汽车的制造工艺及过程1(参考模板)

汽车的制造工艺及过程1(参考模板)
汽车的制造工艺及过程1(参考模板)

汽车的制造工艺及过程

1.铸造

铸造是将熔化的金属浇灌入铸型空腔中,冷却凝固后而获得产品的生产方法。在汽车制造过程中,采用铸铁制成毛坯的零件很多,约占全车重量10%左右,如气缸体、变速器箱体、转向器壳体、后桥壳体、制动鼓、各种支架等。制造铸铁件通常采用砂型。砂型的原料以砂子为主,并与粘结剂、水等混合而成。砂型材料必须具有一定的粘合强度,以便被塑成所需的形状并能抵御高温铁水的冲刷而不会崩塌。为了在砂型内塑成与铸件形状相符的空腔,必须先用木材制成模型,称为木模。炽热的铁水冷却后体积会缩小,因此,木模的尺寸需要在铸件原尺寸的基础上按收缩率加大,需要切削加工的表面相应加厚。空心的铸件需要制成砂芯子和相应的芯子木模(芯盒)。有了木模,就可以翻制空腔砂型(铸造也称为“翻砂”)。在制造砂型时,要考虑上下砂箱怎样分开才能把木模取出,还要考虑铁水从什么地方流入,怎样灌满空腔以便得到优质的铸件。

砂型制成后,就可以浇注,也就是将铁水灌入砂型的空腔中。浇注时,铁水温度在 1250—1350度,熔炼时温度更高。

2.锻造在汽车制造过程中,广泛地采用锻造的加工方法。锻造分为自由锻造和模型锻造。自由锻造是将金属坯料放在铁砧上承受冲击或压力而成形的加工方法(坊间称“打铁”)。汽车的齿轮和轴等的毛坯就是用自由锻造的方法加工。模型锻造是将金属坯料放在锻模的模膛内,承受冲击或压力而成形的加工方法。模型锻造有点像面团在模子内被压成饼干形状的过程。与自由锻相比,模锻所制造的工件形状更复杂,尺寸更精确。汽车的模锻件的典型例子是:发动机连杆和曲轴、汽车前轴、转向节等。

3.冷冲压冷冲压或板料冲压是使金属板料在冲模中承受压力而被切离或成形的加工方法。日常生活用品,女口铝锅、饭盒、脸盆等就是采用冷冲压的加工方法制成。例如制造饭盒,首先需要切出长方形并带有4个圆角的坯料(行家称为“落料”),然后用凸模将这块坯料压入凹模而成形(行家称为“拉深”)。在拉深工序,平面的板料变为盒状,其4边向上垂直弯曲,4个拐角的材料产生堆聚并可看到皱褶。采用冷冲压加工的汽车零件有:发动机油底壳,制动器底板,汽车车架以及大多数车身零件。这些零件一般都经过落料、冲孔、拉深、弯曲、翻边、修整等工序而成形。为了制造冷冲压零件,必须制备冲模。冲模通常分为2块,其中一块安装在压床上方并可上下滑动,另一块安装在压床下方并固定不动。生产时,坯料放在2块冲模之间,当上下模合拢时,冲压工序就完成了。冲压加工的生产率很高,并可制造形状复杂而且精度较高的零件o

4。焊接焊接是将两片金属局部加热或同时加热、加压而接合在一起的加工方法。我们常见工人一手拿着面罩,另一手拿着与电线相连的焊钳和焊条的焊接方法称为手工电弧焊,这是利用电弧放电产生的高温熔化焊条和焊件,使之接合。手工电弧焊在汽车制造中应用得不多。在汽车车身制造中应用最广的是点焊。点焊适于焊接薄钢板,操作时,2个电极向2块钢板加压力使之贴合并同时使贴合点(直径为 5—6甽的圆形)通电流加热熔化从而牢固接合。2块车身零件焊接时,其边缘每隔50—100甽焊接一个点,使2零件形成不连续的多点连接。焊好整个轿车车身,通常需要上千个焊点。焊点的强度要求很高,每个焊点可承受

5kN的拉力,甚至将钢板撕裂,仍不能将焊点部位分离。在修理车间常见的气焊,是用乙炔燃烧并用氧气助燃而产生高温火焰,使焊条和焊件熔化并接合的方法。还可以采用这种高温火焰将金属割开,称为气割。气焊和气割应用较灵活,但气焊的热影响区较大,使焊件产生变形和金相组织变化,性能下降。因此,气焊在汽车制造中应用极少。

5.金属切削加工。金属切削加工是用刀具将金属毛坯逐层切削;使工件得到所需要的形状、尺寸和表面粗糙度的加工方法。金属切削加工包括钳工和机械加工两种方法-,钳工是工人用手工工具进行切削的加工方法,操作灵活方便,在装配和修理中广泛应用。机械加工是借助于机床来完成切削的,包括:车、刨、铣、钻和磨等方法。 1)车削:车削是在车床上用车刀加工工件的工艺过程。车床适于切削各种旋转表面,如内、外圆柱或圆锥面,还可以车削端面。汽车的许多轴类零件以及齿轮毛坯都是在车床上加工的。 2)刨削:刨削是在刨床用刨刀加工工件的工艺过程。刨床适于加工水平面、垂直面、斜面和沟槽等。汽车上的气缸体和气缸盖韵乎面、变速器箱体和盖的配合平面等都是用刨床加工的。 3)铣削:铣削是在铣床上用铣刀加工工件的工艺过程。铣床可以加工斜面、沟槽,甚至可加工齿轮和曲面等旧铣削广泛地应用于加工各种汽车零件。汽车车身冷冲压的模具都是用铣削加工的。计算机操纵的数控铣床可以加工形状很复杂的工件,是现代化机械加工的主要机床。 4)钻削及镗削:钻削和镗削是加工孔的主要切削方法。 5)磨削:磨削是在磨床上用砂轮加工工件的工艺过程。磨削是一种精加工方法,可以获得高精度和粗糙度的工件,而且可以磨削硬度很高的工件。一些经过热处理后的汽车零件,均用磨床进行精加工。

6.热处理热处理是将固态的钢重新加热、保温或冷却而改变其组织结构,以满足零件的使用要求或工艺要求的方法。加热温度的高低、保温时间的长短、冷却速度的快慢,可使钢产生不同的组织变化。铁匠将加热的钢件浸入水中快速冷却(行家称为淬火),可提高钢

件的硬度,这是热处理的实例。热处理工艺包括退火、正火、淬火和回火等。退火是将钢件加热,保温一定时间,随后连同炉子—起缓慢冷却,以获得较细而均匀的组织,降低硬度,以利于切削加工。正火是将钢件加热,保温后从炉中取出,随后在空气中冷却,适于对

低碳钢进行细化处理。淬火是将钢件加热,保温后在水中或在油中快速冷却,以提高硬度。回火通常是淬火的后续工序,将淬火后的钢件重新加热,保温后冷却,使组织稳定,消除脆性。有不少汽车零件,既要保留心部的韧性,又要改变表面的组织以提高硬度,就需要采用表面高频淬火或渗碳、氰化等热处理工艺。

7.装配装配是按一定的要求,用联接零件(螺栓、螺母、销或卡扣等)把各种零件相互联接和组合成部件,再把各种部件相互联接和组合成整车。无论是把零件组合成部件,或是把部件组合成整车,都必须满足设计图纸规定的相互配合关系,以使部件或整车达到预定的性能。例如,将变速器装配到离合器壳上时,必须使变速器输入轴的中心线与发动机曲轴的中心线对准。这种对中心的方式不是在装配时由装配工人(钳工)来调节,而是由设计和加工制造来保证。如果你到汽车制造厂参观,最引人人胜的是汽车总装配线。在这条总装配线上,每隔几分钟就驶下一辆汽车。以我国一汽的解放牌货车总装配线为例。这条装配线是一条165m长的传送链,汽车随着传送链移动至各个工位并逐步装成,四周还有输送悬链把发动机总成、驾驶室总成、车轮总成等源源不断地从各个车间输送到总装配线上的相应

工位。在传送链的起始位置首先放上车架(底朝天),然后将后桥总成(包括钢板弹簧和轮毂

)和前桥总成(包括钢板弹簧、转向节和轮毂)安装到车架上,继而将车架翻过来以便安装转向器、贮气筒和制动管路、油箱及油管、电线以及车轮等,最后安装发动机总成(包括离合器、变速器和中央制动器),接上传动轴,再安装驾驶室和车前板制件等。至此,汽车就可以驶下装配线。

