3第二章 液压泵

合集下载

液压泵专业知识讲座

液压泵专业知识讲座
二、液压泵旳排量、流量和容积效率 1、排量V:液压泵每转一转理论上应排除旳油液体积,又称 为理论排量或几何排量。常用单位为cm3/r。排量旳大小仅 与泵旳几何尺寸有关。
2、液平体均积理,论q流t=量n vq,t:单泵位在为单m位3/时s 或间内L/m理in论。上排出旳油
3、实际流量 q :泵在单位时间内实际排出旳油液体积。 在泵旳出口压力≠ 0 时,因存在泄漏流量Δq,所以q = q t- Δq 。
轴向Biblioteka 径向§2-4液压泵旳图形符号
结 束
1、输入功率 P 率,P r= Tω
r:
驱动泵轴旳机械功率为泵旳输入功
2、输出功率 P:泵输出液压功率, P = p q
3、总效率ηp :ηp = P / P r= p q / Tω=ηvηm 式中ηm为机械效率。 四、泵旳转速:
1、额定转速 n 最高转速。
s:额定压力下能连续长时间正常运转旳
2、最高转速 转速。
2、偏心轮旋转一转,柱塞上 下往复运动一次,向下运动 吸油,向上运动排油。
3、 泵每转一转排出旳油液体 积称为排量,排量只与泵旳 构造参数有关。
V=Sπd 2/4=eπd 2/2
返回
§2-2液压泵旳主要性能参数
一、液压泵旳压力 1、工作压力 p :泵工作时旳出口压力,大小取决于负载。 2、额定压力 ps :正常工作条件下按试验原则连续运转旳最高 压力。 3、吸入压力:泵旳进口处旳压力。
第二讲 液压泵概述
§2-1 液压泵旳基本工作原理 §2-2 液压泵旳主要性能参数 §2-3 液压泵旳分类和选用 §2-4 液压泵旳图形符号
§2-1液压泵基本工作原理
一、以单柱塞泵为例
1、构成:偏心轮、柱塞、弹 簧、缸体、两个单向阀。柱 塞与缸体孔之间形成密闭容 积。柱塞直径为d,偏心轮 偏心距为e。

液压泵基础知识详解PPT

液压泵基础知识详解PPT

三、径向柱塞泵
图1-31 径向柱塞泵工作原理图 1-定子 2-转子 3-柱塞 4-配油盘
第五节液压能源元件的选用
• 根据系统运行工况选择 • 根据系统工作压力和流量选择 • 根据工作环境选择
2、伺服变量 机构
图 1-27 伺 服变量机构 1-伺服阀芯 2-球铰 3-斜盘 4-变量活塞 5-泵体 6-单向阀 7-阀套 8—拉杆 a) 结构 b) 图形符号
2、数字泵变量机构
1-步进电动机 2-支架 3-丝杠 4-螺母 5-导向健 6、13-密封 7-提动杆 8-伺服阀芯 9-阀套 10-变量活塞 11-销轴 12-变量头体 14-下盖 15 -斜盘 图1-28 数字泵变量机构
二、双作用叶片泵 (一)、双作用叶片泵工作原理
图1-14 双作用叶片泵工作原理 1—定子 2—转子 3—叶片
图1-15 配流盘 1,3-压油窗口 2,4-吸油窗口 c-环形槽
(二)、排量和流量计算
1 2 2 V 2z R r B 2 2 π B R2 r 2




图1-16 双作用叶片泵排量计算简图
2 2 Rr q p 2B π R r bz nipvp cos
பைடு நூலகம்

(三)、双作用叶片泵结构及新成果 1、定子内表面曲线
图1-17 定子的过渡曲线
2、叶片径向力问题及其解决措施
• 通过自身减压阀降低吸油区叶片底部油液压力。 • 使叶片顶端和底部的液压力平衡。 • 减小叶片底部承受压力油作用的面积。
图1-4
液压泵的能量转换流程
四、液压泵的特性曲线
1-理论流量 2-实际流量 3-容积效率 4-机械效率 5-总效率 6-输入功率 7-输出功率

