2020-2021学年陕西省高考数学全真模拟试卷(理科)及答案解析
2020高考数学(理)全真模拟卷3(解析版)

备战2020高考全真模拟卷3数学(理)(本试卷满分150分,考试用时120分钟)2月14日第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|06}M x x =≤≤,{|232}x N x =≤,则M N ⋃=( ) A .(,6]-∞ B .(,5]-∞ C .[0,6] D .[0,5]【答案】A 【解析】分析:根据指数函数求解集合N ,再根据集合的交集运算,即可得到结果. 详解:由题意,集合{|06},{|232}{|5}xM x x N x x x =≤≤=≤=≤, 所以{|6}(,6]M N x x ⋃=≤=-∞,故选A.点睛:本题主要考查了集合的运算,其中正确求解集合N 是解答的关键,着重考查了推理与计算能力.2.若复数z 满足(34)43i z i -=+,则z 的虚部为( ) A .-4 B .45-C .4i -D .45i -【答案】B 【解析】 【分析】先根据已知求出复数z,再求z 及其虚部得解. 【详解】 由题得55(34)5(34)3434(34)(34)255i i iz i i i +++====--+, 所以3455z i =-,所以z 的虚部为45-. 故选B 【点睛】本题主要考查复数的除法运算,考查复数的模的计算和共轭复数的概念,考查复数的虚部的概念,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.3.在ABC ∆中,1=3AD DC u u u r u u u r ,P 是直线BD 上的一点,若12AP mAB AC =+u u u r u u u r u u u r,则m =( )A .4-B .1-C .1D .4【答案】B 【解析】 【分析】先根据条件化以,AB AD u u u r u u u r为基底向量,再根据平面向量共线定理推论确定参数.【详解】114222AP mAB AC mAB AD mAB AD =+=+⨯=+u u u r u u u r u u u r u u u r u u u r u u u r u u u rQ ,又B P D 、、三点共线,所以21+=m ,得1m =-. 故选:B 【点睛】本题考查平面向量共线定理推论,考查基本分析求解能力,属基础题. 4.已知1127,4xyk x y ==-=,则k 的值是( ) A .42()7B .142()7C .145D .147()2【答案】B 【解析】试题分析:由题意27log ,log x k y k ==,所以144271111222log 2log 7log 4,,()log log 777k k k k k x y k k -=-=-====,故选B . 考点:对数的运算,换底公式.5.在ABC V 中,内角A B C ,,的对边分别为a b c ,,,且2223a b c ab +-==,则ABC V 的面积为()A.34B.34C.32D.32【答案】B【解析】【分析】利用余弦定理化简a2+b2-c2=ab=3得C=60°,即得△ABC的面积. 【详解】依题意得cos C=222122a b cab+-=,所以C=60°,因此△ABC的面积等于12absin C=12×3×32=34,故答案为B【点睛】本题主要考查余弦定理解三角形和三角形的面积的计算,意在考查学生对这些知识的掌握水平和分析推理能力.6.下表是考生甲、乙、丙填写的第一批A段3个平行志愿,而且均服从调剂,如果3人之前批次均未被录取,且3所学校天津大学、中山大学、厦门大学分别差1人、2人、2人未招满.已知平行志愿的录取规则是“分数优先,遵循志愿”,即按照分数从高到低的位次依次检索考生的院校志愿、、A B C,按照下面程序框图录取.执行如图的程序框图,则考生甲、乙、丙被录取院校分别是( )A.天津大学、中山大学、中山大学B.中山大学、天津大学、中山大学C.天津大学、厦门大学、中山大学D.中山大学、天津大学、厦门大学【答案】B【解析】乙的分最高,第一志愿是天津在,所以被天津大学录走。
高考数学全真模拟考试试卷 理(含解析)(2021年整理)

江西省新余市2017届高考数学全真模拟考试试卷理(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江西省新余市2017届高考数学全真模拟考试试卷理(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江西省新余市2017届高考数学全真模拟考试试卷理(含解析)的全部内容。
2016—2017学年江西省新余市2017届高三高考全真模拟考试理科数学一、选择题:共12题1.已知集合,集合,则A。
B. C.D。
【答案】C【解析】本题主要考查集合的基本运算,指数函数.,,则.2.已知复数是纯虚数(其中为虚数单位,),则A。
1 B.-1 C。
D.【答案】C【解析】本题主要考查复数的四则运算.,由题意可得,则a=3,所以。
3.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周盒体而无所失矣”.它体现了一种无限与有限的转化过程,比如在表达式中“…”即代表无限次重复,但原式却是定值,它可以通过方程求得。
类似上述过程,则A。
3 B。
C。
6 D。
【答案】A【解析】本题主要考查类比推理,考查了逻辑推理能力.由题意,根据类比推理可得,则x=3。
4.现行普通高中学生在高一升高二时面临着选文理科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的A.样本中的女生数量多于男生数量B.样本中有理科意愿的学生数量多于有文科意愿的学生数量C.样本中的男生偏爱理科D。
样本中的女生偏爱文科【答案】D【解析】本题主要考查等高堆积条形图,由样本估计总体,考查了分析问题与解决问题的能力.由等高堆积条形图可知,样本中的女生数量多于男生数量,则A正确;样本中有理科意愿的学生数量多于有文科意愿的学生数量,则B正确;样本中的男生偏爱理科,则C正确,故D 错误.5.某几何体的三视图如图所示,则该几何体的体积为A。
高考数学复习热点02 数学传统文化和实际民生为载体的创新题(解析版)

热点02 数学传统文化和实际民生为载体的创新题【命题形式】1、考查题型主要是选择题和填空题,计算题和证明题比较少,涉及到的知识点主要集中在函数、数列、立体几何证明与计算、复数、组合、三角函数、概率、推理、圆锥曲线。
2、数学文化考查背景总结如下:①以数学名著为考查背景,以中国数学典籍史料中优秀成果为背景。
②以数学猜想和定理为命题背景。
③以数学名家的故事为命题背景,以数学家的故事,为考查背景,正是对创新精神数学精神的一种传承。
④以数学的应用为命题背景。
⑤历史名人。
⑥历史发展。
3、文化背景的考查在突出所要考查的数学知识的同时,培养学生的数学素养,不仅可以让学生理解数学文化形成数学素养,同时也让学生感受我们古代数学的伟大成就,增强爱国情怀,引导学生了解数学文化体现数学文化以数化人的本质内涵。
这是新高考考察的目的,从而这类问题也是新高考必考题型。
4、数学高考题渗透了大量的数学文化,尤其是渗透到中国古代独特的数学题目。
但这些题目考查的知识点有限,很多内容并未涉及到。
我们现在的社会在飞速发展,无论是科技还是人的思想都不断地变化。
为了让学生能够更好地适应未来社会的发展,我们的教育需要及时更新,不仅仅要反映在教材,考试也应该与时俱进,而不再是摸小球,投骰子,算水费这些老古董的模型背景,更应该与时俱进。
比如以科技为背景文化材料都可以作为激发学生学习兴趣的新材料。
像2020年12月2日嫦娥五号成功降落在月球上,它里面所涉及的轨道、运动都能成为很好的考查背景材料,而这些发射卫星的基地名称也可以作为命题背景的一大亮眼之处。
除次以外,同样可以结合其他学科知识和实际民生,比如新冠肺炎这些热点问题也可以成为出题的背景,进入数学高考题。
【满分技巧】1、多掌握数学文化知识通过对数学文化知识了解使学生对文化素养的提升,做题时能够做到有的放矢,减少对这类问题的恐惧心理。
2、注意数学文化的译文很多数学文化的题型都是选用的是中国传统数学文化,题目前面都是以文言文的形式出现,而后面都会对给出译文,译文才是本题的关键题意,所以这类题的关键地方是在译文上理解。
2024年高考数学全真模拟试卷六(新高考、新结构)(全解全析)

2024年高考数学全真模拟试卷六(新高考、新结构)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a b ∈R ,,i (3i )i a b -=-(i 为虚数单位),则()A .1a =,3b =-B .1a =-,3b =C .1a =-,3b =-D .1a =,3b =【答案】A【解析】因为3i (i)i 1i a b b -=-=+,所以1,3a b ==-.故选A2.已知{}n a 为等差数列,n S 为其前n 项和.若122a a =,公差0,0m d S ≠=,则m 的值为()A .4B .5C .6D .7【答案】B【解析】由已知()12122a a a d ==+,得12a d =-,又()()1112022m m m m m S ma d md d --=+=-+=,又0d ≠,所以()1202m m m --+=,解得5m =或0m =(舍去),故选B.3.纯电动汽车是以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,它使用存储在电池中的电来发动.因其对环境影响较小,逐渐成为当今世界的乘用车的发展方向.研究发现电池的容量随放电电流的大小而改变,1898年Peukert 提出铅酸电池的容量C 、放电时间t 和放电电流I 之间关系的经验公式:C I t λ=,其中λ为与蓄电池结构有关的常数(称为Peukert 常数),在电池容量不变的条件下,当放电电流为7.5A 时,放电时间为60h ;当放电电流为25A 时,放电时间为15h ,则该蓄电池的Peukert 常数λ约为(参考数据:lg 20.301≈,lg 30.477≈)()A .1.12B .1.13C .1.14D .1.15【答案】D【解析】由题意知7.5602515C λλ=⨯=⨯,所以410325607.515λλ⎛⎫= ⎪⎝⎭⎛⎫== ⎪⎝⎭,两边取以10为底的对数,得10lg2lg 23λ=,所以2lg 220.301 1.151lg310.477λ⨯=≈≈--,故选D.4.已知向量,a b 满足||2,(2,0)a b ==,且||2a b += ,则,a b 〈〉= ()A .π6B .π3C .2π3D .5π6【答案】C【解析】由已知||2,2a b == ,所以()22224222cos ,44a ba b a b a b +=+⋅+=+⨯⨯⨯〈〉+=r r r r r r r r,得1cos ,2a b 〈〉=- ,又[],0,πa b 〈〉∈ ,所以2π,3a b 〈〉= .故选C.5.在平面直角坐标系xOy 中,已知()()3,0,1,0,A B P -为圆22:(3)(3)1C x y -+-=上动点,则22PA PB +的最小值为()A .34B .40C .44D .48【答案】B【解析】设(),P x y ,则()()222222223122410PA PB x y x y x y x +=+++-+=+++()22218x y ⎡⎤=+++⎣⎦,即22PA PB +等价于点P 到点()1,0Q -的距离的平方的两倍加8,又1PQ QC PC ≥-=514=-=,即22224840PA PB +≥⨯+=.故选B.6.如图,四棱锥A BCDE -是棱长均为2的正四棱锥,三棱锥A CDF -是正四面体,G 为BE 的中点,则下列结论错误的是()A .点,,,ABC F 共面B .平面ABE 平面CDF C .FG CD ⊥D .FG ⊥平面ACD【答案】D【解析】选项A :如图,取CD 中点H ,连接GH ,FH ,AG ,AH ,因为A BCDE -是正四棱锥,A CDF -是正四面体,G 为BE 的中点,所以CD GH ⊥,CD AH ⊥,CD FH ⊥,因为GH AH H = ,,GH AH ⊂平面AGH ,所以CD ⊥平面AGH ,因为AH FH H = ,,AH FH ⊂平面AFH ,所以CD ⊥平面AFH ,所以,,,A G H F 四点共面,由题意知3AG HF ==2GH AF ==,所以四边形AGHF是平行四边形,所以GH AF ∥,因为BC GH ∥,所以BC AF ∥,所以,,,A B C F 四点共面,故A 说法正确;选项B :由选项A 知AG FH ∥,又AG ⊄平面CDF ,FH ⊂平面CDF ,所以AG 平面CDF ,因为CD BE ∥,且BE ⊄平面CDF ,CD ⊂平面CDF ,所以BE 平面CDF ,又AG ⊂平面ABE ,BE ⊂平面ABE ,且AG BE G = ,所以平面ABE 平面CDF ,故B 说法正确;C 选项:由选项A 可得CD ⊥平面AGHF ,又FG ⊂平面AGHF ,所以FG CD ⊥,故C 说法正确;D 选项:假设FG ⊥平面ACD ,因为AH ⊂平面ACD ,则FG AH ⊥,由选项A 知四边形AGHF 是平行四边形,所以四边形AGHF 是菱形,与3AG =2GH =矛盾,故D 说法错误;故选D7.甲、乙两人进行一场友谊比赛,赛前每人记入3分.一局比赛后,若决出胜负,则胜的一方得1分,负的一方得1-分;若平局,则双方各得0分.若干局比赛后,当一方累计得分为6时比赛结束且该方最终获胜.令i P 表示在甲的累计得分为i 时,最终甲获胜的概率,若在一局中甲获胜的概率为0.5,乙获胜的概率为0.3,则1P =()A .555535-B .666535-C .5662553⨯-D .677553-【答案】C【解析】由题意可知:i 的取值集合为{}0,1,2,3,4,5,6,且060,1P P ==,在甲累计得分为1时,下局甲胜且最终甲获胜的概率为20.5P ,在甲累计得分为1时,下局平局且最终甲获胜的概率为10.2P ,在甲累计得分为1时,下局甲败且最终甲获胜的概率为00.3P ,根据全概率公式可得12100.50.20.3P P P P =++,整理得2108355P P P =-,变形得()211035P P P P -=-,因为100P P ->,则211035P P P P -=-,同理可得324354652132435435P P P P P P P P P P P P P P P P ----====----,所以{}()10,1,2,,5i i P P i +-= 是公比为35的等比数列,所以()()11030,1,2,,55i i i P P P P i +⎛⎫-=-= ⎪⎝⎭ ,各项求和得()()551101135i i i i i P P P P +==⎡⎤⎛⎫-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∑∑,则()661103355315P P P P ⎛⎫- ⎪⎝⎭-=-⋅-,即61133551315P P ⎛⎫- ⎪⎝⎭-=⋅-,解得51662553P ⨯=-.故选C.8.已知0,2a b c <<>,且12212,e (1),2ln2bab c c a==+=,则()A .b a c <-<B .a b c -<<C .c a b <-<D .b c a<<-【答案】B 【解析】令1t a=,则22t t =,令()22,0t f t t t =-<,则()2ln 220t f t t '=->在(),0t ∈-∞上恒成立,故()22t f t t =-在(),0t ∈-∞上单调递增,且()11102f -=-<,110224f ⎛⎫-=-> ⎪⎝⎭,故112t -<<-,故()1,2a -∈,令()()2e 1x g x x =-+,0x >,则()()e 21x g x x '=-+,令()()e 21x q x x =-+,则()e 2x q x '=-,令()0q x '>得ln 2x >,令()0q x '<得0ln 2x <<,故()()e 21xq x x =-+在()0,ln 2上单调递减,在()ln 2,+∞上单调递增,则()()ln 222ln 210q =-+<,()22e 60q =->,由零点存在性定理可得,存在()0ln 2,2x ∈,使得()00q x =,且()()2e 1x g x x =-+在()00,x 上单调递减,在()0,x +∞上单调递增,又()00g =,故()()000g x g <=,又()22e 90g =-<,()33e 160g =->,故()2,3b ∈,令()2ln 2,2h x x x x =->,则()21h x x'=-,当2x >时,()0h x '>,故()2ln 2h x x x =-在()2,+∞上单调递增,又因为()446ln 20h =-<,()552ln100h =->,故()4,5c ∈,综上,a b c -<<.故选B二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知()()1,1,2,1AB AC =-= ,则下列结论正确的是()A .()3,0BC =B .()25AB BC AC ⋅-=C.cos ,AB AC = D .若()3,1AB AC λμμλ+=+,则2μλ-=【答案】ACD【解析】对于A ,()3,0BC AC AB =-= ,故A 正确;对于B ,因为()24,1BC AC -=-,所以()25AB BC AC ⋅-=- ,故B 错误;对于C,因为1,AB AC AB AC ⋅=-==所以cos ,10AB AC ==,故C 正确;对于D ,()()2,3,1AB AC λμμλμλμλ+=-+=+ ,所以231μλμμλλ-=⎧⎨+=+⎩,解得1,1λμ=-=,则2μλ-=,故D 正确.故选ACD.10.关于方程[]()22cos 10,πx y αα+=∈表示的曲线Γ,下列说法正确的是()A .Γ可以表示两条平行的直线,且这两条直线的距离为2B .若Γ为双曲线,则α为钝角C .若α为锐角,则Γ为焦点在y 轴上的椭圆D .若Γ为椭圆,P 为椭圆Γ上不与长轴顶点,A B 重合的点,则cos PA PB k k α⋅=-【答案】AD【解析】对于A 项,当cos 0α=,即π2α=时,方程为21y =,解得1y =±,因此Γ可以表示两条平行的直线,且这两条直线的距离为2,故A 选项正确;对于B 项,若Γ为双曲线,则cos 0α<,即ππ2α<≤,故α为钝角或平角,故B 选项错误;对于C 项,若α为锐角,则0cos 1α<<,即11cos α>.将原方程化为标准方程为2211cos x y α+=⎛⎫⎪⎝⎭,因此Γ为焦点在x 轴上的椭圆,故C 选项错误;对于D 项,若Γ为椭圆,则α为锐角,设椭圆方程为()222210x y a b a b+=>>,则221,1cos a b α==,不妨设()()()00,0,,0,,A a B a P x y -,将点P 的坐标代入椭圆方程得2200cos 1x y α+=,即22001cos y x α=-,故22000022200001cos cos 1cos PA PBy y y x k k x a x a x a x ααα-⋅=⋅===-+---,故D 选项正确.故选AD .11.对于集合A 中的任意两个元素,x y ,若实数(),d x y 同时满足以下三个条件:①“(),0d x y =”的充要条件为“x y =”;②()(),,d x y d y x =;③z A ∀∈,都有()()(),,,d x y d x z d y z ≤+.则称(),d x y 为集合A 上的距离,记为A d .则下列说法正确的是()A .(),d x y x y =-为d RB .(),sin sin d x y x y =-为d RC .若()0,A =+∞,则(),ln ln d x y x y =-为Ad D .若d 为R d ,则1e d -也为R d (e 为自然对数的底数)【答案】AC【解析】对于A ,(),d x y x y =-,即x y =,①,(),0d x y =,即(),0d x y x y =-=,即x y =,若x y =,则(),0d x y x y x x =-=-=,所以“(),0d x y =”的充要条件为“x y =”.②,()(),,d x y x y y x d y x =-=-=,成立,③,,,R x y z ∀∈,()()x y x z z y x z z y -=-+-≤-+-,故A 正确;对于B ,(),sin sin d x y x y =-,①,(),0d x y =,即(),sin sin 0d x y x y =-=,即sin sin x y =,此时若0,πx y ==,则x y ≠,故B 错误;对于C ,(),ln ln d x y x y =-,①,(),0d x y =即ln ln ln0xx y y-==,即1x y =,得x y =,若x y =,则(),ln ln ln ln 0d x y x y x x =-=-=,所以“(),0d x y =”的充要条件为“x y =”.②,()(),ln ln ln ln ,d x y x y y x d y x =-=-=,成立;③,()()(),ln ln ln ln ln ln d x y x y x z z y =-=-+-()()ln ln ln ln ,,x z z y d x z d y z ≤-+-=+,故成立,故C 正确;对于D ,设,x y ∀∈R ,(),d x y x y =-,则()1,1e e x y d x y ---=,①,若(),0d x y =,则0x y -=,即x y =,111e e 0x y d e ----==≠,故D 错误.故选AC.三、填空题:本题共3小题,每小题5分,共15分.12.函数()()2312(2)log 22x f x x a +=+-+是偶函数,则=a .【答案】38【解析】因为()()2312(2)log 22x f x x a +=+-+是偶函数,可得()()()31231228log 83022x x f x f x ax a x +-++--=-=-=+,所以38a =.13.《九章算术》中记录的“羡除”是算学和建筑学术语,指的是一段类似隧道形状的几何体,如图,羡除ABCDEF 中,底面ABCD 是正方形,//EF 平面ABCD ,ADE V 和BCF △均为等边三角形,且26EF AB ==.则这个几何体的外接球的体积为.【答案】36π【解析】连接BD ,分别取EF 、BD 、AD 中点G 、H 、I ,连接GH 、HI 、EI ,由底面ABCD 是正方形,//EF 平面ABCD ,ADE V 和BCF △均为等边三角形,故//EG IH ,GH ⊥底面ABCD ,又26EF AB ==,故3EG AD AB ===,则22EI AD ==,故2GH ==,由H 为底面正方形中心,HG IH ⊥,故羡除ABCDEF 外接球球心O 在直线GH 上,连接OI 、OE 、OA ,设半径为r ,OH a =,则==OA OE r ,由GH ⊥底面ABCD ,AD ⊂平面ABCD ,故GH AD ⊥,又AD IH ⊥,IH 、GH Ì平面IOH ,故AD ⊥平面IOH ,又IO ⊂平面IOH ,故AD IO ⊥,故2222232IO r AI r ⎛⎫=-=- ⎪⎝⎭,又222223+2IO OH IH a ⎛⎫=+= ⎪⎝⎭,故有222233+22r a ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,即229+2r a =,又2222227322EO r a a ⎛⎫==-+=-+ ⎪ ⎪⎝⎭,故有22279+22a a -+=,解得2a =,故22999+9222r a ==+=,即3r =,则这个几何体的外接球的体积为34π36π3V r ==.14.已知函数π2cos (0)4y x ωω⎛⎫=-> ⎪⎝⎭在区间ππ,42⎛⎫⎪⎝⎭上有且仅有一个零点,则ω的取值范围为.