8、汽车试验由于汽车的使用条件复杂,汽车工业所涉及的技术领域极为广泛,致使许多理论问题研究得还不够充分,因此汽车工业特别重视试验研究。汽车的设计、制造过程始终离不开试验,无论是设计思想和理论计算、初步设计、技术设计、汽车定型还是在生产过程,都要进行大量的试验。最后,在客户购买了汽车并使用的过程中,车辆交通管理部门还要定期对车况进行测试,以确保行车安全。除了某些研究性试验外,汽车产品试验均应遵循一定的标准和规范、对试验条件、试验方法、测试仪器及其精度、结果评价等进行限定,以确保试验结果的再现性和可对比性。不同国家甚至不同厂家的试验规范可能不同,因此在查看某种产品的试验数据时,必须弄清他们试验所依据的规程或标准。 3.汽车整车性能试验汽车性能试验是为了测定汽车的基本性能而进行的试验。主要包括以下这些试

验: (1)动力性能试验对常用的3个动力性能指标,即对汽车的最高车速、加速和爬坡性能进行实际试验。最高车速试验的目的是测定汽车所能达到的最高车速,我国规定的测试区间是1.6km试验路段的最后500m。加速试验一般包括起步到给定车速、高速挡或次高速挡,以及从给定初速加速到给定车速两项试验内容。爬坡试验包括最大爬坡度与爬长坡两项试验。最大爬坡度试验最好在坡度均匀、测量区间长20m以上的人造坡道上进行,如果人造坡道的坡度对所测车不合适(例如坡道过大或过小),可采用增、减载荷或变换排挡的办法做试验,再折算出最大爬坡度;爬长坡试验主要用来检查汽车能否通过坡度为7%—10%、长lOkm以上的连续长坡,试验中不仅要记录爬坡过程中的换挡次数、各挡位使用时间和爬坡总时间,还要观察发动机冷却系统有无过热,供油系统有无气阻或渗漏等现象。 (2) 燃料经济性试验通常做道路试验或做汽车测功器(亦即转鼓试验台)试验,后者能控制大部分的使用因素,重复性好,能模拟实际行驶的复杂情况,能采用各种测量油耗的方法,还能同时测量废气排放。 (3)制动性能试验汽车制动性能的优劣直接关系到汽车行驶的安全性,用制动效能和制动效能的稳定性评价。常进行制动距离试验、制动效能试验(测.制动踏板力和制动减速度关系曲线)、热衰退和恢复试验、浸水后制动效能衰退和恢复试验等。

(4)操纵稳定性试验试验类型较多,如用转弯制动试验评价汽车在弯道行驶制动时的行驶方向稳定性;用转向轻便性试验评价汽车的;转向力是否适度;用蛇形行驶试验来评价汽车转向时的随从性、收敛性、转向力大小、侧倾程度和避免事故的能力;用侧向风敏感性试验来考察汽车在侧向风情况下直线行驶状态的保持性;用抗侧翻试验考察汽车在为避免交通事故而急打方向盘时汽车是否有侧翻危险;用路面不平度敏感性试验来检查汽车高速行驶时承受路面干扰而保持直线行驶的能力;用汽车稳态回转试验确定汽车稳态转向特性等。

(5)平顺性试验平顺性主要是根据乘坐者的舒适程度来评价的,所以又叫做乘坐舒适性,其评价方法通常根据人体对震动的生理感受和保持货物的完整程度确定。典型的试验有汽车平顺性随机输入行驶试验和汽车平顺性单脉冲输入行驶试验,前者用以测定汽车在随机不平的路面上行驶时,其震动对乘员或货物的影响;后者用以评价汽车行驶中遇到大的凸起物或凹坑冲击震动时的平顺性。 (6)通过性试验一般在汽车试验场和专用路段上进行该试验。

(7)安全性试验安全性试验项目很多,而且耗资巨大,特别是碰撞安全试验,除正面撞车试验外,近来还增加侧面撞车试验。可以进行实车撞车试验,也可以进行模拟试验或撞车模拟计算;但不少国家规定新车型必须经过实车撞车试验,以验证其撞车安全性。在撞车试验中需用假人(又称人体模型)进行试验,对人体模型的要求是,其质量、尺寸分布,主要骨骼关节和动作等尽量逼近真人,又要容易测定各部位的加速度、载荷和变形;人体模型价格较高,因此也要求具有高的耐用性。当进行车内装置(如安全带、座椅、方向盘、仪表板等)抗冲撞能力试验时,为节省开支常用撞车模拟装置进行,它以装有人体模型的平台车代替实车,摸拟以一定初速运动的汽车撞击固定壁后部件的减速度特性,从而研究冲击能量的吸收情况。

9.汽车零部件试验

尽管汽车零部件种类繁多,其试验通常是性能、强度、耐久性等内容。发动机是汽车中最重要的总成,其性能试验主要有功率、怠速、空转特性、负荷特性、调速特性、起动、机械效率、多缸工作均匀性、排放和噪声等试验。对发动机的重要零部件(如

曲轴、连杆、活塞等运动件和缸盖、缸体等固定件)应进行强度试验,整机和重要部件常需进行耐久性试验,重要部件的耐久性试验可在专门的试验台上进行,整机的耐久性试验则在发动机台架上进行。为了缩短试验时间,通常强化试验条件,如在额定工况、全负荷最大扭矩工况、超负荷超转速工况下运转。耐久性试验前后要全面测量尺寸和性能,以便评价磨损情况和动力性、经济性、排放等指标的稳定程度。许多汽车承载系统的寿命都与“道路—汽车”系统产生的随机震动特性有关,因此可以按载荷谱提供激震力(或位移)的电子液压震动试验台,它成了许多零部件试验中不可缺少的加载工作台。

10、汽车试验场

汽车试验场,亦称试车场,是重现汽车使用过程中遇到的各种道路条件和使用条件,进行汽车整车道路试验的场所,为满足汽车的试验要求,汽车试验场将实际存在的各种道路经过集中、浓缩、不失真地强化形成典型化的道路。汽车试验场的主要试验设

施是集中修筑的各种试验道路,—如高速环形跑道、高速直线跑道、可靠性强化试验路段、耐久性试验跑道、爬坡试验路以及特殊试验路段’(如噪声试验路段、“比利时路”[注』、搓板路、随机波形路、扭曲路、越野路、涉水路等)。由于汽车试验在汽车开发过程中处于极为重要的地位,许多汽车企业都投入巨额资金修建大型的汽车综合试验场,例如通用汽车公司的密尔福德试验场、日本汽车研究所试验场、英国汽车工业研究协会(MIRA)试验场、我国海南汽车试验场等。试验场的道路设施主要有: 1.高速环形跑道 [注]按一定的规律铺上各种石块的汽车试验道路。高速环形跑道是平面形状,长度约4- 8km,多数采用两端圆形路和中间直线路的形状,也有椭圆形或其他形状;设有3-5条车道。这种跑道的设计最高车速通常在2mh√h以上,可供汽车长时间持续高速行驶,以考验汽车的高速性能和零部件的可靠性。 2.高速直线跑道高速直线跑道是水平直线路,长度约 2.5-4km,可供汽车作动力性、制动性和燃料经济性试验。为了节省建设费用,许多试验场将高速直线跑道设置在高速环形跑道的直线部分,两者结合使用。 3.可靠性、耐久性试验道路模仿汽车使用寿命中在各种好路和坏路上行驶的情况,在汽车试验场内,除了建造沥青路外,也建造沙土路和各种不同的砾石路,以便进行强化试验,使汽车能在较短的行驶里程内就能暴露问题。4.扭曲试验路汽车在这种道路上行驶时,车身和车架、前后轴).悬架,以及汽车传动系都产生反复扭转,以考验这些部件的性能。 5。坡路

汽车试验场通常还建有各种坡度的坡路,用以检验汽车的爬坡能力,还可考察驻车制动器(手刹)在坡道上的停车能力、汽车在坡路上起步时离合器的工作状况等。 6.操纵性、稳定性试验设施操纵性、稳定性试验设+施最常见的是圆形广场,直径为100m,可供汽车转向或绕“8”字形行驶试验。有的圆形广场还备有洒水装置,使地面生成均匀的水膜以测试汽车韵侧滑情况。易滑路是用来试验汽车在冰雪或附着条件很低的路况下的行驶性能和制动性能,采用磨光、洒水、冰雪等方法降低路面的附着系数。横向风路段是考验汽车空气动力稳定性的设施。丰田汽车公司是在试车道路旁排列有15个直径为2.7m的大型风扇,可产生类似垂直于道路的横向风,以考验汽车在横向侧风作用下的操纵性能。 7.涉水池涉水池有浅水池(水深约0.2m)或深水池(水深1—2m)两种,用以检查汽车涉水时水对汽车各种部件的影响,如电气设备、制动器、发动机进/排气管浸水后的工作情况等。