液压泵结构与工作原理

液压泵结构与工作原理

液压泵职能符号(国家及ISO标准)
特 性分类 单向定量 双向定 量 单向变 量 双向变 量
液压泵
图3-34
(一)液压泵
1、压力 p (工作压力、额定压力、最 大压力) 2、排量 q、流量 Q 3、液压泵的功率W和效率 4、转速 n 5、自吸能力

流量公式
Q QtV Qt nq
(%) 效率
液压泵的特性曲线图
m
95 90 85 80 75 70 ( =1300r/min) 20 40 60 80 100 120 140 160 (MPa)
第二节 齿轮泵
一、工作原理 二、 流量计算和流量脉动 三、外啮合齿轮泵的结构特点和优缺点

齿轮泵的工作原理

简单构造
– 一对互相啮合的齿轮 (The teeth meshed) – 主动齿轮由原动机带动回转,齿顶和端面被泵体和前后端盖包围 – 由于相啮合齿的分隔,吸入腔和排出腔隔开
液压泵的功率和效率

(1)输入功率 Pi
pQ

P0 (2)效率 Pi
V m
Q Qt Q Q V 1 Qt Qt Qt
Tt m T
液压泵理论转矩的推导
TtW pQt
W 2n
pq 从而得到: Tt 2
Qt nq
v
100
轴向柱塞泵排量和流量公式
d 2 zDtg q
4
2
2 2
d zDtgV Q
4
流量不均匀系数 公式

2z tg

4z
(当z为奇数 )


tg (当z为偶数) z 2z

流量不均匀系数 与柱塞数z的关系

3《液压传动》液压泵

3《液压传动》液压泵

19
17
1)原因:径向液压力分布不均 啮合力 2)危害:轴承磨损、刮壳。 3)措施:缩小压油口,增加径 向间隙。 ※ 压油口缩小后,安装时注意不 能反转。
18
作用在泵轴上的径向力,能使轴弯曲,从而引起齿顶与泵壳体 相接触,从而降低了轴承的寿命,这种危害会随着齿轮泵压力的提 高而加剧,所以应采取措施尽量减小径向不平衡力,其方法如下: (1) 缩小压油口的直径,使压力油仅作用在一个齿到两个齿的范围 内,这样压力油作用于齿轮上的面积减小,因而径向不平衡力也就 相应地减小。 (2)增大泵体内表面与齿轮齿顶圆 的间隙,使齿轮在径向不平衡力作用 下,齿顶也不能和泵体相接触。 (3)开压力平衡槽,如图所示, 开两个压力平衡槽1和2分别与低、高 压油腔相通,这样吸油腔与压油腔相 对应的径向力得到平衡,使作用在轴 承上的径向力大大地减小。但此种方 法会使泵的内泄漏增加,容积效率降 低,所以目前很少使用此种方法。
9
一、齿轮泵的工作原理 齿轮泵的工作原理
齿轮1、2的齿廓线(面)与壳体内 表面及前后端盖构成若干密封容积, 啮合线将高、低压腔隔离开来。 当齿轮按图示方向旋转时,下侧的轮 齿逐渐脱离啮合,其密封容积逐渐增 大,形成局部真空,油液在大气压力 的作用下从吸油口进入下部低压腔; 随着齿轮的转动,齿轮的齿谷把油液 从下侧带到上侧密封容积中,轮齿在 上侧进入啮合时,使上侧密封容积逐 渐减小,油液从上侧油高压腔将油液 排出。当齿轮泵不断地旋转时,齿轮 泵不断地吸油和排油
10
二、齿轮泵的排量和流量 1.排量与流量: 对于由一对齿数相等的齿轮组成的外啮 排量与流量: 合齿轮泵,其主轴旋转一周所排出的液体体积等于两齿轮轮齿 体积之和。对于标准齿轮而言,轮齿体积与齿谷容积是相同的。 这样,齿轮泵的几何排量等于一个齿轮的轮齿体积和齿谷容积 之和。考虑到齿顶间隙的液体从排液腔仍被带回到吸油腔,不 参与排液,则齿轮泵的几何排量等于以齿顶圆为外径、以 (Z- 2)m的圆为内径、高为齿轮宽度B的圆筒体积