【答案】371115(3)(][7]2222,,, 【解析】由题意知函数π2cos (0)4y x ωω⎛⎫=-> ⎪⎝⎭在区间ππ,42⎛⎫⎪⎝⎭上有且仅有一个零点,故函数的最小正周期πππ2ππ082444T ,,ωω≥-=∴≥∴<≤,又ππ,42x ⎛⎫∈ ⎪⎝⎭,则πππππ44424x ωωω-<-<-,而πππ7π4444ω-<-≤,当ππππ4442ω-<-<时,即03ω<<时,需有πππ3π2242ω<-≤,即3722ω<≤,此时3(3)2,ω∈;当πππ442ω-=时,即3ω=时,ππ5π244ω-=,此时函数在π5π(,24)上无零点,不合题意;当πππ3π2442ω<-<时,即37ω<<时,需有3πππ5π2242ω<-≤,即71122ω<≤,此时711(]22,ω∈;当ππ3π442ω-=时,即7ω=时,ππ13π244ω-=,此时函数在3π13π(,)24上有一零点5π2,符合题意;当3πππ7π2444ω<-≤时,即78ω<≤时,需有5πππ7π2242ω<-≤,即111522ω<≤,此时15(7]2,ω∈;综合上述,得ω的取值范围为371115(3)(][7]2222,,, 三、解答题:本题共5小题,共77分,解答应写出文字说明,证明过程和解题步骤.15.(13分)近年来“天宫课堂”受到广大中小学生欢迎,激发了同学们对科学知识的探索欲望和对我国航天事业成就的自豪.为领悟航天精神,感受中国梦想,某校组织了一次“寻梦天宫”航天知识竞赛(满分100分),各年级学生踊跃参加.校团委为了比较高一、高二学生这次竞赛的成绩,从两个年级的答卷中各随机选取了50份,将成绩进行统计得到以下频数分布表:成绩[)60,70[)70,80[)80,90[]90,100高一学生人数1551515高二学生人数10102010试利用样本估计总体的思想,解决下列问题:(1)从平均数与方差的角度分析哪个年级学生这次竞赛成绩更好(同一组中的数据用该组区间的中点值为代表)?(2)校后勤部决定对参与这次竞赛的学生给予一定的奖励,奖励方案有以下两种:方案一:记学生得分为x ,当70x <时,奖励该学生10元食堂代金券;当7090x ≤<时,奖励该学生25元食堂代金券;当90x ≥时,奖励该学生35元食堂代金券;方案二:得分低于样本中位数的每位学生奖励10元食堂代金券;得分不低于中位数的每位学生奖励30元食堂代金券.若高一年级组长希望本年级学生获得多于高二年级的奖励,则他应该选择哪种方案?解:(1)设高一年级学生竞赛成绩的平均数为x ,方差为21s .高二年级学生竞赛成绩的平均数为y ,方差为22s .则6515755851595158150x ⨯+⨯+⨯+⨯==,(1分)2222211[15(6581)5(7581)15(8581)15(9581)]144,50s =⨯-+⨯-+⨯-+⨯-=(3分)1(6510751085209510)8150y =⨯+⨯+⨯+⨯=,(4分)2222221[10(6581)10(7581)20(8581)10(9581)]161.650s =⨯-+⨯-+⨯-+⨯-=,(6分)因x y =2212s s <,故高一年级学生这次竞赛成绩比较稳定集中,成绩更好;(7分)(2)按照方案一,高一年级学生获得奖励为:1510(515)2515351175⨯++⨯+⨯=元,而高二年级学生获得奖励为:1010(1020)2510351200⨯++⨯+⨯=元,即按照方案一,高一年级获得奖励少于高二;(9分)按照方案二,依题意,所抽取的100名参加竞赛学生的成绩中位数为90806801082357-+⨯=,则样本中,高一年级学生成绩低于中位数的人数约为682807155152410-++⨯≈人,则高一年级获得奖励为:241026301020⨯+⨯=元;高二年级学生成绩低于中位数的人数约为6828071010202610-++⨯≈人,则高二年级获得奖励为:26102430980⨯+⨯=元.(11分)因1020980>,即按照方案二,高一年级获得奖励多于高二.故若高一年级组长希望本年级学生获得多于高二年级的奖励,则他应该选择方案二.(13分)16.(15分)已知在四边形ABCD 中,ABD △为锐角三角形,对角线AC 与BD 相交于点O,π2,4,4AD AC BD ABD ∠====.(1)求AB ;(2)求四边形ABCD 面积的最大值.解:(1)由余弦定理可得2222πcos 42AB BD AD AB BD +-=⋅,化简为220AB -+=,解得1AB =1,(4分)当1=AB时,因为2146cos 0BAD +-∠=<,与ABD △为锐角三角形不符合,故1AB =.(7分)(2)作,AE CF 垂直BD 于,E F ,设1AOB ∠=∠,(9分)则()1111sin 1sin 1sin 12222ABCD ABD CBD S S S BD AE BD CF BD AO CO BD AC =+=⋅+⋅=∠+∠=⋅∠ ,当sin 11190AC BD ∠=⇒∠=︒⇒⊥,四边形面积最大,最大面积为146262⨯=(15分)17.(15分)如图,在几何体111B C D ABCD -中,平面111//B C D 平面ABCD ,四边形ABCD 为正方形,四边形11BB D D 为平行四边形,四边形11D DCC 为菱形,112,22,120,DC AC D DC E ︒==∠=为棱11C D 的中点,点F 在棱1CC 上,//AE 平面BDF .(1)证明DE ⊥平面ABCD ;(2)求平面1AB D 与平面BDF 夹角的余弦值.解:(1)如图,连接DC 1,因为四边形11D DCC 为菱形,1120︒∠=D DC ,所以160DCC ︒∠=,所以12DC =,因为12,22AD DC AC ===22211AD DC AC +=,所以1AD DC ⊥,又11,,,AD DC DC DC D DC DC ⊂⊥= 平面11CDD C ,所以AD ⊥平面11CDD C ,所以,AD DE AD DC ⊥⊥,(3分)因为四边形11D DCC 为菱形,且1120︒∠=D DC ,所以1111DD DC D C ==,因为E 为棱11C D 的中点,所以11DE C D ⊥,又11//C D CD ,所以DE CD ⊥,(5分)因为,,,DE AD AD DC D AD DC ⊥=⊂ 平面ABCD ,所以DE ⊥平面ABCD .(7分)(2)以D 为坐标原点,,,DA DC DE分别为x 轴、y 轴、z 轴正方向,建立如图所示的空间直角坐标系D xyz -.易知3DE =所以()0,0,0,(2,0,0),(2,2,0),(0,2,0),3)D A B C E ,113),(0,3)C D -,所以1(0,3),(0,2,0),(2,0,3),(2,2,0),(2,0,0)CC DC AE DB DA =-==-== ,1(0,3)DD -= ,设()10,3(01)CF tCC t t t ==-≤≤ ,则(0,2,3)DF DC CF t t =+=- ,(9分)因为//AE 平面BDF ,所以存在唯一的,R λμ∈,使得(2,2,0)(0,2,3)(2,22,3)AE DB DF t t t λμλμλλμμμ=+=+-=+- .所以22,220,33t t λλμμμ=-+-==23t =,所以111114230,,,(2,1,3)33DF DB DD D B DD DB ⎛⎫==+=+= ⎪ ⎪⎝⎭,(11分)设平面BDF 的法向量为()111,,x n y z = ,则00DF n DB n ⎧⋅=⎪⎨⋅=⎪⎩ ,所以1111423033220y x y ⎧=⎪⎨⎪+=⎩,取13y =-,则113,23x z ==,故(3,3,23)n =- ,设平面1AB D 的法向量为()222,,m x y z = ,则100DA m DB m ⎧⋅=⎪⎨⋅=⎪⎩ ,所以222220230x x y z =⎧⎪⎨+=⎪⎩,取23y =,则220,3x z ==-(0,3,3)m =- ,(13分)设平面1AB D 与平面BDF 的夹角为θ,则10cos cos ,43023m n m n m nθ⋅=〈〉===⨯ ,故平面1AB D 与平面BDF 104(15分)18.(17分)已知抛物线C :()2205y px p =<<上一点M 的纵坐标为3,点M 到焦点距离为5.(1)求抛物线C 的方程:(2)过点()1,0作直线交C 于A ,B 两点,过点A ,B 分别作C 的切线1l 与2l ,1l 与2l 相交于点D ,过点A 作直线3l 垂直于1l ,过点B 作直线4l 垂直于2l ,3l 与4l 相交于点E ,1l 、2l 、3l 、4l 分别与x 轴交于点P 、Q 、R 、S .记DPQ V 、DAB 、ABE 、ERS △的面积分别为1S 、2S 、3S 、4S .若3412S S S S λ=,求实数λ的取值范围.解:(1)设(),3M t ,由题意可得9252pt p t =⎧⎪⎨+=⎪⎩,即9522p p +=,(2分)解得1p =或9p =(舍去),所以抛物线C 的方程为22y x =.(4分)(2)如图,设经过()11,A x y ,()22,B x y 两点的直线方程为AB l :1x my =+(m ∈R ,0m ≠),与抛物线方程22y x =联立可得222y my =+,即2220y my --=,2480m ∆=+>∴122y y m +=,122y y =-.∵22y x =,则y =∴'1y y=,(6分)∴过点A 作C 的切线1l 方程为()11111112y y x x y x y y =-+=+,令0y =,得212y x =-,即21,02y P ⎛⎫- ⎪⎝⎭.同理,过点B 作C 的切线2l 方程为2212y y x y =+,令0y =,得222y x =-,即22,02y Q ⎛⎫- ⎪⎝⎭.∴222122y y PQ =-.(8分)联立两直线方程11221212y y x y y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩,解得1212122y y x y y y m ⎧==-⎪⎪⎨+⎪==⎪⎩,即()1,D m -,则D 到直线AB l的距离2D AB d -==又∵过点A 作直线3l 垂直于1l ,直线3l 的方程为311111112y y y x x y y y x y =-++=-++,令0y =,得2112y x =+,即211,02y R ⎛⎫+ ⎪⎝⎭.(10分)同理,直线4l 的方程为32222y y y x y =-++,令0y =,得2212y x =+,即221,02y S ⎛⎫+ ⎪⎝⎭.∴222122y y RS =-.联立两直线方程3111322222y y y x y y y y x y ⎧=-++⎪⎪⎨⎪=-++⎪⎩,解得()2212121212122y y y y x y y y y y ⎧++=+⎪⎪⎨+⎪=-⎪⎩,整理后可得2222x m y m⎧=+⎨=⎩,即()222,2E m m +,则E 到直线AB l的距离E AB d -==.(13分)由上可得22211112222D y y S PQ y m =⋅=-,212d AB S AB d -=⋅=,312E AB S AB d -=⋅=,222141122222E y y S RS y m =⋅=-,(15分)∴2123422S S m S S +==,得2212m λ=<+,故λ的取值范围为()0,1.(17分)19.(17分)超越数得名于欧拉,它的存在是法国数学家刘维尔(Joseph Liouville )最早证明的.一个超越数不是任何一个如下形式的整系数多项式方程的根:11100n n n n a x a x a x a --++++= (0a ,1a ,…,n a ∈Z ,0n a ≠).数学家证明了自然对数的底数e 与圆周率π是超越数.回答下列问题:已知函数()e x n n n f x b x =-(*n ∈N )只有一个正零点.(1)求数列{}n b 的通项公式;(2)(ⅰ)构造整系数方程00n n a x a +=,证明:若N m ∈,则e m 为有理数当且仅当0m =.(ⅱ)数列{}n b 中是否存在不同的三项构成等比数列?若存在,求出这三项的值;否则说明理由.解:(1)若()e x n n n f x b x =-只有一个正零点,可得e ,e 1,x n n x n n b x b x -==(1分)令()e n x g x x -=,()11()e e e n x n x n x g x nx x x n x -----=-=-',令()0g x '<,(,)x n ∈+∞,令()0g x '>,(0,)x n ∈,故()g x 在(0,)n 上单调递增,在(,)n +∞上单调递减,可得()g x 在x n =处取得最大值,且最大值为()e n n g n x -=,(4分)而当0x →时,()0g x →,当x →+∞时,()0g x →,由题意得,当()g x 最大时,符合题意,故e 1n n n b n -=,即e n n n b n -=⋅.(6分)(2)(ⅰ)若0m =,则e 1m =为有理数;若m 正整数,假设e m 为有理数,则e ,,,0m p y p q q q==∈≠Z ,则方程0q y p ⋅-=的根中有有理数,又在方程0m q x p ⋅-=中,发现e x =是它的根,(8分)而已知e 是超越数,故e 不是方程的根,与0q y p ⋅-=矛盾,即e m 不为有理数;综上所述:m ∈N ,e m 为有理数当且仅当0m =;(10分)(ⅱ)若数列{}n b 中存在不同的三项构成等比数列,则()2e e e e m m n n l l m n ---⋅⋅⋅=⋅,可得22e m n l m n l m n l +--=⋅⋅,由方程右边是有理数知左边是有理数,由上问知当且仅当2m n l +=时成立,故2m n l m n m n l l l ⋅==⋅,则()()1m n m n l l ⋅=,设1m x l-=,则(1)m l x =-,(1)n l x =+,则()()111m n x x -⋅+=,将(1)m l x =-,(1)n l x =+代入进行化简,可得()()(1)111l x l x x x -+-⋅+=,故()()11111l x x x x -+⎡⎤-⋅+=⎣⎦,故()()11111x x x x -+-⋅+=,(14分)构造函数()()()()()1ln 11ln 1f x x x x x =--+++,而()()2ln 10f x x ='-<,知()f x 在其定义域内单调递减,又()00f =,故若()()11111x x x x -+-⋅+=,则有0x =,即2m n l m n l ⋅=成立,当且仅当m n l ==时成立.即数列{}n b 中不存在不同的三项构成等比数列.(17分)。
2021年高考数学全真模拟预测试卷附答案

一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{1,2,3,4,,{|60},,}A B x x x A B ==--<则=则{}{}{}{}.2.1,2.2,3.1,2,3A B C D2.已知复数z=2+i,则z z ⋅=.3.5.3.5A B C D3.由于疫情期间大多数学生都进行网上上课,我校高一、高二、高三共有学生1800名,为了了解同学们对“钉钉”授课软件的意见,计划采用分层抽样的方法从这1800名学生中抽取一个容量为72的样本。
若从高一、高二、高三抽取的人数恰好是从小到大排列的连续偶数,则我校高三年级的人数为 A.800 B.750 C.700D.6504.设命题p:所有正方形都是平行四边形,则p 为A.所有正方形都不是平行四边形B.有的平行四边形不是正方形C.有的正方形不是平行四边形x-y ≤0D.不是正方形的四边形不是平行四边形5.若x 、y 满足约束条件0210x y x y x -≤⎧⎪+≤⎨⎪+≥⎩,则z=4x+y 的最大值为A.-5B.-1C.5D.66.一个几何体的三视图如图所示,则该几何体的表面积为 A.3π B.4π C .24.34D ππ++7.设P 为多面体M 的一个顶点,定义多面体M 在P 处的离散曲率为()131221112k k k PQ Q PQ Q Q PQ Q Q P π-+∠+∠-+∠∠其中,(1,2,3,,,3)Q i k k =为多面体M 的所有与点P 相邻的顶点,且平面311122,,,k k k PQ Q PQ Q Q P Q Q PQ -遍历多面体M 的所有以P 为公共点的面,如图是正四面体、正八面体、正十二面体和正二十面体(每个面都是全等的正多边形的多面体是正多面体),若它们在各顶点处的离散曲率分别是,,,,a b c d 则a,b,c,d 的大小关系是A.a>b>c>dB.a>b> d>cC. b>a> d> cD. c>d>b>a8.设A,B 是椭圆22:13x y C m +=长轴的两个端点,若C 上存在点M 满足120,AMB ︒=∠则m 的取值范围是(]()([)(]()([).0,19,.0,103,9.4,.0,34,,A B C D ⎤⎤+∞+∞+∞+∞⎦⎦9.已知奇函数()()()cos ||,02f x x x πφφφωωω⎛⎫=+-+<> ⎪⎝⎭对任意Rx ∈都有()0,2f x f x π⎛⎫++= ⎪⎝⎭现将()f x 图象向右平移π3个单位长度得到()g x 图象,则下列判断错误的是 A.函数()g x 在区间,122ππ⎡⎤⎢⎥⎣⎦上单调递增().B g x 图象关于直线712x π=对称C.函数()g x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减().D g x 图象关于点,03π⎛⎫ ⎪⎝⎭对称 已知数列{}n a 满足:111,31,n n a a a n +=+=+则数列()*21211n n a N n a -+∈的前30项和为A .2990B .2988C .1093D .309111.设点F1,F2分别为双曲线C:()222210,0x y a b a b-=>>双曲线的左、右焦点,点A,B 分别在双曲线C 的左,右支上,若11226,,F B F A AF AB AF ==⋅且22||||AF BF <则双曲线C 的渐近线方程为128 (55)A y xB y xC y xD y x =±=±== 12.已知函数()124,(x e m f x x a m a a a-=-++-为实数),若对于任意实数[]()1,0a e f x ∈,对任意R x ∈恒成立,则实数m 的取值范围是 [)[)()[]2.2,.,.421,.2,A B e C e e D e +∞-+∞-++∞二、填空题:本题共4小题,每小题5分,共20分()513.3x -展开式中x2项的系数为 ▲14.山西省高考将实行3+3模式,即语文数学英语必选,物理,化学,生物,历史,政治,地理六选三,今年高一的小明与小芳进行选科,假设他们对六科没有偏好,则他们选科至少两科相同的概率为 ▲ 15.已知a,b 是平面向量,e 是单位向量,若非零向量a 与e 的夹角为π3,向量b,e 满足2680,-⋅+=b e b 则||-a b 的最小值为 ▲ 16.如图,四棱锥P ABCD -中,底面四边形ABCD 满足:,AB AD ⊥,2,BC AD AB CD BC CD ⊥==,设三棱锥P —ABD,三棱锥P —ACD 的体积分别为12,,V V 则12V V 与的大小关系是:12_,V V 设三棱锥,—P ABD 三棱锥P ACD —的外接球的表面积分别为21,S S 则S1与S2的大小关系是:12_S S (用“>”“=”“<”填空)(第一空2分,第二空3分)。
陕西省高考数学全真模拟试卷(理科)(解析版)

2021年陕西省高考数学全真模拟试卷〔理科〕〔三〕一、选择题〔共12小题,每题5分,总分值60分〕1.集合A={x|y=lnx},B={x|x2﹣2x﹣3<0},则A∩B=〔〕A.〔0,3〕B.〔﹣∞,﹣1〕∪〔0,+∞〕C.〔﹣∞,﹣1〕∪〔3,+∞〕D.〔﹣1,3〕2.复数z=,则以下推断正确的选项是〔〕A.z的实部为﹣1 B.|z|=C.z的虚部为﹣i D.z的共轭复数为1﹣i3.双曲线C:x2﹣y2=1的焦点到渐近线的距离等于〔〕A.1 B.C.2 D.24.等比数列{a n}中,a2=2,a4=8,则a3=〔〕A.±4 B.16 C.﹣4 D.45.实数x,y满足,则z=的最小值为〔〕A.﹣B.1 C.﹣1 D.06.某校开设A类选修课2门,B类选修课3门,一位同学从中选3门.假设要求两类课程中各至少选一门,则不同的选法共有〔〕A.3种B.6种C.9种D.18种7.函数y=的图象可能是〔〕A.B.C.D.8.某四棱锥的三视图如下图,则该四棱锥的体积是〔〕A.36 B.30 C.27 D.129.执行如下图的程序框图,如果输入n=4,则输出的S=〔〕A.B.C.D.10.抛物线C:y2=8x的焦点为F,P为抛物线的准线上的一点,且P的纵坐标为正数,Q 是直线PF与抛物线C的一个交点,假设,则直线PF的方程为〔〕A.x﹣y﹣2=0 B.x+y﹣2=0 C.x±y﹣2=0 D.不确定11.以下四个命题中,其中真命题的个数为〔〕①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.②假设命题p:全部幂函数的图象不过第四象限,命题q:存在x∈R,使得x﹣10>lgx,则命题p且q为真.③两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1.④假设a,b∈[0,1],则不等式a2+b2≤1成立的概率为.A.1 B.2 C.3 D.412.函数f〔x〕=,则函数y=f〔x〕﹣x+的零点个数为〔〕A.1 B.2 C.3 D.4二、填空题〔共4小题,每题5分,总分值20分〕13.向量=〔2,1〕,=〔x,﹣1〕,且与共线,则|x|的值为_______.14.随机变量X服从正态分布N〔4,σ2〕,且P〔2<X≤6〕=0.98,则P〔X<2〕=_______.15.〔1﹣x〕〔1+x〕4的展开式中x3系数为_______.16.A,B,C是球O是球面上三点,AB=2,BC=4,∠ABC=,且棱锥O﹣ABC的体积为,则球O的外表积为_______.三、解答题〔共5小题,总分值60分〕17.设f〔x〕=sin〔2x+〕+sin〔2x﹣〕﹣.〔1〕求f〔x〕的单调递增区间;〔2〕在锐角△ABC中,角A,B,C的对边分别为a,b,c,假设f〔〕=,a=1,b+c=2,求△ABC的面积.18.如图,高为3的直三棱柱ABC﹣A1B1C1中,底面是直角三角形,AC=2,D为A1C1的中点,F在线段AA1上,=0,且A1F=1.〔1〕求证:CF⊥平面B1DF;〔2〕求平面B1FC与平面ABC所成的锐二面角的余弦值.19.如图,将一个半径适当的小球放入容器上方的入口处,小球自由下落,小球在下落的过程中,将遇到黑色障碍物3次,最后落入A地域或B地域中,小球每次遇到障碍物时,向左、右两边下落的概率都是.〔1〕分别求出小球落入A地域和B地域中的概率;〔2〕假设在容器入口处依次放入3个小球,记X为落入B地域中的小球个数,求X的分布列和数学期望.20.设点P〔﹣2,0〕,Q〔2,0〕,直线PM,QM相交于点M,且它们的斜率之积为﹣.〔1〕求动点M的轨迹C的方程;〔2〕直线l的斜率为1,直线l与椭圆C交于A,B两点,设O为坐标原点,求△OAB面积的最大值.21.函数f〔x〕=e x﹣mx〔e是自然对数的底数,m∈R〕.〔1〕求函数f〔x〕的单调递增区间;〔2〕假设m=1,且当x>0时,〔t﹣x〕f′〔x〕<x+1恒成立,其中f′〔x〕为f〔x〕的导函数,求整数t的最大值.[选修4-1:几何证明选讲]22.如图,AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB,FC.〔1〕求证:FB=FC;〔2〕假设AB是△ABC外接圆的直径,∠EAC=120°,BC=9,求AD的长.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,直线l过点M〔3,4〕,其倾斜角为45°,曲线C的参数方程为〔θ为参数〕,再以原点为极点,以x正半轴为极轴建立极坐标系,并使得它与直角坐标系xoy有相同的长度单位.〔1〕求曲线C的极坐标方程;〔2〕设曲线C与直线l交于点A,B,求|MA|+|MB|的值.[选修4-5:不等式选讲]24.函数f〔x〕=|2x+1|+|2x﹣3|〔1〕求不等式f〔x〕≤6的解集;〔2〕假设关于x的不等式f〔x〕≤|a﹣2|的解集非空,求实数a的取值范围.2021年陕西省高考数学全真模拟试卷〔理科〕〔三〕参考答案与试题解析一、选择题〔共12小题,每题5分,总分值60分〕1.集合A={x|y=lnx},B={x|x2﹣2x﹣3<0},则A∩B=〔〕A.