陕西省商洛市高考数学考前最后一卷(理科)
陕西省高三高考前最后一卷数学(理)试题(解析版)

一、单选题1.已知,则的值为( )()3i i ,a b a b =-∈R a b +A . B .0 C .1 D .21-【答案】C【分析】由复数相等的充要条件可得的值.,a b 【详解】因为,所以,()3i i ,a b a b =-∈R i i a b -=-由复数相等的充要条件得,所以.0,1a b ==1a b +=故选:C.2.已知集合,,则下图中阴影部分表示的集合为(){}Z 24A x x =∈-<<{}R 1B x x =∈<A .B .C .D .{}14x x ≤<{}1,0-{}1,2,3{}21x x -<<【答案】C【分析】根据给定条件,用列举法表示集合A ,再结合韦恩图列式求解作答.【详解】依题意,,而阴影部分表示的集合是,{1,0,1,2,3}A =-()A B R ð又,则,{}R 1B x x =∈<{}R R 1B x x =∈≥ð所以.{}R 3()1,2,A B = ð故选:C3.设,则“”是“”的( )x ∈R 1x <ln 0x <A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【分析】根据对数函数定义域可知充分性不成立;由对数函数单调性可确定必要性成立.【详解】当时,若,则无意义,充分性不成立;1x <0x ≤ln x 当时,,成立,必要性成立;ln 0x <01x <<1x ∴<综上所述:,则“”是“”的必要不充分条件.x ∈R 1x <ln 0x <故选:B.4.若向量,为单位向量,,则向量与向量的夹角为( )a b a - a b A .B .C .D .30︒60︒120︒150︒【答案】C【分析】对两边平方,再根据向量,为单位向量,可得,由此即可求a - a b 1cos ,2a b 〈〉=- 出结果.【详解】因为,所以,a - 22447a ab b -⋅+= 又向量,为单位向量,所以,所以,即a b 54cos ,7a b -〈〉= []1cos ,,,0,π2a b a b =-∈ ,120,a b 〈〉=︒ 故向量与向量的夹角为.a b 120︒故选:C.5.在高一入学时,某班班委统计了本班所有同学中考体育成绩的平均分和方差.后来又转学来一位同学.若该同学中考体育的绩恰好等于这个班级原来的平均分,则下列说法正确的是( ) A .班级平均分不变,方差变小B .班级平均分不变,方差变大C .班级平均分改变,方差变小D .班级平均分改变,方差变大【答案】A 【分析】根据平均数以及方差的计算公式,求得转来一位同学后的平均值和方差,比较可得答案. 【详解】设该班原有n 个学生,平均分为 ,方差为 ,x 2s 则, 222212121,[(()(]n n x x x x s x x x x x x n n +++==-+-++- 故,22221212,(()(n n x x x nx x x x x x x ns +++=-+-++-= 则转来一位同学后的平均分为, 1211n x x x x nx x x n n +++++==++ 方差, 222222121[()()()()]11n ns x x x x x x x x s n n -+-++-+-=<++ 故选:A.6.已知函数,则对任意非零实数x ,有( ) 1()e 1x f x =-A . B .()()0f x f x --=()()1--=-f x f x C .D . ()()1f x f x -+=()()1f x f x -+=-【答案】D【分析】根据给定的函数式,计算及即可判断作答.()()f x f x --()()f x f x -+【详解】函数,, 1()e 1xf x =-0x ≠则,显然,且11e 1e 1e 1e 11e e 1e 1()()x x x x x x x f x f x -+-=-=-=-------()()0f x f x --≠,AB 错误;()()1f x f x --≠-,D 正确,C 错误. 11e 11e 1e )11(1)e e (x x x x x f x f x -+=+=--+-=---故选:D7.函数的图像大致是( )()()e e cos 2x x f x x -=+A . B .C .D .【答案】A【分析】由定义得到的奇偶性,排除BC ,代入特殊点,排除D ,得到正确答案.()f x 【详解】的定义域为R ,且()()e e cos 2x x f x x -=+,()()()()e e cos 2e e cos 2()x x x x f x x x f x ---=+-=+=故为偶函数,排除BC ;()()e e cos 2x x f x x -=+又,故A 正确,D 错误.(0)2cos 02f ==故选:A8.为研究每平方米平均建筑费用与楼层数的关系,某开发商收集了一栋住宅楼在建筑过程中,建筑费用的相关信息,将总楼层数与每平米平均建筑成本(单位:万元)的数据整理成如图所示x y 的散点图:则下面四个回归方程类型中最适宜作为每平米平均建筑费用和楼层数的回归方程类型的是y x ( )A .B . y a bx =+e x y a b =+C .D .b y a x =+2y a bx =+【答案】C【分析】通过观察散点图并结合选项函数的类型得出结果.【详解】观察散点图,可知是一个单调递减的曲线图,结合选项函数的类型可得回归方程类型是反比例类型,故C 正确.故选:C.9.已知两定点,,直线:上满足的个数()0,1M -()0,1N l y x =+l PM PN +=P 为( )A .0B .1C .2D .0或1或2【答案】B【分析】求出点所在轨迹方程,与直线方程联立方程组,方程组解的个数就是满足题意的点的P P 个数.【详解】详解:∵,,∴在以为焦点,PM PN +=2MN=P ,M N由于,,因此, 2a =a =1c=1b ==椭圆方程为, 2212y x +=由,解得,∴点只有一个.2212y x y x ⎧=⎪⎨+=⎪⎩x y ⎧=⎪⎪⎨⎪=⎪⎩P 故选:B .10.已知点P 在棱长为2的正方体的表面上运动,则的最大值为( )1111ABCD A B C D -PA PB ⋅A .6B .7C .8D .9【答案】C 【分析】取中点,连接,利用向量的线性运算及数量积的运算性质可得.AB O PO 【详解】取中点,连接,如图,AB O PO则, ()()2221PA PB PO OA PO OB PO OA PO ⋅=+⋅+=-=- 当在正方体表面上运动时,运动到或处时,最大,P 1D 1C PO 所以,2222max 19PO D D DA AO =++= 所以的最大值为8.PA PB ⋅ 故选:C11.设,,,则( ) ln 5ln 3a =-232e 5b =23c =A .B . b c a >>a b c >>C .D .a cb >>c a b >>【答案】A 【分析】要比较的大小只需比较与的大小,故考虑构造函数,利,a c 2ln 13⎛⎫+ ⎪⎝⎭23()()ln 1f x x x =+-用函数的单调性比较其大小,要比较的大小,只需比较与的大小,故考虑构造函数,b c 23e 213+,利用导数判断函数的单调性,利用单调性比较大小即可.()e 1x g x x =--【详解】因为,又 52ln 5ln 3ln ln 133a ⎛⎫=-==+ ⎪⎝⎭23c =由函数,, ()()ln 1f x x x =+-01x <<可得, ()11011x f x x x-'=-=<++所以函数在上为减函数,()()ln 1f x x x =+-()0,1所以, ()203f f ⎛⎫< ⎪⎝⎭所以,故,所以, 22ln 1033⎛⎫+-< ⎪⎝⎭2ln 5ln 33-<a c <因为,, 232e 5b =23c =故要比较的大小只需比较与的大小, ,b c 23e 53故只需比较与的大小, 23e 213+故考虑构造函数,其中,()e 1x g x x =--01x <<由求导可得,()e 1x g x x =--()e 10x g x '=->所以函数在上单调递增,()e 1x g x x =--()0,1所以, ()203g g ⎛⎫> ⎪⎝⎭所以, 232e 103-->所以,即, 232e 13>+235e 3>所以,即, 2322e 53>b c >所以,b c a >>故选:A.