《液压泵及液压马达》PPT课件

《液压泵及液压马达》PPT课件
第三章 液压泵及液压马达
• 3.1 液压泵与液压马达作用 • 3.2 液压泵与液压马达工作原理 • 3.3 液压泵与液压马达分类 • 3.4 液压泵与液压马达参数 • 3.5 齿轮泵和齿轮马达 • 3.6 叶片泵和叶片马达 • 3.7 柱塞泵和柱塞马达 • 3.8 液压泵的性能比较
• §3.1 液压泵及液压马达的作用
作用在齿轮轴上液压径向力和轮齿啮合力的合力 F 即
为齿轮泵的径向力
减小径向力措施
(1) 减小齿宽,增大齿顶圆直径。 (2) 缩小压油腔尺寸,使压力油作用在较少的齿范围内。 (3) 延伸压油腔或吸油腔,在工作过程中只有很少的齿起密封作用。
减小径向力措施
(4) 通过在盖板上开设平衡槽,使它们分别与低、高压腔相 通,产生一个与液压径向力平衡的作用。 平衡径向力的措施都是以增加径向泄漏为代价。
1.修磨齿轮及泵盖端面,并清除齿形上毛刺 2.校正或更换齿轮轴 3.适当拧紧 4.更换零件
1.检测泵体、齿轮,重配间隙 2.修理或更换侧板和轴套
结构特点
• 两个油口一样大, • 结构对称, • 调速范围宽 • 启动扭矩大 •
例一
齿轮泵转速为1200r/min,理论流量为 12.286L/min,齿数Z=8,齿宽B=30mm,机械效率和 容积效率均为90%,工作压力为5.0×106Pa.试求 该齿轮泵的齿轮模数m,输出功率和输入功率.
液压泵是液压系统的动力元件,将原动机输 入的机械能转换为压力能输出,为执行元件 提供压力油。
液压马达是将液体压力能转换为机械能的装 置,输出转矩和转速,是液压系统的执行元件。

§3.2 工作原理
• 液压泵必须具备周期性变化的密封容积和配流装置才 能工作,属于容积式泵.

液压泵的工作原理与齿轮泵结构(共28张PPT)全篇

液压泵的工作原理与齿轮泵结构(共28张PPT)全篇

◆流量
理论流量qt 指在无泄漏情况下,液压泵单位时间内输出的油液体 积。其值等于泵的排量V和泵轴转数n的乘积,即
实际流量q 指单位时间内液压泵实际输出油液体积。由于工作量越大,使得泵的实际流量小于泵的理论流量,即
显然当液压泵处于卸荷〔非工作〕状态时,这时输出的实际流量近似为 理论流量
2.增泵体内外表与齿轮顶圆的间隙,使在径向不平衡力作用时 齿顶和泵体不接触。
3.开压力平衡槽,但泄漏大,很少用
图3-35 径向力的分布图
学习单元二 常用液压元件介绍
③流量脉动。随着啮合点位置的不断变化,吸、压油腔在每一瞬间的容积变 化率是不均匀的,因此齿轮泵的瞬时流量是脉动的。
qmax、qmin分别为最大、最小瞬时流量,q为平均流量,δ为流 量脉动率,可用下式表示。 δ=〔qmax-qmin〕/q
额定流量qn 泵在额定转数和额定压力下输出的实际流 量。
◆效率
实际上泵在能量转换过程中有容积损失和机械损失 容积损失主要是液压泵内部泄漏造成的流量损失,其大小用容积效率来
表示
反响泵泄露量大小,能表述 泵性能的好坏。 机械损失指液压泵内流体粘性和机械摩擦造成的转矩损失其大小 用机械效率来表示
液压泵的总效率:
齿数越少,流量脉动率越大。
学习单元二 常用液压元件介绍
④困油现象及消除措施。由图3-36〔a〕旋转到图3-36〔b〕所示位置时,闭死容 积由大变到小;由图3-36〔b〕旋转到图3-36〔c〕所示位置时,闭死容积从小 变到大。这种现象称之为困油现象。
危害:减小时使被困油挤出产生高压,增大时会造成真空产生气穴现象。 消除措施:在轴承套上开卸荷槽〔见图3-36中的虚线局部〕,当闭死容积由大变小时
泵的总效率是泵的输出功率与输入功率之比,即

