chap 6 煤岩学基础

合集下载

《煤化学》讲稿03章-煤岩学基础

《煤化学》讲稿03章-煤岩学基础
包括黄铁矿、白铁矿等
黄铁矿与白铁矿的分子式相同FeS2 ,但晶形不同
黄铁矿属等轴晶系,常见晶形为立方体及五角十二面体 颜色多为浅黄铜色,表面常带有褐色、黄褐色,细粉状黄铁矿集合体常呈绿黑色。
黄铁矿晶体结构
*
白铁矿的晶体结构
白铁矿在自然界的分布远较黄铁矿少,并且不形成大量的聚积;是FeS2的不稳定变体,高于350℃即转变为黄铁矿; 白铁矿为斜方晶系,晶体常呈板状产出。集合体呈结核状、球状、钟乳状、皮壳状等
CaSO4•2H2O
硬石膏
8
石膏
9
*
红石膏 石膏 石膏 石膏
自然硫
*
硫酸盐矿物除石膏外还有:
烧石膏 CaSO4 ·1/2H2O 硬石膏 CaSO4 针绿钒 Fe2(SO4)3 · 9H2O 水铁钒 Fe2SO4 · H2O 黄钾铁钒 K2Fe6(OH)12 (SO4)4
② 硫化物类矿物
③ 碳酸盐类矿物
④ 氧化物类矿物
⑤ 硫酸盐类矿物
煤中矿物质对液化效率有一定影响。 Fe、S、Cl等, 尤其是黄铁矿对煤液化具有性化作用 碱金属(K、Na)和碱土金属(Ca)对某些催化剂起毒化作用 矿物质含量高,会增加反应设备的非生产性负荷,而灰渣易磨损设备,且因分离困难而造成油收率的减少 一般液化用原料煤的灰分应 < 10%
KA12A1Si3O10(OH,F)2
K (Mg,Fe,Mn)3A1Si3O10(OH)2
白云母
黑云母
*
(二)硫化物类矿物
黄铁矿是煤中大量存在的矿物之一,常呈晶粒、透镜体、鲕状和球状结核在煤中出现,有时也见到充填于植物细胞腔中或替代孢子体(被黄铁矿完全替代)、角质体等。
多为不透明矿物,在反射光下具有耀眼的金属光泽

学习笔记 煤岩学..

学习笔记 煤岩学..

煤岩学中国地史聚煤模式演变与特征沉积环境、聚煤类型、植物群落得演化、气候条件、腐殖煤的成因类型煤岩组分的烃产率、壳质组>镜质组>惰质组凝胶化作用煤岩学基础1、煤的显微组分国际硬煤显微组分分类镜质组结构镜质体1 、2 科达木结构镜质体真菌结构镜质体木质结构镜质体鳞木结构镜质体封印木镜质体无结构镜质体均质镜质体基质镜质体团块镜质体胶质镜质体镜屑体壳质组孢子体薄壁孢子体厚壁孢子体大孢子体小孢子体角质体树脂体镜质树脂体木栓质体藻类体结构藻类体皮拉藻类体轮奇藻类体层状藻类体荧光体沥青质体渗出沥青体壳屑体惰质组半丝质体丝质体火焚丝质体氧化丝质体粗粒体菌类体真菌菌类体密丝组织体团块类菌类体假团块菌类体微粒体惰屑体镜质组镜质组是腐殖煤中最主要的显微组分,凝胶化作用地球化学凝胶化作用又称为“镜质化作用”结构镜质体1的细胞结构清晰细胞腔成圆形、椭圆形、矩形或纺锤形。

胞腔大部分被胶质镜质体、树脂体、微粒体及粘土矿物填充无结构镜质体在普通显微镜下看不出结构的显微结构均质镜质体成条带状或透镜状出现,时有垂直层面的裂纹,纯净均一,反应来自强凝胶化的植物组织被角质体镶边的结构镜质体和均质镜质体来源于植物的叶片和嫩枝统称为叶镜质体反射率低,荧光性强,叶肉组织的细胞是由于凝胶化作用膨胀。

形成胶团状结构基质镜质体胶结其他显微组分和同生矿物的凝胶化基质。

成条带状、分叉条带状,反射率稍低于均质镜质体,原生灰分较多团块镜质体指一种均一的团块状镜质组组分成圆形、椭圆形、长圆形,团块镜质体可作为胞腔填充物非常稳定胶质镜质体,沉淀在胞腔等空隙中纯胶状的腐殖凝胶演化而成。