(注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

汽车制造工艺学课程教学大纲

《汽车制造工艺学》课程教学大纲 课程代码:0803515017 课程名称:汽车制造工艺学 英文名称:Automobile Manufacturing Technology 总学时:56 讲课学时:52 实验学时: 4 学分:3.5 适用对象:车辆工程 先修课程:互换性与技术测量、机械制造基础 一、课程性质、目的和任务 汽车制造工艺与装备是车辆工程专业(汽车技术方向)的一门主要专业课。课程的内容以质量、生产率及经济性为主线。通过本课程的教学及有关教学环节的配合,使学生掌握机械制造工艺的基本理论,具有制订机械加工工艺规程、设计专用夹具的基本能力,具有综合分析机械加工过程的一般工艺问题的能力。 二、教学基本要求 掌握机械加工规程制订的原则、方法与步骤,具有设计工艺规程的初步能力;掌握机床夹具设计的基本原理和设计方法,具有专用夹具设计的初步能力;能初步分析机械加工中的质量问题,并提出解决问题的工艺途径;掌握保证机器装配精度的装配方法,具有装配方法选择与工艺规程设计的能力。 三、教学内容及要求 1.汽车制造工艺过程概论 ①了解本课程的性质和任务;认识机械加工工艺在国民经济中的地位、作用及国内外发展概况。 ②了解汽车的生产过程;了解汽车生产的工艺过程;了解汽车及其零件生产模式和生产理念的发展。 2.工件的定位和机床夹具 ①掌握基准的概念和工件的安装。 ②了解机床夹具的组成及其分类方法。 ③熟练掌握工件的定位原理及几种常见的定位方式。 ④掌握常用定位元件和工件在夹具中的定位误差的分析计算。 ⑤通过典型机床夹具的实例分析,掌握机床夹具设计的方法和步骤。 3.工件的机械加工质量 ①掌握机械加工质量的基本概念。 ②掌握影响机械加工精度的主要因素。 ③掌握影响零件表面质量的因素。 ④了解表面质量对机器零件使用性能的影响。 4.机械加工工艺规程的制定 ①了解机械加工工艺规程在生产中的作用、制定步骤。

典型零件选材及工艺分析

典型零件选材及工艺分析 一,齿轮类 机床、汽车、拖拉机中,速度的调节和功率的传递主要靠齿轮机床、汽车和拖拉机中是一种十分重要、使用量很大的零件。 齿轮工作时的一般受力情况如下: (1)齿部承受很大的交变弯曲应力; (2)换当、启动或啮合不均匀时承受击力; (3)齿面相互滚动、滑动、并承受接触压应力。 所以,齿轮的损坏形式主要是齿的折断和齿面的剥落及过度磨损。据此,要求齿材料具有以下主要性能: (1)高的弯曲疲劳强度和接触疲劳强度; (2)齿面有高的硬度和耐磨性; (3)齿轮心部有足够高的强度和韧性。 此外,还要求有较好的热处理工艺性,如变形小,并要求变形有一定的规律等。下面以机床和汽车、拖拉机两类齿轮为例进行分析。 (一)机床齿轮 机床中的齿轮担负着传递动力、改变运动速度和运动方向的任务。一般机床中的齿轮精度大部分是7级精度(GB179-83规定,精度分12级,用1、2、3、……12表示,数字愈大者,精度愈低)。只是在他度传动机构中要求较高的精度。

机床齿轮的工作条件比起矿山机械、动力机械中的齿轮来说还属于运转平稳、负荷不大、条件较好的一类。实践证明,一般机床齿轮选用中碳钢制造,并经高频感应热处理,所得到的硬度、耐磨性、强度及韧性能满足要求,而县市频淬火具有变形小、生产率高等优点。 下面以C616机床中齿轮为例加以分析。 1、高频淬火齿轮的工工艺线 2、热处理工序的作用正火处理对锻造齿轮毛坯是必需的热处理工序,它可以使同批坯料具有相同的硬度,便于切削加工,并使组织均匀,消除锻造应力。对于一般齿轮,正火处理也可作为高频淬火前的最后热处理工序。 调质处理可以使齿轮具有较高的综合机械性能,提高齿轮心部的强度和韧性,使齿轮能承受较大的弯曲应力和冲击力。调质后的齿轮由于组织为回火索氏体,在淬火时变形更小。 高频淬火及低温回火是赋予齿轮表面性能的关键工序,通过高频淬火提高了齿轮表 面硬度和耐磨性,并使齿轮表面有压应力存在而增强了抗疲劳破坏的能力。为了消除淬火应力,高频淬火后应进行低温回火(或自行回火),这对防止研磨裂纹的产生和提高抗冲击能力极为有利。 3、齿轮高频淬火后的变形情况齿轮高频淬火后,其变形一般表现为内孔缩小,外径不变或减小。齿轮外径与内径之比小于1.5时,内径略胀大;当齿轮有键槽时,内径向键槽方向胀大,形成椭圆形,齿间椭圆形,齿间亦稍有变形,齿形变化较小,一般表现为中间凹0.002~0.0005㎜。这些微小的变形对生产影响不大,因为一般机床用的7级精度齿轮,淬火回火后,均要经过滚光和推孔才成为成品。

(完整版)汽车制造工艺流程

1.铸造 铸造是将熔化的金属浇灌入铸型空腔中,冷却凝固后而获得产品的生产方法。在汽车制造过程中,采用铸铁制成毛坯的零件很多,约占全车重量10%左右,如气缸体、变速器箱体、转向器壳体、后桥壳体、制动鼓、各种支架等。制造铸铁件通常采用砂型。砂型的原料以砂子为主,并与粘结剂、水等混合而成。砂型材料必须具有一定的粘合强度,以便被塑成所需的形状并能抵御高温铁水的冲刷而不会崩塌。为了在砂型内塑成与铸件形状相符的空腔,必须先用木材制成模型,称为木模。炽热的铁水冷却后体积会缩小,因此,木模的尺寸需要在铸件原尺寸的基础上按收缩率加大,需要切削加工的表面相应加厚。空心的铸件需要制成砂芯子和相应的芯子木模(芯盒)。有了木模,就可以翻制空腔砂型(铸造也称为“翻砂”)。在制造砂型时,要考虑上下砂箱怎样分开才能把木模取出,还要考虑铁水从什么地方流入,怎样灌满空腔以便得到优质的铸件。砂型制成后,就可以浇注,也就是将铁水灌入砂型的空腔中。浇注时,铁水温度在1250—1350度,熔炼时温度更高。 2.锻造 在汽车制造过程中,广泛地采用锻造的加工方法。锻造分为自由锻造和模型锻造。自由锻造是将金属坯料放在铁砧上承受冲击或压力而成形的加工方法(坊间称“打铁”)。汽车的齿轮和轴等的毛坯就是用自由锻造的方法加工。模型锻造是将金属坯料放在锻模的模膛内,承受冲击或压力而成形的加工方法。模型锻造有点像面团在模子内被压成饼干形状的过程。与自由锻相比,模锻所制造的工件形状更复杂,尺寸更精确。汽车的模锻件的典型例子是:发动机连杆和曲轴、汽车前轴、转向节等。 3.冷冲压 冷冲压或板料冲压是使金属板料在冲模中承受压力而被切离或成形的加工方法。日常生活用品,女口铝锅、饭盒、脸盆等就是采用冷冲压的加工方法制成。例如制造饭盒,首先需要切出长方形并带有4个圆角的坯料(行家称为“落料”),然后用凸模将这块坯料压入凹模而成形(行家称为“拉深”)。在拉深工序,平面的板料变为盒状,其4边向上垂直弯曲,4个拐角的材料产生堆聚并可看到皱褶。采用冷冲压加工的汽车零件有:发动机油底壳,制动器底板,汽车车架以及大多数车身零件。这些零件一般都经过落料、冲孔、拉深、弯曲、翻边、修整等工序而成形。为了制造冷冲压零件,必须制备冲模。冲模通常分为2块,其中一块安装在压床上方并可上下滑动,另一块安装在压床下方并固定不动。生产时,坯料放在2块冲模之间,当上下模合拢时,冲压工序就完成了。冲压加工的生产率很高,并可制造形状复杂而且精度较高的零件. 4。焊接 焊接是将两片金属局部加热或同时加热、加压而接合在一起的加工方法。我们常见工人一手拿着面罩,另一手拿着与电线相连的焊钳和焊条的焊接方法称为手工电弧焊,这是利用电弧放电产生的高温熔化焊条和焊件,使之接合。手工电弧焊在汽车制造中应用得不多。在汽车车身制造中应用最广的是点焊。点焊适于焊接薄钢板,操作时,2个电极向2块钢板加压力使之贴合并同时使贴合点(直径为5—6甽的圆形)通电流加热熔化从而牢固接合。2块车身零件焊接时,其边缘每隔50—100甽焊接一个点,使2零件形成不连续的多点连