【点睛】关键点点睛:本题解决的关键在于观察被比较的数的结构特征,确定两者的结构上的共性,考虑构造函数,利用函数的单调性确定被比较的数的大小.12.椭圆E :的左右焦点分别为,,点P 在椭圆E 上,的重心为()222210x y a b a b+=>>1F 2F 12PF F △G .若的内切圆H 的直径等于,且,则椭圆E 的离心率为( ) 12PF F △1212F F 12GH F F ∥A B . C D . 2312【答案】D【分析】根据题意表达出,利用两种方法表达出焦点三角形面积,求出,求332P H c y y ==2a c =出离心率.【详解】因为的重心为G ,设,,,所以,因为12PF F △(),P P P x y ()11,G x y (),H H H x y 113P y y =,所以,因为的内切圆H 的直径等于,所以半径为,故12GH F F ∥13H P y y =12PF F △1212F F c =2c ,从而,根据椭圆定义得:,其中2H c y =332P H c y y ==122PF PF a +=,又,122121322PF F P P c S F F y c y =⋅⋅=⋅= ()()1221212112222222PF F c c ac c S PF PF F F a c +=⋅++⋅=+⋅= 从而,解得:,所以E 的离心率为. 22322c ac c +=2a c =12c a =故选:D二、填空题13.曲线在点处的切线与直线垂直,则________. 21()ln 2f x x x x =+(1(1))f ,10ax y --==a 【答案】. 12-【分析】先对函数求导,求出其在点处的切线斜率,进而可求出结果. 21()ln 2f x x x x =+(1(1))f ,【详解】因为,所以, 21()ln 2f x x x x =+()ln 1f x x x '=++因此,曲线在点处的切线斜率为; 21()ln 2f x x x x =+(1(1))f ,(1)112k f '==+=又该切线与直线垂直,所以. 10ax y --=12a =-故答案为 12-【点睛】本题主要考查导数在某点处的切线斜率问题,熟记导数的几何意义即可,属于常考题型. 14.已知,则的值是__________. tan 2θ=1sin 2cos 2θθ+【答案】5【分析】利用正弦、余弦的二倍角公式以及弦化切的公式先化简,在将代入即可.tan 2θ=【详解】因为,tan 2θ=所以 2211sin 2cos 22sin cos cos sin θθθθθθ=++- 2222cos sin 2sin cos cos sin θθθθθθ+=+- 221tan 2tan 1tan θθθ+=+-, 221252212+==⨯+-故答案为:5.15.从1,2,3,4,5,6,7中任取两个不同的数,事件为“取到的两个数的和为偶数”,事件A B 为“取到的两个数均为偶数”,则________.(|)P B A =【答案】 13【分析】根据条件概率公式,结合组合数公式,即可求解.【详解】因为事件,所以, B A ⊆()()2327C 1C 7P AB P B ===而,所以. ()223427C C 3C 7P A +==()()()()()13P AB P B P B A P A P A ===故答案为: 1316.已知圆,直线(、不同时为0),当、变化22:16C x y +=()():20l a b x b a y a -+--=a b a b 时,圆被直线截得的弦长的最小值为______.C l 【答案】【分析】由题意知直线恒过定点,当圆心到直线距离取最大值时,此时圆被直线l 截得l (1,1)--C 的弦长为最小值,即可求出答案.【详解】把直线化为 ,()():20l a b x b a y a -+--=(21)()0a x y b x y --+-+=,恒过定点, 210101x y x x y y --==-⎧⎧⇒⎨⎨-+==-⎩⎩(1,1)--当圆被直线l 截得的弦长的最小值时,C 圆心到定点(0,0)(1,1)--=圆心到直线()():20l ab x b a y a -+--=此时直线弦长为最小值=故答案为:.三、解答题17.正项数列的前n 项和为,已知.{}n a n S 221n n n a S a =+(1)求证:数列为等差数列,并求出,; {}2n S n S n a (2)若,求数列的前2023项和. (1)nn nb a -={}n b 2023T 【答案】(1);=n S =n a (2).2023T =【分析】(1)将代入递推公式即可求出答案;1n n n a S S -=-(2)将通项公式代入,将展开并项求和即可得出答案.n a {}n b 2023T 【详解】(1)由可得,,221n n n a S a =+221121S S =+又因为为正项数列的前n 项和,所以,n S {}n a 111S a ==因为,所以,1n n n a S S -=-()()21121n n n n n S S S S S ---=-+所以,数列为等差数列, ()22112n n S S n --=≥{}2n S所以 ,,,所以2n S n =n S ())112n n a n ⎧==≥=n a(2), (1)(1)nn n n b a -==-202311T =-++⋅⋅⋅=18.如图所示,四棱锥的底面是矩形,底面,,P ABCD -ABCD PB ⊥ABCD 3AB BC ==3BP =,,. 13CF CP =13DE DA =(1)证明:平面;EF P ABP (2)求直线与平面所成角的正弦值.PC ADF 【答案】(1)证明见解析【分析】(1)建立空间直角坐标系,证明与平面的法向量垂直即可; (2)利用空间向量求线EF ABP 面角即可.【详解】(1)由题意知,,,两两互相垂直,以为原点,,,所在直线分BC BA BP B BC BA BP 别为轴,建立如图所示的空间直角坐标系, ,,x y z B xyz -则,,,,()0,0,0B ()3,0,0C ()2,3,0E ()2,0,1F 所以,.()3,0,0BC = ()0,3,1EF =- 底面,底面,PB ⊥ ABCD BC ⊂ABCD PB BC ∴⊥又,,BC BA ⊥ PB BA B ⋂=且平面,,PB BA ⊂ABP 平面,BC ∴⊥ABP 所以是平面的一个法向量.()3,0,0BC = ABP 因为,()()3,0,00,3,10BC EF ⋅=⋅-= 所以.BC EF ⊥ 又平面,所以平面.EF ⊄ABP EF P ABP (2)因为,,,,,()0,3,0A ()3,0,0C ()3,3,0D ()0,0,3P ()2,0,1F 所以,,,()3,0,0AD = ()2,3,1AF =- ()3,0,3PC =- 设平面的法向量为,则ADF (),,n x y z = 由,解得,令, 30230n AD x n AF x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩ 03x z y =⎧⎨=⎩1y =得平面的一个法向量为.ADF ()0,1,3n = 设直线与平面所成的角为,PC ADF θ则sin cos<,PC θ= 故:直线与平面 PC ADF 19.