圆柱螺旋压缩弹簧计算公式
圆柱螺旋压缩弹簧计算

D+d 265 D-d 175 arc tan t/πD 0.10002485 0.1003598 0.001447 691.15 πDn1 / cosα 16671 1.005 0.995002 1447.54 1101.38 1059.00 346.1681845 0.3 0.9 7.245454545 2.6 1 / Pj 1/D 1.09E-05 0.004545 P1/ P' Pn / P' Pj / P' 146.4558 492.624 535.0029
圆柱弹簧设计计算
最小输出扭矩M(Nm) 最大输出扭矩M(Nm) 驱动半径R(m) 驱动半径R(mm) 弹簧最小输出力 P1(N) 弹簧最大输出力 Pn(N) 工作行程 L(m) 工作行程 h(mm) 最大最小输出力差 Δ P(N) 初算弹簧刚度 P'(N/mm) 工作的极限载荷 Pj(N) 初选材料直径d及中径D 弹簧 有效圈数 n 总圈数 n1 弹簧刚度 P'(N/mm) 工作极限载荷下的变形量 Fj 节距 t(mm) 自由高度 H0(mm) 取标准值 H0(mm) 弹簧外径 D2(mm) 弹簧内径 D1(mm) 螺旋角 α (弧度) 展开长度 L(mm) Mmin Mmax R R P1 Pn L h Pn-P1 ΔP / h K × Pn d 45 P'd / P' n+2 P'd / n n × fj Fj / n+d nt + 1.5d 5500 18500 0.22 倒数 1/R 4.545455 220 25000 84090.90909 0.3454 345 倒数 1/h 0.002895 59090.90909 171.0796442 倒数 1/P' 0.005845 92500 D 220 21.94884154 24 170.6818182 535.04 69.36363636 1593.5 1594 系数 K Pj 91325 取整 取整 取整 Fj / n nt 1.1 fj 24.32 22 170.7 536 24.36364 1526 P'd 3755 倒数 倒数 倒数 1.5d 0.045455 0.005858 0.001866 67.5
圆柱螺旋压缩弹簧计算公式

圆柱螺旋压缩弹簧计算
公式
-CAL-FENGHAI.-(YICAI)-Company One1
普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式
参数名称及代号计算公式备注
压缩弹簧拉伸弹簧
中径D2 D2=Cd 按普通圆柱螺旋弹簧尺寸系列表取标准值
内径D1 D1=D2-d
外径D D=D2+d
旋绕比C C=D2/d压缩弹簧长细比b b=H0/D2 b在1~的范围内选取自由高度或长度H0 H0≈pn+~2)d(两端并紧,磨平)H0≈pn+(3~d(两端并紧,不磨平) H0=nd+钩环轴向长度工作高度或长度H1,H2,…,Hn Hn=H0-λn Hn= H0+λn λn--工作变形量有效圈数n 根据要求变形量按式(16-11)计算n≥2总圈数n1 n1=n+(2~(冷卷)n1=n+~2) (YII型热卷) n1=n 拉伸弹簧n1尾数为1/4,1/2,3/4整圈。
推荐用1/2圈节距p p=~D2 p=d 轴向间距δ δ=p
-d 展开长度L L=πD2n1/cosα L≈πD2n+钩环展开长度螺旋角α α=arctg(p/πD 2) 对压缩螺旋弹簧,推荐α=5°~9°质量ms ms= γ为材料的密度,对各种钢,γ=7700kg/ ;对铍青铜,γ=8100kg/。
圆柱螺旋弹簧一般计算公式