没有混入其他物质,所以纯净。

胞腔内充满胶质镜质体镜屑体镜质组碎屑颗粒组成壳质组起源与高等植物的孢子外壳,有明显的荧光效应。

壳质组的氢含量、挥发分和产烃率最高。

孢子体来自成煤植物的繁殖器官孢子和花粉。

孢子细胞内部是原生质,孢子壁是由内壁、外壁和周壁组成大孢子体称被压扁的扁平状,纵切面成封闭的长环状煤中所见的主要是孢子的外壁小孢子体纵切面剁成扁环状细短的线条状和蠕虫状。

煤炭基础知识 ppt课件

煤炭基础知识 ppt课件
下限大于6mm的煤炭产品。 ▪ ⑶洗选煤(包括7个品种)。经过洗选加工的煤。 ▪ ⑷原煤。从毛煤中选出规定粒度的矸石(包括黄铁矿等杂物)
以后的煤炭产品。
▪ ⑸低质煤(包括2个品种)。通常指低发热量(< 14.5MJ/kg)、高灰分的煤(>40%)的各种煤炭产品或煤 泥(洗煤厂粒度在0.5mm以下的一种洗煤产品)。
4.煤的硬度
煤的硬度是指用其它较硬的物质刻划的强度。了解煤的
硬度能使人们考虑在采煤时所使用的机械装置及推测机械
磨损等情况。同时还能事先预测破碎、成型加工的难易程
度。
煤的显微硬度是指煤对坚硬的物体压入的对抗能力,测
定原理是在光滑的煤样平面上压入一坚硬的特殊形状的压
力,在煤的表面压入一印痕,然后在显微镜下观察印痕大
燃料采制化培训
TEL: Email:
电力工业河北发电用煤质量监督检验中心
2010年
版权所有 谢绝复制
第一章 煤炭基础
▪ 煤炭是天然形成的具有复杂的组成与结构的混合物, 要充分利用煤炭资源,必须掌握煤炭的基本特性, 了解煤炭质量指标的变化对电力生产过程的影响。 本章主要阐述煤的形成过程、煤炭的主要类别及其 特性、煤的物理和化学特性,介绍煤炭的基本组成 和表达方式,发电用煤常用的煤炭特性指标、物理 意义以及与电力生产的关系等。
即:碳+氢+氮+氧+硫+水分+灰分=100
见图1—1。
14.05.2021
21
煤的组成与表达式
▪ 1-1 煤的工业分析和元素分析组成的关系图
14.05.2021
22
煤的组成与表达式
由此我们可以看出,从煤组成的角度去分析,煤 中的碳、氢、氮、氧、硫相当于煤中的挥发分与固 定碳,它们构成了煤中的可燃组分,即:

煤岩学基础

煤岩学基础

微观方法-用显微镜研究煤
显微镜下研究煤的方法: 研究方法 研究对象
透射光法
煤的薄片
研究内容
侧重点
煤的有机显微组分的透
光色、透明度、形态、结 煤的成因研
构和轮廓等

反 普通反射光 射 (a)
光 油浸反射光 法 (o)
煤光片、 煤砖光片
煤的有机显微组分的反 射色、形态、结构、轮廓 、突起、反射率、显微硬 度等
1.1 镜质组( Vitrinite)的成因
通过木质素组织凝胶化作用形成。成煤植物的组织在气 流闭塞、积水较深的沼泽环境下,产生极其复杂的变化。一方 面是植物组织在微生物作用下,分解、水解、化合形成新的化 合物并破坏植物组织器官的细胞结构;另一方面植物组织在沼 泽水的浸泡下吸水膨胀,使植物细胞结构变形、破坏乃至消失 ,或进一步再分解为凝胶的过程。植物组织经凝胶化作用并经 煤化作用后形成凝胶化组分(镜质组)。镜质组是煤中最主要 煤岩组分,含量50-80%,甚至90%。
煤岩显微组分的反射率
①在与煤层层面成任意交角的切面上 最大反射率不变,而反射率则随交角 不同而变化,源于煤中晶体的各向光 学异性; ②从长焰煤到无烟煤,Rmaxo增加十几 倍,而Rmax只增加两三倍。
ቤተ መጻሕፍቲ ባይዱ
煤岩显微组分的反射率变化规律
①镜质组的反射率随挥发分降低有 规律地均匀提高 ②反射率从低到高的次序为稳定组 、镜质组、丝质组。 ③在Romax=1.5稳定组、镜质组的区 别消失;Cdaf在87~89% ③ 镜质组最大反射率作为煤化程 度的指标(为什么?)
3.2 煤岩组分的定量方法
试片随之移动。如此测定第“一、第二……等测线,直至 测完整个试片。显然,含量高的组分,出现在视域中心 (十字丝交点上)的机会多,按的次数必然愈多。因此, 每一个键上按的次数与所有键上按的总数之比,就是该 组分的体积百分含量,其计算公式为:

煤岩学

煤岩学
煤的抗磨硬度指煤岩组分 的抗磨强度,用煤在研磨抛光 时的阻力大小来表示,表现为 各显微组分的突起的高低。它
表示煤的相对硬度大小。
煤的显微硬度与煤化程度的关系
第二节 煤的宏观研究
煤的宏观研究:是指用肉眼或借助放大镜观察煤的岩石特 征,包括煤的宏观物理性质、结构、构造、宏观煤岩组分和 宏观煤岩类型等。
第三章 煤岩学的基本知识
煤是固体可燃有机矿产,是一种特殊的沉积岩。其岩石组 成比较复杂,常具有明显的不均匀性,主要由有机物质组成, 含有无机矿物杂质。
煤岩学是从岩石学的角度研究煤的物质组成、物理性质
和结构、构造并确定其成因及合理应用的边缘学科。
煤岩学的 研究方法
显微研究:是在显微镜下依据煤的形态特征和 光学性质研究显微煤岩组分、显微煤 岩类型、显微物理性质等。
煤的宏观研究的意义:能够初步确定煤的成因类型、煤化程度、宏观 组成、煤层的结构及其复杂程度等,为评价煤质、研究煤(煤层)的形 成环境、煤层对比、煤层开采、煤的综合利用等问题提供依据。
一、煤的宏观物理性质
煤的宏观物理性质有煤的光学性质、力学性质、空间结构 性质、热性质、电磁性质等,主要包括煤的颜色、条痕色、 光泽、硬度、脆度、断口、裂隙、密度、表面积、孔隙度、 导电性等方面。
煤的折射率是光线通过煤的界面时发生折射后进入煤的内
部,其入射角的正弦和折射角的正弦之比,用N表示。随着煤
化程度的增高,煤的折射率也相应增高,从1.680增至2.02。
(二)煤的显微硬度、抗磨硬度
煤的显微硬度(维氏硬度, HV)指在显微镜下以很小的负 荷压力(0.01kg~0.02kg)将 金刚石锥压入煤的显微组分, 测量压痕大小,得到显微硬度 值。压痕越大,煤的显微硬度 越小;反之,显微硬度越大。 它表示煤的绝对硬度大小。

第三章 煤岩学

第三章 煤岩学



团块镜质体
镜下待征:为均一团块状。大 多呈圆形、椭圆形、纺捶形或 多少带有棱角状的轮廓清晰的 均质块体。可单独出现或充填 于细胞腔中(此时其大小与植物
细胞腔一致,为50一100μm),
也可成为较大的圆形或椭圆形 的单个体,最大的可超过 300μm。反光油浸镜下为深灰 或浅灰色,透射光下为淡红色至 红褐色,正交偏光镜下呈均匀 消光现象。
1.镜质组(Vitrinite)
它是腐植煤中最主要的显微组分.来源于由植物茎、叶的木质纤维组织,
经凝胶化作用(也称镜煤化作用)形成的各种凝胶体。镜质组的透明程度按 变质程度由低到高,透光色从橙红(长焰煤)到红棕色(肥煤,焦煤),直到不
透明(焦煤以后);反光色从深灰(长焰煤)到浅灰(焦煤),直到白色(无烟煤)
2 壳质组(exinite)
壳质组分来源于植物的皮壳组织和分泌物,以及与这些物 质相关的次生物质,即袍子、角质、树皮、树脂及渗出沥 青等。此类组分在分类中称壳质组或稳定组。该组组分均 具有可辨认的持定形态持征。在反光油浸镜下呈灰黑色至 在透光镜下呈柠檬黄、桔黄或桔红色,轮廓清楚, 形态特 殊,具有明显的荧光效应。在蓝光激发下的反光荧光色为 浅绿黄色、亮黄色、桔黄色、橙灰褐色和褐色,其荧光强 度随变质程度的差异和组分不同而强弱不一。
随变质程度增加变成淡红色,到中变质阶段则呈与镜质
组相似的红色。荧光性也随变质程度增加而消失。
在煤中按其组分来源及形态特征可分为下列组分。