液压传动3-流体力学基础

液压传动3-流体力学基础


解:此流量计处于重力场的作用下,故 应用能量方程,按题意应有h=0,忽略 损失,h=0。
以过轴心0-0的水平面为基准面,取断面Ⅰ 和Ⅱ,此二断面均为缓变过流断面,对此 二断面与轴心线的交点1和2列出能量方 程,可得
p1
v p2 v 2g 2g
2 1
2 2

而根据连续性方程式应有:
以过4点之水平面0-0为基准 面,管轴上的3点和4点列出 能量方程
p3 v pa v 0 (h1 h2 ) g 2 g g 2 g
2 3 2 4

由连续性方程可得:
v3 v 4
p3 pa (h1 h2 ) g g

pa 对水, =10米水柱高,于是 g
2、静压力方程式的物理意义
p=p0+γh=p0+γ(z0-z) 整理后得 p/γ+z=p0/γ+z0=常数 z称位置水头或称位能,表示A点单 位重量液体的位能

升的高度,称压力水头,或称压能。

p r 是该点在压力作用下沿测压管所能上
p z r
两水头相加( )称测压管水头,它 表示测压管液面相对于基准面的高度, 或称势能。
2 2
2、伯努利方程 式中每一项的量纲都是长度单位,分别称为 水头、位置水头和速度水头。 物理意义:稳定流动的理想液体具有压力 能、位能和动能三种形式的能量。在任意截 面上这三种能量都可以相互转换,但其总和 保持不变。
3、实际液体的泊努利方程 实际液体具有粘性,在管中流动时,需 要消耗一部分能量,所以实际液体的伯努利 方程为:
1 2 Q A1v1 d1 4
2 9.81 0.8(13.6 1) 1 2 3.14 0.25 39 4 1 1 3 0.112米 /秒 112升/秒