〔0,3〕B.〔﹣∞,﹣1〕∪〔0,+∞〕C.〔﹣∞,﹣1〕∪〔3,+∞〕D.〔﹣1,3〕【考点】交集及其运算.【分析】求出A中x的范围确定出A,求出B中不等式的解集确定出B,找出A与B的交集即可.【解答】解:由A中y=lnx,得到x>0,即A=〔0,+∞〕,由B中不等式变形得:〔x﹣3〕〔x+1〕<0,解得:﹣1<x<3,即B=〔﹣1,3〕,则A∩B=〔0,3〕,应选:A.2.复数z=,则以下推断正确的选项是〔〕A.z的实部为﹣1 B.|z|=C.z的虚部为﹣i D.z的共轭复数为1﹣i【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数z===1﹣i,∴|z|=,应选:B.3.双曲线C:x2﹣y2=1的焦点到渐近线的距离等于〔〕A.1 B.C.2 D.2【考点】双曲线的简单性质.【分析】求得双曲线的a,b,c,可得焦点坐标和渐近线方程,运用点到直线的距离公式,计算即可得到所求值.【解答】解:双曲线C:x2﹣y2=1的a=b=1,c==,可得焦点为〔±,0〕,渐近线方程为y=±x,即有焦点到渐近线的距离等于=1.应选:A.4.等比数列{a n}中,a2=2,a4=8,则a3=〔〕A.±4 B.16 C.﹣4 D.4【考点】等比数列的通项公式.【分析】由等比数列{a n}的性质可得:a3=.【解答】解:由等比数列{a n}中,∵a2=2,a4=8,则a3==±4.应选:A.5.实数x,y满足,则z=的最小值为〔〕A.﹣B.1 C.﹣1 D.0【考点】简单线性规划.【分析】作出不等式组对应的平面地域,利用直线斜率的几何意义进行求解即可.【解答】解:作出不等式组对应的平面地域如图:z=的几何意义是地域内的点到定点C〔2,0〕的斜率由图象知CA的斜率最小,此时最小值为﹣1,应选:C.6.某校开设A类选修课2门,B类选修课3门,一位同学从中选3门.假设要求两类课程中各至少选一门,则不同的选法共有〔〕A.3种B.6种C.9种D.18种【考点】计数原理的应用.【分析】两类课程中各至少选一门,包含两种情况:A类选修课选1门,B类选修课选2门;A类选修课选2门,B类选修课选1门,写出组合数,根据分类计数原理得到结果【解答】解:可分以下2种情况:①A类选修课选1门,B类选修课选2门,有C21C32种不同的选法;②A类选修课选2门,B类选修课选1门,有C22C31种不同的选法.∴根据分类计数原理知不同的选法共有C21C32+C22C31=6+3=9种.故要求两类课程中各至少选一门,则不同的选法共有9种.应选:C7.函数y=的图象可能是〔〕A.B.C.D.【考点】函数的图象.【分析】当x>0时,,当x<0时,,作出函数图象为B.【解答】解:函数y=的定义域为〔﹣∞,0〕∪〔0,+∞〕关于原点对称.当x>0时,,当x<0时,,此时函数图象与当x>0时函数的图象关于原点对称.应选B8.某四棱锥的三视图如下图,则该四棱锥的体积是〔〕A.36 B.30 C.27 D.12【考点】由三视图求面积、体积.【分析】由三视图知该几何体是一个四棱锥,由三视图求出几何元素的长度,由锥体的体积公式求出几何体的体积.【解答】解:根据三视图可知几何体是一个四棱锥,且底面向左,底面是一个边长为3正方形,且四棱锥的高为4,∴几何体的体积V==12,应选:D.9.执行如下图的程序框图,如果输入n=4,则输出的S=〔〕A.B.C.D.【考点】程序框图.【分析】由中的程序框图可知,该程序的功能是计算出输出S=+++的值,利用裂项相消法,可得答案.【解答】解:由中的程序框图可知,该程序的功能是计算并输出S=+++的值,由于:S=+++=×〔1﹣﹣+…+﹣〕=〔1﹣〕=.应选:D.10.抛物线C:y2=8x的焦点为F,P为抛物线的准线上的一点,且P的纵坐标为正数,Q是直线PF与抛物线C的一个交点,假设,则直线PF的方程为〔〕A.x﹣y﹣2=0 B.x+y﹣2=0 C.x±y﹣2=0 D.不确定【考点】抛物线的简单性质.【分析】利用抛物线的定义,结合,P的纵坐标为正数求出直线的斜率,即可求出直线PF的方程.【解答】解:抛物线y2=8x的焦点F〔2,0〕,设Q到准线l的距离为d,则|QF|=d∵,∴||=d,∵P的纵坐标为正数,∴直线的倾斜角为135°,∴直线的斜率为﹣1,∴直线的方程为x+y﹣2=0.应选:B.11.以下四个命题中,其中真命题的个数为〔〕①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.②假设命题p:全部幂函数的图象不过第四象限,命题q:存在x∈R,使得x﹣10>lgx,则命题p且q为真.③两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1.④假设a,b∈[0,1],则不等式a2+b2≤1成立的概率为.A.1 B.2 C.3 D.4【考点】命题的真假推断与应用.【分析】①根据系统抽样的应用进行推断.②根据复合命题的真假关系进行推断.③根据线性相关系数r意义推断.④利用几何概型进行推断.【解答】解:①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样.故①错误,②假设命题p:全部幂函数的图象不过第四象限,为真命题.命题q:存在x∈R,使得x ﹣10>lgx,为真命题,比方当x=100时,不等式x﹣10>lgx成立,则命题p且q为真.故②正确,③根据线性相关系数r的意义可知,当两个随机变量线性相关性越强,r的绝对值越接近于1,故③正确;④假设a,b∈[0,1],则a,b对应的平面地域为正方形,面积为1,不等式a2+b2≤1成立,对应的地域为半径为1的圆在第一象限的局部,所以面积为,所以由几何概型可知不等式a2+b2≤1成立的概率是.故④正确,应选:C12.函数f〔x〕=,则函数y=f〔x〕﹣x+的零点个数为〔〕A.1 B.2 C.3 D.4【考点】函数零点的判定定理.【分析】令y=0,可得f〔x〕=x﹣,作出函数y=f〔x〕的图象和直线y=x﹣,通过图象观察交点的个数,即可得到所求零点的个数.【解答】解:由y=f〔x〕﹣x+=0,可得:f〔x〕=x﹣,作出函数y=f〔x〕的图象和直线y=x﹣,可得当x=1时,ln1=0;﹣>0,ln2>×2﹣,由图象可得y=f〔x〕的图象与直线有4个交点.即函数y=f〔x〕﹣x+的零点个数为4.应选:D.二、填空题〔共4小题,每题5分,总分值20分〕13.向量=〔2,1〕,=〔x,﹣1〕,且与共线,则|x|的值为2.【考点】平行向量与共线向量.【分析】由向量的坐标运算和平行关系可得x的方程,解方程可得.【解答】解:∵向量=〔2,1〕,=〔x,﹣1〕,∴=〔2﹣x,2〕,∵与共线,∴﹣〔2﹣x〕=2x,解得x=﹣2,故|x|=2故答案为:214.随机变量X服从正态分布N〔4,σ2〕,且P〔2<X≤6〕=0.98,则P〔X<2〕=0.01.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】随机变量X服从正态分布N〔4,σ2〕,根据对称性,由P〔2<X≤4〕的概率可求出P〔X<2〕.【解答】解:∵随机变量X服从正态分布N〔4,σ2〕,且P〔2<X≤6〕=0.98,∴P〔2<X≤4〕=P〔2<X≤6〕=0.49,∴P〔X<2〕=0.5﹣P〔2<X≤4〕=0.5﹣0.49=0.01.故答案为:0.01.15.〔1﹣x〕〔1+x〕4的展开式中x3系数为﹣2.【考点】二项式系数的性质.【分析】由于〔1+x〕4的展开式中x2、x3系数分别为,,可得〔1﹣x〕〔1+x〕4的展开式中x3系数为﹣+.【解答】解:∵〔1+x〕4的展开式中x2、x3系数分别为,,∴〔1﹣x〕〔1+x〕4的展开式中x3系数为﹣+=﹣6+4=﹣2.故答案为:﹣2.16.A,B,C是球O是球面上三点,AB=2,BC=4,∠ABC=,且棱锥O﹣ABC的体积为,则球O的外表积为2π.【考点】球的体积和外表积.【分析】求出底面三角形的面积,利用三棱锥的体积求出O到底面的距离,求出底面三角形的所在平面圆的半径,通过勾股定理求出球的半径,即可求解球的外表积.【解答】解:三棱锥O﹣ABC,A、B、C三点均在球心O的外表上,且AB=2,BC=4,∠ABC=60°,AC=2,外接圆的半径为:GA=2,△ABC的外接圆的圆心为G,则OG⊥⊙G,∵S△ABC==2,三棱锥O﹣ABC的体积为,∴S△ABC•OG=,即=,∴OG=2,球的半径为:2.球的外表积:4π×8=32π.故答案为:32π.三、解答题〔共5小题,总分值60分〕17.设f〔x〕=sin〔2x+〕+sin〔2x﹣〕﹣.〔1〕求f〔x〕的单调递增区间;〔2〕在锐角△ABC中,角A,B,C的对边分别为a,b,c,假设f〔〕=,a=1,b+c=2,求△ABC的面积.【考点】余弦定理;正弦函数的图象.【分析】〔1〕利用两角和与差的正弦函数公式化简可得f〔x〕=sin2x﹣,由2kπ﹣≤2x ≤2kπ+,k∈Z,即可解得f〔x〕的单调递增区间.〔2〕在锐角△ABC中,由f〔〕=sinA﹣=,可得sinA=,A=,又a=1,b+c=2,利用余弦定理可得bc=1,利用三角形面积公式即可得解.【解答】〔此题总分值为12分〕解:〔1〕∵f〔x〕=sin〔2x+〕+sin〔2x﹣〕﹣=sin2x﹣…3分∴由2kπ﹣≤2x≤2kπ+,k∈Z,解得:kπ﹣≤x≤kπ+,k∈Z,∴f〔x〕的单调递增区间为:[kπ﹣,kπ+],k∈Z.〔2〕在锐角△ABC中,f〔〕=sinA﹣=,sinA=,A=,…8分∵a=1,b+c=2,∴由余弦定理可得:1=b2+c2﹣2bccos=〔b+c〕2﹣2bc﹣bc=4﹣3bc,∴bc=1,∴S△ABC=bcsinA==…12分18.如图,高为3的直三棱柱ABC﹣A1B1C1中,底面是直角三角形,AC=2,D为A1C1的中点,F在线段AA1上,=0,且A1F=1.〔1〕求证:CF⊥平面B1DF;〔2〕求平面B1FC与平面ABC所成的锐二面角的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】〔1〕根据线面垂直的判定定理先证明CF⊥B1F即即可证明CF⊥平面B1DF;〔2〕建立空间坐标系,求出平面的法向量,即可求平面B1FC与平面AFC所成的锐二面角的余弦值.【解答】〔1〕证明:∵直三棱柱ABC﹣A1B1C1中,底面是直角三角形,D为A1C1的中点,∴DB1⊥AA1,∵CF⊥DB1,CF∩⊥AA1=F.∴DB1⊥平面AA1CC1.∴DB1⊥A1B1,则△A1B1C1为等腰直角三角形,∵直三棱柱ABC﹣A1B1C1中高为3,AC=2,A1F=1∴AB=BC=,AF=2,FB1=,B1C=,CF=2,满足B1F2+CF2=B1C2,即CF⊥B1F,∵CF⊥DB1,DB1∩B1F=B1,∴CF⊥平面B1DF;〔2〕建立以B为坐标原点,BA,BC,BB1分别为x,y,z轴的空间直角坐标系如图:A〔,0,0〕,C〔0,,0〕,B1〔0,0,3〕,A1〔,0,3〕,C1〔0,,3〕,F〔,0,2〕,则平面ABC的法向量为=〔0,0,1〕,即平面B1FC与平面AFC所成的锐二面角的余弦值为.设平面B1FC的法向量为=〔x,y,z〕,由得,令x=1.则为=〔1,3,〕,则|cos<,>|=||==19.如图,将一个半径适当的小球放入容器上方的入口处,小球自由下落,小球在下落的过程中,将遇到黑色障碍物3次,最后落入A地域或B地域中,小球每次遇到障碍物时,向左、右两边下落的概率都是.〔1〕分别求出小球落入A地域和B地域中的概率;〔2〕假设在容器入口处依次放入3个小球,记X为落入B地域中的小球个数,求X的分布列和数学期望.【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式;离散型随机变量及其分布列.【分析】〔1〕记“小球落入A地域〞为事件M,“小球落入B地域〞为事件N,事件M的对立事件为事件N,小球落入A地域中当且仅当小球一直向左落下或一直向右落下,由此能分别求出小球落入A地域和B地域中的概率.〔2〕由题意随机变量X的全部可能的取值为0,1,2,3,且X~B〔3,﹣〕,由此能求出X的分布列和数学期望.【解答】解:〔1〕记“小球落入A地域〞为事件M,“小球落入B地域〞为事件N,则事件M的对立事件为事件N,而小球落入A地域中当且仅当小球一直向左落下或一直向右落下,故P〔M〕==.∴P〔N〕=1﹣P〔M〕=1﹣.〔2〕由题意随机变量X的全部可能的取值为0,1,2,3,且X~B〔3,﹣〕,P〔X=0〕=,P〔X=1〕==,P〔X=2〕==,P〔X=3〕==,∵X的分布列为:X 0 1 2 3PEX==.20.设点P〔﹣2,0〕,Q〔2,0〕,直线PM,QM相交于点M,且它们的斜率之积为﹣.〔1〕求动点M的轨迹C的方程;〔2〕直线l的斜率为1,直线l与椭圆C交于A,B两点,设O为坐标原点,求△OAB面积的最大值.【考点】椭圆的简单性质.【分析】〔1〕设出点M的坐标,表示出直线MP、MQ的斜率,求出它们的斜率之积,利用斜率之积是﹣,建立方程,去掉不满足条件的点,即可得到点M的轨迹方程;〔2〕设l:y=x+b,代入x2+4y2=4,结合题设条件利用椭圆的弦长公式能求出弦AB长,求出点O到直线l的距离,利用均值定理推导出S△ABO=|AB|•d≤1,并能求出此时直线l的方程.【解答】解:〔1〕设M〔x,y〕,由P〔﹣2,0〕,Q〔2,0〕,所以k MP=〔x≠﹣2〕,k QM=〔x≠2〕,由,•=﹣〔x≠±2〕,化简,得+y2=1〔x≠±2〕,点P的轨迹方程为+y2=1〔x≠±2〕;〔2〕设l:y=x+b,代入x2+4y2=4,整理得5x2+8bx+4b2﹣4=0,设A〔x1,y1〕,B〔x2,y2〕,则x1+x2=﹣,x1x2=,|AB|=•|x1﹣x2|=•==•=•.由△>0,得64b2﹣20〔4b2﹣4〕>0,解得b2<5,点O到直线l的距离d=,即有S△ABO=|AB|•d=≤•=1,当且仅当5﹣b2=b2,即b=±时取等号,故〔S△ABO〕max=1,此时l:2x﹣2y±=0.21.函数f〔x〕=e x﹣mx〔e是自然对数的底数,m∈R〕.〔1〕求函数f〔x〕的单调递增区间;〔2〕假设m=1,且当x>0时,〔t﹣x〕f′〔x〕<x+1恒成立,其中f′〔x〕为f〔x〕的导函数,求整数t的最大值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】〔1〕由中函数的解析式,求出导函数的解析式,对m进行分类商量,确定x在不同情况下导函数的符号,进而可得函数的单调递增区间;〔2〕问题转化为t<+x,①,令g〔x〕=+x,〔x>0〕,根据函数的单调性求出t的最大整数值即可.【解答】解:〔1〕由f〔x〕=e x﹣mx,x∈R,得f'〔x〕=e x﹣m,①当m≤0时,则f'〔x〕=e x﹣m>0对x∈R恒成立,此时f〔x〕的单调递增,递增区间为〔﹣∞,+∞〕;②当m>0时,由f'〔x〕=e x﹣m>0,得到x>lnm,所以,m>0时,f〔x〕的单调递增区间是〔lnm,+∞〕;综上,当m≤0时,f〔x〕的单调递增区间为〔﹣∞,+∞〕.当m>0时,f〔x〕的单调递增区间是〔lnm,+∞〕;〔2〕m=1时,〔t﹣x〕〔e x﹣1〕<x+1,x>0时,e x﹣1>0,故t<+x,①,令g〔x〕=+x,〔x>0〕,则g′〔x〕=,令h〔x〕=e x﹣x﹣2,则h′〔x〕=e x﹣1>0,〔x>0〕,函数h〔x〕在〔0,+∞〕递增,而h〔1〕<0,h〔2〕>0,∴h〔x〕在〔0,+∞〕上存在唯一零点,即g′〔x〕在〔0,+∞〕上存在唯一零点,设此零点是x0,则x0∈〔1,2〕,x∈〔0,x0〕时,g′〔x〕<0,x∈〔x0,+∞〕时,g′〔x〕>0,∴g〔x〕在〔0,+∞〕上的最小值是g〔x0〕,由g′〔x0〕=0得:=x0+2,∴g〔x0〕=x0+1∈〔2,3〕,由于①式等价于t<g〔x0〕,故整数t的最大值是2.[选修4-1:几何证明选讲]22.如图,AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB,FC.〔1〕求证:FB=FC;〔2〕假设AB是△ABC外接圆的直径,∠EAC=120°,BC=9,求AD的长.【考点】与圆有关的比例线段.【分析】〔1〕由得∠EAD=∠DAC,∠DAC=∠FBC,从而∠FBC=∠FCB,由此能证明FB=FC.〔2〕由得∠ACB=90°从而∠ABC=30°,∠DAC=∠EAC=60°,由此能求出AD.【解答】〔1〕证明:因为AD平分∠EAC,所以∠EAD=∠DAC.…因为四边形AFBC内接于圆,所以∠DAC=∠FBC.…因为∠EAD=∠FAB=∠FCB,…所以∠FBC=∠FCB,…,所以FB=FC.…〔2〕解:因为AB是圆的直径,所以∠ACB=90°,…又∠EAC=120°,所以∠ABC=30°,…∠DAC=∠EAC=60°,…因为BC=9,所以AC=BCtan∠ABC=3,…所以AD==6…[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,直线l过点M〔3,4〕,其倾斜角为45°,曲线C的参数方程为〔θ为参数〕,再以原点为极点,以x正半轴为极轴建立极坐标系,并使得它与直角坐标系xoy有相同的长度单位.〔1〕求曲线C的极坐标方程;〔2〕设曲线C与直线l交于点A,B,求|MA|+|MB|的值.【考点】简单曲线的极坐标方程;参数方程化成一般方程.【分析】〔1〕曲线C的参数方程为〔θ为参数〕,利用cos2θ+sin2θ=1,可得直角坐标方程,把ρ2=x2+y2,y=ρsinθ代入可得极坐标方程.〔2〕直线l的参数方程为:,代入圆的方程可得:t2+5t+9=0,设A,B对应的参数分别为t1,t2.利用|MA|+|MB|=|t1|+|t2|=|t1+t2|即可得出.【解答】解:〔1〕曲线C的参数方程为〔θ为参数〕,利用cos2θ+sin2θ=1,可得直角坐标方程:x2+〔y﹣2〕2=4.展开为x2+y2﹣4y=0,把ρ2=x2+y2,y=ρsinθ代入可得极坐标方程:ρ2﹣4ρsinθ=0,即ρ=4sinθ.〔2〕直线l的参数方程为:,代入圆的方程可得:t2+5t+9=0,设A,B对应的参数分别为t1,t2.∴t1+t2=﹣5,t1•t2=9.∴|MA|+|MB|=|t1|+|t2|=|t1+t2|=5.[选修4-5:不等式选讲]24.函数f〔x〕=|2x+1|+|2x﹣3|〔1〕求不等式f〔x〕≤6的解集;〔2〕假设关于x的不等式f〔x〕≤|a﹣2|的解集非空,求实数a的取值范围.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】〔1〕把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.〔2〕利用绝对值三角不等式求得f〔x〕的最小值为4,再根据|a﹣2|≥4,求得a的范围.【解答】解:〔1〕∵函数f〔x〕=|2x+1|+|2x﹣3|,∴不等式f〔x〕≤6 等价于①,或②,或③.解①求得﹣1≤x<﹣;解②求得﹣≤x≤;解③求得<x≤2.综合可得,原不等式的解集为[﹣1,2].〔2〕∵f〔x〕=|2x+1|+|2x﹣3|≥|2x+1﹣〔2x﹣3〕|=4,则f〔x〕的最小值为4.假设关于x的不等式f〔x〕≤|a﹣2|的解集非空,则|a﹣2|≥4,a﹣2≥4,或a﹣2≤﹣4,求得a≥6,或a≤﹣2,故a的范围为{a|a≥6,或a≤﹣2}.2021年9月8日。
2020-2021学年陕西省高考数学二模试卷(理科)及答案解析
陕西省高考数学二模试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|﹣1<x<3},B={x|y=},则A∩(∁R B)=()A.{x|1<x<3} B.{x|1≤x<3} C.{x|﹣1<x≤1} D.{x|﹣1<x<1}2.若复数z=sinθ﹣+(cosθ﹣)i是纯虚数,则tanθ的值为()A.B.﹣C.D.﹣3.一个底面为正方形的四棱锥,其三视图如图所示,若这个四棱锥的体积为2,则此四棱锥最长的侧棱长为()A.2B.C.D.4.已知双曲线﹣=1(a>0)的离心率为,则该双曲线的渐近线方程为()A.y=±2x B.y=±x C.y=±x D.y=±x5.甲、乙、丙、丁四人站一排照相,其中甲、乙不相邻的站法共有n种,则(﹣)n展开式的常数项为()A.﹣B.C.﹣55 D.556.某校对高二年级进行了一次学业水平模块测试,从该年级学生中随机抽取部分学生,将他们的数学测试成绩分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)加以统计,得到如图所示的频率分布直方图.已知高二年级共有学生600名,若成绩不少于80分的为优秀,据此估计,高二年级在这次测试中数学成绩优秀的学生人数为()A.80 B.90 C.120 D.1507.设S n是数列{a n}(n∈N+)的前n项和,n≥2时点(a n﹣1,2a n)在直线y=2x+1上,且{a n}的首项a1是二次函数y=x2﹣2x+3的最小值,则S9的值为()A.6 B.7 C.36 D.328.算法程序框图如图所示,若,,,则输出的结果是()A.B.aC.b D.c9.已知实数a,b,c成等比数列,函数y=(x﹣2)e x的极小值为b,则ac等于()A.﹣1 B.﹣e C.e2D.210.给出下列五个结论:①回归直线y=bx+a一定过样本中心点(,);②命题“∀x∈R,均有x2﹣3x﹣2>0”的否定是:“∃x0∈R,使得x02﹣3x0﹣2≤0”;③将函数y=sinx+cosx的图象向右平移后,所得到的图象关于y轴对称;④∃m∈R,使f(x)=(m﹣1)•x是幂函数,且在(0,+∞)上递增;⑤函数f(x)=恰好有三个零点;其中正确的结论为()A.①②④B.①②⑤C.④⑤D.②③⑤11.如图,长方形的四个顶点为O(0,0),A(4,0),B(4,2),C(0,2),曲线经过点B,现将一质点随机投入长方形OABC中,则质点落在图中阴影区域的概率是()A.B.C.D.12.定义在R上的函数f(x),f′(x)是其导数,且满足f(x)+f′(x)>2,ef(1)=2e+4,则不等式e x f(x)>4+2e x(其中e为自然对数的底数)的解集为()A.(1,+∞)B.(﹣∞,0)∪(1,+∞)C.(﹣∞,0)∪(0,+∞)D.(﹣∞,1)二、填空题(共4小题,每小题5分,共20分,请把答案写在答题卷上)13.已知函数f(x)=,则f已知两点A(0,2)、B(3,﹣1),设向量,=(1,m),若⊥,那么实数m=______.15.已知实数x,y满足约束条件,若z=ax+by(a>0,b>0)的最大值为1,则的最小值为______.16.如图,正方形ABCD中,坐标原点O为AD的中点,正方形DEFG的边长为b,若D为抛物线y2=2ax(0<a<b)的焦点,且此抛物线经过C,F两点,则=______.三、解答题(本大题共6题,共70分,解答应写出文字说明、证明过程或者演算步骤)17.若向量=(sinωx,sinωx),=(cosωx,sinωx)其中ω>0,记函数f(x)=﹣,且函数f(x)的图象相邻两条对称轴之间的距离是.(Ⅰ)求f(x)的表达式及f(x)的单调递增区间;(Ⅱ)设△ABC三内角A、B、C的对应边分别为a、b、c,若a+b=3,c=,f(C)=1,求△ABC 的面积.18.某市对该市高三年级的教学质量进行了一次检测,某校共有720名学生参加了本次考试,考试结束后,统计了学生在数学考试中,选择选做题A,B,C三题(三道题中必须且只能选一题作答)的答卷份数如表:题号 A B C答卷份数160 240 320该校高三数学备课组为了解参加测试的学生对这三题的答题情况,现用分层抽样的方法从720份答卷中抽出9份进行分析.(Ⅰ)若从选出的9份答卷中抽出3份,求这3份中至少有1份选择A题作答的概率;(Ⅱ)若从选出的9份答卷中抽出3份,记其中选择C题作答的份数为X,求X的分布列及其数学期望E(X).19.已知四棱锥A﹣BCDE,其中AC=BC=2,AC⊥BC,CD∥BE且CD=2BE,CD⊥平面ABC,F为AD的中点.(Ⅰ)求证:EF∥平面ABC;(Ⅱ)设M是AB的中点,若DM与平面ABC所成角的正切值为,求平面ACD与平面ADE夹角的余弦值.20.已知椭圆C:+=1(a>b>0)的离心率为,若圆x2+y2=a2被直线x﹣y﹣=0截得的弦长为2(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知点A、B为动直线y=k(x﹣1),k≠0与椭圆C的两个交点,问:在x轴上是否存在定点M,使得•为定值?