某体育频道为了解某地电视观众对卡塔尔世界杯的收看情况,随机抽取了该地200名观众进行调查,下表是根据所有调查结果制作的观众日均收看世界杯时间(单位:时)的频率分布表: 日均收看世界杯时间(时) []0.5,1 (]1,1.5 (]1.5,2 (]2,2.5 (]2.5,3(]3,3.5频率0.1 0.18 0.22 0.25 0.2 0.05 如果把日均收看世界杯的时间高于2.5小时的观众称为“足球迷”.(1)根据已知条件完成下面的列联表,并判断是否有99.9%的把握认为该地的电视观众是否为22⨯“足球迷”与性别有关;非足球迷 足球迷 合计 女70 男40 合计(2)将样本的频率分布当作总体的概率分布,现从该地的电视观众中随机抽取4人,记这4人中的“足球迷”人数为X ,求随机变量X 的分布列和数学期望.参考公式:,其中. ()()()()()22n ad bc K a b c d a c b d -=++++n a b c d =+++参考数据:()20P K k ≥0.10 0.05 0.025 0.010 0.005 0.0010k 2.706 3.841 5.024 6.635 7.879 10.828 【答案】(1)列联表见解析,有的把握认为该地的电视观众是否为“足球迷”与性别有关99.9%(2)分布列见解析,()1E X =【分析】(1)由频率分布表求出“足球迷”对应的频率即可得到样本中“足球迷”的人数,从而完善列联表,计算出卡方,即可判断;(2)由(1)从该地的电视观众中随机抽取人,其为“足球迷”的概率,则,求114P =14,4X B ⎛⎫ ⎪⎝⎭出相应的概率,从而得到分布列与数学期望.【详解】(1)由频率分布表可知,“足球迷”对应的频率为,0.20.050.25+=则在抽取的人中,“足球迷”有人,2002000.2550⨯=所以列联表如下:22⨯非足球迷 足球迷 合计 女70 10 80男8040 120合计 150 50200所以, ()222007040801010011.11110.82815050801209K ⨯⨯-⨯==≈>⨯⨯⨯所以有的把握认为该地的电视观众是否为“足球迷”与性别有关.99.9%(2)由频率分布表可知,“足球迷”对应的频率为,0.25所以从该地的电视观众中随机抽取人,其为“足球迷”的概率,所以, 114P =14,4X B ⎛⎫ ⎪⎝⎭即的可能取值为、、、、,X 01234所以,, ()040411810C 144256P X ⎛⎫⎛⎫==⋅-= ⎪ ⎪⎝⎭⎝⎭()131411271C 14464P X ⎛⎫⎛⎫==⋅-= ⎪ ⎪⎝⎭⎝⎭,, ()222411272C 144128P X ⎛⎫⎛⎫==⋅-= ⎪ ⎪⎝⎭⎝⎭()31341133C 14464P X ⎛⎫⎛⎫==⋅-= ⎪ ⎪⎝⎭⎝⎭, ()40441114C 144256P X ⎛⎫⎛⎫==⋅-= ⎪ ⎪⎝⎭⎝⎭所以随机变量的分布列为X X 0 1 2 3 4 P 81256 2764 27128 3641256所以. ()1414E X =⨯=20.已知椭圆的上、下焦点分别为,,离心率为,过点作直线()2222:10y x C a b a b+=>>1F 2F 231F l (与轴不重合)交椭圆于,两点,的周长为.y C M N 2MNF 12(1)求椭圆C 的标准方程;(2)若点A 是椭圆的上顶点,设直线,,的斜率分别为,,,当时,求证:C l AM AN k 1k 2k 0k ≠为定值. 12111k k k ⎛⎫+ ⎪⎝⎭【答案】(1) 22195y x +=(2)证明见解析【分析】(1)由条件结合椭圆的定义和离心率的定义列方程求,由此可得椭圆方程;,,a b c (2)由已知设的方程为,联立方程组利用设而不求法求,由此证明结论. l ()20y kx k =+≠1211k k +【详解】(1)依题意,的周长为, 2MNF 221212412MF MN NF MF MF NF NF a ++=+++==解得. 3a =设椭圆的半焦距为, C c 因为椭圆的离心率为,C 23所以,即,解得. 23c e a ==233c =2c =因为,222a bc =+所以b ===所以椭圆的标准方程为. C 22195y x +=(2)由(1)知,,.易知直线的方程为.()10,2F ()0,3A l ()20y kx k =+≠由消去得, 222,1,95y kx y x =+⎧⎪⎨+=⎪⎩y ()225920250k x kx ++-=.()22240050090090010k k k ∆=++=+>设,,则,. ()11,M x y ()22,N x y 1222059k x x k +=-+1222559x x k =-+所以,. 11111113231y kx kx k x x x -+--===22222223231y kx kx k x x x -+--===所以. 1212121211625x x k k k k k k x x x x ++=-+-=-=. 21212121212111925x x k k k k k k x x x x x x ⎛⎫⎛⎫+⋅=-⋅-=-⨯+=- ⎪ ⎪⎝⎭⎝⎭所以. 12121211103k k k k k k k ++==-⋅所以,为定值. 12111103k k k ⎛⎫+=- ⎪⎝⎭【点睛】关键点点睛:(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形. 21.已知函数.()2ln f x x a x =-(1)当时,求函数的单调区间;1a =()y f x =(2)若函数恒成立,求实数a 的取值范围.()(2)e x f x a x x ≥+-【答案】(1)函数的单调递增区间为,单调递区间为 ()f x 1,2⎡⎫+∞⎪⎢⎣⎭10,2⎛⎤ ⎥⎝⎦(2)[0,e]a ∈【分析】(1)利用导数求函数的单调区间;(2)通过构造函数利用导数找最值的方法解决恒成立问题,求解实数a 的取值范围.【详解】(1)函数的定义域是,()f x (0,)+∞当时,, 1a =1()2f x x '=-令得,所以函数在上单递递增; ()0f x '>12x >()f x 1,2⎡⎫+∞⎪⎢⎣⎭令得,所以函数在上单调递减. ()0f x '<102x <<()f x 10,2⎛⎤ ⎥⎝⎦所以函数的单调递增区间为,单调递区间为. ()f x 1,2⎡⎫+∞⎪⎢⎣⎭10,2⎛⎤ ⎥⎝⎦(2)恒成立,等价于恒成立,()(2)e x f x a x x ≥+-()ln 0x x xe a xe -≥令,()e (0)x t g x x x ==>因为恒成立,所以在上单调递增,()(1)e 0x g x x '=+>()g x (0,)+∞所以,即,()()00g x g >=0t >所以恒成立,等价于恒成立()(2)e x f x a x x ≥+-ln 0t a t -≥令,问题等价于恒成立()ln (0)h t t a t t =->()0h t ≥①若时,恒成立,满足题意;0a =()0h t t =>②若时,则,所以,不满足题意; a<010e 1a<<1111e e e 10a a a a h alne ⎛⎫=-=-< ⎪⎝⎭③若时,因为,令,得, 0a >()1a h t t=-'()0h t '=t a =,,单调递减,,,单调递增,(0,)t a ∈()0h t '<()h t (,)t a ∈+∞()0h t '>()h t 所以在处取得最小值,()h t t a =()(1ln )h a a a =-要使得,恒成立,只需,()0h t ≥()(1ln )0h a a a =-≥解得0e a <≤综上:[0,e]a ∈【解法二】恒成立,等价于,()(2)e x f x a x x ≥+-(ln )0x xe a x x -+≥令()e (ln )(0)x h x x a x x x =-+> 1()(1)e 1(1)e x x a h x x a x x x ⎛⎫⎛⎫=+-+=+- ⎪⎭' ⎪⎝⎝⎭①若时,,所以在上单调递增,0a =()(1)0x h x x e '=+>()h x (0,)+∞,即,满足,()00h =()0h x >(ln )0x xe a x x -+≥②若时,则, ,所以在上单调递增,0<a 0a ->()0h x '>()h x (0,)+∞由,()()e (ln )e ln x x h x x a x x x a x a -=-+=-函数在上单调递增,值域为;函数在上()()e 0x y x a a =<-(0,)+∞()0,∞+()ln 0a a y x -=<(0,)+∞单调递增,值域为;(),-∞+∞所以,使得,不满足题意.00x ∃>()00h x <③若时,令,∴,0a >()0h x '=e x a x =令,则在上单调递增, ()e x a k x x=-()k x (0,)+∞函数在上单调递增,值域为;函数在上单调递减,值域为e x y =(0,)+∞()1,+∞()0a y a x=>(0,)+∞;()0,∞+则,;,,;,,0(0,)x ∃∈+∞()00k x =()00,x x ∈()0k x <()0,x x ∈+∞()0k x >所以,,, 0(0,)x ∃∈+∞()00h x '=00e x a x =,,单调递减,,,单调递增,()00,x x ∈()0h x '<()h x ()0,x x ∈+∞()0h x '>()h x 只需即可,()()()00min 0000000()e ln e 1ln 0x x h x h x x a x x x x x ==-+=--≥∴,∴,001ln 0x x --≥00ln 1x x +≤令,,∴在上单调递增, ()ln (0)m x x x x =+>1()10m x x'=+>()m x (0,)+∞,∴时,,,,()11m =0(0,1]x ∈00ln 1x x +≤e x y x =(1)e 0x y x '=+>所以在上单调递增,∴,e x y x =(0,1]e (0,e]x x ∈即,00e (0,e]xa x =∈综上:[0,e]a ∈【点睛】1. 导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.2.利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用.3..证明不等式,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.22.直角坐标系xOy 中,点,动圆C :. ()0,1P ()()22sin 3sin 11()x y ααα-+--=∈R (1)求动圆圆心C 的轨迹;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线M 的极坐标方程为:,过点P 的直线l 与曲线M 交于A ,B 两点,且,求直线l 的斜22222cos sin ρθθ=+47PA PB -=率.【答案】(1)圆心C 的轨迹为线段;(2) 【分析】(1)设圆心,根据即可得圆心C 的轨迹; (),C x y sin 3sin 1x y αα=⎧⎨=+⎩(2)将曲线M 的极坐标方程化为直角坐标方程,设直线的倾斜角为,得直线的参数方程为l βl (为参数),代入曲线M 的直角坐标方程,设,可得cos 1sin x t y t ββ=⎧⎨=+⎩t 12,PA t PB t ==,根据韦达定理可求的值,结合即可求解. 1247PA PB t t -=+=sin β0πβ≤<【详解】(1)设圆心,因为,所以. (),C x y sin 3sin 1x y αα=⎧⎨=+⎩31,11y x x =+-≤≤所以圆心C 的轨迹方程为,()3111y x x =+-≤≤即圆心C 的轨迹为线段.(2)因为,所以, 22222cos sin ρθθ=+22222cos 2sin ρθρθ+=因为,所以,即曲线的直角坐标方程为. cos sin x y ρθρθ=⎧⎨=⎩2222x y +=M 2222x y +=设直线的倾斜角为,由点在直线上,l βP l 得直线的参数方程为(为参数), l cos 1sin x t y t ββ=⎧⎨=+⎩t 代入曲线的方程得:,M ()2222cos sin 2sin 10t t βββ++-=设,由于点在曲线的内部, 12,PA t PB t ==P M 所以, 12222sin 42cos sin 7PA PB t t βββ-=+==+化简得:,解得. 22sin 7sin 40ββ+-=1sin 2β=由于,所以,或, 0πβ≤<1sin 2β=π3β=2π3β=所以的斜率为tan β=l23.设不等式的解集为,且,. ()*1x a a +>∈N A 32A ∈12A ∉(1)求的值;a(2)若、、为正实数,且,求的最小值.m n s m n a ++=222m n s ++【答案】(1)2a =(2)的最小值为222m n s ++1【分析】(1)根据,可得出实数的取值范围,结合可得出的值; 32A ∈12A ∉a a *∈N a(2)由(1)可得,利用柯西不等式可求得的最小值.1m n +=222m n s ++【详解】(1)因为,,所以,,即, 32A ∈12A ∉131122a +≤<+3522a ≤<因为,则.a *∈N 2a =(2)由(1)可知,,1,,,0m n m n s +=>由柯西不等式可得,()()2222222114m n s m n ⎡⎤++++≥+=⎢⎥⎣⎦当且仅当时,即当, m n ==12m n ==s所以,,当且仅当,2221m n s ++=m n ==12m n ==s =成立, 因此,的最小值为.222m n s ++1。
陕西省商洛市(新版)2024高考数学苏教版测试(冲刺卷)完整试卷

陕西省商洛市(新版)2024高考数学苏教版测试(冲刺卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知圆,则圆心到直线的距离等于()A.B.C.D.第(2)题已知函数是定义域不为R的奇函数.定义函数.下列说法错误的是()A.B.在定义域上单调递增C.函数不可能有四个零点D.若函数仅有三个零点,满足且,则a的值唯一确定且第(3)题若,则A.B.C.D.第(4)题已知函数图象的最小正周期是,则()①的图象关于点对称②将的图象向左平移个单位长度,得到的函数图象关于轴对称③在上的值域为④在上单调递增A.①②④B.①②③C.②④D.②③④第(5)题已知双曲线的左、右焦点分别是,,过的直线l交双曲线C于P,Q两点且使得.A为左支上一点且满足,,的面积为,则双曲线C的离心率为()A.B.C.D.第(6)题设A是任意一个n元实数集合,令集合,记集合B中的元素个数为,则()A.若,则B.若,则C.若,则D.若,则第(7)题已知函数,若,使成立,则的取值范围为()A.B.C.D.第(8)题已知是函数的最大值,若存在实数,使得对任意实数总有成立,则的最小值为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题如图,在正方体中,,点M,N分别在棱AB和上运动(不含端点),若,下列命题正确的是()A.B.平面C.线段BN长度的最大值为D.三棱锥体积不变第(2)题已知定义在上的函数,满足,且,,当时,(为常数),关于的方程(且)有且只有3个不同的根,则()A.函数的周期B.在单调递减C.的图象关于直线对称D.实数的取值范围是第(3)题下列命题正确的是()A.在回归分析中,相关指数越大,说明回归效果越好B.已知,若根据2×2列联表得到的观测值为4.1,则有95%的把握认为两个分类变量有关C.