液压泵的课件

液压泵的课件

图3-21
直轴式轴向柱塞泵的工作原理
Hale Waihona Puke 斜盘 2-缸体 3-柱塞 4-配流盘 5-轴 6-弹簧
2、斜轴式轴向柱塞泵
由图可见其缸体的中心线与传动主轴成一角度, 故此泵称为斜轴泵。
图中为斜轴式轴向柱塞泵外形
返回
二、径向柱塞泵
1.径向柱塞泵的工作原理 图为径向柱塞泵的工作原理。之所以称为径向 柱塞泵是因为有多个柱塞径向地配置在一个共同 的缸体3内。缸体由电动机带动旋转,柱塞要靠离 心力耍出,但其顶部被定子2 的内壁所限制。定子2是一个 与缸体偏心放置的圆环。因 此,当缸体旋转时柱塞就做 往复运动。这里采用配流轴 配油,又称径向配流。径向 柱塞泵外形尺寸较大,目前 生产中应用不广。 图3-31 径向柱塞泵工作原理
径向柱塞泵 轴向柱塞泵
一、液压泵的基本工作原理
下图为单柱塞泵的工作原理。凸轮由电动 机带动旋转。当凸轮推动柱塞向上运动时, 柱塞和缸体形成的密封体积减小,油液从密 封体积中挤出,经单向阀排到需要的地方去。 当凸轮旋转至曲线的下降部位时,弹簧迫使 柱塞向下,形成一定真空度,油箱中的油液 在大气压力的作用下进入密封容积。凸轮使 柱塞不断地升降,密封容积周期性地减小和 增大,泵就不断吸油和排油。
液压传动液压泵的工作原理齿轮泵叶片泵柱塞泵柱塞泵齿轮式柱塞式叶片式按结构分变量定量按排量分返回2222返回齿轮泵是液压泵中结构最简单的一种泵它的抗污染能力强价格最便宜
液压传动
第二章 液压泵 液压泵的工作原理
齿轮泵 叶片泵 柱塞泵
§2-1液压泵的基本工作原理
泵的分类
定量泵 齿轮泵 叶片泵
泵 变量泵 叶片泵 轴向柱塞泵
返回
§2-4柱塞泵
在第一节所述单柱塞泵中,凸轮使泵在半周 内吸油,半周内排油。因此泵排出的流量是脉动 的,它所驱动的液压缸或液压马达的运动速度是 不均匀的。所以是泵总是做成多柱塞的。常用的 多柱塞泵有轴向式和径向式两大类。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-配流轴 2-柱塞 3-缸体 4-定子环
•改变偏心距e的大小和方向,
•即可改变泵输出流量的大小和方向。
邵陽學院機械與能源工程系
• 2.径向柱塞泵典型结构及其特点 • 如图所示为连杆型阀式径向柱塞泵结构图
D B
C
A 8 7 6
5 4 3 2 1
D--D
9 10 11
A
D 图3-46 连杆型阀式径向柱塞泵
上图为国产CY系列直轴式轴向柱塞泵的结构原理图 。该泵由主泵体结构和变量机构两部分组成。
伺服变量机构和恒功率变量机构邵陽學院機械與能源工程系
1
2
10
8
g
3
e
f
4
7
5
f
1
k
h
2
3
4
e
9
6
8
d 5
6
7
d
图3-39 伺服变量机构
图3-40 恒功率变量机构
1-限位螺钉
2-弹簧套
3、4-弹簧
6-变量活塞
7-变量壳体
图3-35直1-传轴动轴式2轴-壳向体 柱3-斜塞盘 泵4-柱基塞本5-结缸体构6-配流盘 1-转动轴2-壳体3-斜盘4-柱塞5-缸体6-配流盘
2、排量和流量计算
泵的排量V和流量q分别 为
V d 2 Dz tan
4
q
d2
4
Dz
tan V
邵陽學院機械與能源工程系
邵陽學院機械與能源工程系
3、直轴式(斜盘式)轴向柱塞泵的结构特点
邵陽學院機械與能源工程系
液压泵的图形符号
邵陽學院機械與能源工程系
2、选用原则:
–是否要求变量 要求变量选用变量泵。 –工作压力 柱塞泵的额定压力最高。 –工作环境 齿轮泵的抗污能力最好。 –噪声指标 双作用叶片泵和螺杆泵属低噪声
泵。 –效率 轴向柱塞泵的总效率最高。
§2-2
柱塞泵
邵陽學院機械與能源工程系
邵陽學院機械與能源工程系
• 二、 径向柱塞泵 • 1、径向柱塞泵工作原理及其组成 • 如图所示为轴配流径向柱塞泵的工作原理图。

