1)a是非负数,即a≥0.(20,x≥0.【新知】非负数的算术平方根是非负数.负数不存在算术平方根,即当a<0【设计意图】通过回顾平方数和算术平方根的概念,得出被开方数和算术平方根的非负性,巩固学生对新知的理解.二、典例精讲【例1】求下列各数的算术平方根:(1)100;(2)4964;(3)0.000 1.【答案】解:(1)因为210100=,所以100的算术平方根是10.(2)因为2749864⎛⎫= ⎪⎝⎭,所以4964的算术平方根是7878.(3)因为20.010.0001=,所以0.000 1的算术平方根是0.01. 【归纳】被开方数越大,对应的算术平方根也越大.这个结论对所有正数都成立. 【思考】通过上面的例题,大家思考一下,我们在求算术平方根时是借助于哪一种运算来求的?【答案】平方运算【新知】求一个数的算术平方根与求一个非负数的平方恰好是互逆的运算.因此,求一个数的算术平方根的运算实际上可以转化为求一个非负数的平方的运算.【设计意图】检验学生对算术平方根的掌握情况,让学生知道求一个数的算术平方根与求一个非负数的平方恰好是互逆的运算. 【例2】求下列各式的值:(1(2(3.【答案】解:(1;(235;(3. 【新知】(1)在求a 的算术平方根时,若a 是有理数的平方,则a 的算术平方根就不带根号:若a 不是有理数的平方,则a(2)求一个非负数的算术平方根常借助于平方运算.熟记常用平方数对求一个数的算术平方根有着事半功倍的效果.【设计意图】进一步检验学生对算术平方根的掌握情况,总结求算术平方根的规律和技巧.【例3】计算:(-1)2 023-|-5|×(-6) 【答案】解:原式=-1-5×(-6)+7=-1+30+7 =36.【新知】综合计算题的运算顺序:解决综合计算题要从高级运算到低级运算,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行. 【设计意图】通过该例,让学生清楚综合计算的运算顺序.【例4】已知21(2)02x y -++,求x +y +z 的值.【答案】解:21(2)02x y -++, 由绝对值、平方及算术平方根的非负性知 102x -=,y +2=0,302z +=, 得x =12,y =-2,z =32-, 所以x +y +z =12-2-32=-3. 【新知】“几个非负数的和为0”问题的解决方法:目前学过的典型的非负数有a 2,|b |和为0,则每一个非负数均为0,即若a 2+|b |0,则a 2=0,|b |=00. 【设计意图】检验学生对算术平方根非负性的掌握情况,总结“几个非负数的和为0”问题的解决方法.课堂小结板书设计一、算术平方根的相关概念二、算术平方根的非负性三、算术平方根的应用课后任务完成教材第41页练习1题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题6.1平方根(第1课时)
【教学目标】1.通过实际生活中的例子理解算术平方根的概念;
2.会求非负数的算术平方根并会用符号表示.【教学重点】算术平方根的概念和求法
【教学难点】算术平方根的求法
课题6.1平方根(第2课时)
【教学目标】1.了解无限不循环小数的特点;会用算术平方根的知识解决实际问题;
2. 通过探究2的大小,培养学生的估算意识,了解两个方向无限逼近的数
学思想.
【教学重点】认识无限不循环小数的特点,会估算一些数的算术平方根。

【教学难点】认识无限不循环小数的特点,会估算一些数的算术平方根。

课题6.1平方根(第3课时)
【教学目标】1.了解平方根的概念,会用根号表示正数的平方根;
2.了解开平方与平方互为逆运算,会用平方运算求某些非负数的平方根
【教学重点】 了解开方和乘方互为逆运算,弄懂平方根与算术平方根的区别和联系.
【教学难点】平方根与算术平方根的区别和联系.
集体智慧
【活动方案】 个性调整 活动一 思考归纳,引入概念 如果一个数的平方等于9,这个数是多少?
学生思考并讨论,使学生明白这样的数有两个,它们是3和-3。