已知由一组样本数据得到的回归直线方程为,且,则这组样本数据中一定有D.若随机变量,则不论取何值,为定值三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知分别是双曲线的左、右焦点,是平面内与不重合的点,关于的对称点为,线段的中点在双曲线的左支上,,双曲线的一条渐近线与圆(为双曲线的半焦距)相交所得弦长为2,则该双曲线的标准方程为______.第(2)题已知集合,以下命题正确的序号是___________.①如果函数,其中,那么的最大值为.②数列满足首项,,当且最大时,数列有2048个.③数列满足,,,如果数列中的每一项都是集合M的元素,则符合这些条件的不同数列一共有33个.④已知直线,其中,而且,则一共可以得到不同的直线196条.第(3)题已知向量,的夹角为,,,则______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题在平面直角坐标系中,已知椭圆的长轴为4,过坐标原点的直线交于两点,若分别为椭圆的左、右顶点,且直线与直线的斜率之积为.(1)求椭圆的标准方程;(2)若点在第一象限,轴,垂足为,连并延长交于点,(i)证明:为直角三角形;(ii)若的面积为,求直线的斜率.第(2)题已知函数.(1)若,判断的零点个数;(2)当时,不等式恒成立,求实数的取值范围.第(3)题为抑制房价过快上涨和过度炒作,各地政府响应中央号召,因地制宜出台了系列房价调控政策.某市拟定出台“房产限购的年龄政策”.为了解人们对“房产限购年龄政策”的态度,在年龄为20~60岁的人群中随机调查100人,调查数据的频率分布直方图和支持“房产限购”的人数与年龄的统计结果如图所示:年龄支持的人数155152817(1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以44岁为分界点的不同人群对“房产限购年龄政策”的支持度有差异?44岁以下44岁及44岁以上总计支持不支持总计(2)若以44岁为分界点,从不支持“房产限购”的人中按分层抽样的方法抽取8人参加政策听证会,现从这8人中随机抽2人,求抽到的2人中恰有1人是44岁以下的概率.参考公式:.0.1000.0500.0100.0012.7063.841 6.63510.828第(4)题在图1所示的平面多边形中,四边形为菱形,与均为等边三角形.分别将沿着,翻折,使得四点恰好重合于点,得到四棱锥.(1)若,证明:;(2)若二面角的余弦值为,求的值.第(5)题已知圆.点在圆上,延长到,使,点在线段上,满足.(1)求点的轨迹的方程;(2)设点在直线上运动,.直线与与轨迹分别交于两点,求面积的最大值.。
陕西省商洛2025届高考数学倒计时模拟卷含解析

陕西省商洛2025届高考数学倒计时模拟卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知a ,b ,c 是平面内三个单位向量,若a b ⊥,则232a c a b c +++-的最小值( )AB C D .52.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( )A B .1)C .D .43.若双曲线C :221x y m-=的一条渐近线方程为320x y +=,则m =( )A .49B .94C .23D .324.已知集合{|M x y ==,2{|40}N x N x =∈-≥,则M N ⋂为( ) A .[1,2] B .{0,1,2} C .{1,2} D .(1,2)5.已知实数ln333,33ln 3(n ),l 3a b c ==+=,则,,a b c 的大小关系是( )A .c b a <<B .c a b <<C .b a c <<D .a c b <<6.向量1,tan 3a α⎛⎫= ⎪⎝⎭,()cos ,1b α=,且//a b ,则cos 2πα⎛⎫+=⎪⎝⎭( )A .13B .3-C .3-D .13-7.35(1)(2)x y --的展开式中,满足2m n +=的m nx y 的系数之和为( )A .640B .416C .406D .236-8.如图在一个60︒的二面角的棱有两个点,A B ,线段,AC BD 分别在这个二面角的两个半平面内,且都垂直于棱AB ,且2,4AB AC BD ===,则CD 的长为( )A .4B .25C .2D .23 9.执行如图所示的程序框图,若输出的,则输入的整数的最大值为( )A .7B .15C .31D .6310.已知复数z 满足:34zi i =+(i 为虚数单位),则z =( ) A .43i +B .43i -C .43i -+D .43i --11.已知双曲线2222:1(0,0)x y C a b a b-=>>的焦距为2c ,过左焦点1F 作斜率为1的直线交双曲线C 的右支于点P ,若线段1PF 的中点在圆222:O x y c +=上,则该双曲线的离心率为( ) A .2B .22C .21+D .221+12.函数cos 1ln(),1,(),1x x x f x xex π⎧->⎪=⎨⎪≤⎩的图象大致是( ) A . B .C .D .二、填空题:本题共4小题,每小题5分,共20分。
2025届陕西省商洛市高考数学倒计时模拟卷含解析

2025届陕西省商洛市高考数学倒计时模拟卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知非零向量a ,b 满足()2a b a -⊥,()2b a b -⊥,则a 与b 的夹角为( ) A .6π B .4π C .3π D .2π 2.设复数z 满足2z iz i -=+(i 为虚数单位),则z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知()f x 是定义是R 上的奇函数,满足3322f x f x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭,当30,2x ⎛⎫∈ ⎪⎝⎭时, ()()2ln 1f x x x =-+,则函数()f x 在区间[]0,6上的零点个数是( ) A .3B .5C .7D .94.在等差数列{}n a 中,若n S 为前n 项和,911212a a =+,则13S 的值是( ) A .156B .124C .136D .1805.设双曲线22221x y a b-=(a>0,b>0)的右焦点为F ,右顶点为A,过F 作AF 的垂线与双曲线交于B,C 两点,过B,C分别作AC ,AB 的垂线交于点D .若D 到直线BC 的距离小于22a a b ++,则该双曲线的渐近线斜率的取值范围是 ( ) A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(2,0)(0,2)-D .(,2)(2,)-∞-+∞6.已知复数为纯虚数(为虚数单位),则实数( )A .-1B .1C .0D .27.在钝角ABC 中,角,,A B C 所对的边分别为,,a b c ,B 为钝角,若cos sin a A b A =,则sin sin A C +的最大值为( ) A .2B .98C .1D .788.已知ABC 中,2,3,60,2,AB BC ABC BD DC AE EC ==∠=︒==,则AD BE ⋅=( )A .1B .2-C .12D .12-9.已知全集U =R ,集合{|31}M x x =-<<,{|||1}N x x =,则阴影部分表示的集合是( )A .[1,1]-B .(3,1]-C .(,3)(1,)-∞--+∞D .(3,1)--10.过双曲线()222210,0x y a b a b-=>>的左焦点作倾斜角为30的直线l ,若l 与y 轴的交点坐标为()0,b ,则该双曲线的标准方程可能为( )A .2212x y -=B .2213x y -=C .2214x y -=D .22132x y -=11.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知23C π=,1c =.当,a b 变化时,若z b a λ=+存在最大值,则正数λ的取值范围为 A .(0,1)B .(0,2)C .1(,2)2D .(1,3)12.已知双曲线C :2222x y a b -=1(a >0,b >0)的焦距为8,一条渐近线方程为3y x =,则C 为( )A .221412x y -=B .221124x y -=C .2211648x y -=D .2214816x y -=二、填空题:本题共4小题,每小题5分,共20分。