孢子是一些植物所产生的一种有繁殖或休眠作用的细胞,能直接发育 成新个体。孢子一般微小,单细胞。由于它的性状不同,发生过程和 结构的差异而有不同名称:
植物通过无性生殖产生的孢子叫“无性孢子”

藻类体

煤岩学

煤岩学

第一章成煤原始物质与堆积环境成煤作用:从植物死亡堆积到形成煤炭的过程。

分两个阶段:①腐泥化(泥炭化)阶段:主要发生于地表的泥炭沼泽、湖泊以及浅海滨岸地带,主要作用:菌解作用(表生的生物地球化学作用)结果:使低等植物转变为腐泥,高等植物则形成泥炭。

②煤化作用阶段:泥炭由于地层沉降等原因被沉积物覆盖掩埋于地下深处经成岩作用,即煤在温度、压力条件下进一步转化的物理化学作用,使碳的含量进一步增加,成为褐煤;其后有的经历变质作用阶段,是褐煤受高温高压的影响而变为烟煤和无烟煤的过程。

植物组成低等植物:菌类,藻类(构造简单,无根、茎、叶等器官的分化。

如:发菜,海带,紫菜)苔藓、蕨类、裸子植物,被子植物(构造复杂,有根、茎、叶的区别)。

三个大的成煤期:(1)古生代的石炭纪和二叠纪,成煤植物主要是孢子植物。

主要煤种为烟煤和无烟煤。

(2)中生代的侏罗纪和白垩纪,成煤植物主要是裸子植物。

主要煤种为褐煤和烟煤。

(3)新生代的第三纪(古近纪新近纪),成煤植物主要是被子植物。

主要煤种为褐煤,其次为泥炭,也有部分年轻烟煤。

低等植物主要组成:碳水化合物、蛋白质。

脂肪含量较高。

高等植物主要组成:纤维素、半纤维素、木质素为主。

泥炭沼泽的形成需具备三个条件:气候、地理、构造。

气候:适于植物的生长,地理:有水体,构造:沼泽要持续缓慢沉降。

沼泽分类:一)沼泽体发育过程的形式与阶段;可分为高位型、低位型;低位、中位、高位是根据土壤中水的来源划分发育过程由低级到高级阶段,因此有富养(低位)、中养(中位)和贫养(高位)之分。

低位沼泽:主要由地下水补给、潜水面较高的沼泽;高位沼泽:主要以大气降水为补给来源的泥炭沼泽;中位沼泽或过渡沼泽:兼有低位沼泽和高位沼泽的特点,其水源部分由地下水补给,部分又由大气降水补给的沼泽。

富养(低位)沼泽特征:是发育的最初阶段。

表面低洼,经常成为地表径流和地下水汇集的所在。

水源补给主要是地下水,潜水面较高。

随着水流带来大量矿物质,营养较为丰富,灰分较高。

煤地质学重点

煤地质学重点

煤地质学重点煤地质学重点整理第1章成煤原始物质与堆积环境三大聚煤期:1)石炭-二叠纪是全世界范围内最重要的聚煤时期,地势比较平坦,植物繁盛,聚煤作用强,为第一大聚煤时期,形成了分布广泛的聚煤盆地和含煤地层。

2)自晚二叠世晚期至中生代,是裸子植物最为繁盛的时代。

侏罗纪和早白垩世被认为是世界上第二个重要的聚煤期。

在我国,侏罗纪是最为重要聚煤时期。

3)早白垩世以后至古、新近纪是植物进入到高级发展的重要阶段。

但是,这个时期构造活动更加强烈,气候分带也更加明显。

这个时期被称为世界上第三个重要聚煤时期。

植物遗体不是在任何环境下都能够堆积起来而转化成泥炭和腐泥的,必须具备两个基本条件:(1)必须有大量植物的持续繁殖和发展,这是成煤的物质基础;(2)植物遗体堆积起来后应及时与空气隔绝,以使植物遗体不被分解,能保存下来并进一步转化成泥炭或腐泥。