1. 弹簧刚度:
2. 力值: 其中:G 为材料剪切模量,一般不锈钢取71500Mpa,碳钢取
78500Mpa ;
d 为材料直径;
D 为弹簧中径;
n 为弹簧有效圈数;
f 为变形量(拉压行程)。
3. 应力: K 为曲度系数,公式为: 其中C 为弹簧旋绕比,是弹簧中径与线径的比值,即
4. 下表是GB/T23935-2009(圆柱螺旋弹簧设计计算)中压缩弹簧及拉伸弹簧的试验切应力及许用应力表
表2-1
n D d G 34
,
8P =f 8f 34,
⋅==n D Gd P P K PC K ⋅=⋅=2
3d 8d 8PD ππτC
C C K 615.04414+--=d D
C =
比压簧多了初拉力,加上初拉力就行。
初拉力: 其中初拉力τ0按初切应力图选取,见下图。
三.扭簧:
1.计算刚度 Dn
Ed M 3670'4= Nmm/° 2.扭矩 ϕ⋅=Dn
Ed M 36704
Nmm 式中:d---材料直径;
E---材料的弹性模量,一般不锈钢丝取188000Mpa ,碳素钢丝
取206000Mpa ;
D---弹簧外径;
ϕ---弹簧的扭转行程(角度);
4. 应力: K1为曲度系数,顺旋向扭转取1,逆旋向扭转时按下式:
308τπ⋅=D d P 132
.10K d
M ⋅=σ
下表是GB/T23935-2009(圆柱螺旋弹簧设计计算)中扭转弹簧的试验切应力及许用应力表
C
C C C K 4414221---=。
弹簧设计计算

项目 最小工作载荷P1 最大工作载荷Pn 工作行程h 弹簧中径D 弹簧直径d 原 弹簧类别 始 条 端部结构 件 旋绕比C 曲度系数K 弹簧材料 材料极限切应力 材料切变模量 初算弹簧刚度P' 工作极限载荷Pj 单位 N N mm mm mm 公式及数据 2000 7570 170 80 14 III类 端部并紧、磨平,两端支承圈各1圈 C= 5.714285714 K= 1.266715909 60Si2Mn MPa τj= 740 MPa G= 79000 N/mm P'= 32.76470588 N Pj= 7868.763643 P1= Pn= h= D= d= fj= 10.62006597 P'd= 740.9335938 n= 22.613772 取 n= n1= 30 P‘= 26.46191406 Fj= t= H0= D2= D1= α= L= H1= Hn= Hj= h= 下限 上限 b= 297 24.61 710.08 取H0= 94 66 5.592578199 7576 634.42 423.93 412.64 210.49 0.25 0.96 81、根据弹簧套筒内径以及旋绕比C 5~8初步确定 弹簧直径与中径; d 3 j 2、由极限载荷公式 Pj 8DK 可知,极限载荷 只由中径、直径以及材料有关,与施加的外力无关 。故一旦中径、直径以及材料确定后,弹簧的极限 载荷就是一定值; 3、根据 弹簧的工作范围为20%~80%初步确定最小工作载荷 以及最大工作载荷;最小工作载荷应大于推动侧护 板所需要的力; 4、根据以上 最终验算结果,对以上各值进行调整
工作极限载荷下的 mm 单圈变形量fj 单圈弹性刚度P'd N/mm 有效圈数n 圈 总圈数n1 圈 N/mm 参 数 弹簧刚度P’ 计 算 工作极限载荷下的 变形量Fj mm 节距t mm 自由度高H0 mm 弹簧外径D2 mm 弹簧内径D1 mm 螺旋角α (°) 展开长度L mm 最小载荷时高度H1 mm 最大载荷时高度Hn mm 极限载荷时高度Hj mm mm 验 算 实际工作行程h 工作范围 高径比b
圆柱螺旋压缩弹簧计算公式