若存在,试求出点M的坐标和定值;若不存在,请说明理由.21.已知函数f(x)=,g(x)=﹣﹣1.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数m的取值范围;(Ⅲ)证明:对一切x∈(0,+∞),都有lnx<﹣成立.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时写清题号,并用2B铅笔在答题卡上把所选题目的题号涂黑.[选修4-1:几何证明选讲]22.如图所示,AB为圆O的直径,BC,CD为圆O的切线,B,D为切点.(Ⅰ)求证:AD∥OC;(Ⅱ)若AD•OC=8,求圆O的面积.[选修4-4:坐标系与参数方程]23.已知在直角坐标系xOy中,圆C的参数方程为(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(Ⅰ)求圆C的普通方程和直线l的直角坐标方程;(Ⅱ)设M是直线l上任意一点,过M做圆C切线,切点为A、B,求四边形AMBC面积的最小值.[选修4-5:不等式选讲]24.设函数.(Ⅰ)证明:f(x)≥2;(Ⅱ)若当m=2时,关于实数x的不等式f(x)≥t2﹣t恒成立,求实数t的取值范围.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|﹣1<x<3},B={x|y=},则A∩(∁R B)=()A.{x|1<x<3} B.{x|1≤x<3} C.{x|﹣1<x≤1} D.{x|﹣1<x<1}【考点】交、并、补集的混合运算.【分析】根据集合A、B,求出∁R B,再求A∩(∁R B)即可.【解答】解:∵集合A={x|﹣1<x<3},B={x|y=}={x|1﹣x≥0}={x|x≤1},∴∁R B={x|x>1},∴A∩(∁R B)={x|1<x<3}.故选:A.2.若复数z=sinθ﹣+(cosθ﹣)i是纯虚数,则tanθ的值为()A.B.﹣C.D.﹣【考点】复数的基本概念.【分析】复数z=sinθ﹣+(cosθ﹣)i是纯虚数,可得sinθ﹣=0,cosθ﹣≠0,可得cosθ,即可得出.【解答】解:∵复数z=sinθ﹣+(cosθ﹣)i是纯虚数,∴sinθ﹣=0,cosθ﹣≠0,∴cosθ=﹣.则tanθ==﹣.故选:B.3.一个底面为正方形的四棱锥,其三视图如图所示,若这个四棱锥的体积为2,则此四棱锥最长的侧棱长为()A.2B.C.D.【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体为四棱锥,底面是边长为的正方形,高为h.利用体积计算公式、勾股定理即可得出.【解答】解:由三视图可知:该几何体为四棱锥,底面是边长为的正方形,高为h.则×h=2,解得h=3.∴此四棱锥最长的侧棱长PC==.故选:C.4.已知双曲线﹣=1(a>0)的离心率为,则该双曲线的渐近线方程为()A.y=±2x B.y=±x C.y=±x D.y=±x【考点】双曲线的简单性质.【分析】运用双曲线的离心率公式和a,b,c的关系,可得b=a,由双曲线的渐近线方程即可得到所求方程.【解答】解:双曲线﹣=1(a>0)的离心率为,可得e==,即有c=a,由c2=a2+b2,可得b=a,即有渐近线方程为y=±x,即为y=±x.故选:B.5.甲、乙、丙、丁四人站一排照相,其中甲、乙不相邻的站法共有n种,则(﹣)n展开式的常数项为()A.﹣B.C.﹣55 D.55【考点】计数原理的应用;二项式定理的应用.【分析】先根据排列组合求出n的值,再根据通项公式求出k的值,问题得以解决.【解答】解:根据题意,先安排除甲乙之外的2人,有A22=2种不同的顺序,排好后,形成3个空位,在3个空位中,选2个安排甲乙,有A32=6种选法,则甲乙不相邻的排法有2×6=12种,即n=12;(﹣)n=(﹣)12的通项公式C12k(﹣)k x﹣k=(﹣)k C12k,当4﹣=0时,即k=3时,(﹣)3C123=﹣,故选:A.6.某校对高二年级进行了一次学业水平模块测试,从该年级学生中随机抽取部分学生,将他们的数学测试成绩分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)加以统计,得到如图所示的频率分布直方图.已知高二年级共有学生600名,若成绩不少于80分的为优秀,据此估计,高二年级在这次测试中数学成绩优秀的学生人数为()A.80 B.90 C.120 D.150【考点】频率分布直方图.【分析】根据频率分布直方图计算成绩不低于80分的频率,然后根据频数=频率×总数可得所求.【解答】解:根据频率分布直方图,得;成绩不少于80分的频率为(0.015+0.010)×10=0.025,所以估计成绩优秀的学生人数为600×0.25=150.故选:D.7.设S n是数列{a n}(n∈N+)的前n项和,n≥2时点(a n﹣1,2a n)在直线y=2x+1上,且{a n}的首项a1是二次函数y=x2﹣2x+3的最小值,则S9的值为()A.6 B.7 C.36 D.32【考点】二次函数的性质.【分析】先根据数列的函数特征以及二次函数的最值,化简整理得到{a n}是以为2首项,以为公差的等差数列,再根据前n项公式求出即可.【解答】解∵点(a n﹣1,2a n)在直线y=2x+1上,∴2a n=2a n﹣1+1,∴a n﹣a n﹣1=,∵二次函数y=x2﹣2x+3=(x﹣1)2+2,∴a1=2,∴{a n}是以为2首项,以为公差的等差数列,∴a n=2+(n﹣1)=n+当n=1时,a1=n+=2成立,∴a n=n+∴S9=9a1+=9×2+=36故选:C8.算法程序框图如图所示,若,,,则输出的结果是()A.B.aC.b D.c【考点】程序框图.【分析】模拟执行程序,可得程序算法的功能是求a,b,c三个数中的最大数,比较a、b、c三数的大小,可得答案.【解答】解:由程序框图知:算法的功能是求a,b,c三个数中的最大数,∵a3=>3=b3>0,∴a>b;又c=()ln3=e=e=>=a.∴输出的结果为c.故选:D.9.已知实数a,b,c成等比数列,函数y=(x﹣2)e x的极小值为b,则ac等于()A.﹣1 B.﹣e C.e2D.2【考点】利用导数研究函数的极值;等比数列的通项公式.【分析】求出函数的导数,得到函数的单调区间,求出函数的极小值,从而求出b的值,结合等比数列的性质求出ac的值即可.【解答】解:∵实数a,b,c成等比数列,∴b2=ac,∵函数y=(x﹣2)e x,∴y′=(x﹣1)e x,令y′>0,解得:x>1,令y′<0,解得:x<1,∴函数y=(x﹣2)e x在(﹣∞,1)递减,在(1,+∞)递增,∴y极小值=y|x=1=﹣e,∴b=﹣e,b2=e2,则ac=e2,故选:C.10.给出下列五个结论:①回归直线y=bx+a一定过样本中心点(,);②命题“∀x∈R,均有x2﹣3x﹣2>0”的否定是:“∃x0∈R,使得x02﹣3x0﹣2≤0”;③将函数y=sinx+cosx的图象向右平移后,所得到的图象关于y轴对称;④∃m∈R,使f(x)=(m﹣1)•x是幂函数,且在(0,+∞)上递增;⑤函数f(x)=恰好有三个零点;其中正确的结论为()A.①②④B.①②⑤C.④⑤D.②③⑤【考点】命题的真假判断与应用.【分析】①根据回归直线的性质进行判断.②根据含有量词的命题的否定进行判断.③根据三角函数的图象和性质进行判断.④根据幂函数的性质进行判断.⑤根据函数的零点的定义进行判断.【解答】解:①回归直线y=bx+a一定过样本中心点(,);故①正确,②命题“∀x∈R,均有x2﹣3x﹣2>0”的否定是:“∃x0∈R,使得x02﹣3x0﹣2≤0”;故②正确,③函数y=sinx+cosx=2cos(x﹣),将函数的图象向右平移后,得到y=2cos(x﹣﹣)=2cos(x﹣),此时所得到的图象关于y轴不对称;故③错误,④由m﹣1=1得m=2,此时f(x)=x0是幂函数,在(0,+∞)上函数不递增;故④错误,⑤若x≤0则由(x)=0得x+1=0,得x=﹣1,若x>0,则由(x)=0得2x|log2x|﹣1=0,即|log2x|=()x,作出y=|log2x|和y=()x的图象,由图象知此时有两个交点,综上函数f(x)=恰好有三个零点;故⑤正确,故选:B11.如图,长方形的四个顶点为O(0,0),A(4,0),B(4,2),C(0,2),曲线经过点B,现将一质点随机投入长方形OABC中,则质点落在图中阴影区域的概率是()A.B.C.D.【考点】几何概型.【分析】本题考查的知识点是几何概型的意义,关键是要找出图中阴影部分的面积,并将其与长方形面积一块代入几何概型的计算公式进行求解.【解答】解:由已知易得:S长方形=4×2=8,S阴影=∫04()dx===,故质点落在图中阴影区域的概率P==,故选A.12.定义在R上的函数f(x),f′(x)是其导数,且满足f(x)+f′(x)>2,ef(1)=2e+4,则不等式e x f(x)>4+2e x(其中e为自然对数的底数)的解集为()A.(1,+∞)B.(﹣∞,0)∪(1,+∞)C.(﹣∞,0)∪(0,+∞)D.(﹣∞,1)【考点】利用导数研究函数的单调性.【分析】构造函数g(x)=e x f(x)﹣2e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解.【解答】解:设g(x)=e x f(x)﹣2e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)﹣2e x=e x[f(x)+f′(x)﹣2],∵f(x)+f′(x)>2,∴f(x)+f′(x)﹣2>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>2e x+4,∴g(x)>4,又∵g(1)=ef(1)﹣2e=4,∴g(x)>g(1),∴x>1,故选:A.二、填空题(共4小题,每小题5分,共20分,请把答案写在答题卷上)13.已知函数f(x)=,则f=,∴f=f(1)=f(﹣4)=2﹣4=.故答案为:.14.已知两点A(0,2)、B(3,﹣1),设向量,=(1,m),若⊥,那么实数m= 1 .【考点】平面向量数量积的运算.【分析】由条件利用两个向量坐标形式的运算,两个向量垂直的性质,由=0,求得实数m 的值.【解答】解:∵两点A(0,2)、B(3,﹣1),设向量=(3,﹣3),=(1,m),若⊥,则=3+m(﹣3)=0,求得实数m=1,故答案为:1.15.已知实数x,y满足约束条件,若z=ax+by(a>0,b>0)的最大值为1,则的最小值为 4 .【考点】简单线性规划;基本不等式.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数求得最大值,可得2a+3b=1,然后结合基本不等式求得的最小值.【解答】解:由约束条件作出可行域如图,联立,解得B(2,3),化目标函数z=ax+by为,由图可知,当直线过B时,直线在y轴上的截距最大,等于2a+3b=1,∴=()(2a+3b)=2+.当且仅当2a=3b,即时上式等号成立.故答案为:4.16.如图,正方形ABCD中,坐标原点O为AD的中点,正方形DEFG的边长为b,若D为抛物线y2=2ax(0<a<b)的焦点,且此抛物线经过C,F两点,则= 1+.【考点】抛物线的简单性质.【分析】求出F点坐标,代入抛物线方程即可得出a,b的关系得到关于的方程,从而解出.【解答】解:∵D是抛物线y2=2ax的焦点,∴D(,0).∵正方形DEFG的边长为b,∴F(,b).∵F在抛物线上,∴b2=2a(),即b2﹣2ab﹣a2=0,∴()2﹣﹣1=0,解得=1+或1﹣.∵0<a<b,∴=1+.故答案为:三、解答题(本大题共6题,共70分,解答应写出文字说明、证明过程或者演算步骤)17.若向量=(sinωx,sinωx),=(cosωx,sinωx)其中ω>0,记函数f(x)=﹣,且函数f(x)的图象相邻两条对称轴之间的距离是.(Ⅰ)求f(x)的表达式及f(x)的单调递增区间;(Ⅱ)设△ABC三内角A、B、C的对应边分别为a、b、c,若a+b=3,c=,f(C)=1,求△ABC 的面积.【考点】余弦定理;平面向量数量积的运算.【分析】(Ⅰ)由已知利用平面向量数量积的运算化简可得函数解析式f(x)=sin(2ωx﹣),由题意可知其周期为π,利用周期公式可求ω,即可得解函数解析式,由2kπ﹣≤2x﹣≤2kπ+,k∈Z,即可解得f(x)的单调递增区间.(Ⅱ)由f(C)=1,得,结合范围0<C<π,可得﹣<2C﹣<,解得C=,结合已知由余弦定理得ab的值,由面积公式即可计算得解.【解答】(本小题满分12分)解:(Ⅰ)∵=(sinωx,sinωx),=(cosωx,sinωx),∴,…由题意可知其周期为π,故ω=1,则f(x)=sin(2x﹣),…由2kπ﹣≤2x﹣≤2kπ+,k∈Z,得kπ﹣≤x≤kπ+,∴f(x)的单调递增区间为:[kπ﹣,kπ+],k∈Z,…(Ⅱ)由f(C)=1,得,∵0<C<π,∴﹣<2C﹣<,∴2C﹣=,解得C=.…又∵a+b=3,,由余弦定理得c2=a2+b2﹣2abcos,∴(a+b)2﹣3ab=3,即ab=2,由面积公式得三角形面积为.…18.某市对该市高三年级的教学质量进行了一次检测,某校共有720名学生参加了本次考试,考试结束后,统计了学生在数学考试中,选择选做题A,B,C三题(三道题中必须且只能选一题作答)的答卷份数如表:题号 A B C答卷份数160 240 320该校高三数学备课组为了解参加测试的学生对这三题的答题情况,现用分层抽样的方法从720份答卷中抽出9份进行分析.(Ⅰ)若从选出的9份答卷中抽出3份,求这3份中至少有1份选择A题作答的概率;(Ⅱ)若从选出的9份答卷中抽出3份,记其中选择C题作答的份数为X,求X的分布列及其数学期望E(X).【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)由题意求出分别从A,B,C题的答卷中抽出2份、3份、4份.利用对立事件概率计算公式能求出从选出的9份答卷中选出3份,这3份中至少有1份选择A题作答的概率.(Ⅱ)由题意可知,选出的9份答卷中C题共有4份,则随机变量X可能的取值为0,1,2,3,分别求出相应的概率,由此能求出随机变量X的分布列和E(X).【解答】(本小题满分12分)解:(Ⅰ)由题意可得:题号 A B C答卷数160 240 320抽出的答卷数 2 3 4应分别从A,B,C题的答卷中抽出2份、3份、4份.…设事件D表示“从选出的9份答卷中选出3份,至少有1份选择A题作答”,则:P(D)=1﹣p()=1﹣=1﹣=,∴从选出的9份答卷中选出3份,这3份中至少有1份选择A题作答的概率.…(Ⅱ)由题意可知,选出的9份答卷中C题共有4份,则随机变量X可能的取值为0,1,2,3…P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,…∴随机变量X的分布列为:X 0 1 2 3P∴E(X)==.…19.已知四棱锥A﹣BCDE,其中AC=BC=2,AC⊥BC,CD∥BE且CD=2BE,CD⊥平面ABC,F为AD的中点.(Ⅰ)求证:EF∥平面ABC;(Ⅱ)设M是AB的中点,若DM与平面ABC所成角的正切值为,求平面ACD与平面ADE夹角的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)取AC中点G,连结FG、BG,推导出四边形BEFG是平行四边形,从而EF∥BG,由此能证明EF∥面ABC.(Ⅱ))由CD⊥平面ABC,是∠CMD为DM与平面ABC所成角,以C为坐标原点,CB为x轴,CA为y轴,CD为z轴建立空间直角坐标系,利用向量法能示出平面ACD与平面ADE夹角的余弦值.【解答】(本小题满分12分)证明:(Ⅰ)取AC中点G,连结FG、BG,∵F、G分别是AD、AC的中点,∴FG∥CD,且.又∵CD∥BE,且CD=2BE,∴四边形BEFG是平行四边形,∴EF∥BG,EF⊄面ABC且BG⊆面ABC,∴EF∥面ABC.…(Ⅱ))∵CD⊥平面ABC∴∠CMD为DM与平面ABC所成角,∵M为AB的中点,且AC=BC=2,AC⊥BC,得∵DM与平面ABC所成角的正切值为,∵CD=2,BE=1,…以C为坐标原点,CB为x轴,CA为y轴,CD为z轴建立空间直角坐标系,则B(2,0,0),A(0,2,0),D(0,0,2),E(2,0,1),∴=(0,﹣2,2),=(2,﹣1,0),设平面ADE的法向量为=(x,y,z),由,取x=1,得=(1,2,2),而平面ACD的法向量为=(2,0,0),由cos<>==,得平面ACD与平面ADE夹角的余弦值为.…20.已知椭圆C:+=1(a>b>0)的离心率为,若圆x2+y2=a2被直线x﹣y﹣=0截得的弦长为2(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知点A、B为动直线y=k(x﹣1),k≠0与椭圆C的两个交点,问:在x轴上是否存在定点M,使得•为定值?若存在,试求出点M的坐标和定值;若不存在,请说明理由.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(I)求出圆x2+y2=a2的圆心(0,0)到直线x﹣y﹣=0的距离d,利用2=2,解得a2,又=,a2=b2+c2,联立解出即可得出.(II)假设在x轴上存在定点M(m,0),使得•为定值.设A(x1,y1),B(x2,y2),直线方程与椭圆方程联立化为:(1+2k2)x2﹣4k2x+2k2﹣2=0,利用根与系数的关系及其数量积运算性质可得•=,令2m2﹣4m+1=2(m2﹣2),解得m即可得出.【解答】解:(I)圆x2+y2=a2的圆心(0,0)到直线x﹣y﹣=0的距离d==1,∴2=2,解得a2=2,又=,a2=b2+c2,联立解得:a2=2,c=1=b.∴椭圆C的标准方程为:+y2=1.(II)假设在x轴上存在定点M(m,0),使得•为定值.设A(x1,y1),B(x2,y2),联立,化为:(1+2k2)x2﹣4k2x+2k2﹣2=0,则x1+x2=,x1•x2=.﹣m,y1)•(x2﹣m,y2)=(x1﹣m)(x2﹣m)+y1y2=(x1﹣m)(x2﹣m)+k2(x1﹣1)•=(x1(x2﹣1)=(1+k2)x1•x2﹣(m+k2)(x1+x2)+m2+k2=(1+k2)•﹣(m+k2)+m2+k2=,令2m2﹣4m+1=2(m2﹣2),解得m=.因此在x轴上存在定点M(,0),使得•为定值.21.已知函数f(x)=,g(x)=﹣﹣1.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数m的取值范围;(Ⅲ)证明:对一切x∈(0,+∞),都有lnx<﹣成立.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导数的不等式,求出函数的单调区间即可;(Ⅱ)问题可化为对一切x∈(0,+∞)恒成立,令,根据函数的单调性求出h(x)的最小值,从而求出m的范围即可;(Ⅲ)问题等价于,即证,令,根据函数的单调性证明即可.【解答】解:(Ⅰ),得由f'(x)>0,得0<x<e∴f(x)的递增区间是(0,e),递减区间是(e,+∞)…(Ⅱ)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,可化为对一切x∈(0,+∞)恒成立令,当x∈(0,1)时h'(x)<0,即h(x)在(0,1)递减当x∈(1,+∞)时h'(x)>0,即h(x)在(1,+∞)递增∴h(x)min=h(1)=4,∴m≤4,即实数m的取值范围是(﹣∞,4]…(Ⅲ)证明:等价于,即证由(Ⅰ)知,(当x=e时取等号)令,则,易知φ(x)在(0,1)递减,在(1,+∞)递增∴(当x=1时取等号)∴f(x)<φ(x)对一切x∈(0,+∞)都成立则对一切x∈(0,+∞),都有成立.…请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时写清题号,并用2B铅笔在答题卡上把所选题目的题号涂黑.[选修4-1:几何证明选讲]22.如图所示,AB为圆O的直径,BC,CD为圆O的切线,B,D为切点.(Ⅰ)求证:AD∥OC;(Ⅱ)若AD•OC=8,求圆O的面积.【考点】与圆有关的比例线段;圆周角定理.【分析】(Ⅰ)利用圆的切线的性质,及直径所对的角为直角,即可证明AD∥OC;(Ⅱ)由(Ⅰ)得Rt△BAD∽Rt△COB,利用AD•OC=8,求出半径,即可求圆O的面积.【解答】(Ⅰ)证明:连接BD,OD∵CB,CD是圆O的两条切线,∴BD⊥OC又∵AB为圆O的直径,则AD⊥DB,∴AD∥OC,∴∠BAD=∠BOC…(Ⅱ)解:设圆O的半径为r,则AB=2OA=2OB=2r由(Ⅰ)得Rt△BAD∽Rt△COB则,∴AB•OB=AD•OC=8,2r2=8,r=2,∴圆O的面积为S=πr2=4π…[选修4-4:坐标系与参数方程]23.已知在直角坐标系xOy中,圆C的参数方程为(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(Ⅰ)求圆C的普通方程和直线l的直角坐标方程;(Ⅱ)设M是直线l上任意一点,过M做圆C切线,切点为A、B,求四边形AMBC面积的最小值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)根据参数方程和极坐标方程与普通方程的关系进行转化求解即可.(Ⅱ)求出圆心坐标以及圆心到直线的距离,结合四边形的面积公式进行求解即可.【解答】解:(Ⅰ)圆C的参数方程为(θ为参数),所以圆C的普通方程为(x﹣3)2+(y+4)2=4.…由得ρcosθ+ρsinθ=2,∵ρcosθ=x,ρsinθ=y,∴直线l的直角坐标方程x+y﹣2=0…(Ⅱ)圆心C(3,﹣4)到直线l:x+y﹣2=0的距离为d==…由于M是直线l上任意一点,则|MC|≥d=,∴四边形AMBC面积S=2×AC•MA=AC=2≥2∴四边形AMBC面积的最小值为…[选修4-5:不等式选讲]24.设函数.(Ⅰ)证明:f(x)≥2;(Ⅱ)若当m=2时,关于实数x的不等式f(x)≥t2﹣t恒成立,求实数t的取值范围.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(Ⅰ)利用绝对值三角不等式,结合基本不等式证明:f(x)≥2;(Ⅱ)求出f(x)min=3,若∀x∈R,恒成立,则只需.【解答】(Ⅰ)证明:∵m>0,,当即时取“=”号…(Ⅱ)解:当m=2时,f(x)=|2x﹣1|+|2x+2|≥|(2x﹣1)﹣(2x+2)|=3则f(x)min=3,若∀x∈R,恒成立,则只需,综上所述实数t的取值范围是.…。
2020年陕西省西安市高考第五次模拟考试(理科)数学试卷-含答案与解析