自然界中,符合这两个条件的堆积环境中,最主要的是沼泽(或泥炭沼泽)。

泥炭:是沼泽中死亡植物残体不断积累转化形成的天然有机矿产资源。

沼泽:指有植物生长的常年积水的洼地。

沼泽中植物死亡后其遗体能够被沼泽水所覆盖,使其与空气隔绝而不被完全氧化分解,并在逐渐堆积过程后经以生物化学作用为主的变化后可转变成泥炭的,称为泥炭沼泽。

泥炭沼泽的形成条件:1、低洼的能够积水的地形和能够给植物提供养分的土壤;2、年降水量大于蒸发量的气候条件;3、入水量(流入的地表水、地下水与大气降水)>出水量(流出的地表水、地下水与蒸发量)。

泥炭沼泽类型:按泥炭沼泽的表面形态和水源补给,以及养分和植被等特征,泥炭沼泽可划分:低位泥炭沼泽(定义:地形低洼,潜水面较高,主要由地下水补给,潜水面与沼泽水位基本相同。

又称富营养泥炭沼泽,对成煤最为有利。

)、高位泥炭沼泽(水源主要是由大气降水补给的沼泽。

其水面位于潜水面之上,水源不充足,水中缺少矿物质,因而一般没有高大的植物生长。

又称贫营养泥炭沼泽,在成煤过程中的作用不太重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

①有机显微组分:
在显微镜下能观察到的煤中成煤原始植物组织
转变而成的显微组分(煤的有机质)。
②无机显微组分:
在显微镜下能观察到的无机矿物质。
1、煤的有机显微组分(Organic Macerals )
腐植特征是:
镜质组:透射光下呈橙红色,透明或半透明,较均一,不含 或少含矿物质,见垂直裂纹。普通反射光下呈灰色,油浸反 射光下呈深灰色,无突起。 惰质组:透射光下呈黑色,不透明。反射光下突起高,呈白 色,油浸反射光时呈亮白色。 壳质组:透射光下透明到半透明,呈黄色或橙红色,轮廓清 晰,外形特殊。普通反射光下大多有突起,呈深灰色,油浸 反射光下-灰黑色或黑灰色。
1.1 镜质组( Vitrinite)的成因
通过木质素组织凝胶化作用形成。成煤植物的组织在气 流闭塞、积水较深的沼泽环境下,产生极其复杂的变化。一方 面是植物组织在微生物作用下,分解、水解、化合形成新的化 合物并破坏植物组织器官的细胞结构;另一方面植物组织在沼 泽水的浸泡下吸水膨胀,使植物细胞结构变形、破坏乃至消失, 或进一步再分解为凝胶的过程。植物组织经凝胶化作用并经煤 化作用后形成凝胶化组分(镜质组)。镜质组是煤中最主要煤 岩组分,含量50-80%,甚至90%。 根据凝胶化程度的不同,镜质组还可细分为:结构镜质体, 无结构镜质体和碎屑体。

镜煤 亮煤 暗煤 丝炭
– 它们是煤中宏观可见的基本单位。其中镜煤和丝炭是简单的宏观煤岩成分, 亮煤和暗煤是复杂的宏观煤岩成分。
宏观煤岩组分
1、 腐植煤的煤岩类型 1.1 镜煤(vitrain)
黑色,光泽最强,质地均匀,性脆,断口 多呈贝壳状。在煤层中镜煤常呈透镜状或条带 状,大多厚几毫米到1~2cm,有时呈线层状夹 在亮煤或暗煤中。镜煤的显微组成单一,主要 是植物的木质显微组织经凝胶化作用形成的。