圆柱螺旋压缩弹簧计算公式
弹簧常量(Spring Constant)是指单位压缩或拉伸长度下所储存的能量。
它是衡量弹簧刚性和柔性的重要指标。
圆柱螺旋压缩弹簧的弹簧常量可以通过以下公式计算:
k=(Gd^4)/(8D^3n)
其中,k为弹簧常量,G为弹簧材料的剪切模量,d为弹簧线圈的直径,D为弹簧线圈的平均直径,n为弹簧线圈的总数。
F = kx
其中,F为受到的力,k为弹簧常量,x为弹簧的位移。
Fmax = kxmax
其中,Fmax为最大力,k为弹簧常量,xmax为允许的最大位移。
Lmax = Ln - (D/2 + d/2 + c)
其中,Lmax为最大压缩长度,Ln为弹簧线圈的总长度,D为弹簧线圈的平均直径,d为弹簧线圈的直径,c为线圈间的缝隙。
x_max = (Ln - L0) / n
其中,x_max为最大位移,Ln为弹簧线圈的总长度,L0为弹簧的初始长度,n为弹簧线圈的总数。
S=F/x
其中,S为刚度,F为受到的力,x为位移。
E = (1/2)kx^2
其中,E为弹性能量,k为弹簧常量,x为位移。
以上就是关于圆柱螺旋压缩弹簧的计算公式。
通过这些公式,我们可以准确地计算弹簧的性能参数,为机械设计提供依据,并确保弹簧在实际使用中能够正常工作。
当然,在实际设计中,还需要考虑许多其他因素,如疲劳寿命、可靠性和安全系数等,并结合实际应用需求进行综合设计。
弹簧计算

′
13.73239437
mm
= +d
5.068
自由高度H0
mm
H0=nt+1.5d
75.452
弹簧外径D2
mm
D2=D+d
19
弹簧内径D1
mm
D1=D-d
13
mm
最小载荷时的高
度H1
mm
最大载荷时的高
度Hn
mm
极限载荷时的高
度Hj
mm
实际工作行程h
mm
工作区范围
高径比 b
Fj=nfj
α =
π
πD1
=
1
1 = 0 −
′
′
= 0 −
′
= 0 −
h=H1-Hn
1
; ;
0
=
根据机械设计手册表查得标准
值
14
取标准值
75
12.1875
节距t
展开长度 L
根据机械设计手册表查得
16
mm
(°)
弹簧类别Ⅱ时 Pj≥1.25Pn
弹簧类别Ⅲ时 Pj≥Pn
195
′
= ′
工作载荷下的变
形量Fj
螺旋角α
算
N/mm
碳素弹簧钢丝C级
− 1
′ =
14.2
ℎ
N
单圈刚度 P'd
验
1000000
工作极限载荷Pj
所选弹簧 工作极限载荷Pj
数据
工作极限载荷下
的单圈变形量fj
28.952
5.763193109
圆柱螺旋压缩弹簧计算全过程—Richard Deng

γ
判断
弹簧稳定性校核
弹簧的高径比b
Mpa
τ2=K*(8DF2/πd^3)
γ=τ1/τ2
τ1/Rm
0.2
τ2/Rm
查阅图1 若点(0.2,0.4)在γ=0.5和10^7作用线的交 点以下表明弹簧的疲劳寿命N>10^7次,反之不然
b=H0/D 一端固定一端回转:b≤2.6
自振频率fe
Hz
fe=3.56d/nD^2*√(G/ρ)
C=D/d 推荐值范围参照表7
K=4C-1/4C-4+0.615/C
mm
调整后必须满足 d≥(8KFD/π[τ])^1/3
弹簧中径D
mm由上Biblioteka 1所得弹簧线径dmm
弹簧直径
弹簧外径D2
mm
由上表1所得 D2=D+d
弹簧内径D1
mm
D1=D-d
所需刚度F'
N/mm
由上表1决定
弹簧所需刚度和圈数 有效圈数n
24.5454545
簧外径≤34.8mm
34.8
据F2确定
4.1
VDCrSi
78500
5*10^-6
0.00000785
d决定 附录F =F1/F2
1810 表2
0.5
环次数)交点的纵坐标大致为 0.41
1(上值)
0.41 742.1
D=D2-d-0.3(公差) 荐值范围参照表7
C-4+0.615/C ≥(8KFD/π[τ])^1/3
压并时负荷Fb
N
试验负荷和试验负荷
下的高度和变形量
实际试验负荷Fs
N
Fb=F'*fb 如果Fs>Fb则Fs取Fb值,否则取原值
圆柱螺旋压缩(拉伸)弹簧的设计计算