汽车制造工艺学习题及答案

第三部分习题答案 第一章现代制造工艺学基本概念 一、判断题答案 1. 现代汽车制造技术正进入刚性自动化阶段。错误 现代汽车制造技术正进入(柔性自动化阶段)。 2. 生产过程是将原材料转变为产品的过程。正确 3. 产品依次通过的全部加工内容称为工艺路线。错误 (零件)依次通过的全部加工内容称为工艺路线。 4. 工位是指工件在一次安装内,工件连同夹具在机床上所占有的相对位置。正确 5. 工序是机械加工工艺过程的基本组成部分。错误 工序是(工艺过程的基本组成单元)。 6. 在切削加工时,如果同时用几把刀具加工零件的几个表面,则这种工步称作复合工步。 正确 7. 成形法是依靠刀具运动轨迹来获得工件形状的一种方法。错误 (轨迹法)是依靠刀具运动轨迹来获得工件形状的一种方法。 8. 加工的经济精度指以最有利的时间消耗能达到的加工精度。正确 9. 生产纲领就是生产计划。正确 10. 大量生产中自动化程度较高,要求工人的技术水平也高。错误 大量生产中(使用流水线作业,自动化程度较高,工人只需熟悉某一岗位的操作)。 11.一道工序只能有一次安装。错误一道工序(可有一次或几次安装)。 12.机械加工工艺过程主要改变零件形状及尺寸。正确 13. 运用多工位夹具,可减少工件安装次数,缩短工序时间,提高生产率。正确 14. 调整法就是不断调整刀具的位置。错误 调整法(是保持到刀具与工件在机床上的相对位置不变)。 15. 主动测量法需要使用精密的仪器。正确 16. 成形法中加工表面是由刀刃包络而成的。错误 (展成法)中加工表面是由刀刃包络而成的。 17. 在生产加工中,能达到的精度越高越好。错误 在生产加工中,(达到经济精度)即可。 二、选择题答案 1.《汽车制造工艺学》研究的对象主要是汽车加工中的三大问题,即()( c )a. 质量,生产力,经济性 b. 产量,生产率,经济性 c. 质量,生产率,经济性 d. 质量,生产率,经济精度 2.工艺过程是()(c ) a. 在生产过程前改变原材料的尺寸,形状,相互位置和性质的过程。 b. 在生产过程后改变原材料的尺寸,形状,相互位置和性质的过程。

常用材料热处理

常用材料热处理

材料热处理中的特性: 淬透性(可淬性):指钢接受淬火的能力 零件尺寸越大,内部热容量也越大,淬火时冷却速度越慢,因此,淬透层越薄,性能越差,这种现象叫做“钢材的尺寸效应”。但淬透性大的钢,尺寸效应不明显。 由于碳钢的淬透性低,在设计大尺寸零件时用碳钢正火比调质更经济。 常用钢种的临界淬透直径De mm 常用材料的工作条件和热处理 渗碳钢:(含碳量0.1~0.25%) 10、15、20、 15Cr、20Cr、20Mn2、20CrMn、20CrMnVB 25MnTiB、18CrMnTi、20CrMnTi、20CrMnMo 30CrMnTi、20Cr2Ni4A、12CrNi3A、18Cr2Ni4W A

渗碳钢在高温下长时间保温,晶粒易于长大,恶化钢的性能。 表面含碳量在0.85~1.05%,表层硬度≥56~65(HRC) 心部含碳量在0.18~0.25%,HRC30~45 含碳量在0.3%时,HRC30~47 常用渗碳钢渗碳后的硬度 调质钢(含碳量0.25~0.5%) 40、45、40Cr、50Mn2、35CrMo、30CrMnSi、 40CrMnMo、40MnB、40MnVB、40CrNiMoA 38CrMoAlA 碳素调质钢淬透性低。 常用调质钢的调质硬度 调质钢对表面耐磨性要求较高时还需高频淬火,要求耐磨性更高时则需渗氮。

弹簧钢含碳量:碳素弹簧钢0.6~0.9% 合金弹簧钢0.45-0.7% 弹簧钢的选用: 钢丝直径<12~15mm 65、75 弹簧≤25mm 65Mn、55Si2Mn 60Si2Mn、70Si3MnA 钢丝直径≤30mm 50CrVA、50CrMnVA 重要弹簧 60Si2CrVA、65Si2MnVA 弹簧钢的热处理一般是淬火加中温回火 热处理的硬度一般为 HRC41-48 对于一般小弹簧(钢丝截面D<10mm)不淬火,只作250~300去应力处理。 65Mn淬硬性好,硬度≥HRC59。 轴承钢含碳量0.95~1.10% 含铬量0.5~1.65% GCr9 GCr15 GCr15SiMn GsiMnV GMnMoVRE GSiMnMoV GSiMnVRE GSiMnMoVRE GMnMoV 轴承承受高压集中周期性交变载荷,由转动和滑动产生极大的摩擦。 轴承钢一般首先进行球化退火—淬火—低温回火,硬度为HRC61-65。

汽车制造常用工艺

充电】汽车的制造工艺及过程1# 发表于2006-7-22 10:06 | 只看该作者| 倒序看帖| 打印| 使用道具 1.铸造 铸造是将熔化的金属浇灌入铸型空腔中,冷却凝固后而获得产品的生产方法。在汽车制造过程中,采用铸铁制成毛坯的零件很多,约占全车重量10%左右,如气缸体、变速器箱体、转向器壳体、后桥壳体、制动鼓、各种支架等。制造铸铁件通常采用砂型。砂型的原料以砂子为主,并与粘结剂、水等混合而成。砂型材料必须具有一定的粘合强度,以便被塑成所需的形状并能抵御高温铁水的冲刷而不会崩塌。为了在砂型内塑成与铸件形状相符的空腔,必须先用木材制成模型,称为木模。炽热的铁水冷却后体积会缩小,因此,木模的尺寸需要在铸件原尺寸的基础上按收缩率加大,需要切削加工的表面相应加厚。空心的铸件需要制成砂芯子和相应的芯子木模(芯盒)。有了木模,就可以翻制空腔砂型(铸造也称为“翻砂”)。在制造砂型时,要考虑上下砂箱怎样分开才能把木模取出,还要考虑铁水从什么地方流入,怎样灌满空腔以便得到优质的铸件。砂型制成后,就可以浇注,也就是将铁水灌入砂型的空腔中。浇注时,铁水温度在1250—1350度,熔炼时温度更高。 2.锻造 在汽车制造过程中,广泛地采用锻造的加工方法。锻造分为自由锻造和模型锻造。自由锻造是将金属坯料放在铁砧上承受冲击或压力而成形的加工方法(坊间称“打铁”)。汽车的齿轮和轴等的毛坯就是用自由锻造的方法加工。模型锻造是将金属坯料放在锻模的模膛内,承受冲击或压力而成形的加工方法。模型锻造有点像面团在模子内被压成饼干形状的过程。与自由锻相比,模锻所制造的工件形状更复杂,尺寸更精确。汽车的模锻件的典型例子是:发动机连杆和曲轴、汽车前轴、转向节等。 3.冷冲压 冷冲压或板料冲压是使金属板料在冲模中承受压力而被切离或成形的加工方法。日常生活用品,女口铝锅、饭盒、脸盆等就是采用冷冲压的加工方法制成。例如制造饭盒,首先需要切出长方形并带有4个圆角的坯料(行家称为“落料”),然后用凸模将这块坯料压入凹模而成形(行家称为“拉深”)。在拉深工序,平面的板料变为盒状,其4边向上垂直弯曲,4个拐角的材料产生堆聚并可看到皱褶。采用冷冲压加工的汽车零件有:发动机油底壳,制动器底板,汽车车架以及大多数车身零件。这些零件一般都经过落料、冲孔、拉深、弯曲、翻边、修整等工序而成形。为了制造冷冲压零件,必须制备冲模。冲模通常分为2块,其中一块安装在压床上方并可上下滑动,另一块安装在压床下方并固定不动。生产时,坯料放在2块冲模之间,当上下模合拢时,冲压工序就完成了。冲压加工的生产率很高,并可制造形状复杂而且精度较高的零件. 已有 1 人评分 shangerli: 非常感谢热心+ 1 收藏分享00 0 好差 环滁皆山也! 回复引用举报评分TOP