陕西省商洛市(新版)2024高考数学人教版考试(冲刺卷)完整试卷

陕西省商洛市(新版)2024高考数学人教版考试(冲刺卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知全集,集合,则()A.B.C.D.第(2)题已知函数,若不等式在上恒成立,则实数的取值范围是()A.B.C.D.第(3)题等比数列为递减数列,若,,则()A.B.C.D.6第(4)题已知抛物线的焦点为F,C上一点满足,则抛物线C的方程为()A.B.C.D.第(5)题已知A,B是全集U的非空子集,且,则()A.B.C.D.第(6)题已知角的终边经过点,则()A.B.C.D.第(7)题已知直线,直线和平面,则下列四个命题中正确的是()A.若,,则B.若,,则C.若,,则D.若,,则第(8)题若,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知实数满足,则下列说法正确的是()A.B.C.D.第(2)题下列说法正确的是()A.一批文具中有12件正品,4件次品,从中任取3件,则取得1件次品的概率为B.相关系数越接近1,两变量的线性相关程度越强C.若,,则D.若,,,则第(3)题设是大于零的实数,向量,其中,定义向量,记,则()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知数据的方差为,数据的方差为,则___________..第(2)题已知函数,若在定义域内为单调递减函数,则实数的最小值为___________;若,,使得成立,则实数的取值范围为___________.第(3)题四名男生和两名女生排成一排,若有且只有两位男生相邻,则不同排法的种数是________四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数,.(1)求的单调区间;(2)设,若存在,使得,求证:①;②.第(2)题设函数.(1)探究函数的单调性;(2)若时,恒有,试求的取值范围;(3)令,试证明:.第(3)题某商城玩具柜台五一期间促销,购买甲、乙系列的盲盒,并且集齐所有的产品就可以赠送节日送礼,现有甲、乙两个系列盲盒,每个甲系列盲盒可以开出玩偶,,中的一个,每个乙系列盲盒可以开出玩偶,中的一个.(1)记事件:一次性购买个甲系列盲盒后集齐玩偶,,玩偶;事件:一次性购买个乙系列盲盒后集齐,玩偶;求概率及;(2)某礼品店限量出售甲、乙两个系列的盲盒,每个消费者每天只有一次购买机会,且购买时,只能选择其中一个系列的一个盲盒.通过统计发现:第一次购买盲盒的消费者购买甲系列的概率为,购买乙系列的概率为;而前一次购买甲系列的消费者下一次购买甲系列的概率为,购买乙系列的概率为,前一次购买乙系列的消费者下一次购买甲系列的概率为,购买乙系列的概率为;如此往复,记某人第次购买甲系列的概率为.①求的通项公式;②若每天购买盲盒的人数约为,且这人都已购买过很多次这两个系列的盲盒,试估计该礼品店每天应准备甲、乙两个系列的盲盒各多少个.第(4)题已知函数,.(1)若曲线的切线经过点,求的方程;(2)若方程有两个不相等的实数根,求的取值范围.第(5)题有三个车队分别有2辆、3辆、4辆车,现分别从其中两个车队各抽调两辆车执行任务,则不同的抽调方案共有种.。
陕西省商洛市(新版)2024高考数学部编版测试(冲刺卷)完整试卷

陕西省商洛市(新版)2024高考数学部编版测试(冲刺卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题如图,四个棱长为1的正方体排成一个正四棱柱,是一条侧棱,是上底面上其余的八个点,则集合中的元素个数().A.1B.2C.4D.8第(2)题双曲线的两顶点为,虚轴两端点为,两焦点为,若以为直径的圆内切于菱形,则双曲线的离心率是A.B.C.D.第(3)题已知复数,则()A.B.C.D.3第(4)题已知点是抛物线上任意一点,则点到抛物线的准线和直线的距离之和的最小值为()A.B.4C.D.5第(5)题如图,已知正四棱锥的底面边长和高分别为2和1,若点E是棱PD的中点,则异面直线PA与CE所成角的余弦值为()A.B.C.D.第(6)题双曲线的离心率为,且过点,则双曲线方程为()A.B.C.D.第(7)题若时,不等式恒成立,则实数的取值范围是()A.B.C.D.第(8)题已知正三棱锥的底面边长为3,侧棱长为,点P为此三棱锥各顶点所在球面上的一点,则点P到平面SAB的距离的最大值为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知点在线段上,是的角平分线,为上一点,且满足,设,下列说法正确的是()A.点的轨迹是双曲线B.是三角形的内心C.D.在上的投影向量为第(2)题在数列中,若对于任意,都有,则()A.当或时,数列为常数列B.当时,数列为递减数列,且C.当时,数列为递增数列D.当时,数列为单调数列第(3)题在矩形中(如图1),,.将沿折起得到以为顶点的锥体(如图2),若记侧棱的中点为,则以下判断正确的是()A.若,则的长度为定值B.若,则三棱锥的外接球表面积为C.若记与平面所成的角为,则的最大值为D.若二面角为直二面角,且,则三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知数列满足,若,且是递增数列、是递减数列,则_______.第(2)题海南盛产各种名贵树木,如紫檀、黄花梨等.在实际测量单根原木材体积时,可以检量木材的实际长度(检尺长)和小头直径(检尺径),再通过国家公布的原木材积表直接查询得到,原木材积表的部分数据如下所示:检尺径()检尺长()2.0 2.2 2.4 2.5 2.6材积()80.01300.01500.01600.01700.0180100.01900.02200.02400.02500.0260120.02700.03000.03300.03500.0370140.03600.04000.04500.04700.0490160.04700.05200.05800.06000.0630180.05900.06500.07200.07600.0790200.07200.08000.08800.09200.0970220.08600.09600.10600.11100.1160240.10200.11400.12500.13100.1370若小李购买了两根紫檀原木,一根检尺长为,检尺径为,另一根检尺长为,检尺径为,根据上表,可知两根原木的材积之和为______.第(3)题椭圆的离心率为________,焦点坐标为__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知数列满足,.(1)证明:数列为等差数列;(2)设,证明:.第(2)题等差数列中,.(1)求的通项公式;(2)设,记为数列前项的和,若,求.第(3)题已知函数.(1)若在上是单调函数,求a的取值范围;(2)证明:当时,.第(4)题已知椭圆C:的左顶点为A,上顶点为B,右焦点为,O为坐标原点,线段OA的中点为D,且.(1)求C的方程;(2)已知点M、N均在直线上,以MN为直径的圆经过O点,圆心为点T,直线AM、AN分别交椭圆C于另一点P、Q,证明直线PQ与直线OT垂直.第(5)题已知椭圆的左右顶点分别为、,为直线上的动点,直线与椭圆的另一交点为,直线与椭圆的另一交点为.(1)若点的坐标为,求点的坐标;(2)若点的坐标为,求以为直径的圆的方程;(3)求证:直线过定点.。