圆柱螺旋压缩(拉伸)弹簧的设计计算(一)几何参数计算普通圆柱螺旋弹簧的主要几何尺寸有:外径D、中径D2、内径D1、节距p、螺旋升角α及弹簧丝直径d。
由下图圆柱螺旋弹簧的几何尺寸参数图可知,它们的关系为:式中弹簧的螺旋升角α,对圆柱螺旋压缩弹簧一般应在5°~9°范围内选取。
弹簧的旋向可以是右旋或左旋,但无特殊要求时,一般都用右旋。
圆柱螺旋弹簧的几何尺寸参数普通圆柱螺旋压缩及拉伸弹簧的结构尺寸计算公式见表([color=#0000ff 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式)。
普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式质量m sm s=γ为材料的密度,对各种钢,γ=7700kg/;对铍青•(二)特性曲线弹簧应具有经久不变的弹性,且不允许产生永久变形。
因此在设计弹簧时,务必使其工作应力在弹性极限范围内。
在这个范围内工作的压缩弹簧,当承受轴向载荷P时,弹簧将产生相应的弹性变形,如右图a所示。
为了表示弹簧的载荷与变形的关系,取纵坐标表示弹簧承受的载荷,横坐标表示弹簧的变形,通常载荷和变形成直线关系(右图b)。
这种表示载荷与变形的关系的曲线称为弹簧的特性曲线。
对拉伸弹簧,如图<圆柱螺旋拉伸弹簧的特性曲线>所示,图b为无预应力的拉伸弹簧的特性曲线;图c为有预应力的拉伸弹簧的特性曲线。
右图a中的H0是压缩弹簧在没有承受外力时的自由长度。
弹簧在安装时,通常预加一个压力F min,使它可靠地稳定在安装位置上。
F min称为弹簧的最小载荷(安装载荷)。
在它的作用下,弹簧的长度被压缩到H1其压缩变形量为λmin。
F max为弹簧承受的最大工作载荷。
在F max作用下,弹簧长度减到H2,其压缩变形量增到λmax。
λmax与λmin的差即为弹簧的工作行程圆柱螺旋压缩弹簧的特性曲线h,h=λmax-λmin。
F lim为弹簧的极限载荷。
在该力的作用下,弹簧丝内的应力达到了材料的弹性极限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式
参数名称及代号计算公式备注
压缩弹簧拉伸弹簧
中径D2 D2=Cd 按普通圆柱螺旋弹簧尺寸系列表取标准值
内径D1 D1=D2-d
外径D D=D2+d
旋绕比C C=D2/d
压缩弹簧长细比b b=H0/D2 b在1~5.3的范围内选取
自由高度或长度H0 H0≈pn+(1.5~2)d
(两端并紧,磨平)
H0≈pn+(3~3.5)d
(两端并紧,不磨平) H0=nd+钩环轴向长度
工作高度或长度
H1,H2,…,Hn Hn=H0-λn Hn=H0+λnλn--工作变形量
有效圈数n 根据要求变形量按式(16-11)计算n≥2
总圈数n1 n1=n+(2~2.5)(冷卷)
n1=n+(1.5~2) (YII型热卷) n1=n 拉伸弹簧n1尾数为1/4,1/2,3/4整圈。
推荐用1/2圈
节距p p=(0.28~0.5)D2 p=d
轴向间距δδ=p-d
展开长度L L=πD2n1/cosαL≈πD2n+钩环展开长度
螺旋角αα=arctg(p/πD2)对压缩螺旋弹簧,推荐α=5°~9°质量ms ms=
γ为材料的密度,对各种钢,γ=7700kg/ ;对铍青铜,γ=8100kg/。