2020年陕西省西安市高考第五次模拟考试(理科)数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1若,则=()A﹣1 B1 C﹣3 D32设集合A={x|x>a2},B={x|x<3a﹣2},若A∩B=∅,则实数a的取值范围为()A(1,2)B(﹣∞,1)∪(2,+∞)C[1,2] D(﹣∞,1]∪[2,+∞)3若曲线y=sin(4x+φ)(0<φ<2π)关于点对称,则φ=()A B C D4若x>0,y<0,则下列不等式一定成立的是()A2x﹣2y>x2BC2y﹣2x>x2D5如图,AB是圆O的一条直径,C,D是半圆弧的两个三等分点,则=()A B C D617世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36°的等腰三角形(另一种是顶角为108°的等腰三角形)例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金△ABC中,根据这些信息,可得sin234°=()A B C D7若函数,在(﹣∞,a]上的最大值为4,则a的取值范围为()A[0,17] B(﹣∞,17] C[1,17] D[1,+∞)8如图,圆C的部分圆弧在如图所示的网格纸上(小正方形的边长为1),图中直线与圆弧相切于一个小正方形的顶点,若圆C经过点A(2,15),则圆C的半径为()A B8 C D109函数f(x)=(3x+3﹣x)•lg|x|的图象大致为()A BC D102019年7月1日迎来了我国建党98周年,6名老党员在这天相约来到革命圣地之一的西柏坡.6名老党员中有3名党员当年在同一个班,他们站成一排拍照留念时,要求同班的3名党员站在一起,且满足条件的每种排法都要拍一张照片,若将照片洗出来,每张照片0.5元(不含过塑费),且有一半的照片需要过塑,每张过塑费为0.75元若将这些照片平均分给每名老党员(过塑的照片也要平均分),则每名老党员需要支付的照片费为()A20.5元B21元C21.5元D22元11在正方体ABCD﹣A1B1C1D1中,E,F,G分别为AA1,BC,C1D1的中点,现有下面三个结论:①△EFG为正三角形;②异面直线A1G与C1F所成角为60°;③AC∥平面EFG其中所有正确结论的编号是()A①B②③C①②D①③12函数在区间[﹣3,2)∪(2,3]上的零点个数为()A2 B3 C4 D5二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13随着互联网的发展,网购早已融人人们的日常生活网购的苹果在运输过程中容易出现碰伤,假设在运输中每箱苹果出现碰伤的概率为0.7,每箱苹果在运输中互不影响,则网购2箱苹果恰有1箱在运输中出现碰伤的概率为14设a,b,c分别为△ABC内角A,B,C的对边已知a sin A=2b cos A cos C+2c cos A cos B,则tan A=15以椭圆在x轴上的顶点和焦点分别为焦点和顶点的双曲线方程为;该双曲线的渐近线方程为16已知直线y=a与双曲线的一条渐近线交于点P,双曲线C的左、右顶点分别为A1,A2|,若,则双曲线C的离心率为三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17(12分)在公差为d的等差数列{a n}中,a1d=6,a1∈N,d∈N,且a1>d (1)求{a n}的通项公式;(2)若a1,a4,a13成等比数列,求数列的前n项和S n18(12分)如图,在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为菱形,D为AB的中点,△ABC为等腰直角三角形,,,且AB=B1C(1)证明:CD⊥平面ABB1A1(2)求CD与平面A1BC所成角的正弦值19(12分)为提高产品质量,某企业质量管理部门经常不定期地对产品进行抽查检测,现对某条生产线上随机抽取的100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图记综合评分为80分及以上的产品为一等品(1)求图中a的值,并求综合评分的中位数;(2)用样本估计总体,视频率作为概率,在该条生产线中随机抽取3个产品,求所抽取的产品中一等品数的分布列和数学期望20(12分)已知椭圆的长轴长为,焦距为2,抛物线M:y2=2px(p>0)的准线经过C的左焦点F(1)求C与M的方程;(2)直线l经过C的上顶点且l与M交于P,Q两点,直线FP,FQ与M分别交于点D(异于点P),E(异于点Q),证明:直线DE的斜率为定值21(12分)已知函数(1)讨论f(x)的单调性(2)试问是否存在a∈(﹣∞,e],使得,对x∈[1,+∞)恒成立?若存在,求a的取值范围;若不存在,请说明理由(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22(10分)在直角坐标系xOy中,曲线C的参数方程为,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线M的极坐标方程为(1)求曲线C的极坐标方程;(2)已知β为锐角,直线l:θ=β(ρ∈R)与曲线C的交点为A(异于极点),l与曲线M的交点为B,若,求l的直角坐标方程23已知a,b,c为正数,且满足a+b+c=3(1)证明:(2)证明:9ab+bc+4ac≥12abc参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1若,则=()A﹣1 B1 C﹣3 D3【分析】利用复数代数形式的乘除运算化简,进一步求出,作和得答案【解答】解:∵=,∴,则=故选:B【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题2设集合A={x|x>a2},B={x|x<3a﹣2},若A∩B=∅,则实数a的取值范围为()A(1,2)B(﹣∞,1)∪(2,+∞)C[1,2] D(﹣∞,1]∪[2,+∞)【分析】根据A∩B=∅即可得出a2≥3a﹣2,求出a的取值范围即可【解答】解:∵A∩B=∅,∴a2≥3a﹣2,解得a≤1或a≥2,∴实数a的取值范围为(﹣∞,1]∪[2,+∞)故选:D【点评】考查交集的定义及运算,描述法的定义,空集的定义3若曲线y=sin(4x+φ)(0<φ<2π)关于点对称,则φ=()A B C D【分析】由题意利用正弦函数的图象的对称性,求出φ的值【解答】解:∵曲线y=sin(4x+φ)(0<φ<2π)关于点对称,∴4•+φ=π或 4•+φ 2=π,求得φ=或φ=,故选:A【点评】本题主要考查正弦函数的图象的对称性,属于基础题4若x>0,y<0,则下列不等式一定成立的是()A2x﹣2y>x2BC2y﹣2x>x2D【分析】由已知可得2x﹣2y>0,,则答案可求【解答】解:∵x>0,y<0,∴2x>2y,∴2x﹣2y>0,∵x>0,∴,则2x﹣2y>故选:B【点评】本题考查指数、对数函数与不等式的交汇,考查逻辑推理能力,是基础题5如图,AB是圆O的一条直径,C,D是半圆弧的两个三等分点,则=()A B C D【分析】根据条件可得出CD∥AB,AB=2CD,从而得出【解答】解:∵C,D是半圆弧的两个三等分点,∴CD∥AB,且AB=2CD,∴故选:D【点评】考查向量减法和数乘的几何意义,以及向量的数乘运算617世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36°的等腰三角形(另一种是顶角为108°的等腰三角形)例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金△ABC中,根据这些信息,可得sin234°=()A B C D【分析】由已知求得∠ACB=72°,可得cos72°的值,再由二倍角的余弦及三角函数的诱导公式求解sin234°【解答】解:由图可知,∠ACB=72°,且cos72°=∴cos144°=则sin234°=sin(144°+90°)=cos144°=故选:C【点评】本题考查三角函数的恒等变换,考查解读信息与应用信息的能力,是中档题7若函数,在(﹣∞,a]上的最大值为4,则a的取值范围为()A[0,17] B(﹣∞,17] C[1,17] D[1,+∞)【分析】利用分段函数的单调性,结合已知条件求解即可【解答】解:函数,x∈(﹣∞,1]时,函数是增函数;x∈(1,+∞)函数是增函数,因为f(1)=4,f(17)=4,所以a的取值范围为:[1,17]故选:C【点评】本题考查分段函数的应用,函数的单调性以及函数的最值的求法,是基本知识的考查8如图,圆C的部分圆弧在如图所示的网格纸上(小正方形的边长为1),图中直线与圆弧相切于一个小正方形的顶点,若圆C经过点A(2,15),则圆C的半径为()A B8 C D10【分析】由题意利用直线和圆相切的性质,先求出圆心的坐标,从而求得半径【解答】解:∵圆C经过点(2,1)和点(2,15),故圆心在直线y=8上又过点(2,1)的圆的切线为y﹣1=﹣(x﹣2),即x+y﹣3=0,故圆心在直线y﹣1=x ﹣2上,即圆心在直线x﹣y﹣1=0上由可得圆心为(9,8),故圆的半径为=7,故选:A【点评】本题主要考查直线和圆相切的性质,圆的标准方程,属于基础题9函数f(x)=(3x+3﹣x)•lg|x|的图象大致为()A BC D【分析】根据条件平时函数的奇偶性,结合函数值的符号是否对应,利用排除法进行判断即可【解答】解:函数的定义域为{x|x≠0},f(﹣x)=(3x+3﹣x)•lg|x|=f(x),则函数f(x)为偶函数,图象关于y轴对称,排除B,当x>1时,f(x)>0,排除A,当0<x<1时,f(x)<0,排除C,故选:D【点评】本题主要考查函数图象的识别和判断,利用函数奇偶性和对称性的关系,以及函数值的对应性,利用排除法是解决本题的关键102019年7月1日迎来了我国建党98周年,6名老党员在这天相约来到革命圣地之一的西柏坡.6名老党员中有3名党员当年在同一个班,他们站成一排拍照留念时,要求同班的3名党员站在一起,且满足条件的每种排法都要拍一张照片,若将照片洗出来,每张照片0.5元(不含过塑费),且有一半的照片需要过塑,每张过塑费为0.75元若将这些照片平均分给每名老党员(过塑的照片也要平均分),则每名老党员需要支付的照片费为()A20.5元B21元C21.5元D22元【分析】由排列组合中的相邻问题捆绑法运算可得解【解答】解:由排列组合中的相邻问题捆绑法可得:照片的总数为=144,则每名老党员需要支付的照片费为=21,故选:B【点评】本题考查了排列组合的应用,考查应用意识与解决实际问题的能力,属中档题11在正方体ABCD﹣A1B1C1D1中,E,F,G分别为AA1,BC,C1D1的中点,现有下面三个结论:①△EFG为正三角形;②异面直线A1G与C1F所成角为60°;③AC∥平面EFG其中所有正确结论的编号是()A①B②③C①②D①③【分析】画出图形,判断三角形的形状即可判断①的正误;判断三角形的形状即可判断②的正误;利用直线与平面平行的判断定理即可判断③的正误;【解答】解:设正方体的棱长为:2,①由题意可知EG=EF=GF=,所以△EFG为正三角形;所以①正确;②取AC的中点H,连接GH,A1H,可知GH∥C1F,∠A1GH就是异面直线A1G与C1F所成角,三角形A1GH是等腰三角形,A1G≠A1H=GH,所以异面直线A1G与C1F所成角不是60°;所以②不正确;③△EGF是正六边形EKFMGN所在平面内的三角形,AC∥KF,可知AC∥平面EFG所以③正确;故选:D【点评】本题考查了命题的真假判断与应用,空间直线与直线,直线与平面的位置关系的综合应用,属难题12函数在区间[﹣3,2)∪(2,3]上的零点个数为()A2 B3 C4 D5【分析】将函数化简为(x2﹣2x)e x=,转换成两函数g (x)=(x2﹣2x)e x,h(x)=相交的个数即为零点个数,利用g(x)的导函数,分类讨论x范围,判断其单调性和函数的最值,数形结合可知两函数的交点的个数,可得答案;【解答】解:求函数在区间[﹣3,2)∪(2,3]上的零点,令函数=0,化简得(x2﹣2x)e x=,设g(x)=(x2﹣2x)e x,h(x)=,则g′(x)=(x2﹣2)e x当﹣3≤x<﹣时,g′(x)>0,当﹣<x<时,g′(x)<0,当<x≤3时,g′(x)>0所以g(x)的极小值为g()=(2﹣2)<h(),极大值为g(﹣)=(2+2)>h(﹣),又g(﹣3)=>=h(﹣3),g(3)>h(3),且h(x)在[﹣3,﹣),(﹣,0)上单调递增,在(0,),(,3]上单调递减,结合这两个函数的图象:可知这两个函数的图象共有4个交点,从而f(x)在区间[﹣3,2)∪(2,3]上的零点个数为4个零点;故选:C【点评】本题考查导数的综合应用,考查化归与转化的数学思想,属于难题二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13随着互联网的发展,网购早已融人人们的日常生活网购的苹果在运输过程中容易出现碰伤,假设在运输中每箱苹果出现碰伤的概率为0.7,每箱苹果在运输中互不影响,则网购2箱苹果恰有1箱在运输中出现碰伤的概率为0.42【分析】由题意利用相互独立事件的概率乘法公式及n次独立重复试验中恰好发生k次的概率公式,求得结果【解答】解:在运输中每箱苹果出现碰伤的概率为0.7,每箱苹果在运输中互不影响,则网购2箱苹果恰有1箱在运输中出现碰伤的概率为•0.7•(1﹣0.7)=0.42,故答案为:0.42【点评】本题主要考查相互独立事件的概率乘法公式及n次独立重复试验中恰好发生k 次的概率公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题14设a,b,c分别为△ABC内角A,B,C的对边已知a sin A=2b cos A cos C+2c cos A cos B,则tan A= 2【分析】由正弦定理,两角和的正弦函数公式,同角三角函数基本关系式化简已知即可求解【解答】解:因为a sin A=2b cos A cos C+2c cos A cos B,所以sin2A=2cos A(sin B cos C+sin C cos B)=2cos A sin(B+C)=2sin A cos A,又sin A>0,所以sin A=2cos A,即tan A=2故答案为:2【点评】本题主要考查了正弦定理在解三角形中的应用,考查了运算运算求解能力,属于基础题15以椭圆在x轴上的顶点和焦点分别为焦点和顶点的双曲线方程为x2=1 ;该双曲线的渐近线方程为y=±2x【分析】求得椭圆的焦点和顶点坐标,设双曲线的方程为(a,b>0),可得a,c,进而得到b的值,可得双曲线的方程然后求解渐近线方程【解答】解:椭圆在x轴上的顶点(,0)和焦点(±1,0),设双曲线的方程为(a,b>0),可得a=1,c=,b=2,可得x2﹣=1双曲线的渐近线方程为:y=±2x故答案为:x2﹣=1;y=±2x【点评】本题考查双曲线的方程的求法,注意运用椭圆的方程和性质,考查运算能力,属于基础题16已知直线y=a与双曲线的一条渐近线交于点P,双曲线C的左、右顶点分别为A1,A2|,若,则双曲线C的离心率为或【分析】设出双曲线的焦点,利用一条渐近线方程可得P的坐标,结合已知条件列出方程,然后求解离心率【解答】解:双曲线的一条渐近线:y=,则P(,a),因为,所以,可得,所以,从而e==,然后双曲线的渐近线为:y=﹣,则p(﹣,a),同理可得e=故答案为:或【点评】本题考查双曲线的方程和性质,主要是渐近线方程和离心率的求法,考查方程思想和运算能力,属于中档题三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17(12分)在公差为d的等差数列{a n}中,a1d=6,a1∈N,d∈N,且a1>d (1)求{a n}的通项公式;(2)若a1,a4,a13成等比数列,求数列的前n项和S n【分析】(1)由题意可得a1=3,d=2或a1=6,d=1,再由等差数列的通项公式可得所求;(2)运用等比数列的中项性质和等差数列的通项公式,解方程即可得到所求a n,求得==(﹣),再由数列的裂项相消求和可得所求和【解答】解:(1)公差为d的等差数列{a n}中,a1d=6,a1∈N,d∈N,且a1>d,可得a1=3,d=2或a1=6,d=1,则a n=3+2(n﹣1)=2n+1;或a n=6+n﹣1=n+5,n∈N*;(2)a1,a4,a13成等比数列,可得a1a13=a42,即a1(a1+12d)=(a1+3d)2,化为d=0或2a1=3d,由(1)可得a1=3,d=2,则a n=2n+1,==(﹣),可得前n项和S n=(﹣+﹣+…+﹣)=(﹣)=【点评】本题考查等差数列的通项公式和数列的裂项相消求和,以及分类讨论思想和方程思想,考查运算能力,属于基础题18(12分)如图,在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为菱形,D为AB的中点,△ABC为等腰直角三角形,,,且AB=B1C(1)证明:CD⊥平面ABB1A1(2)求CD与平面A1BC所成角的正弦值【分析】(1)推导出CD⊥AB,连结B1D,设AB=2a,推导出CD⊥B1D,由此能证明CD⊥平面ABB1A1(2)以D为坐标原点,建立空间直角坐标系D﹣xyz,利用向量法能求出CD与平面A1BC 所成角的正弦值【解答】解:(1)证明:∵D为AB的中点,AC=BC,∴CD⊥AB,连结B1D,设AB=2a,∵四边形ABB1A1是菱形,D为AB中点,∠ABB1=,∴B1D=,又△ABC为等腰直角三角形,,∴CD=a,∴=B1C2,∴CD⊥B1D,∵AB∩B1D=D,∴CD⊥平面ABB1A1(2)解:以D为坐标原点,建立如图所示的空间直角坐标系D﹣xyz,设AB=2a,则D(0,0,0),A1(0,2a,a),B(0,﹣a,0),C(a,0,0),∴=(0,3a,),=(0,a,0),=(﹣a,0,0),设平面A1BC的法向量=(x,y,z),则,取y=1,得=(﹣1,1,﹣),设CD与平面A1BC所成角为θ,则sinθ===∴CD与平面A1BC所成角的正弦值为【点评】本题考查线面垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等知识,考查运算求解能力,是中档题19(12分)为提高产品质量,某企业质量管理部门经常不定期地对产品进行抽查检测,现对某条生产线上随机抽取的100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图记综合评分为80分及以上的产品为一等品(1)求图中a的值,并求综合评分的中位数;(2)用样本估计总体,视频率作为概率,在该条生产线中随机抽取3个产品,求所抽取的产品中一等品数的分布列和数学期望【分析】(1)由频率分布直方图的性质,列出方程,能求出a,由频率分布直方图能求出综合评分的中位数(2)设所抽取的产品为一等品的个数为X,则X~B(3,),由此能求出X的分布列和所抽取的产品为一等品的数学期望E(X)【解答】解:(1)由(0.005+0.010+0.025+a+0.020)×10=1,解得a=0.040,令中位数为x,则(0.005+0.010+0.025)×10+0.040×(x﹣80)=0.5,解得x=82.5,∴综合评分的中位数为82.5(2)由(1)与频率分布直方图知:一等品的频率为(0.040+0.020)×10=0.6,设所抽取的产品为一等品的个数为X,则X~B(3,),∴P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==∴X的分布列为:X 0 1 2 3P所抽取的产品为一等品的数学期望E(X)=3×=【点评】本题考查概率、中位数、离散型随机变量的分布列、数学期望的求法,考查频率分布直方图、二项分布的性质等基础知识,考查运算求解能力,是中档题20(12分)已知椭圆的长轴长为,焦距为2,抛物线M:y2=2px(p>0)的准线经过C的左焦点F(1)求C与M的方程;(2)直线l经过C的上顶点且l与M交于P,Q两点,直线FP,FQ与M分别交于点D(异于点P),E(异于点Q),证明:直线DE的斜率为定值【分析】(1)由题意可得a,c的值,运用b2=a2﹣c2,求得b,可得椭圆C的方程,由M的准线经过点F,求得p,即可得解M的方程;(2)设直线l的方程为y=kx+1,可得y2﹣y+1=0,设P(x1,y1),Q(x2,y2),可得y1+y2=,y1y2=,又由,可得y D=,可得D,E的坐标,计算k DE即可得证【解答】解:(1)由题意,可得2a=2,2c=2,所以a=,c=1,所以b==1,所以C的方程为+y2=1,所以F(﹣1,0),由于M的准线经过点F,所以﹣=﹣1,所以p=2,故M的方程为y2=4x(2)证明:由题意可知,l的斜率存在,故设直线l的方程为y=kx+1,由,可得y2﹣y+1=0,设P(x1,y1),Q(x2,y2),则△=1﹣k>0,即k<1,且k≠0,y1+y2=,y1y2=,又直线FP的方程为y=(x+1),由,得y2﹣+4=0,所以y1y D=4,所以y D=,从而D的坐标为(,),同理可得E的坐标为(,),所以k DE===1为定值【点评】本题考查椭圆的方程的求法,注意运用椭圆的顶点和焦点坐标,考查直线与椭圆方程联立,运用韦达定理,以及直线的斜率公式的运用,考查化简整理的运算能力,属于中档题21(12分)已知函数(1)讨论f(x)的单调性(2)试问是否存在a∈(﹣∞,e],使得,对x∈[1,+∞)恒成立?若存在,求a的取值范围;若不存在,请说明理由【分析】(1)先求导,再根据导数和函数单调性的关系,分类讨论即可求出,(2)假设存在a∈(﹣∞,e],使得f(x)>3+sin对x∈[1,+∞)恒成立,对a分类讨论,利用单调性即可得出a的取值范围【解答】解:(1)f′(x)=xlnx﹣alnx+a﹣x=(x﹣a)(lnx﹣1),x∈(0,+∞),①当a≤0时,由f′(x)>0,解得x>e,由f′(x)<0,解得0<x<e,∴f(x)在(0,e)上单调递减,在(e,+∞)上单调递增,②0<a<e时,令f′(x)=0,解得x=a,或x=e,由f′(x)>0,解得0<x<a,或x>e,由f′(x)<0,解得a<x<e,∴f(x)在(a,e)上单调递减,在(0,a),(e,+∞)上单调递增,③当a=e时,f′(x)≥0恒成立,f(x)在(0,+∞)上单调递增,④当a>e时,由f′(x)>0,解得0<x<e,或x>a,由f′(x)<0,解得e<x<a,∴f(x)在(e,a)上单调递减,在(0,e),(a,+∞)上单调递增(2)假设存在a∈(﹣∞,e],使得f(x)>3+sin对x∈[1,+∞)恒成立,则f(1)=2a﹣>3+sin,即8a﹣sin﹣15>0,设g(x)=8x﹣sin﹣15,则g′(x)=8﹣cos>0,则g(x)单调递增,∵g(2)=0,∴a>2,当a=e时,f(x)在[1,+∞)上单调递增,∴f(x)min=f(1),∴a>2,从而a=e满足题意,当2<a<e时,f(x)在(a,e)上单调递减,在[1,a),(e,+∞)上单调递增,∴,∴,(*),设h(x)=4ex﹣sin﹣e2﹣12,则h′(x)=4e﹣cos>0,则h(x)单调递增,∵h(2)=8e﹣e2﹣13>0,∴h(x)的零点小于2,从而不等式组(*)的解集为(2,+∞),∴2<a<e,综上,存在a∈(﹣∞,e],使得,对x∈[1,+∞)恒成立,且a 的取值范围为(2,e]【点评】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、分类讨论方法,考查了推理能力与计算能力,属于难题(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22(10分)在直角坐标系xOy中,曲线C的参数方程为,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线M的极坐标方程为(1)求曲线C的极坐标方程;(2)已知β为锐角,直线l:θ=β(ρ∈R)与曲线C的交点为A(异于极点),l与曲线M的交点为B,若,求l的直角坐标方程【分析】(1)直接利用转换关系式的应用求出结果(2)利用极径的应用建立等量关系进一步求出直线的方程【解答】解:(1)曲线C的参数方程为,转换为直角坐标方程为x2+(y﹣2)2=4转换为极坐标方程为ρ=4sinθ(2)曲线M的极坐标方程为所以将θ=β代入,由于曲线C的极坐标方程ρ=4sinθ,所以|OA|=4sin θ,所以|OA||OB|=,所以tanβ=2,所以直线l的方程为y=2x【点评】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,极径的应用,三角函数关系式的恒等变换,主要考查学生的运算能力和转换能力,属于基础题型23已知a,b,c为正数,且满足a+b+c=3(1)证明:(2)证明:9ab+bc+4ac≥12abc【分析】(1)根据基本不等式,借助综合法即可证明,(2)方法一:利用分析法,根据基本不等式即可证明,方法一:利用分析法,根据柯西不等式即可证明【解答】证明:(1)∵a,b,c为正数,∴a+b≥2,a+c≥2,b+c≥2,∴2(a+b+c)≥2+2+2,当且仅当a=b=c=1时取等号,∴(2)方法一:要证9ab+bc+4ac≥12abc,只需证++≥12,即证(++)(a+b+c)≥36,即证1+4+9++++++≥36,即证+++++≥22,因为+≥2=4,+≥2=6,+≥2=12,∴+++++≥22,当且仅当a=,b=1,c=取等号,从而9ab+bc+4ac≥12abc方法二:要证9ab+bc+4ac≥12abc,只需证++≥12,即证(++)(a+b+c)≥36,根据柯西不等式可得(++)(a+b+c)≥(×+×+×)2=(1+2+3)2=36,当且仅当a=,b=1,c=取等号从而9ab+bc+4ac≥12abc【点评】本题考查了不等式的证明,考查了转化思想,属于中档题。
2020年陕西省高考数学(理科)模拟试卷(1) 含详细答案解析
( 2)经统计,抽取的 500 名观看阅兵式的市民中有高三学生 5 名,其中 3 名男生, 2 名
女生,若从这 5 名高三学生中随机抽取两人接受采访,求抽取的两名学生性别不同的概
率.