陕西省商洛市(新版)2024高考数学统编版考试(冲刺卷)完整试卷

陕西省商洛市(新版)2024高考数学统编版考试(冲刺卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题若点为抛物线上一点,是抛物线的焦点,,点为直线上的动点,则的最小值为()A.8B.C.D.第(2)题“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第(3)题如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是A.B.C.D.2第(4)题若集合,,则()A.B.C.D.第(5)题()A.B.C.D.第(6)题在中,,,,则( )A.B.C.D.第(7)题垂直于直线且与圆相切于第一象限的直线方程是A.B.C.D.第(8)题若函数有两个零点,则实数的取值范围为()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题设a,b为两条不同的直线,为两个不同的平面,则下列结论不正确的是()A.若,则B.若,则C.若,则D.若,则第(2)题已知函数(其中)的部分图象如图所示.则下列结论正确的是()A .函数的图象关于直线对称B .函数的图象关于点对称C.函数在区间上单调递增D.与图象的所有交点的横坐标之和为第(3)题如图,正四棱锥的所有棱长均为1,E为BC的中点,M,N分别为棱PB,PC上的动点,设,,,则()A.AM不可能垂直于BN B.的取值范围是C.当时,平面平面ABCD D.三棱锥的体积为定值三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知函数的最小值为,则__________.第(2)题在平行四边形中,,,点在边上,满足,则向量在向量上的投影向量为________(请用表示);若,点,分别为线段,上的动点,满足,则的最小值为________.第(3)题计算:_________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知.(1)试讨论的单调性;(2)当时,恒成立,求实数的取值范围.第(2)题正项数列的前n项和满足,且.(1)求数列的通项公式;(2)设数列满足,为数列的前n项和,求.第(3)题已知函数在处取得极小值.(1)求实数的值;(2)当时,证明:.第(4)题如图所示,圆台的上、下底面圆半径分别为和,为圆台的两条不同的母线.(1)求证:;(2)截面与下底面所成的夹角大小为,且截面截得圆台上底面圆的劣弧的长度为,求截面的面积.第(5)题第二十二届世界杯足球赛于年在卡塔尔举行,中国观众可以通过中央电视台体育频道观看比赛实况某机构对某社区群众观看足球比赛的情况进行调查,将观看过本次世界杯足球赛至少场的人称为“足球迷”,否则称为“非足球迷”从调查结果中随机抽取份进行分析,得到数据如下表所示:足球迷非足球迷总计男女总计(1)补全列联表,并判断是否有的把握认为是否为“足球迷”与性别有关(2)现从抽取的“足球迷”人群中,按性别采用分层抽样的方法抽取人,然后从这人中随机抽取人,求抽取的人都为“男足球迷”的概率.附:,。
陕西省商洛市2024高三冲刺(高考数学)人教版考试(冲刺卷)完整试卷

陕西省商洛市2024高三冲刺(高考数学)人教版考试(冲刺卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知椭圆,过x轴上一定点N作直线l,交椭圆C于A,B两点,当直线l绕点N任意旋转时,有(其中t为定值),则()A.B.C.D.第(2)题已知在内存在零点,则实数a的取值范围()A.B.C.D.第(3)题已知集合,则A.[0,1]B.[0,1)C.(0,1 ]D.(0,1)第(4)题设,,已知函数,有且只有一个零点,则的最小值为()A.B.C.D.第(5)题为庆祝建国70周年,某校举办“唱红歌,庆十一”活动,现有A班3名学生,B班2名学生,从这5名学生中选2人参加该活动,则选取的2人来自不同班级的概率为()A.B.C.D.第(6)题已知数列,,,.对于任意的正整数n,不等式恒成立,则正数t的最大值为()A.1B.2C.3D.6第(7)题已知函数,给出以下三个结论:①如果有两个不同的根,则;②当时,恒成立;③如果有两个根,,则.其中正确的结论个数为()A.0个B.1个C.2个D.3个第(8)题函数的定义域为A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题设是定义域为的奇函数,且的图象关于直线对称,若时,,则()A.为偶函数B .在上单调递减C.在区间上有4046个零点D.第(2)题定义在的函数满足,且,都有,若方程的解构成单调递增数列,则下列说法中正确的是()A.B.若数列为等差数列,则公差为6C.若,则D .若,则第(3)题已知函数,则下列结论正确的为()A.的最小正周期为B .的图象关于对称C.的最小值为D.在区间上单调递增三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%,一旦失败,一年后将丧失全部资金的50%,下表是过去200例类似项目开发的实施结果:投资成功投资失败192次8次则该公司一年后估计可获收益的期望是____________(元).第(2)题若,则的最小值为________.第(3)题已知函数,对,不等式恒成立,则实数的取值范围是__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数,.(1)若曲线在处的切线与函数也相切,求实数的值;(2)求函数在上的最小值.第(2)题在某市创建全国文明城市的过程中,创文专家组对该市的中小学进行了抽检,其中抽检的一个环节是对学校的教师和学生分别进行问卷测评.如表是被抽检到的5所学校、、、、的教师和学生的测评成绩(单位:分):学校教师测评成绩9092939496学生测评成绩8789899293(1)建立关于的回归方程;(2)现从、、、、这5所学校中随机选2所派代表参加座谈,求、两所学校至少有1所被选到的概率.附:,.第(3)题已知函数,若在区间内有且只有一个实数,使得成立,则称函数在区间内具有唯一零点.(1)判断函数在区间内是否具有唯一零点,说明理由:(2)已知向量,,,证明在区间内具有唯一零点.(3)若函数在区间内具有唯一零点,求实数的取值范围.第(4)题已知数列满足.(1)若数列的首项为,其中,且,,构成公比小于0的等比数列,求的值;(2)若是公差为d(d>0)的等差数列的前n项和,求的值;(3)若,,且数列单调递增,数列单调递减,求数列的通项公式.第(5)题如图所示的多面体是由一个以四边形为底面的直四棱柱被平面所截面成,若,且:(1)求二面角的大小;(2)求此多面体的体积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陕西省商洛市高考数学考前最后一卷(理科)
姓名:________ 班级:________ 成绩:________
一、选择题. (共12题;共24分)
1. (2分)已知集合,,则 =()
A .