典型零件的选材

材料选用的原则与方法 机械零件的选材是一项十分重要的工作。选材是否恰当,特别是一台机器中关键零件的选材是否恰当,将直接影响到产品的使用性能、使用寿命及制造成本。要做到合理选用材料,就必须全面分析零件的工作条件、受力性质和大小,以及失效形式,然后综合各种因素,提出能满足零件工作条件的性能要求,再选择合适的材料并进行相应的热处理以满足性能要求。 选用工程材料的基本原则是:不仅要充分考虑材料的使用性能能够适应机械零件的工作条件要求、使机器零件经久耐用.同时还要兼顾材料的加工工艺性能、经济性与可持续发展性,以便提高零件的生产率、降低成本、减少能耗、减少乃至避免环境污染等。 选材的一般方法 材料的选择是一个比较复杂的决策问题。目前还没有一种确定选材最佳方案的精确方法。它需要设计者熟悉零件的工作条件和失效形式,掌握有关的工程材料的理论及应用知识、机械加工工艺知识以及较丰富的生产实际经验。通过具体分析,进行必要的试验和选材方案对比,最后确定合理的选材方案。一般,根据零件的工作条件,找出其最主要的性能要求,以此作为选材的主要依据。 零件材料的合理选择通常按照以下步骤进行: (1) 对零件的工作条件进行周密的分析,找出主要的失效方式,从而恰当地提出主要性能指标。一般地,主要考虑力学性能,特殊情况还应考虑物理、化学性能。 (2) 调查研究同类零件的用材情况,并从其使用性能、原材料供应和加工等方面分析选材是否合理,以此作为选材的参考。 (3) 根据力学计算,确定零件应具有的主要力学性能指标,正确选择材料。这时要综合考虑所选材料应满足失效抗力指标和工艺性的要求,同时还需考虑所选材料在保证实现先进工艺和现代生产组织方面的可能性。 (4) 决定热处理方法或其他强化方法,并提出所选材料在供应状态下的技术要求。 (5) 审核所选材料的经济性,包括材料费、加工费、使用寿命等。 (6) 关键零件投产前应对所选材料进行试验,可通过实验室试验、台架试验和工艺性能试验等,最终确定合理的选材方案。 (7) 最后,在中、小型生产的基础上,接受生产考验。以检验选材方案的合理性。 典型零件的选材 轴类零件的选材 轴是机器中的重要零件之一,一切回转运动的零件都装在轴上。根据轴的作用与所承受的载荷,可分成心轴和转轴两类。心轴只承受弯矩不传递扭矩,心轴可以转动,也可以不转动。转轴按负荷情况有

常用金属材料及热处理

常用金属材料及热处理 以下是为大家整理的常用金属材料及热处理的相关范文,本文关键词为常用,金属,材料及,热处理,模块,常用,金属,材料及,热处理,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在教师教学中查看更多范文。 模块一常用金属材料及热处理项目二钢的热处理任务一:钢的普通热处理一、实验目的1、了解碳钢的基本热处理(退火、正火、淬火及回火)工艺方法。2、研究冷却条件对碳钢性能的影响。3、分析淬火及回火温度对碳钢性能的影响。二、实验原理1、钢的淬火所谓淬火就是将钢加热到Ac3(亚共析钢)或Ac1(过共析钢)以上30~50℃,保温后放入各种不同的冷却介质中(V冷应大于V临),以获得马氏体组织。碳钢经淬火后的组织由马氏体及一定数量的残余奥氏体所组成。为了正确地进行钢的淬火,必须考虑下列三个重要因素:淬火加热的温度、保温时间和冷却速度。(1)淬火温度的选择选定正确的加热温度是保证淬火质量的重要环节。淬火时的具体加热温度主要取决于钢的含碳量,可根据相图确定(如图4所示)。对亚共析钢,其加热温度为+30~50℃,若加热温度不足(低于),则淬火组织中将出现

铁素体而造成强度及硬度的降低。对过共析钢,加热温度为+30~50℃,淬火后可得到细小的马氏体与粒状渗碳体。后者的存在可提高钢的硬度和耐磨性。(2)保温时间的确定淬火加热时间是将试样加热到淬火温度所需的时间及在淬火温度停留保温所需时间的总和。加热时间与钢的成分、工件的形状尺寸、所需的加热介质及加热方法等因素有关,一般可按照经验公式来估算,碳钢在电炉中加热时间的计算如表1所示。表1碳钢在箱式电炉中加热时间的确定加热圆柱形工件形状方形板形温度(℃)分钟/每毫米直径70080090010001.51.00.80.4保温时间分钟/每毫米厚度2.21.51.20.6分钟/每毫米厚度321.60.8(3)冷却速度的影响冷却是淬火的关键工序,它直接影响到钢淬火后的组织和性能。冷却时应使冷却速度大于临界冷却速度,以保证获得马氏体组织;在这个前提下又应尽量缓慢冷却,以减少钢中的内应力,防止变形和开裂。为此,可根据c曲线图(如图2所示),使淬火工作在过冷奥氏体最不稳定的温度范围(650~550℃)进行快冷(即与c曲线的“鼻尖”相切),而在较低温度(300~100℃)时冷却速度则尽可能小些。为了保证淬火效果,应选用合适的冷却方法(如双液淬火、分级淬火等).不同的冷却介质在不同的温度范围内的冷却速度有所差别。各种冷却介质的特性见表2.表2几种常用淬火介质的冷却能力在下列温度范围内的冷却速度(℃/秒)冷却介质650~550℃18℃的水50℃的水10%nacl 水溶液(18℃)10%naoh水溶液(18℃)10%naoh水溶液(18℃)蒸馏水(50℃)硝酸盐(200℃)菜籽油(50℃)矿务机油(50℃)6001001100120XX0025035020XX50300~

2021年典型的汽车零件的加工工艺流程

汽车发动机连杆加工工艺分析 欧阳光明(2021.03.07) 3.1 汽车发动机连杆结构特点及其主要技术要求 连杆是汽车发动机中的主要传力部件之一,其小头经活塞销与活塞联接,大头与曲轴连杆轴颈联接.气缸燃烧室中受压缩的油气混合气体经点火燃烧后急剧膨胀,以很大的压力压向活塞顶面,连杆则将活塞所受的力传给曲轴,推动曲轴旋转。 连杆部件由连杆体,连杆盖和螺栓、螺母等组成。在发动机工作过程中,连杆要承受膨胀气体交变压力和惯性力的作用,连杆除应具有足够的强度和刚度外,还应尽量减小连杆自身的重量,以减小惯性力。连杆杆身的横截面为工字形,从大头到小头尺寸逐渐变小。 为了减少磨损和便于维修,在连杆小头孔中压入青铜衬套,大头孔内衬有具有钢质基底的耐磨巴氏合金轴瓦。 为了保证发动机运转均衡,同一发动机中各连杆的质量不能相差太大。因此,在连杆部件的大、小头端设置了去不平衡质量的凸块,以便在称重后切除不平衡质量。 连杆大、小头两端面对称分布在连杆中截面的两侧。考虑到装夹、安放、搬运等要求,连杆大、小头的厚度相等。 连杆小头的顶端设有油孔,发动机工作时,依靠曲轴的高速转动,气缸体下部的润滑油可飞溅到小头顶端的油孔内,以