煤显微组分的性质
当煤化度相同时:
1.碳含量:丝质组>壳质组和镜质组;
2.氢含量:壳质组>镜质组>丝质组;
3.挥发分:壳质组>镜质组>丝质组;
4.氧含量:镜质组>丝质组>壳质组;
随着煤化程度的增加,化学组成差别缩小,最 后趋于一致。
分离和富集方法和流程
第三节 煤岩显微组分的反射率
用矿物反射光强度(Ir)与入射光强度(Ii)的百分
微观方法-用显微镜研究煤 研究方法:
透射光:薄片 2×2 cm,厚 0.2 mm。根据颜色、形态和结
构识别微煤岩组分、判断煤的性质。
反射光:光片直径 2 cm,厚1.5-2 cm 圆柱体。在普通反射 光或油浸反射光下,根据颜色、形态、结构、突起、反光 性等特征识别煤岩组分、判断煤的性质。 光片分为煤光 片和粉光片(砖光片)。 油浸物镜:就是观察前要再切片上的滴一滴油的物镜,因为 油的光学特性跟玻璃差不多,不会产生折射,使物镜的分 辨率大幅提高。
中国煤炭岩相分析不同煤种界定范围规定
• 理论依据: 煤 种 气煤 肥煤 焦煤 瘦煤 Rmax >0. 6%~0.9% >0. 9%~1.2% >1.2%~1.69% >1.7%~2.0%
煤的镜质组最大反射率分布图在炼焦配煤中的应用
• 我国太多数焦化厂的原料煤采用混煤(配
煤,易造成焦炭质量的波动。 为更好地确
反射光下煤中常见矿物的鉴定标志
我国一些煤样的显微组分分析%
3.1分离和富集方法和流程
3.2 煤岩组分的定量方法
测定煤岩组分常用的方法是计点法(数点法)。使用电
动计点器(又称电动求积仪)测定,电动计点器内两个主要
部分组成、一部分是机械台(央持薄片或光片用);另一部分 是自动记录器(又称电磁计数器),记录器上一般有8一l0个 键,最多有14个键。当按记录器上的键时,计数继电器就 计下一个数字,并通过电子管传递的讯号,控制机械台使 试片移动一个距离(仪器上的间距可按需要在一定范围内调 节)。计数时,每一个键代表一种固定的组分,在视域中见
性质:致密坚硬、比重大,H低、C高,V低,无粘 结性,孔隙大。
1.3
亮煤
颜色深黑,光泽较强,仅次于镜煤,性较脆, 内生裂隙发育。亮煤的均一程度不如镜煤,表面隐 约可见微细纹理,内生裂隙发育程度不及镜煤。在 显微镜下观察,亮煤组成比较复杂,它以镜质组为 主,并含有不同数量的丝质组、稳定组和矿物质。 亮煤是最常见的宏观煤岩成分,不少煤层是以亮煤 为主组成的,有的整个煤层都是亮煤组成的。 性质:亮煤的性质接近镜煤,但由于丝质组和矿 物质的存在,质量比镜煤差。
1.2、惰质组( Inertinite,又称丝质组)的成因
丝质组是通过丝炭化作用或火焚作用形成。
丝炭化作用:成煤植物的组织在积水较少、湿度不足的 条件下,木质纤维组织经脱水作用和缓慢的氧化作用后,又转入 缺氧的环境,进一步经煤化作用后转化为丝炭化组分。丝炭化作 用也可以作用于已经受不同程度凝胶化作用的组分上,但经丝炭 化作用后的组分不能再发生凝胶化作用成为凝胶化组分。 火焚作用:有的丝炭化组分是由于古代沼泽森林火灾后, 由烧焦的炭化组织转化而来的,称为火焚丝质体。在显微镜下观 察,该类丝炭化组分细胞结构完整清晰,且由于没有经受凝胶化 作用,细胞壁没有发生吸水膨胀,因此,胞壁薄。煤中含量在10 -20%,对煤的性质有重要影响。
到那种组分落在十字丝中心,即按相当于该组分的键,
3.2 煤岩组分的定量方法
试片随之移动。如此测定第“一、第二……等测线,直 至测完整个试片。显然,含量高的组分,出现在视域中 心(十字丝交点上)的机会多,按的次数必然愈多。因此, 每一个键上按的次数与所有键上按的总数之比,就是该 组分的体积百分含量,其计算公式为:
性质:V、H高,粘结性强,矿物质含量少
1.2 丝炭(fusain)