B .
C .
D .
2. (2分)(2019·赤峰模拟) 已知为虚数单位,复数,则下列结论正确的是()
A . 的共轭复数为
B . 的虚部为
C . 在复平面内对应的点在第二象限
D .
3. (2分) (2016高二上·屯溪开学考) 下列判断:
①从个体编号为1,2,…,1000的总体中抽取一个容量为50的样本,若采用系统抽样方法进行抽取,则分段间隔应为20;
②已知某种彩票的中奖概率为,那么买1000张这种彩票就一定会中奖(假设该彩票有足够的张数);
③从装有2个红球和2个黒球的口袋内任取2个球,恰有1个黒球与恰有2个黒球是互斥但不对立的两个事件;
④设具有线性相关关系的变量的一组数据是(1,3),(2,5),(3,6),(6,8),则它们的回归直线一定过点(3,).
其中正确的序号是()
A . ①、②、③
B . ①、③、④
C . ③、④
D . ①、③
4. (2分) (2019高二上·上杭期中) 若实数x,y满足,则的最小值为
A . 2
B . 1
C . 0
D .
5. (2分)某算法的程序框图如图所示,如果输出的结果是26,则判断框内应为()
A . K>2
B . K>3
C . K>4
D . K>5
6. (2分)已知△ABC中,D是BC边的中点,过点D的直线分别交直线AB、AC于点E、F,若=λ ,
=μ ,其中λ>0,μ>0,则λμ的最小值是()
A . 1
B .
C .
D .
7. (2分) (2018高二上·烟台期中) 设,,,则
A .
B .
C .
D .
8. (2分) (2019高二上·长沙月考) 下列说法中错误的是()
A . “ ”是“ ”的充分不必要条件
B . 命题“ ”的否定为“ ”
C . 命题“若都是偶数,则是偶数”的否命题是“若都不是偶数,则不是偶数”
D . 设命题p:所有有理数都是实数;命题q:正数的对数都是负数,则为真命题
9. (2分) (2020高二下·长春月考) 连续两次抛掷一枚均匀的骰子,记录向上的点数,则向上的点数之差的绝对值为2的概率是()
A .
B .
C .
D .
10. (2分) (2019高二下·富阳月考) 若某几何体的三视图(单位:)如图所示,则该几何体的体积等于()
A .
B .
C .
D .
11. (2分)△ABC的顶点A在y2=4x上,B,C两点在直线x﹣2y+5=0上,若|-|=2,则△ABC面积的最小值为()
A .
B . 1
C . 2
D .
12. (2分) (2017高二下·晋中期末) 已知函数f(x)=aln(x+1)﹣x2在区间(0,1)内任取两个实数p,q,且p≠q,不等式恒成立,则实数a的取值范围为()
A . [15,+∞)
B .
C . [1,+∞)
D . [6,+∞)
二、填空题 (共4题;共5分)
13. (1分) (2020高三上·静安期末) 三倍角的正切公式为 ________.
14. (1分) (2016·河北模拟) 设(1﹣2x)n=a0+a1x+a2x2+…+anxn(x∈N*),若a1+a2=30,则n=________.
15. (2分) (2019高三上·海淀月考) 如图,线段 =8,点在线段上,且 =2,为线段
上一动点,点绕点旋转后与点绕点旋转后重合于点.设 = ,的面积为.则的定义域为________;的零点是________.
16. (1分) (2019高三上·西城月考) 已知双曲线,点的坐标为 .设是双曲线上的点,是点关于原点的对称点.记,则的取值范围是________.
三、解答题 (共7题;共60分)
17. (5分) (2018高二上·成都月考) 在等差数列中,,其前项和为,等比数列的各项均为正数,,公比为,且,.
(Ⅰ)求与.
(Ⅱ)设数列满足,求的前项和.
18. (10分)某班一次数学考试成绩频率分布直方图如图所示,数据分组依次为[70,90),[90,110),[110,130),[130,150],已知成绩大于等于90分的人数为36人,现采用分层抽样的方式抽取一个容量为10的样本.
(1)求每个分组所抽取的学生人数;
(2)从数学成绩在[110,150]的样本中任取2人,求恰有1人成绩在[110,130)的概率.
19. (5分) (2017高二下·西安期末) 已知O是边长为的正方形ABCD的中心,点E、F分别是AD、BC 的中点,沿对角线AC把正方形ABCD折成直二面角D﹣AC﹣B;
(Ⅰ)求∠EOF的大小;
(Ⅱ)求二面角E﹣OF﹣A的余弦值;
(Ⅲ)求点D到面EOF的距离.
20. (10分)已知点A(﹣1,0)、B(1,0),直线AM与BM相交于点M,且它们的斜率之积为﹣2,
(1)求动点M的轨迹E的方程;
(2)若过点N(,1)的直线l交动点M的轨迹于C、D两点,且点N为CD的中点,求直线l的方程.
21. (10分)(2017·潮州模拟) 已知函数g(x)=lnx﹣ax2+(2﹣a)x,a∈R.
(1)求g(x)的单调区间;
(2)若函数f(x)=g(x)+(a+1)x2﹣2x,x1 , x2(x1<x2)是函数f(x)的两个零点,f′(x)是函数f(x)的导函数,证明:f′()<0.
22. (10分)在直角坐标系xOy中,曲线C1的参数方程是 (t为参数,0≤α<π),以原点O 为极点,以x轴正半轴为极轴,已知曲线C2的极坐标方程为ρ=4cosθ,射线与曲线C2相交,交点分别为A,B,C(A,B,C均不与O重合).
(1)求证:;
(2)当时,B,C两点在曲线C1上,求m与α的值.23. (10分)解下列关于x的不等式:
(1)≤2;
(2) x2﹣(a+1)x+a<0.
参考答案一、选择题. (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共4题;共5分)
13-1、
14-1、
15-1、
16-1、
三、解答题 (共7题;共60分)
17-1、
18-1、
18-2、19-1、
20-1、20-2、21-1、
21-2、
22-1、
22-2、
23-1、23-2、。