润滑连杆小头铜衬套与活塞销之间的摆动运动副。 连杆上需进行机械加工的主要表面为:大、小头孔及其两端面,连杆体与连杆盖的结合面及连杆螺栓定位孔等.连杆总成的技术要求如下: (1)为了保证连杆大、小头孔运动副之间有良好的配合,大头孔的尺寸公差等级为IT6,表面粗糙度Ra值应不大于0.4μm,小头孔的尺寸公差等级为IT5,表面粗糙度Ra值应不大于0.4μm。对两孔的圆柱度也提出了较高的要求,大头孔的圆柱度公差为0.006mm,小头孔的圆柱度公差为0.00125mm。 (2)因为大、小头孔中心距的变化将会使气缸的压缩比发生变化,从而影响发动机的效率,因此要求两孔中心距公差等级为IT9。大、小头孔中心线在两个相互垂直方向上的平行度误差会使活塞在气缸中倾斜,致使气缸壁唐攒不均匀,缩短发动机的使用寿命,同时也使曲轴的连杆轴颈磨损加剧,因此也对其平行度公差提出了要求。 (3)连杆大头孔两端面对大头孔中心线的垂直度误差过大,将加剧连杆大头两端面与曲轴连杆轴颈两端面之间的磨损,甚至引起烧伤,所以必须对其提出要求。 (4)连杆大、小头两端面间距离的基本尺寸相同,但其技术要求不同。大头孔两端面间的尺寸公差等级为IT9,表面粗糙度Ra值应不大于0.8μm;小头两端面间的尺寸公差等级为ITl2,表面粗糙度Ra应不大于 6.3μm。这是因为连杆大头

汽车生产四大工艺流程及工艺文件

汽车生产四大工艺流程及工艺文件 一、工艺基础—概念 1、工艺 即加工产品的方法(手段、过程)。就是利用生产工具对原材料、毛坯、半成品进行加工,改变其几何形状、外形尺寸、表面状态与内部组织的方法。 2、工艺规程 规定产品或零部件制造工艺过程与操作方法等工艺规定(文件)。 3、工艺文件 指导工人操作与用于生产、工艺管理的各种技术文件。就是企业组织生产、计划生产与进行核算的重要技术参数。 4、工艺参数 为达到加工产品预期的技术指标,工艺过程中选用与控制的有关量,如电流、电极压力压等。 5、工艺装备 产品制造过程中所用的各种工具的总称。包括刀具、夹具、模具、量具、检具、辅具、钳工工具与工位器具等。 6、工艺卡片(或作业指导书) 按产品的零、的某一工艺阶段编制的一种工艺文件。她以工序为单元,详细说明产品(或零、部件)在某一工艺阶段的工序号、工序名称、工序内容、工艺参数、操作要求以及采用的设备与工艺装备。包括冲压工艺卡片、焊接工艺卡片、油漆工艺卡片、装配工序卡片。 7、物料清单(BOM) 用数据格式来描述产品结构的文件。 8、外协件明细表 填写产品中所有外协件的图号、名称与加工内容等的一种工艺文件。 9、外购工具明细表 填写产品在生产过程中所需购买的全部刀具、量具等的名称、规格与精度等的一种工艺文件。

10、材料消耗工艺定额明细表 填写产品每个零件在制造过程所需消耗的各种材料的名称、牌号、规格、重量等的一种工艺文件。 11、材料消耗工艺定额汇总表 将“材料消耗工艺定额明细表”中的各种材料按单台产品汇总填列的一种工艺文件。 12零部件转移卡 填写各装配工序零、部件图号(代号)名称规格等的一种工艺。 二、工艺基础—管理 1、工艺管理内容包括: 产品工艺工作程序、产品结构工艺性审查的方式与程序、工艺方案设计、工艺规程设计、工艺定额编制、工艺文件标准化审查、工艺文件的修改、工艺验证、生产现场工艺管理、工艺纪律管理、工艺标准化、工艺装备编号方法、工艺装备设计与验证管理程序、工装的使用与维护、工艺规程格式、管理用工艺文件格式、专用工艺装备设计图样及设计文件格式。 2、工艺设计过程 策划(产品定义)-产品设计与开发(产品数据)-过程设计与开发-产品与过程确认-生产-(持续改进)。 三、车身制造四大工艺定义及特点 在汽车制造业中,冲压、焊装、涂装、总装合为四大核心技术(即四大工艺)。 1、冲压工艺 冲压就是所有工序的第一步。先就是把钢板在切割机上切割出合适的大小,这个时候一般只进行冲孔、切边之类的动作,然后进入真正的冲压成形工序。每一个工件都有一个模具,只要把各种各样的模具装到冲压机床上就可以冲出各种各样的工件,模具的作用就是非常大的,模具的质量直接决定着工件的质量。 a、冲压工艺的特点及冲压工序的分类 冲压就是一种金属加工方法,它就是建立在金属塑性变形的基础上,利用模具与冲压设备对板料施加压力,使板料产生塑性变形或分离,从而获得一定形状、

(工艺流程)典型的汽车零件的加工工艺流程

汽车发动机连杆加工工艺分析 3.1 汽车发动机连杆结构特点及其主要技术要求 连杆是汽车发动机中的主要传力部件之一,其小头经活塞销与活塞联接,大头与曲轴连杆轴颈联接.气缸燃烧室中受压缩的油气混合气体经点火燃烧后急剧膨胀,以很大的压力压向活塞顶面,连杆则将活塞所受的力传给曲轴,推动曲轴旋转。 连杆部件由连杆体,连杆盖和螺栓、螺母等组成。在发动机工作过程中,连杆要承受膨胀气体交变压力和惯性力的作用,连杆除应具有足够的强度和刚度外,还应尽量减小连杆自身的重量,以减小惯性力。连杆杆身的横截面为工字形,从大头到小头尺寸逐渐变小。 为了减少磨损和便于维修,在连杆小头孔中压入青铜衬套,大头孔内衬有具有钢质基底的耐磨巴氏合金轴瓦。 为了保证发动机运转均衡,同一发动机中各连杆的质量不能相差太大。因此,在连杆部件的大、小头端设置了去不平衡质量的凸块,以便在称重后切除不平衡质量。 连杆大、小头两端面对称分布在连杆中截面的两侧。考虑到装夹、安放、搬运等要求,连杆大、小头的厚度相等。 连杆小头的顶端设有油孔,发动机工作时,依靠曲轴的高速转动,气缸体下部的润滑油可飞溅到小头顶端的油孔内,以润滑连杆小头铜衬套与活塞销之间的摆动运动副。 连杆上需进行机械加工的主要表面为:大、小头孔及其两端面,连杆体与连杆盖的结合面及连杆螺栓定位孔等.连杆总成的技术要求如下: (1)为了保证连杆大、小头孔运动副之间有良好的配合,大头孔的尺寸公差等级为IT6,表面粗糙度Ra值应不大于0.4μm,小头孔的尺寸公差等级为IT5,表面粗糙度Ra 值应不大于0.4μm。对两孔的圆柱度也提出了较高的要求,大头孔的圆柱度公差为0.006mm,小头孔的圆柱度公差为0.00125mm。 (2)因为大、小头孔中心距的变化将会使气缸的压缩比发生变化,从而影响发动机的效率,因此要求两孔中心距公差等级为IT9。大、小头孔中心线在两个相互垂直方向上的平行度误差会使活塞在气缸中倾斜,致使气缸壁唐攒不均匀,缩短发动机的使用寿命,同时也使曲轴的连杆轴颈磨损加剧,因此也对其平行度公差提出了要求。 (3)连杆大头孔两端面对大头孔中心线的垂直度误差过大,将加剧连杆大头两端面与曲轴连杆轴颈两端面之间的磨损,甚至引起烧伤,所以必须对其提出要求。