附表及公式: K2=
,其中 n=a+b+c+d.
P( K2≥k0) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
为锐角,则△ ABC 面积的最大值为
.
,且 C
15.( 5 分)我国古代数学名著《九章算术》记载: “勾股各自乘,并之,为弦实” ,用符号 表示为 a2+b2= c2( a,b,c∈N *),把 a, b, c 叫做勾股数.下列给出几组勾股数: 3, 4,
5;5,12,13;7,24,25;9,40,41,以此类推, 可猜测第 5 组勾股数的第二个数是
k0
2.072 2.706 3.841 5.024 6.635 7.879 10.828
20.过双曲线
的右焦点 F 2,倾斜角为 30°的直线交双曲线于 A, B 两点, O 为
坐标原点, F1 为左焦点. ( 1)求 |AB|; ( 2)求△ AOB 的面积; ( 3)求证: |AF 2|+|BF 2|= |AF1|+|BF1|. 21.已知函数 f( x)= asinx﹣ 1,g( x)= ax2﹣ x+16 a,a∈R. ( 1)记函数 F( x)= f( x) +g( x). ① 若 a=1,求 F( x)的单调区间; ② 若 a>0,求证: F ( x)在 [0, +∞)上总存在最小值. ( 2)记函数 G( x)= f( x)?g( x),若存在正实数 x0,使不等式 G( x0)< 0 成立,求实 数 a 的取值范围. 四.解答题(共 1 小题) 22.在新中国成立 70 周年国庆阅兵典礼中,众多群众在脸上贴着一颗红心,以此表达对祖 国的热爱之情在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲 线如图,在直角坐标系中,以原点 O 为极点, x 轴正半轴为极轴建立极坐标系图中的曲
2023届高考全国甲卷乙卷全真模拟(四)数学试卷及答案
2023年高考数学全真模拟卷四(全国卷)理科数学(考试时间:120分钟;试卷满分:150分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知复数z 满足2i 3i 0z z --+=,则z 的共轭复数z =()A .1i+B .1i-C .1i5+D .1i5-2.设集合(){},A x y y x ==,(){}3,B x y y x ==,则A B ⋂的元素个数是()A .1B .2C .3D .43.设命题p :若,x y R ∈,则“0x y >>”是“22x y >”的必要不充分条件;命题q :“0x ∀>,21x >”的否定是“0x ∃≤,21x ≤”,则下列命题为真命题的是()A .p q ∧B .()()p q ⌝∧⌝C .p q∨D .()p q ∧⌝4.已知()f x 是偶函数,在(-∞,0)上满足()0xf x '>恒成立,则下列不等式成立的是()A .()34()()5f f f <<--B .()()()435f f f <->-C .()()()534f f f -<-<D .()()()453f f f <-<-5.在长方体1111ABCD A B C D -中,点E 为1AC 的中点,12AB AA ==,且AD =异面直线AE 与BC 所成角的余弦值为()A .3B .3C .22D .26.美国在今年对华为实行了禁令,为了突围实现技术自主,华为某分公司抽调了含甲、乙的5个工程师到华为总部的4个不同的技术部门参与研发,要求每个工程师只能去一个部门,每个部门至少去一个工程师,且甲乙两人不能去同一个部门,则不同的安排方式一共有()种A .96B .120C .180D .2167.将函数sin 2y x =的图象向左平移(0)ϕϕ>个单位长度后,所得图象经过点π,12⎛⎫ ⎪⎝⎭,则ϕ的最小值为()A .π12B .π4C .3π4D .11π128.在区间[]22-,上随机取一个数k ,使直线()2y k x =+与圆221x y +=相交的概率为()A .3B .12C D .49.某班同学利用课外实践课,测量北京延庆会展中心冬奥会火炬台“大雪花”的垂直高度MN .在过N 点的水平面上确定两观测点,A B ,在A 处测得M 的仰角为30°,N 在A 的北偏东60°方向上,B 在A 的正东方向30米处,在B 处测得N 在北偏西60°方向上,则MN =()A .10米B .12米C .16米D .18米10.已知函数()()3220f x x bx cx b b =+++<在=1x -处有极值,且极值为8,则()f x 的零点个数为()A .1B .2C .3D .411.两个长轴在x 轴上、中心在坐标原点且离心率相同的椭圆.若A ,B 分别为外层椭圆的左顶点和上顶点,分别向内层椭圆作切线AC ,BD ,切点分别为C ,D ,且两切线斜率之积等于23-,则椭圆的离心率为()A .13B C D 12.已知3e a -=,ln1.01b =,sin 0.02c =,则()A .a b c <<B .b a c <<C .c b a<<D .b<c<a第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.若双曲线221x my +=的焦距等于虚轴长的3倍,则m 的值为______.14.向量()2,1a =-r ,()2,3b =-r ,(),1c m =- ,c b ⊥r r,则a c -= ___.15.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知向量cos,12A B m +⎛⎫= ⎪⎝⎭,且254m = .若2c =,且ABC 是锐角三角形,则22a b +的取值范围为______.16.如图,ED 是边长为2的正三角形ABC 的一条中位线,将ADE V 沿DE 折起,构成四棱锥F BCDE -,若EF CD ⊥,则四棱锥F BCDE -外接球的表面积为__________.三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)(一)必考题:共60分17.2022年卡塔尔世界杯开幕式在美丽的海湾球场举行,中国制造在这届世界杯中闪亮登场,由中国铁建承建的卢赛尔球场是全球首个在全生命周期深入应用建筑信息模型技术的世界杯主场馆项目.场馆的空调是我们国家的海信空调,海信空调为了了解市场情况,随机调查了某个销售点五天空调销售量y (单位:台)和销售价格x (单位:百元)之间的关系,得到如下的统计数据:销售价格x 2428303236销售量y340330300270260(1)通过散点图发现销售量y 与销售价格x 之间有较好的线性相关关系,求出y 关于x 的线性回归方程ˆˆˆybx a =+.(2)若公司希望每天的销售额到达最大,请你利用所学知识帮公司制定一个销售价格(注:销售额=销售价格×销售量).附:回归直线的斜率和截距的最小二乘估计公式分别为:()()()121ˆni ii n ii x x yy bx x ==--=-∑∑,ˆˆay bx =-.18.已知数列{}n a 的前n 项和为n S ,且123n n n S S a +=++,11a =.(1)证明:数列{}3n a +是等比数列,并求数列{}n a 的通项公式;(2)若()2log 3n n n b a a =⋅+,求数列{}n b 的前n 项和n T .19.如图,在四棱锥M ABCD -中,底面ABCD 是平行四边形,4AB =,AD =,MC ==45ADC ∠︒,点M 在底面ABCD 上的射影为CD 的中点O ,E 为线段AD 上的点(含端点).(1)若E 为线段AD 的中点,证明:平面MOE ⊥平面MAD ;(2)若3AE DE =,求二面角D ME O --的余弦值.20.已知函数()2()4e 6x f x x x x =--+,()()ln 1g x x a x =-+,1a >-.(1)求()f x 的极值;(2)若存在[]11,3x ∈,对任意的232e ,e x ⎡⎤∈⎣⎦,使得不等式()()21g x f x >成立,求实数a 的取值范围.(3e 20.09≈)21.已知抛物线()2:20C x py p =>的焦点为F ,准线为l ,点P 是直线1:2l y x =-上一动点,直线l 与直线1l 交于点Q ,QF =(1)求抛物线C 的方程;(2)过点P 作抛物线C 的两条切线,PA PB ,切点为,A B ,且95FA FB -≤⋅≤,求PAB 面积的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,曲线C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数).(1)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,求曲线C 极坐标方程;(2)若点A ,B 为曲线C 上的两个点且OA OB ⊥,求证:2211||||OA OB +为定值.[选修4-5:不等式选讲]23.已知函数()|2||3|f x x x =++.(1)求函数()y f x =的最小值M ;(2)若0,0a b >>且a b M +=2023年高考数学全真模拟卷四(全国卷)理科数学(考试时间:120分钟;试卷满分:150分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知复数z 满足2i 3i 0z z --+=,则z 的共轭复数z =()A .1i +B .1i-C .1i5+D .1i5-【答案】B【分析】由复数的除法运算求出z ,再根据共轭复数的概念可得z .【详解】由2i 3i 0z z --+=,得3i 12i z -=-(3i)(12i)(12i)(12i)-+=-+55i 1i 5+==+,所以1i z =-.故选:B2.设集合(){},A x y y x ==,(){}3,B x y y x ==,则A B ⋂的元素个数是()A .1B .2C .3D .4【答案】C【分析】联立3,y x y x ==求出交点坐标,从而得到答案.【详解】联立3y x y x=⎧⎨=⎩,即3x x =,解得:0x =或1±,即()()(){}0,0,1,1,1,1A B =-- ,故A B ⋂的元素个数为3.故选:C3.设命题p :若,x y R ∈,则“0x y >>”是“22x y >”的必要不充分条件;命题q :“0x ∀>,21x >”的否定是“0x ∃≤,21x ≤”,则下列命题为真命题的是()A .p q ∧B .()()p q ⌝∧⌝C .p q∨D .()p q ∧⌝【答案】B【分析】先判断命题p 和命题q 的真假,再根据复合命题真假的判定方法,即可得出结果.【详解】根据不等式的性质,若0x y >>,则22x y >;反之,若22x y >,则220x y ->,即()()0x y x y +->,因为,x y 正负不确定,所以不能推出0x y >>,因此“0x y >>”是“22x y >”的充分不必要条件,即命题p 为假命题;所以p ⌝为真命题;命题q :“0x ∀>,21x >”的否定是“0x ∃>,21x ≤”,故命题q 为假命题;q ⌝为真命题;所以p q ∧为假,p q ∨为假,()p q ∧⌝为假,()()p q ⌝∧⌝为真.即ACD 错,B 正确.故选:B.4.已知()f x 是偶函数,在(-∞,0)上满足()0xf x '>恒成立,则下列不等式成立的是()A .()34()()5f f f <<--B .()()()435f f f <->-C .()()()534f f f -<-<D .()()()453f f f <-<-【答案】A【分析】由题干条件得到(),0x ∈-∞时,()0f x '<,故()f x 在(),0∞-上单调递减,结合()f x 为偶函数,得到()f x 在()0,∞+上单调递增,从而判断出大小关系.【详解】(),0x ∈-∞时,()0xf x '>即()0f x '<,∴()f x 在(),0∞-上单调递减,又()f x 为偶函数,∴()f x 在()0,∞+上单调递增.∴()()()345f f f <<,∴()()()345f f f -<<-.故选:A .5.在长方体1111ABCD A B C D -中,点E 为1AC 的中点,12AB AA ==,且AD =面直线AE 与BC 所成角的余弦值为()A .23B C D 【答案】C【分析】将异面直线AE 与BC 所成角转化为EAD ∠或其补角,再通过边的计算得到4EAD π∠=,即可求解.【详解】连接1,,DE AC A D ,由BC AD ∥可得EAD ∠或其补角即为异面直线AE 与BC 所成角,又1A A ⊥面ABCD ,AC ⊂面ABCD ,则1A A AC ⊥,则111222AE A C ==⨯,同理可得1A D DC ⊥,1122DE AC ==,则222AE DE AD +=,4EAD π∠=,则异面直线AE 与BC 所成角的余弦值为cos4π=故选:C.6.美国在今年对华为实行了禁令,为了突围实现技术自主,华为某分公司抽调了含甲、乙的5个工程师到华为总部的4个不同的技术部门参与研发,要求每个工程师只能去一个部门,每个部门至少去一个工程师,且甲乙两人不能去同一个部门,则不同的安排方式一共有()种A .96B .120C .180D .216【答案】D【解析】根据题意,先将5人分成4组,减去甲乙在一起的1组,然后4组再安排到4个不同的部门可得答案.【详解】由()24541216C A -=故选:D.7.将函数sin 2y x =的图象向左平移(0)ϕϕ>个单位长度后,所得图象经过点π,12⎛⎫⎪⎝⎭,则ϕ的最小值为()A .π12B .π4C .3π4D .11π12【答案】C【分析】利用三角函数图象平移规律得到函数[]sin 2()y x ϕ=+的图象,由所得图象经过点π,12⎛⎫ ⎪⎝⎭和ϕ的范围可得答案.【详解】将函数sin 2y x =的图象向左平移(0)ϕϕ>个单位长度后,得到函数[]sin 2()y x ϕ=+的图象,由所得图象经过点π,12⎛⎫⎪⎝⎭,可得()sin π21ϕ+=,则ππ22π2k ϕ+=+,k ∈Z ,则ππ4k ϕ=-+,k ∈Z ,又0ϕ>,所以ϕ的最小值为3π4.故选:C .8.在区间[]22-,上随机取一个数k ,使直线()2y k x =+与圆221x y +=相交的概率为()A B C .6D 【答案】C【分析】求出直线与圆相交时k 的取值范围,利用几何概型的概率公式可求得所求事件的概率.【详解】因为圆221x y +=的圆心为()0,0,半径1r =,直线()2y k x =+与圆221x y +=相交,所以圆心到直线()2y k x =+的距离1d =,解得33k -<<,所以,直线()2y k x =+与圆221x y +=相交的概率为346P ==,故选:C .9.某班同学利用课外实践课,测量北京延庆会展中心冬奥会火炬台“大雪花”的垂直高度MN .在过N 点的水平面上确定两观测点,A B ,在A 处测得M 的仰角为30°,N 在A 的北偏东60°方向上,B 在A 的正东方向30米处,在B 处测得N 在北偏西60°方向上,则MN =()A .10米B .12米C .16米D .18米【答案】A【分析】由已知分析数据,在NAB △中,由正弦定理可求得NA ,在直角MNA △中,可求得MN .【详解】由已知得,30MAN ∠=︒,30NAB NBA ∠=∠=︒,30AB =米在NAB △中,由正弦定理可得30sin120sin 30NA=︒︒,求得NA =米在直角MNA △中,tan 3010M NA N ⋅︒==米故选:A 10.已知函数()()3220f x x bx cx b b =+++<在=1x -处有极值,且极值为8,则()f x 的零点个数为()A .1B .2C .3D .4【答案】C【分析】根据题意求导后结合已知极值,得出27b c =-⎧⎨=-⎩,即可根据导数得出其单调性,再结合特值得出其零点个数.【详解】由题意得()232f x x bx c ¢=++,因为函数()()3220f x x bx cx b b =+++<在=1x -处有极值,且极值为8,则()2118f b c b -=-+-+=,()1320f b c '-=-+=,解得27b c =-⎧⎨=-⎩(经检验适合题意),或33b c =⎧⎨=⎩(经检验不合题意舍去)故()32274f x x x x =--+,()()()2347137f x x x x x '=--=+-,当(),1x ∈-∞-或7,3⎛⎫+∞ ⎪⎝⎭时,()0f x ¢>,即函数()f x 单调递增,当71,3x ⎛⎫∈- ⎪⎝⎭时,()0f x '<,即函数()f x 单调递减,又因为()30f -<,()10f ->,()10f <,()40f >,则()f x 有3个零点,故选:C.11.两个长轴在x 轴上、中心在坐标原点且离心率相同的椭圆.若A ,B 分别为外层椭圆的左顶点和上顶点,分别向内层椭圆作切线AC ,BD ,切点分别为C ,D ,且两切线斜率之积等于23-,则椭圆的离心率为()A .13B C D 【答案】B【分析】法一,用判别式等于零求两条切线得斜率,因为它们相乘等于23-,可得2223b a =,所以椭圆的离心率为e 3=;法二,用极点极线得方法得到两条切线得斜率,再根据条件即得.【详解】法一:设内椭圆方程为()222210x y a b a b +=>>,外椭圆为()222220x y m m a b+=>,切线AC 的方程为()1y k x ma =+,联立()1222222,,y k x ma b x a y a b ⎧=+⎨+=⎩消去y 可得:()2222322422211120b a k x ma k x m a k a b +++-=,因为直线AC 为椭圆的切线,所以()()26422224222111Δ440m a k b a k m a k a b =-+-=,化简可得:2212211b k a m =⋅-,设直线BD 的方程为:2y k x mb =+,同理可得()222221b k m a =-,因为两切线斜率之积等于23-,所以2223b a =,所以椭圆的离心率为e =故选:B.法二;设内层椭圆:22221x y a b +=,外层椭圆:22222x y m a b+=.设切点()111,P x y ,()222,P x y ,(),0A ma ,()0,B mb ,切线1l :11221x x y ya b +=,切线2l :22221x x y y a b+=,∴21121x b k a y =-⋅①,22222x b k a y =-⋅②,又∵11AP k k =,即211211x y b a y x ma-⋅=-,即222222111b x b m ax a y -+=,即22222222111b m ax a y b x a b =+=,∴1mx a =,同理22BP k k =,∴2my b =,∴21y b x a=,将1P ,2P 代入椭圆22221x y a b +=中得:221222y b x a =,经分析得:12y b x a =-,由①②可知22212122212x x b b k k a y y a ⎛⎫=⋅=- ⎪⎝⎭,∴2223b a =,∴2221e 13b a =-=,∴e 3=.故选:B.12.已知3e a -=,ln1.01b =,sin 0.02c =,则()A .a b c <<B .b a c <<C .c b a <<D .b<c<a【答案】D【分析】先利用不等式()sin 0x x x >>比较a ,c 的大小,再构造函数,利用函数的单调性比较b ,c 的大小,即可得到结果.【详解】如图,单位圆A 中,BAC θ∠=,BD AC ⊥于D ,则BC 的长度l θ=,sin BD θ=,则由图易得,l BC BD >>,即sin θθ>,所以3321110.02sin 0.02e 350e c a -==>>=>=.设()()sin 2ln 1f x x x =-+,0,6x π⎛⎫∈ ⎪⎝⎭,则()112cos 21011f x x x x '=->->++,所以()f x 在0,6π⎛⎫⎪⎝⎭上单调递增,则()0.010f >,即sin 0.02ln1.01>,即b c <.综上,b<c<a .故选:D .第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.若双曲线221x my +=的焦距等于虚轴长的3倍,则m 的值为______.【答案】8-【分析】先将双曲线化为标准形式,进而得到2211,a b m ==-,211c m=-,根据题意列出方程,求出m 的值.【详解】221x my +=化为标准方程:2211y x m-=-,则2211,a b m ==-,故211c m =-,则可得:=8m =-,故答案为:8-14.向量()2,1a =-r ,()2,3b =-r ,(),1c m =- ,c b ⊥r r,则a c -= ___.【答案】172【分析】利用平面向量垂直的坐标表示可求得实数m 的值,再利用平面向量的坐标运算以及向量模的坐标运算可求得结果.【详解】由已知可得230c b m ⋅=--= ,解得32m =-,则3,12c ⎛⎫=-- ⎪⎝⎭,所以,1,22a c ⎛⎫-=- ⎪⎝⎭ ,因此,a c -== .15.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知向量cos,12A B m +⎛⎫= ⎪⎝⎭,且254m = .若2c =,且ABC 是锐角三角形,则22a b +的取值范围为______.