受前面知识的影响学生可能不易想到-3这个数,这时可提醒学生,
这里的这个数可以是负数。

注意(-3)2=9中括号的作用。

又如:x 2=25
4,则x 等于多少呢? 使学生完成课本165页的填表练习。

填表:
2x
1 16 36 49 254 x
给出平方根的概念:如果一个数的平方等于a,那么这个数就
叫做a的平方根.即:如果x 2=a ,那么x 叫做a的平方根。

求一个数的平方根的运算,叫做开平方。

例如:±3的平方等于9,9的平方根是±3,所以平方与开平
方互为逆运算。

观察:课本45页中的图6.1-2。

图6.1-2中的两个图描述了平方与开平方互为逆运算的运算
过程,揭示了开平方运算的本质。

让学生体验平方和开平方的互逆关系,并根据这个关系说出1,
4,9的平方根。

注意:这阶段主要是让学生建立平方根的概念,先不引入平方
根的符号,给出的数是完全平方数。

例1(课本45页的例4)求下列各数的平方根:
(1)100;(2);(3)0.25.
建议:教师要规范书写格式。

活动二 讨论归纳,深化概念
按照平方根的概念,请同学们思考并讨论下列问题:
正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?
建议:可引导学生通过观察x 2=a 中的a 和x 的取值范围和取
值个数得出。

注:学生刚开始接触平方根时,有两点可能不太习惯,一个是正
数有两个平方根,即正数进行开平方运算有两个结果,这与学生过
去遇到的运算结果惟一的情况有所不同,另一个是负数没有平方
根,即负数不能进行开平方运算,这种某数不能进行某种运算的情
况在有理数的加、减、乘、除、乘方五种运算中一般不会遇到(0
作除数的情况除外)。

教学时,可以通过较多实例说明这两点,并
在本节以后的教学中继续强化这两点。

引入符号:正数a 的算术平方根可用
表示;正数a 的负的平方根可用a -
表示。

例如…… 思考:表示什么意思,这里的x 可取什么样的数呢?而对于-
又该怎样理解呢?这里的x 又可取什么样的数呢?
活动三 应用知识
例2 下列各式是否有意义,为什么?
(1)3-;(2)3-;(3)2)3(-;(4)2
101. 例3 下列各数有平方根吗?如果有,求出它的平方根;如果没有,
说明理由。

-64,0,(-4)2,10-2
如果有要用平方根的符号来表示。

例4 求下列各式的值:
(1)36;(2)81.0-;(3)9
49±. 建议:要让学生明白各式所表示的意义;根据平方关系和平方根概
念的格式书写解题格式.平方根和算术平方根的概念是本章重点内
容,两者既有区别又有联系。

区别在于正数的平方根有两个,而它
的算术平方根只有一个;联系在于正数的负平方根是它的算术平方
根的相反数,根据它的算术平方根可以立即写出它的负平方根,因
此我们可以利用算术平方根来研究平方根。

小结:
什么叫做一个数的平方根?
正数,0,负数的平方根有什么规律?
怎样求出一个数的平方根?数a的平方根怎样表示?
课题6.2 立方根
【教学目标】1.了解立方根的概念和表示方法;
2.会求一个数的立方根;
3.通过探讨一个数的立方根与它的相反数的立方根的关系,可以将求负数的立
方根转化为求正数的立方根的问题,培养学生的转化思想.
【教学重点】立方根的概念和求法
【教学难点】立方根的求法。

课题6.3实数(第1课时)
【教学目标】1.了解无理数和实数的概念以及实数的分类;
2.知道实数与数轴上的点具有一一对应的关系. 【教学重点】了解无理数和实数的概念
【教学难点】对无理数的认识
课题6.3实数(第2课时)
【教学目标】1.掌握实数的相反数和绝对值;
2.掌握实数的运算律和运算性质.
3.通过建立有理数的一些概念和运算在实数范围里也成立的意识,让学生了解
在这种数的扩充中所体现的一致性,让学生充分感受数的不断发展。

【教学重点】认识和理解有理数的一些概念和运算在实数中仍适用的这种扩充
【教学难点】认识和理解有理数的一些概念和运算在实数中仍适用的这种扩充。

相关文档
最新文档