丝炭外观象木炭,颜色灰黑,具有明显的纤维状 结构和丝绢光泽。丝炭疏松多孔,性脆易碎,碎后成 为纤维状或粉末状,能染指。在煤层中丝炭的数量一 般不多,常呈扁平透镜体,大多厚1~2mm至几mm,有 时也能形成不连续的薄层。在显微镜下观察,丝炭的 显微组成也是单一的,是简单的煤岩成分,主要是植 物经受火灾后的木炭转化而来的。
用煤岩学观点和方法指导炼焦配煤和预测焦炭质量; 评定煤质,指导正常生产;
从煤岩学观点来看,煤是不均一物质,其有机质是由镜质组、 稳定组、丝质组组成。而镜质组和稳定组都具有粘结性,所以是活 性成分。丝质组不具有粘结性,是情性成分。而半镜质组介于二者 之间,可见不同变质阶段的煤,共显微组分的粘结性又有区别,即 是同一种煤,所合的活性成分质量也有差别。而活性成分是决定炼 焦煤性质的首要指标。惰性成分同样也是配煤中不可缺少的成分, 缺少或过剩都对配煤炼焦不利,导致焦炭质量下降。要得到所要求 焦炭质量的配煤方案,实际上是不同活性成分与适量惰性成分的组 合。所以世界各国各种煤出配煤方法中,都是以煤岩组成和活性成 分的反射率为基础资料,把煤岩显微组分分成活性成分和惰性成分 两大类,通过适当的方法计算、试验、作图找出炼焦配煤最适合的 范围、预测焦炭质量,指导配煤。
比表示,称为矿物的反射率(R):
煤岩显微组分的反射率是指煤抛光面的反射光强 度与垂直入射光强度之比。
第三节
煤岩显微组分的反射率
主要仪器:带光电倍增管的 光度计。 原理:测量已知反射率的标 准片(“标准”)与欲测物反射光 转变为电能的光电流强度,以计 算欲测物反射率的方法。 方法: 测定时,在显微镜 一定强度的入射光下,先将“标 准”置于单偏光下,测定其反射 光电流强度Io,再测定未知物的 反射光电流强度I。
1.3、壳质组( Exinite又称稳定组)的成因
壳质组又称稳定组,是由成煤植物中化学稳定性强的 组织器官转化而来的。在泥炭化作用阶段,因化学稳定 性强,没有遭受生物化学作用的破坏而保存在煤中,经 煤化作用后转化为稳定组分。
煤中常见的稳定组分有:孢子体、花粉体、树脂体、 角质体、木栓体等。稳定组分在透射光下透明到半透明, 呈现黄色到橙红色,轮廓清楚,外形特殊;在反射光下 呈现深灰色,大多数有突起。 稳定组分在煤中的含量不大。个别情况下,有稳定组 分富集的煤出现,如乐平树皮煤、抚顺烛煤。稳定组分 的氢含量高,发热量高。
I R RO I0
煤岩显微组分的反射率
①在与煤层层面成任意交角的切面上 最大反射率不变,而反射率则随交角 不同而变化,源于煤中晶体的各向光 学异性;
②从长焰煤到无烟煤,Rmaxo增加十几
倍,而Rmax只增加两三倍。
煤岩显微组分的反射率变化规律
①镜质组的反射率随挥发分降低有 规律地均匀提高 ②反射率从低到高的次序为稳定组、 镜质组、丝质组。
煤的岩石组成
第六章 煤岩学基础
Basic Knowledge of Coal Petroloy
第六章 煤岩学基础
主要内容:
煤岩组成的研究方法
有机显微组分及其成因
有机显微组分的性质 宏观煤岩学概述 微观煤岩学在炼焦配煤中的应用
第一节 概述:煤岩学研究方法
1、什么是煤岩学(coal
petrology)?
③在Romax=1.5稳定组、镜质组的区
别消失;Cdaf在87~89% ③ 镜质组最大反射率作为煤化程
度的指标(为什么?)
煤化学意义:
a.在反映煤的变质程度、用于煤炭分类 b.预测煤的粘结性,指导炼焦配煤。
第四节
微观煤岩学在炼焦中的应用
煤的镜质组最大反射率分布 图在炼焦配煤中的应用
第四节
微观煤岩学在炼焦中的应用
煤显微组分的在煤化过程中变化
2、 煤中的矿物质——无机显微成分
煤的无机显微成分主要是指粘土矿物、黄铁矿、石 英、方解石等,在显微镜下可以进行区分。 粘土类矿物:高岭石(kaolinite),伊利石,水云 母,… 硫化物类矿物:黄铁矿,白铁矿,… 碳酸盐类矿物:方解石,菱铁矿,… 氧化物类矿物:石英,… 硫酸盐类矿物:石膏,…
3.2 煤岩组分的定量方法
相关文档
最新文档