【答案】20,83⎛⎤⎥⎝⎦【分析】化简254m = 可得2π3A B +=,即π3C =,由正弦定理可得22168πsin 2336a b A ⎛⎫+=+- ⎪⎝⎭,再结合ABC 是锐角三角形,即可求出ππ62A <<,则可写出22a b +的取值范围.【详解】由题意得()221cos 5cos 11224A B A B m +++=+=+= ,所以()1cos 2A B +=-,因为0πA B <+<,所以2π3A B +=,所以()ππ3C A B =-+=,由正弦定理得sin sin sin a b c A B C ===,所以a A ,2πsin 3b B A ⎛⎫=⋅- ⎪⎝⎭,则2222162sin sin 33a b A A π⎡⎤⎛⎫+=+- ⎪⎢⎥⎝⎭⎣⎦1684cos 2cos 2333A A π⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦1681cos 2cos 22332A A A ⎛⎫=-- ⎪ ⎪⎝⎭168πsin 2336A ⎛⎫=+- ⎪⎝⎭.因为ABC 是锐角三角形,所以π02A <<,π02B <<,又2π3B A =-,所以ππ62A <<,即ππ5π2666A <-<,所以1πsin 2126A ⎛⎫<-≤ ⎪⎝⎭,所以20168πsin 283336A ⎛⎫<+-≤ ⎪⎝⎭,故222083a b <+≤.故答案为:20,83⎛⎤ ⎥⎝⎦.16.如图,ED 是边长为2的正三角形ABC 的一条中位线,将ADE V 沿DE 折起,构成四棱锥F BCDE -,若EF CD ⊥,则四棱锥F BCDE -外接球的表面积为__________.【答案】112π【分析】根据给定的几何体,确定四边形BCDE 外接圆圆心,进而求出外接球半径即可计算作答.【详解】取BC 中点G ,连接AG 交DE 于H ,连接,,,FH EG DG FG ,如图,因为ED 是边长为2的正ABC 平行于BC 的中位线,则,AG ED FH ED ⊥⊥,H 是AG 中点,,,AG FH H AG FH =⊂ 平面AFG ,则有ED ⊥平面AFG ,ED ⊂平面BCDE ,有平面AFG ⊥平面BCDE ,显然有112GE GD GC GB =====,则G 是四边形BCDE 外接圆圆心,在平面AFG 内过G 作直线l AG ⊥,因为平面AFG ⋂平面BCDE AG =,因此l ⊥平面BCDE ,则四棱锥F BCDE -的外接球球心O 在直线l 上,过F 作FQ AG ⊥于Q ,FQ ⊂平面AFG ,有FQ ⊥平面BCDE ,则有//OG FQ ,连接,FO BO ,四边形FOGQ 为直角梯形,因为//,EG CD FE CD ⊥,则有FE EG ⊥,FG =,在AFG 中,FH AH HG ==,则AFG 是直角三角形,90AFG ∠= ,而AG =则1AF =,于是得3AF FG FQ AG ⋅==,过O 作OP FQ ⊥于P ,有PQ OG =,2FG OP GQ AG ===OB OF R ==,Rt OBG △与Rt OFP 中,222222OB BG OG OF OP FP ⎧=+⎨=+⎩,即222214)3R OG R OG ⎧=+⎪⎨=+-⎪⎩,解得44OG R ==,所以四棱锥F BCDE -外接球的表面积为21142S R ππ==.故答案为:112π三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)(一)必考题:共60分三、解答题17.2022年卡塔尔世界杯开幕式在美丽的海湾球场举行,中国制造在这届世界杯中闪亮登场,由中国铁建承建的卢赛尔球场是全球首个在全生命周期深入应用建筑信息模型技术的世界杯主场馆项目.场馆的空调是我们国家的海信空调,海信空调为了了解市场情况,随机调查了某个销售点五天空调销售量y (单位:台)和销售价格x (单位:百元)之间的关系,得到如下的统计数据:销售价格x 2428303236销售量y340330300270260(1)通过散点图发现销售量y 与销售价格x 之间有较好的线性相关关系,求出y 关于x 的线性回归方程ˆˆˆybx a =+.(2)若公司希望每天的销售额到达最大,请你利用所学知识帮公司制定一个销售价格(注:销售额=销售价格×销售量).附:回归直线的斜率和截距的最小二乘估计公式分别为:()()()121ˆni ii n ii x x yy b x x ==--=-∑∑,ˆˆay bx =-.【答案】(1)7.5525ˆyx =-+(2)35百元【分析】(1)根据已知求得回归方程的系数,即可得回归方程;(2)利用销售额的公式可得到()27.5359187.5zx =--+ ,利用二次函数的性质即可求解【详解】(1)2428303236305x ++++==,3403303002702603005y ++++==,6402302(30)6(40)7.536ˆ4436b-⨯-⨯+⨯-+⨯-==-+++,3007.530ˆ525a=+⨯=,∴y 关于x 的线性回归方程为7.5525ˆyx =-+(2)设销售额为 ()227.55257.5359187.5zx y x x x ==-+=--+ ,070x ≤≤,当35x =百元时,此时销售额到达最大,该值为max 9187.5z =百元18.已知数列{}n a 的前n 项和为n S ,且123n n n S S a +=++,11a =.(1)证明:数列{}3n a +是等比数列,并求数列{}n a 的通项公式;(2)若()2log 3n n n b a a =⋅+,求数列{}n b 的前n 项和n T .【答案】(1)证明过程见详解,123n n a +=-(2)2239222n n T n n n+=⋅--【分析】(1)先利用n a 与n S 之间的关系化简已知等式,得到1n a +,n a 间的关系,从而可求得数列{}3n a +的首项和公比,即可求得数列{}n a 的通项公式;(2)先求得数列{}n b 的通项公式,再根据分组求和和错位相减即可求得n T .【详解】(1)因为123n n n S S a +=++,所以123n n n S S a +-=+,得123n n a a +=+,即()1323n n a a ++=+,又11a =,所以数列{}3n a +是首项为4,公比为2的等比数列,所以113422n n n a -++=⋅=,得123n n a +=-.(2)由题意得()()()()()1111223log 21231231n n n n n b n n n ++++=-⋅=+⋅-=+-+,所以()()2316332232122n n n n T n +++=⨯+⨯+++⨯-.令()231223212n n P n +=⨯+⨯+++⨯ ,则()3422223212n n P n +=⨯+⨯+++⨯ ,两式相减,得()()()223412222212222212412221n n n n n n P n n n ++++--=⨯++++-+⨯=+-+⨯=-⋅- ,故22n n P n +=⋅,所以2239222n n T n n n +=⋅--.19.如图,在四棱锥M ABCD -中,底面ABCD 是平行四边形,4AB =,AD =,MC ==45ADC ∠︒,点M 在底面ABCD 上的射影为CD 的中点O ,E 为线段AD 上的点(含端点).(1)若E 为线段AD 的中点,证明:平面MOE ⊥平面MAD ;(2)若3AE DE =,求二面角D ME O --的余弦值.【答案】(1)证明见解析【分析】(1)在△ADO 中,利用勾股定理证明ED ⊥EO ,再结合ED ⊥MO 即可证明AD ⊥平面MOE ,从而可证明平面MOE ⊥平面MAD ;(2)连接OA ,证明DO OA ⊥,以O 为坐标原点,建立空间直角坐标系,利用空间向量即可求解二面角的余弦值.【详解】(1)∵AD ⊂平面ABCD ,MO ⊥平面ABCD ,∴MO AD ⊥.∵O 为线段CD 的中点,E 为线段AD 的中点,∴2DO =,DE =∵=45ADC ∠︒,由余弦定理得22222222EO =+-⨯⨯,则222EO DE DO +=,则DE EO ⊥.∵MO EO O ⋂=,,MO EO ⊂平面MOE ,∴AD ⊥平面MOE ,又∵AD ⊂平面MAD ,∴平面MOE ⊥平面MAD .(2)连接OA ,由(1)知当E 为线段AD的中点时,AE DE EO ===,则A 、O 、D 三点在以AD 为直径的圆上,故DO OA ⊥.故以O为原点,建立如图所示的空间直角坐标系,又MC =2MO =,∴(0,0,0)O ,(2,0,0)D ,(0,2,0)A ,(0,0,2)M .又3AE DE =,则13,,022E ⎛⎫⎪⎝⎭,∴(0,0,2)OM = ,(2,0,2)DM =- ,(2,2,0)DA =-,13,,022OE ⎛⎫= ⎪⎝⎭.设平面MAD 的法向量为()111,,m x y z = ,则1111220220DM m x z DA m x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,,解得1111x z x y =⎧⎨=⎩,,取11x =,则平面MAD 的一个法向量为(1,1,1)m =.设平面MEO 的法向量为()222,,x n y z = ,则2221302220OE n x y OM n z ⎧⋅=+=⎪⎨⎪⋅==⎩,,解得22230x y z =-⎧⎨=⎩,,取23x =,则平面MEO 的一个法向量为(3,1,0)n =-.则30cos 15m n m n m n⋅⋅==⋅,则二面角D ME O --的余弦值为15.20.已知函数()2()4e 6x f x x x x =--+,()()ln 1g x x a x =-+,1a >-.(1)求()f x 的极值;(2)若存在[]11,3x ∈,对任意的232e ,e x ⎡⎤∈⎣⎦,使得不等式()()21g x f x >成立,求实数a 的取值范围.(3e 20.09≈)【答案】(1)极大值()2ln 28ln 28-+-,极小值为39e -(2)361,e ⎛⎫-- ⎪⎝⎭【分析】(1)求出()f x ',令()0f x '=,得3x =或ln 2x =,再列出,(),()x f x f x '的变化关系表,根据表格和极值的概念可求出结果;(2)根据(1)求出()f x 在[]1,3上的最小值为3(3)9e f =-,则将若存在[]11,3x ∈,对任意的232e ,e x ⎡⎤∈⎣⎦,使得不等式()()21g x f x >成立,转化为3ln 9e 1x a x-++<在23e ,e ⎡⎤⎣⎦上恒成立,再构造函数3ln 9e ()x h x x-+=,23e ,e x ⎡⎤∈⎣⎦,转化为min 1()a h x +<,利用导数求出min ()h x 代入可得解【详解】(1)由()2()4e 6x f x x x x =--+,得()()()e 4e 263e 26x x xf x x x x x '=+--+=--+()()3e 2x x =--,令()0f x '=,得3x =或ln 2x =,,(),()x f x f x '的变化关系如下表:x (),ln 2-∞ln 2()ln 2,33()3,+∞()f x '+0-+()f x 单调递增极大值单调递减极小值单调递增由表可知,当ln 2x =时,()f x 取得极大值,为(ln 2)f =()()2ln 2ln 24e ln 26ln 2--+()2ln 28ln 28=-+-,当3x =时,()f x 取得极小值,为()32(3)34e 318f =--+39e =-.(2)由(1)知,()f x 在[]1,3上单调递减,所以当[]1,3x ∈时,3min ()(3)9e f x f ==-,于是若存在[]11,3x ∈,对任意的232e ,e x ⎡⎤∈⎣⎦,使得不等式()()21g x f x >成立,则()()3ln 19e 1x a x a -+>->-在23e ,e ⎡⎤⎣⎦上恒成立,即3ln 9e 1x a x-++<在23e ,e ⎡⎤⎣⎦上恒成立,令3ln 9e ()x h x x -+=,23e ,e x ⎡⎤∈⎣⎦,则min 1()a h x +<,()321ln 9e ()x x x h x x⋅--+'=3210e ln xx -+=,因为23e ,e x ⎡⎤∈⎣⎦,所以[]ln 2,3x ∈,33310e ln 12e ,13e x ⎡⎤-+∈--⎣⎦,因为3e 20.09≈,所以313e 1320.097.090-≈-=-<,所以()0h x '<,所以()h x 单调递减,故333min 33ln e e 96()(e )1e e h x h +-===-,于是3611e a +<-,得36e a <-,又1a >-,所以实数a 的取值范围是361,e ⎛⎫-- ⎪⎝⎭.21.已知抛物线()2:20C x py p =>的焦点为F ,准线为l ,点P 是直线1:2l yx =-上一动点,直线l 与直线1l 交于点Q ,QF =(1)求抛物线C 的方程;(2)过点P 作抛物线C 的两条切线,PA PB ,切点为,A B ,且95FA FB -≤⋅≤,求PAB 面积的取值范围.【答案】(1)24x y=(2)⎡⎣【分析】(1)计算2,22p p Q ⎛⎫-- ⎪⎝⎭,0,2p F⎛⎫⎪⎝⎭,根据距离公式计算得到2p =,得到抛物线方程.(2)求导得到导函数,计算切线方程得到AB 的直线方程为()002y y xx +=,联立方程,根据韦达定理得到根与系数的关系,根据向量运算得到034y -≤≤,再计算PAB S =△.【详解】(1)直线1:2l y x =-,当2p y =-时,22p x =-,即2,22p p Q ⎛⎫-- ⎪⎝⎭,0,2p F⎛⎫⎪⎝⎭,则QF ==,解得2p =或25p =-(舍去),故抛物线C 的方程为24x y =.(2)设()11,A x y ,()22,B x y ,()00,P x y ,24x y =,2x y '=,PA 的直线方程为:()1112x y x x y =-+,整理得到()112y y xx +=,同理可得:PB 方程为()222y y xx +=,故()()0102020222y y x x y y x x ⎧+=⎪⎨+=⎪⎩,故AB 的直线方程为()002y y xx +=,()00224 y y xx x y ⎧+=⎨=⎩,整理得到200240x x x y -+=,12012024 x x x x x y +=⎧⎨=⎩,()()()1122121212,1,11FA FB x y x y x x y y y y ⋅=-⋅-=+-++()02221212221212000216123164x x x x x x x x y x y y +-=+-+=-++=-,09235y -≤-≤,解得034y -≤≤,设P 到AB 的距离为d,12PABS AB d =⋅=△,034y -≤≤,故[]2044,20y+∈,4,PAB S ⎡∈⎣△(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,曲线C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数).(1)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,求曲线C 极坐标方程;(2)若点A ,B 为曲线C 上的两个点且OA OB ⊥,求证:2211||||OA OB +为定值.【答案】(1)2243sin 1ρθ=+(2)证明见解析【分析】(1)先消去参数ϕ化为直角坐标方程,再根据公式cos x ρθ=,sin y ρθ=化为极坐标方程即可得解;(2)由于OA OB ⊥,故可设()1,A ρθ,2π,2B ⎛⎫+ ⎪⎝⎭ρθ,将,A B 的极坐标代入曲线C 的极坐标方程,根据极径的几何意义可求出结果.【详解】(1)由2cos sin x y ϕϕ=⎧⎨=⎩得2222cos sin 14x y ϕϕ+=+=,所以曲线C 的直角坐标方程为2214x y +=.将cos x ρθ=,sin y ρθ=代入到2214x y +=,得2222cos sin 14ρθρθ+=,得2243sin 1ρθ=+,所以曲线C 的极坐标方程为:2243sin 1ρθ=+.(2)由于OA OB ⊥,故可设()1,A ρθ,2π,2B ⎛⎫+ ⎪⎝⎭ρθ21243sin 1ρθ=+,2222443cos 1n π23si 1ρθθ⎛⎫+ ⎝=⎭=++⎪,所以2222121111||||OA OB ρρ+=+()()223sin 13cos 1544θθ+++==.即2211||||OA OB +为定值54.[选修4-5:不等式选讲]23.已知函数()|2||3|f x x x =++.(1)求函数()y f x =的最小值M ;(2)若0,0a b >>且a b M +=【答案】(1)3M =;试卷第17页,共17页.【分析】(1)利用零点分段法将()f x 写出分段函数的形式,画出图象,由图象可以看出函数()f x 的最小值;(2)由(1)知3a b +=,23≥,的最小值.【详解】(1)由于()()()()33323330330x x f x x x x x x x ⎧--<-⎪=++=--≤≤⎨⎪+>⎩,作出此函数图象如图所示:由图象可知函数()f x 的最小值为()03f =,即3M =.(2)由(1)知3a b +=,所以2924a b ab +⎛⎫≤= ⎪⎝⎭,所以149ab ≥,23≥,当且仅当32a b ==时等号成立,3+≥≥=,当且仅当32a b ==时等号成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陕西省高考数学全真模拟试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U=R,集合A={x|﹣2≤x<0},B={x|2x﹣1<},则A∩B=()A.(﹣∞,﹣2)∪(﹣1,+∞)B.(﹣∞,﹣2)∪[﹣1,+∞) C.[﹣2,﹣1)D.(﹣2,+∞)2.定义:=ad﹣bc,若复数z满足=﹣1﹣i,则z等于()A.1+i B.1﹣i C.﹣i D.3﹣i3.等差数列{a n}中,a4+a8=﹣2,则a6(a2+2a6+a10)的值为()A.4 B.8 C.﹣4 D.﹣84.在1,2,3,4四个数中随机地抽取一个数记为a,再在剩余的三个数中随机地抽取一个数记为b,则“不是整数”的概率为()A.B.C.D.5.设命题p:=(m,m+1),=(2,m+1),且∥;命题q:关于x的函数y=(m﹣1)log a x (a>0且a≠1)是对数函数,则命题p成立是命题q成立的()A.充分不必要条件B.必要不重充分条件C.充要条件D.既不充分也不不要条件6.执行如图所示的程序框图,若输出的S等于,则输入的N为()A.8 B.9 C.10 D.77.已知抛物线y2=2px(p>0)的焦点为F,准线为l,A,B是抛物线上过F的两个端点,设线段AB的中点M在l上的摄影为N,则的值是()A.B.1 C.D.28.在△ABC中,=5,=3,D是BC边中垂线上任意一点,则•的值是()A.16 B.8 C.4 D.29.已知F1,F2分别是双曲线﹣=1(a>0)的左、右焦点,P为双曲线上的一点,若∠F1PF1=60°,则△F1PF2的面积是()A.B.4C.2D.10.已知正四面体的棱长,则其外接球的表面积为()A.8πB.12πC.π D.3π11.已知函数f(x)=,若函数g(x)=f(x)﹣mx有且只有一个零点,则实数m的取值范围是()A.[1,4] B.(﹣∞,0] C.(﹣∞,4] D.(﹣∞,0]∪[1,4]12.把曲线C:y=sin(﹣x)•cos(x+)上所有点向右平移a(a>0)个单位,得到曲线C′,且曲线C′关于点(0,0)中心对称,当x∈[π,π](b为正整数)时,过曲线C′上任意两点的直线的斜率恒小于零,则b的值为()A.1 B.2 C.3 D.1或2二、填空题(本大题共4小题,每小题5分,共20分)13.(x﹣)n的展开式中只有第5项的二项式系数最大,则它的展开式中常数项是_______.14.某师傅用铁皮制作一封闭的工件,其直观图的三视图如图示(单位长度:cm,图中水平线与竖线垂直),则制作该工件用去的铁皮的面积为_______cm2.(制作过程铁皮的损耗和厚度忽略不计)15.若实数x,y满足,则的最大值是_______.16.已知数列{a n}中,a1=2,若a n+1=2a n+2n+1(n∈N*),则数列{a n}的通项公式a n=_______.三、解答题(本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知,函数的图象过点.(1)求t的值以及函数f(x)的最小正周期和单调增区间;(2)在△ABC中,角A,B,C的对边分别是a,b,c.若,求f(A)的取值范围.18.如图,四棱锥P﹣ABCD中,侧面PDC是正三角形,底面ABCD是边长为2的菱形,∠DAB=120°,且侧面PDC与底面垂直,M为PB的中点.(1)求证:PA⊥平面CDM;(2)求二面角D﹣MC﹣B的余弦值.19.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,PM2.5日均值在35微克/立方米以下空气质量为1级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米及其以上空气质量为超标.某试点城市环保局从该市区2015年全年每天的PM2.5检测数据中随机抽取6天的数据最为样本,检测值茎叶图如图(十位为茎,个位为叶),若从这6天的数据中随机抽出3天.