常见零件的热处理

一、齿轮 1.渗碳及碳氮共渗齿轮的工艺流程 毛坯成型→预备热处理→切削加工→渗碳(碳、氮共渗)、淬火及回火→(喷丸)→精加工2.感应加热和火焰加热淬火齿轮用钢及制造工艺流程 3.高频预热和随后的高频淬火工艺流程 锻坯→正火→粗车→高频预热→精车(内孔、端面、外圆)滚齿、剃齿→高频淬火→回火→珩齿 二、滚动轴承 1.套圈工艺流程 2.滚动体工艺流程 (1)冷冲及半热冲钢球 钢丝或条钢退火→冷冲或半热冲→低温退火→锉削加工→软磨→淬火→冷处理→低温回火→粗磨→补加回火→精磨→成品 (2)热冲及模锻钢球 棒料→热冲或模锻→球化退火→锉削加工→软磨→淬火→冷处理→低温回火→粗磨→补加回火→精磨→成品 (3)滚子滚针 钢丝或条钢(退火)→冷冲、冷轧或车削→淬火→冷处理→低温回火→粗磨→附加回火→精磨→成品 三、弹簧 1.板簧的工艺流程 切割→弯制主片卷耳→加热→弯曲→余热淬火→回火→喷丸→检查→装配→试验验收 2.热卷螺旋弹簧工艺流程 下料→锻尖→加热→卷簧及校正→淬火→回火→喷丸→磨端面→试验验收 3.冷卷螺旋弹簧工艺流程 下料→锻尖→加热→卷簧及校正→去应力回火→淬火→回火→喷丸→磨端面→试验验收 四、汽车、拖拉机零件的热处理 1.铸铁活塞环的工艺流程 (1)单体铸造→机加工→消除应力退火→半精加工→表面处理→精加工→成品 (2)简体铸造→机加工→热定型→内外圆加工→表面处理→精加工→成品 2.活塞销的工艺流程 棒料→粗车外圆→渗碳→钻内孔→淬火、回火→精加工→成品 棒料→退火→冷挤压→渗碳→淬火、回火→精加工→成品 热轧管→粗车外圆→渗碳→淬火、回火→精加工→成品 冷拔管→下料→渗碳→淬火、回火→精加工→成品 3.连杆的工艺流程 锻造→调质→酸洗→硬度和表面检验→探伤→校正→精压→机加工→成品

常见材料热处理方式及目的

常见材料热处理 1、45(S45C)常见热处理 基本资料:45号钢为优质碳素结构钢(也叫油钢),硬度不高易切削加工。 ⑴调质处理(淬火+高温回火) 淬火:淬火温度840±10℃,水冷(55~58HRC,极限62HRC); 回火:回火温度600±10℃,出炉空冷(20~30HRC)。 硬度:20~30HRC 用途:模具中常用来做45号钢管模板,梢子,导柱等,但须热处理 (调质处理后零件具有良好的综合机械性能,广泛应用于各种重要的结构零件,特别是那些在交变负荷下工作的连杆、螺栓、齿轮及轴类等。 但表面硬度较低,不耐磨。可用调质+表面淬火提高零件表面硬度) *实际应用的最高硬度为HRC55(高频淬火HRC58)。 2、40Cr(SCr440)常见热处理 基本资料:40Cr为优质碳素合金钢。40Cr钢属于低淬透性调质钢,具有很高的强度,良好的塑性和韧性,即具有良好的综合机械性能(Cr能增加钢的淬透性,提高钢的强度和回火稳定性) ⑴调质处理 淬火:淬火温度850℃±10℃,油冷。(硬度45~52HRC) 回火:回火温度520℃±10℃,水、油冷。 硬度:32~36HRC 用途:用于制造汽车的连杆、螺栓、传动轴及机床的主轴等零件 ⑵不同回火温度 淬火:加热至830~860℃,油淬。(硬度55HRC以上) 回火:150℃——55 HRC 200℃——53 HRC 300℃——51 HRC 400℃——43 HRC 500℃——34 HRC 550℃——32 HRC 600℃——28 HRC 650℃——24 HRC 3、T10(SK4)常见热处理 基本资料:T10碳素工具钢,强度及耐磨性均较T8和T9高,但热硬性低,淬透性不高且淬火变形大,晶粒细,在淬火加热时不易过热,仍能保持细晶粒组织;淬火后钢中有未溶的过剩碳化物,所以耐磨性高,用于制造具有锋利刀口和有少许韧性的工具。 ⑴淬火+低温回火 淬火:淬火温度780±10℃,保温50min左右(视工件薄厚而定)或淬透。先淬如20~40℃的水或5%盐水,冷至250~300℃,转入20~40℃油中冷却至温热。(得到硬度62~65HRC) 回火:加热温度160~180℃,保温~2h。(回火后硬度60~62HRC) 用途:适于制造切削条件较差、耐磨性要求较高且不受突然和剧烈冲击振动而需要一定的韧性及具有锋利刃口的各种工具,也可用作不受较大冲击的耐磨零件。 ⑵调质处理(淬火+高温回火)----(一般不调至处理) 淬火温度780~800℃,油冷至温热。 回火温度(640~680℃),炉冷或空冷。(回火后硬度183~207HBS) 4、9CrWMn (SKS3) 常见热处理 基本资料:9CrWMn钢是油淬硬化的低合金泠作模具钢(俗称油钢)。该钢具有?定的淬透性和耐磨性,淬?变形较?,碳化物分布均匀且颗粒细?。该钢的塑性、韧性较好,耐磨性?CrWMn钢低。 优点:硬度、强度较高;耐磨性较高;淬透性较高;机械性能好(尺寸稳定,变形小)。 缺点:韧性、塑性较差;有较明显的回火脆性现象;对过热较敏感;耐腐蚀性能较差。 ⑴淬火+低温回火 退火(预先热处理):加热至750~800℃,,≤30℃/h控温冷却至550℃出炉空冷(约停留1~3h)。 (作用:改善或消除应力,防止工件变形、开裂。为最终热处理做准备) 淬火:先预热至550℃~650℃,再加热至800~850℃,保温,油冷至室温(硬度64~66HRC),组织为高碳片状马氏体。 回火:加热至150℃~200℃,保温2h,炉冷(硬度61~65HRC)。 硬度:HRC60℃以上

汽车的制造工艺及过程1(参考模板)

汽车的制造工艺及过程 1.铸造 铸造是将熔化的金属浇灌入铸型空腔中,冷却凝固后而获得产品的生产方法。在汽车制造过程中,采用铸铁制成毛坯的零件很多,约占全车重量10%左右,如气缸体、变速器箱体、转向器壳体、后桥壳体、制动鼓、各种支架等。制造铸铁件通常采用砂型。砂型的原料以砂子为主,并与粘结剂、水等混合而成。砂型材料必须具有一定的粘合强度,以便被塑成所需的形状并能抵御高温铁水的冲刷而不会崩塌。为了在砂型内塑成与铸件形状相符的空腔,必须先用木材制成模型,称为木模。炽热的铁水冷却后体积会缩小,因此,木模的尺寸需要在铸件原尺寸的基础上按收缩率加大,需要切削加工的表面相应加厚。空心的铸件需要制成砂芯子和相应的芯子木模(芯盒)。有了木模,就可以翻制空腔砂型(铸造也称为“翻砂”)。在制造砂型时,要考虑上下砂箱怎样分开才能把木模取出,还要考虑铁水从什么地方流入,怎样灌满空腔以便得到优质的铸件。 砂型制成后,就可以浇注,也就是将铁水灌入砂型的空腔中。浇注时,铁水温度在 1250—1350度,熔炼时温度更高。 2.锻造在汽车制造过程中,广泛地采用锻造的加工方法。锻造分为自由锻造和模型锻造。自由锻造是将金属坯料放在铁砧上承受冲击或压力而成形的加工方法(坊间称“打铁”)。汽车的齿轮和轴等的毛坯就是用自由锻造的方法加工。模型锻造是将金属坯料放在锻模的模膛内,承受冲击或压力而成形的加工方法。模型锻造有点像面团在模子内被压成饼干形状的过程。与自由锻相比,模锻所制造的工件形状更复杂,尺寸更精确。汽车的模锻件的典型例子是:发动机连杆和曲轴、汽车前轴、转向节等。 3.冷冲压冷冲压或板料冲压是使金属板料在冲模中承受压力而被切离或成形的加工方法。日常生活用品,女口铝锅、饭盒、脸盆等就是采用冷冲压的加工方法制成。例如制造饭盒,首先需要切出长方形并带有4个圆角的坯料(行家称为“落料”),然后用凸模将这块坯料压入凹模而成形(行家称为“拉深”)。在拉深工序,平面的板料变为盒状,其4边向上垂直弯曲,4个拐角的材料产生堆聚并可看到皱褶。采用冷冲压加工的汽车零件有:发动机油底壳,制动器底板,汽车车架以及大多数车身零件。这些零件一般都经过落料、冲孔、拉深、弯曲、翻边、修整等工序而成形。为了制造冷冲压零件,必须制备冲模。冲模通常分为2块,其中一块安装在压床上方并可上下滑动,另一块安装在压床下方并固定不动。生产时,坯料放在2块冲模之间,当上下模合拢时,冲压工序就完成了。冲压加工的生产率很高,并可制造形状复杂而且精度较高的零件o 4。焊接焊接是将两片金属局部加热或同时加热、加压而接合在一起的加工方法。我们常见工人一手拿着面罩,另一手拿着与电线相连的焊钳和焊条的焊接方法称为手工电弧焊,这是利用电弧放电产生的高温熔化焊条和焊件,使之接合。手工电弧焊在汽车制造中应用得不多。在汽车车身制造中应用最广的是点焊。点焊适于焊接薄钢板,操作时,2个电极向2块钢板加压力使之贴合并同时使贴合点(直径为 5—6甽的圆形)通电流加热熔化从而牢固接合。2块车身零件焊接时,其边缘每隔50—100甽焊接一个点,使2零件形成不连续的多点连接。焊好整个轿车车身,通常需要上千个焊点。焊点的强度要求很高,每个焊点可承受