(Ⅰ)求至多有2天空气质量超标的概率;(Ⅱ)若用随机变量X表示抽出的3天中空气质量为一级或二级的天数,求X的分布和数学期望.20.过椭圆C:+=1(a>b>0)的右焦点F2的直线交椭圆于A,B两点,F1为其左焦点,已知△AF1B的周长为4,椭圆的离心率为.(1)求椭圆C的方程;(2)设P为椭圆C的下顶点,椭圆C与直线y=kx+m相交于不同的两点M,N,当|PM|=|PN|时,求实数m的取值范围.21.已知函数f(x)=ln(3x+2)﹣x2(Ⅰ)求f(x)的极值;(Ⅱ)若对任意x∈[1,2],不等式|a﹣lnx|+ln|f′(x)+3x|>0恒成立,求实数a的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB,且(1)证明:直线AC与△BDE的外接圆相切;(2)求EC的长.[选修4-4:坐标系与参数方程]23.已知曲线C1的参数方程是(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴,建立平面直角坐标系,曲线C2的极坐标方程是ρ=﹣4cosθ.(1)求曲线C1和C2交点的直角坐标;(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积.[选修4-5:不等式选讲]24.已知函数f(x)=|x|,g(x)=﹣|x﹣4|+m(Ⅰ)解关于x的不等式g[f(x)]+2﹣m>0;(Ⅱ)若函数f(x)的图象恒在函数g(x)图象的上方,求实数m的取值范围.参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U=R,集合A={x|﹣2≤x<0},B={x|2x﹣1<},则A∩B=()A.(﹣∞,﹣2)∪(﹣1,+∞)B.(﹣∞,﹣2)∪[﹣1,+∞) C.[﹣2,﹣1)D.(﹣2,+∞)【考点】交集及其运算.【分析】求出B中不等式的解集确定出B,找出A与B的交集即可.【解答】解:由B中不等式变形得:2x﹣1<=2﹣2,得到x﹣1<﹣2,解得:x<﹣1,即B=(﹣∞,﹣1),∵A=[﹣2,0),∴A∩B=[﹣2,﹣1),故选:C.2.定义:=ad﹣bc,若复数z满足=﹣1﹣i,则z等于()A.1+i B.1﹣i C.﹣i D.3﹣i【考点】复数的代数表示法及其几何意义.【分析】利用新定义直接化简=﹣1﹣i,则iz=1,求出复数z,它的分子、分母同乘分母的共轭复数,进行化简可得答案.【解答】解:根据定义=﹣zi﹣i=﹣1﹣i,则iz=1,∴.故选:C.3.等差数列{a n}中,a4+a8=﹣2,则a6(a2+2a6+a10)的值为()A.4 B.8 C.﹣4 D.﹣8【考点】等差数列的通项公式.【分析】由等差数列性质得a4+a8=2a6=﹣2,解得a6=﹣1,由此能求出结果.【解答】解:∵等差数列{a n}中,a4+a8=﹣2,∴a4+a8=2a6=﹣2,解得a6=﹣1,∴a6(a2+2a6+a10)=a6×4a6=4.故选:A.4.在1,2,3,4四个数中随机地抽取一个数记为a,再在剩余的三个数中随机地抽取一个数记为b,则“不是整数”的概率为()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】先求出基本事件总数,再求出“不是整数”包含的基本事件个数,由此能求出“不是整数”的概率.【解答】解:∵在1,2,3,4四个数中随机地抽取一个数记为a,再在剩余的三个数中随机地抽取一个数记为b,∴基本事件总数n=4×3=12,“不是整数”包含的基本事件有,,,,,,,,共8个,∴“不是整数”的概率p==.故选:C.5.设命题p:=(m,m+1),=(2,m+1),且∥;命题q:关于x的函数y=(m﹣1)log a x (a>0且a≠1)是对数函数,则命题p成立是命题q成立的()A.充分不必要条件B.必要不重充分条件C.充要条件D.既不充分也不不要条件【考点】必要条件、充分条件与充要条件的判断.【分析】命题p:=(m,m+1),=(2,m+1),且∥,利用向量共线定理即可得出m的值.命题q:关于x的函数y=(m﹣1)log a x(a>0且a≠1)是对数函数,可得m﹣1=1,x>0,解得m.即可判断出结论.【解答】解:∵命题p:=(m,m+1),=(2,m+1),且∥,∴2(m+1)﹣m(m+1)=0,和化为(m+1)(m﹣2)=0,解得m=﹣1或2;命题q:关于x的函数y=(m﹣1)log a x(a>0且a≠1)是对数函数,∴m﹣1=1,x>0,解得m=2.则命题p成立是命题q成立的必要不充分条件.故选:B.6.执行如图所示的程序框图,若输出的S等于,则输入的N为()A.8 B.9 C.10 D.7【考点】程序框图.【分析】模拟执行程序,可得当k=8时,S=+++…+=,由题意,此时应该不满足条件k<N,退出循环,输出S的值为,从而可得输入的N为为8.【解答】解:由题意,模拟执行程序,可得k=1,S=0S=,满足条件k<N,k=2,S=+,满足条件k<N,k=3,S=++,…满足条件k<N,k=8,S=+++…+=(1﹣)+()+…(﹣)=1﹣=,由题意,此时应该不满足条件k<N,退出循环,输出S的值为,故输入的N为为8.故选:A.7.已知抛物线y2=2px(p>0)的焦点为F,准线为l,A,B是抛物线上过F的两个端点,设线段AB的中点M在l上的摄影为N,则的值是()A.B.1 C.D.2【考点】抛物线的简单性质.【分析】根据抛物线的性质和梯形的中位线定理可得出|MN|=(|AF|+|BF|)=|AB|.【解答】解:过A作AP⊥l于P,过B作BQ⊥l于Q,则|AP|=|AF|,|BQ|=|BF|.∵M为AB的中点,∴|MN|=(|AP|+|BQ|)=(|AF|+|BF|)=|AB|.∴=.故选:A.8.在△ABC中,=5,=3,D是BC边中垂线上任意一点,则•的值是()A.16 B.8 C.4 D.2【考点】平面向量数量积的运算.【分析】设BC中点为M,利用表示出,,代入数量积公式计算.【解答】解:设BC中点为M,则.∴.∵DM⊥BC,∴.∴•=()==()•()=()=×(25﹣9)=8.故选:B.9.已知F1,F2分别是双曲线﹣=1(a>0)的左、右焦点,P为双曲线上的一点,若∠F1PF1=60°,则△F1PF2的面积是()A.B.4C.2D.【考点】双曲线的简单性质.【分析】由题意可得F2(,0),F1(﹣,0),由余弦定理可得PF1•PF2=16,由S= PF1•PF2sin60°,即可求得△F1PF2的面积.【解答】解:由题意可得F2(,0),F1(﹣,0),在△PF1F2中,由余弦定理可得F1F22=16+4a2=PF12+PF22﹣2PF1•PF2cos60°=(PF1﹣PF2)2+PF1•PF2=4a2+PF1•PF2,即有PF1•PF2=16.可得S△=PF1•PF2sin60°=×16×=4.故选:B.10.已知正四面体的棱长,则其外接球的表面积为()A.8πB.12πC.π D.3π【考点】球的体积和表面积.【分析】将正四面体补成一个正方体,正四面体的外接球的直径为正方体的对角线长,即可得出结论.【解答】解:将正四面体补成一个正方体,则正方体的棱长为1,正方体的对角线长为,∵正四面体的外接球的直径为正方体的对角线长,∴正四面体的外接球的半径为∴外接球的表面积的值为4πr2=4=3π.故选:D.11.已知函数f(x)=,若函数g(x)=f(x)﹣mx有且只有一个零点,则实数m的取值范围是()A.[1,4] B.(﹣∞,0] C.(﹣∞,4] D.(﹣∞,0]∪[1,4]【考点】分段函数的应用.【分析】若函数g(x)=f(x)﹣mx有且只有一个零点,则函数f(x)与函数y=mx的图象只有一个交点,数形结合可得答案.【解答】解:若函数g(x)=f(x)﹣mx有且只有一个零点,则函数f(x)与函数y=mx的图象只有一个交点,在同在坐标系中画出两个函数的图象如下图所示:∵f′(x)=,故当m∈(﹣∞,0]∪[1,4]时,两个函数图象有且只有一个交点,即函数g(x)=f(x)﹣mx有且只有一个零点,故选:D.12.把曲线C:y=sin(﹣x)•cos(x+)上所有点向右平移a(a>0)个单位,得到曲线C′,且曲线C′关于点(0,0)中心对称,当x∈[π,π](b为正整数)时,过曲线C′上任意两点的直线的斜率恒小于零,则b的值为()A.1 B.2 C.3 D.1或2【考点】利用导数研究曲线上某点切线方程.【分析】运用二倍角的正弦公式和诱导公式,可得y=cos2x,再由平移和中心对称可得y=±sin2x,求得函数的导数,由有余弦函数的图象可得减区间,再由b为整数,即可得到b=1或2.【解答】解:y=sin(﹣x)•cos(x+)=sin(x+)cos(x+)=sin(2x+)=cos2x,由题意可得曲线C′:y=cos(2x﹣2a),曲线C′关于点(0,0)中心对称,可得2a=kπ+,k∈N,即有y=±sin2x,由y=sin2x的导数为y′=cos2x,由cos2x≤0,可得2x∈[2kπ+,2kπ+].当x∈[π,π](b为正整数),过曲线C′上任意两点的直线的斜率恒小于零,即有y′<0恒成立,可得[π,π]⊆[,],即有b=1或2;由y=﹣sin2x的导数为y′=﹣cos2x,由﹣cos2x≤0,可得2x∈[2kπ+,2kπ+].当x∈[π,π](b为正整数),过曲线C′上任意两点的直线的斜率恒小于零,即有y′<0恒成立,则[π,π]⊆[2kπ+,2kπ+]不恒成立.综上可得b=1或2.故选:D.二、填空题(本大题共4小题,每小题5分,共20分)13.(x﹣)n的展开式中只有第5项的二项式系数最大,则它的展开式中常数项是1120.【考点】二项式系数的性质.【分析】由题意求得n=8,在二项式展开式的通项公式中,再令x的幂指数等于0,求得r的值,即可求得展开式中的常数项的值.【解答】解:(x﹣)n的展开式中只有第5项的二项式系数最大,故n为偶数,展开式共有9项,故n=8.(x﹣)n即(x﹣)8,它的展开式的通项公式为T r+1==•(﹣2)r•x8﹣2r,令8﹣2r=0,求得r=4,则展开式中的常数项是•(﹣2)4=1120.故答案为:1120.14.某师傅用铁皮制作一封闭的工件,其直观图的三视图如图示(单位长度:cm,图中水平线与竖线垂直),则制作该工件用去的铁皮的面积为cm2.(制作过程铁皮的损耗和厚度忽略不计)【考点】由三视图求面积、体积.【分析】本题以实际应用题为背景考查立体几何中的三视图.由三视图可知,该几何体的形状如图,它是底面为正方形,各个侧面均为直角三角形[的四棱锥,用去的铁皮的面积即该棱锥的表面积【解答】解:由三视图可知,该几何体的形状如图,它是底面为正方形,各个侧面均为直角三角形的四棱锥,用去的铁皮的面积即该棱锥的表面积,其底面边长为10,故底面面积为10×10=100 与底面垂直的两个侧面是全等的直角,两直角连年长度分别为10,20,故它们的面积皆为100 另两个侧面也是全等的直角三角形,两直角边中一边是底面正方形的边长10,另一边可在与底面垂直的直角三角形中求得,其长为=10,故此两侧面的面积皆为50故此四棱锥的表面积为cm2.故答案为:15.若实数x,y满足,则的最大值是2.【考点】简单线性规划.【分析】画出满足条件的平面区域,求出角点的坐标,结合的几何意义求出其最大值即可.【解答】解:画出满足条件的平面区域,如图示:,由,解得A(1,2),而的几何意义表示平面区域内的点到原点0的斜率,显然OA的斜率最大,故的最大值是2,故答案为:2.16.已知数列{a n}中,a1=2,若a n+1=2a n+2n+1(n∈N*),则数列{a n}的通项公式a n=n•2n.【考点】数列递推式.【分析】a n+1=2a n+2n+1(n≥1),变形为﹣=1,利用等差数列的通项公式即可得出.【解答】解:a n+1=2a n+2n+1(n≥1),∴﹣=1,∴数列是等差数列,首项为1,公差为1.∴=1+(n﹣1)=n,a n=n•2n.故答案为:n•2n.三、解答题(本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知,函数的图象过点.(1)求t的值以及函数f(x)的最小正周期和单调增区间;(2)在△ABC中,角A,B,C的对边分别是a,b,c.若,求f(A)的取值范围.【考点】三角函数中的恒等变换应用;平面向量数量积的运算.【分析】(1)由向量和三角函数公式可得f(x)=sin(2x﹣),由周期公式可得周期,解可得单调增区间;(2)由题意和正弦定理以及三角函数公式可得cosB=,进而可得A的范围,由三角函数值域可得.【解答】解:(1)由题意可得,∵点在函数f(x)的图象上,∴,解得,∴f(x)=sin(2x﹣),∴,解可得kπ﹣≤x≤kπ+,∴函数f(x)的单调增区间为;(2)∵,∴ccosB+bcosC=2acosB,∴由正弦定理可得sinCcosB+sinBcosC=2sinAcosB,∴sin(B+C)=2sinAcosB,即sinA=2sinAcosB,∵A∈(0,π),∴sinA≠0,∴cosB=∵B∈(0,π),∴,,∴,,∴,∴f(A)的取值范围是.18.如图,四棱锥P﹣ABCD中,侧面PDC是正三角形,底面ABCD是边长为2的菱形,∠DAB=120°,且侧面PDC与底面垂直,M为PB的中点.(1)求证:PA⊥平面CDM;(2)求二面角D﹣MC﹣B的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(1)建立空间直角坐标系,根据线面垂直的性质定理即可证明DM⊥BM;(2)利用向量法求出平面的法向量,利用向量法进行求解即可.【解答】证明(1)由底面ABCD是边长为2的菱形,∠DAB=120°,且侧面PDC与底面垂直,∴DC=2,D0=,则OA⊥DC,建立以O为坐标原点,OA,OC,OP分别为x,y,z轴的空间直角坐标系如图:则A(3,0,0),P(0,0,3),D(0,﹣,0),B(3,2,0),C(0,,0),∵M为PB的中点.∴M(,,),=(,2,),=(3,0,﹣3),=(0,2,0),则•=×3+2×0﹣×3=0,•=0,则PA⊥DM,PA⊥DC,∵CD∩DM=D,∴PA⊥平面DMC.(2)=(,0,),=(3,﹣,0),设平面AMC的法向量为=(x,y,z),则由•=0,•=0,得,令x=1,则y=,z=﹣1,则=(1,,﹣1),同理可得平面CDM的法向量为==(3,0,﹣3),则cos<,>===,即二面角D﹣MC﹣B的余弦值是.19.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,PM2.5日均值在35微克/立方米以下空气质量为1级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米及其以上空气质量为超标.某试点城市环保局从该市区2015年全年每天的PM2.5检测数据中随机抽取6天的数据最为样本,检测值茎叶图如图(十位为茎,个位为叶),若从这6天的数据中随机抽出3天.(Ⅰ)求至多有2天空气质量超标的概率;(Ⅱ)若用随机变量X表示抽出的3天中空气质量为一级或二级的天数,求X的分布和数学期望.【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(Ⅰ)至多有2天空气质量超标的对立事件是3天空气质量都超标,由此利用对立事件概率计算公式能求出至多有2天空气质量超标的概率.(Ⅱ)由题意知X的可能取值为1,2,3,分别求出相应的概率,由此能求出X的分布列和EX.【解答】解:(Ⅰ)设“至多有2天空气质量超标”为事件A,“3天空气质量都超标”为事件B,则P(B)=0,∴至多有2天空气质量超标的概率P(A)=1﹣P(B)=1.(Ⅱ)由题意知X的可能取值为1,2,3,P(X=1)==,P(X=2)==,P(X=3)==,∴X的分布列为:X 1 2 3PEX==2.20.过椭圆C:+=1(a>b>0)的右焦点F2的直线交椭圆于A,B两点,F1为其左焦点,已知△AF1B的周长为4,椭圆的离心率为.(1)求椭圆C的方程;(2)设P为椭圆C的下顶点,椭圆C与直线y=kx+m相交于不同的两点M,N,当|PM|=|PN|时,求实数m的取值范围.【考点】椭圆的简单性质.【分析】(1)利用△AF1B的周长为4,椭圆的离心率为,确定几何量,从而可得椭圆的方程;(2)设A为弦MN的中点,直线与椭圆方程联立得(3k2+1)x2+6mkx+3(m2﹣1)=0,由于直线与椭圆有两个交点,可得m2<3k2+1,|PM|=||PN|,可得AP⊥MN,由此可推导出m的取值范围.【解答】解:(1)∵△AF1B的周长为4,椭圆的离心率为,∴a=,c=∴b=1,∴椭圆的方程为:=1;(2)设A(x A,y A)、M(x M,y M)、N(x N,y N),A为弦MN的中点,直线y=kx+m与椭圆方程联立,消去y可得(3k2+1)x2+6mkx+3(m2﹣1)=0,∵直线与椭圆相交,∴△=(6mk)2﹣12(3k2+1)(m2﹣1)>0,∴m2<3k2+1,①由韦达定理,可得A(﹣,)∵|PM|=||PN|,∴AP⊥MN,∴∴2m=3k2+1②把②代入①得2m>m2解得0<m<2∵2m=3k2+1>1,∴m>∴<m<2.当k=0时,m=,也成立.综上可得m的范围是[,2).21.已知函数f(x)=ln(3x+2)﹣x2(Ⅰ)求f(x)的极值;(Ⅱ)若对任意x∈[1,2],不等式|a﹣lnx|+ln|f′(x)+3x|>0恒成立,求实数a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极大值即可;(Ⅱ)问题转化为a>lnx﹣ln或a<lnx+ln恒成立①,设h(x)=lnx﹣ln=ln,g(x)=lnx+ln=ln,根据函数的单调性求出a的范围即可.【解答】解:(Ⅰ)函数的定义域是(﹣,+∞),f′(x)=,令f′(x)>0,解得:﹣<x<,令f′(x)<0,解得:x>,∴f(x)在(﹣,)递增,在(,+∞)递减,∴f(x)极大值=f()=ln3﹣;(Ⅱ)对任意x∈[1,2],不等式|a﹣lnx|+ln|f′(x)+3x|>0恒成立,⇔a>lnx﹣ln或a<lnx+ln恒成立①,设h(x)=lnx﹣ln=ln,g(x)=lnx+ln=ln,由题意得:a>h(x)或a<g(x)在x∈[1,2]恒成立,⇔a>h(x)max或a<g(x)min,∵h′(x)=>0,g′(x)=>0,∴h(x),g(x)在[1,2]递增,要使不等式①恒成立,当且仅当a>h(2)或a<g(1),即a<ln或a>ln.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB,且(1)证明:直线AC与△BDE的外接圆相切;(2)求EC的长.【考点】与圆有关的比例线段;圆的切线的判定定理的证明.【分析】(1)取BD的中点为O,连接OE,由角平分线的定义和两直线平行的判定和性质,结合圆的切线的定义,即可得证;(2)设△BDE的外接圆的半径为r,运用直角三角形的勾股定理,和直角三角形的性质,即可得到所求EC的长.【解答】解:(1)证明:取BD的中点为O,连接OE,由BE平分∠ABC,可得∠CBE=∠OBE,又DE⊥EB,即有OB=OE,可得∠OBE=∠BEO,可得∠CBE=∠BEO,即有BC∥OE,可得∠AEO=∠C=90°,则直线AC与△BDE的外接圆相切;(2)设△BDE的外接圆的半径为r,在△AOE中,OA2=OE2+AE2,且即(r+2)2=r2+62,解得r=2,OA=4,由OA=2OE,可得∠A=30°,∠AOE=60°,可得∠CBE=∠OBE=30°,BE=2rsin60°=r,则EC=BE=•r=××2=3.[选修4-4:坐标系与参数方程]23.已知曲线C1的参数方程是(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴,建立平面直角坐标系,曲线C2的极坐标方程是ρ=﹣4cosθ.(1)求曲线C1和C2交点的直角坐标;(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)由得,两式平方作和可得直角坐标方程,由ρ=﹣4cosθ可得:ρ2=ρcosθ,把ρ2=x2+y2,x=ρcosθ,代入可得直角坐标方程,联立解得交点坐标.(2)由平面几何知识可知,当A、C1、C2、B依次排列且共线时|AB|最大,此时,O到直线AB的距离为,即可得出.【解答】解:(1)由得两式平方作和得:x2+(y﹣2)2=4,即x2+y2﹣4y=0.①由ρ=﹣4cosθ⇒ρ2=ρcosθ,即x2+y2=﹣4x②的方程得交点为(0,0)和(﹣2,2).②﹣①:x+y=0,代入曲线C1(2)由平面几何知识可知,当A、C1、C2、B依次排列且共线时|AB|最大,此时,O到直线AB的距离为,∴△OAB的面积为:.[选修4-5:不等式选讲]24.已知函数f(x)=|x|,g(x)=﹣|x﹣4|+m(Ⅰ)解关于x的不等式g[f(x)]+2﹣m>0;(Ⅱ)若函数f(x)的图象恒在函数g(x)图象的上方,求实数m的取值范围.【考点】函数的图象;绝对值不等式的解法.【分析】(Ⅰ)把函数f(x)=|x|代入g[f(x)]+2﹣m>0可得不等式||x|﹣4|<2,解此不等式可得解集;(Ⅱ)函数f(x)的图象恒在函数g(x)图象的上方,则f(x)>g(x)恒成立,即m<|x﹣4|+|x|恒成立,只要求|x﹣4|+|x|的最小值即可.【解答】解:(Ⅰ)把函数f(x)=|x|代入g[f(x)]+2﹣m>0并化简得||x|﹣4|<2,∴﹣2<|x|﹣4<2,∴2<|x|<6,故不等式的解集为(﹣6,﹣2)∪(2,6);(Ⅱ)∵函数f(x)的图象恒在函数g(x)图象的上方,∴f(x)>g(x)恒成立,即m<|x﹣4|+|x|恒成立,∵|x﹣4|+|x|≥|(x﹣4)﹣x|=4,∴m的取值范围为m<4.。