汽车制造工艺流程

汽车制造工艺流程 一、工艺基础—概念 1、工艺 即加工产品的方法(手段、过程)。是利用生产工具对原材料、毛坯、半成品进行加工,改变其几何形状、外形尺寸、表面状态和内部组织的方法。 2、工艺规程 规定产品或零部件制造工艺过程和操作方法等工艺规定(文件)。3、工艺文件 指导工人操作和用于生产、工艺管理的各种技术文件。是企业组织生产、计划生产和进行核算的重要技术参数。 4、工艺参数 为达到加工产品预期的技术指标,工艺过程中选用和控制的有关量,如电流、电极压力压等。 5、工艺装备 产品制造过程中所用的各种工具的总称。包括刀具、夹具、模具、量具、检具、辅具、钳工工具和工位器具等。 6、工艺卡片(或作业指导书) 按产品的零、的某一工艺阶段编制的一种工艺文件。他以工序为单元,详细说明产品(或零、部件)在某一工艺阶段的工序号、工序名称、工序内容、工艺参数、操作要求以及采用的设备和工艺装备。包括冲压工艺卡片、焊接工艺卡片、油漆工艺卡片、装配工序卡片。

7、物料清单(BOM) 用数据格式来描述产品结构的文件。 8、外协件明细表 填写产品中所有外协件的图号、名称和加工内容等的一种工艺文件。 9、外购工具明细表 填写产品在生产过程中所需购买的全部刀具、量具等的名称、规格与精度等的一种工艺文件。 10、材料消耗工艺定额明细表 填写产品每个零件在制造过程所需消耗的各种材料的名称、牌号、规格、重量等的一种工艺文件。 11、材料消耗工艺定额汇总表 将“材料消耗工艺定额明细表”中的各种材料按单台产品汇总填列的一种工艺文件。 12零部件转移卡 填写各装配工序零、部件图号(代号)名称规格等的一种工艺。 二、工艺基础—管理 1、工艺管理内容包括: 产品工艺工作程序、产品结构工艺性审查的方式和程序、工艺方案设计、工艺规程设计、工艺定额编制、工艺文件标准化审查、工艺文件的修改、工艺验证、生产现场工艺管理、工艺纪律管理、工艺标准化、工艺装备编号方法、工艺装备设计与验证管理程序、工装的使用与维

典型零件选材及工艺分析--轴类

典型零件选材及工艺分析 二、轴类 在机床、汽车、拖拉机等制造工业中,轴类零件是另一类用量很大,且占有相当重要地位的结构件。 轴类零件的主要作用是支承传动零件并传递动和动力,它们在工作时受多种应力的作用,因此从选材角度看,材料应有较高的综合机械性能.局部承受摩擦的部位如车床主轴的花键、曲轴轴颈等处,要求有一定的硬度,以提高其抗磨损能力。 要求以综合机械性能为主的一类结构零件的选材,还需根据其应力状态和负荷种类考虑材料的淬透性和抗疲劳性能。实践证明,受交变应力的轴类零件、连杆螺栓等结构件,其损环形式不少是由于疲劳裂纹引起的。 下面以车床主轴、汽车半轴、内燃机曲轴、镗杆、大型人字齿轮轴等典型零件为例进行分析。 (一)机床主轴 在选选用机床主轴的材料和热处理工艺时,必须考虑以下几点: <1> 受力的大小。不同类型的机床,工作条件有很大差别,如高速机床和精密机床主轴的工作条件与重型机床主轴的工作条件相比,无论在弯曲或扭转疲劳特性方面差别都很大。 <2> 轴承类型。如在滑动轴承上工作时,轴颈需要有高的耐磨性。 <3> 主轴的形状及其可能引起的热处理缺陷。结构形状复杂的主轴在热处理时易变形甚至于开裂,因此在选材上应给予重视。 主轴是机床中主要进零件之一,其质量好坏直接影响机床的精度和寿命。因此必须根据主轴的工作条件和性能要求,选择用钢和制定合理的冷热加工工艺。 1、机床主轴的工作条件和性能要求C616-416车床主轴如图1-2所示。该主轴的工作 条件如下: ①承受交变的弯曲应力与扭转应力,有时受到冲击载荷的作用; ②主轴大端内锥孔和锥度外圆,经常与卡盘、顶针有相对摩擦; ③花健部分经常有磕或相对滑动。 总之,该主轴是在滚动轴承中动转,承受中等负荷,转速中等,有装配精度要求,且受到一定的冲击力作用。 由此确定热处理技术条件如下: ①整体调质后硬度应为HB200~230,金相组织为回火索氏体; ②内锥孔和外圆锥面处硬度为HRC45~50,表面3~5㎜内金相组织为回火屈氏体和 少量回火马氏体; ③花键部分的硬度为HRC48~53,金相组同上。 2、选择用钢C616车床属于中速、中负荷、在滚动轴承中工作的机床,因此选用

轴类零件选材及工艺分析

轴类零件选材及工艺分析 在机床、汽车、拖拉机等制造工业中,轴类零件是另一类用量很大,且占有相当重 要地位的结构件。 轴类零件的主要作用是支承传动零件并传递动和动力,它们在工作时受多种应力的作用,因此从选材角度看,材料应有较高的综合机械性能.局部承受摩擦的部位如车床主轴的花键、曲轴轴颈等处,要求有一定的硬度,以提高其抗磨损能力。 要求以综合机械性能为主的一类结构零件的选材,还需根据其应力状态和负荷种类考虑材料的淬透性和抗疲劳性能。实践证明,受交变应力的轴类零件、连杆螺栓等结构件,其损环形式不少是由于疲劳裂纹引起的。 下面以车床主轴、汽车半轴、内燃机曲轴、镗杆、大型人字齿轮轴等典型零件为例进行分析。 (一)机床主轴 在选选用机床主轴的材料和热处理工艺时,必须考虑以下几点: <1> 受力的大小。不同类型的机床,工作条件有很大差别,如高速机床和精密机床主轴的工作条件与重型机床主轴的工作条件相比,无论在弯曲或扭转疲劳特性方面差别都很大。 <2> 轴承类型。如在滑动轴承上工作时,轴颈需要有高的耐磨性。 <3> 主轴的形状及其可能引起的热处理缺陷。结构形状复杂的主轴在热处理时易变形甚至于开裂,因此在选材上应给予重视。 主轴是机床中主要进零件之一,其质量好坏直接影响机床的精度和寿命。因此必须根据主轴的工作条件和性能要求,选择用钢和制定合理的冷热加工工艺。 1、机床主轴的工作条件和性能要求C616-416车床主轴如图1-2所示。该主轴的工作 条件如下: ①承受交变的弯曲应力与扭转应力,有时受到冲击载荷的作用; ②主轴大端内锥孔和锥度外圆,经常与卡盘、顶针有相对摩擦; ③花健部分经常有磕或相对滑动。 总之,该主轴是在滚动轴承中动转,承受中等负荷,转速中等,有装配精度要求,且受到一定的冲击力作用。 由此确定热处理技术条件如下: ①整体调质后硬度应为HB200~230,金相组织为回火索氏体; ②内锥孔和外圆锥面处硬度为HRC45~50,表面3~5㎜内金相组织为回火屈氏体和 少量回火马氏体; ③花键部分的硬度为HRC48~53,金相组同上。 2、选择用钢C616车床属于中速、中负荷、在滚动轴承中工作的机床,因此选用45钢是可以的。过去此主轴曾采用45钢经正火处理后使用;后来为了提高其强度和韧性,

相关文档
最新文档