邵陽學院機械與能源工程系
邵陽學院機械與能源工程系
泵的排量V和流量q分别为:
1
排出腔
V d 2 2ez d 2ez
4
2
4
吸入腔
q
2
d
2eznV
e
3-45 轴配流径向柱塞泵工作原理图
邵陽學院機械與能源工程系
泵的工作原理:形成若干个密封的工作腔,当密封 工作腔的容积从小向大变化时,形成部分真空、吸 油;当密封工作腔的容积从大向小变化时,进行压 油(排油)
液压泵正常工作的必备条件: 具有密封容积(密封工作腔); 密封容积能交替变化; 具有配流装置。其作用是保证密封容积在吸油过程中与 油箱相通,同时关闭供油通路;压油时与供油管路相通, 而与油箱切断; 吸油过程中油箱必须与大气相通。
• 可以实现多泵同轴串联,液压装置结构紧 凑。
• 改变定子相对缸体的偏心距可以改变排量, 且变量方式多样。
邵陽學院機械與能源工程系
• 二、直轴式轴向柱塞泵 • 1、 直轴式(斜盘式)轴向柱塞泵的组成及工
作原理
A-A(拆去壳体、传动轴和轴承)
A




A6
54 3
2
1
图3-35 直轴式轴向柱塞泵基本结构
邵陽學院機械與能源工程系
– 平均理论流量 q t:泵在单位时间内理论上排出的 油液体积,q t= n v ,单位为 m3/s 或 L/min 。
– 实际流量 q :泵在单位时间内实际排出的油液体积。 在泵的出口压力≠ 0 时,因存在泄漏流量Δq,因此 q = q t- Δq 。
– 瞬时理论流量 qsh :任一瞬时理论输出的流量,一 般泵的瞬时理论流量是脉动的,即qsh≠q t。
1-偏心轮和主轴 2-连杆 3-连接环 4-销子 5-壳体 6-柱塞 7-缸体 8-阀体 9-锥形吸油阀 10-排气螺钉 11-压油阀
邵陽學院機械與能源工程系
配流轴式径向柱塞泵结构特点
• 配流轴配流,因配流轴上与吸、压油窗口 对应的方向开有平衡油槽,使液压径向力 得到平衡,容积效率较高。
• 柱塞头部装有滑履,滑履与定子内圆为面 接触,接触面比压很小。
• 轴向柱塞泵式手动变量泵
邵陽學院機械與能源工程系
邵陽學院機械與能源工程系
缸 体
配 流 盘
柱 塞 滑 履

• 三对磨擦副:柱塞与缸体孔, 缸体与配流盘,滑履与斜盘。 容积效率较高,额定压力可达 31.5MPa。
• 泵体上有泄漏油口。
• 传动轴是悬臂梁,缸体外有大 轴承支承。
• 为减小瞬时理论流量的脉动性, 取柱塞数为奇数:5,7,9。
邵陽學院機械與能源工程系
第二章
液压泵
邵陽學院機械與能源工程系
§2-1 液压泵概述
• 液压系统中的能量转换
液压泵
液压马达
邵陽學院機械與能源工程系
液压泵是将电机输出的机械能(转矩 Tp和角速度 p
的乘积)转变为液压能(液压泵的输出压力 p p 和 输出流量 Qp 的乘积),为系统提供一定流量和压 力的油液,是液压系统中动力源; 液压马达是将系统的液压能(液压马达的输入压力
• 根据各密封工作容积在转子旋转一周吸、排油液次数 的不同,叶片泵分为两类,即完成一次吸、排油液的 单作用叶片泵和完成两次吸、排油液的双作用叶片泵。 单作用叶片泵多为变量泵,工作压力最大为7.0Mpa, 双作用叶片泵均为定量泵,一般最大工作压力亦为 7.0Mpa,结构经改进的高压叶片泵最大的工作压力可 达16.0~21.0Mpa。
和 输输 出入 转流 矩量TmpmQ和m角的速乘度积)转变m 为的机乘械积能),(液使压系马统达输
出一定的转矩和转速,驱动工作部件运动;
邵陽學院機械與能源工程系
• 一、液压泵和液压马达的工作原理和特点
1-凸轮 2-柱塞 3-弹簧 4-密封油腔 5、6-单向阀
V=Sπd 2/4=eπd 2/2
容积式泵的工作原理:
邵陽學院機械與能源工程系
邵陽學院機械與能源工程系
2.双作用叶片泵的排量和流量计算
R
V1
θ 3
r
δ
r0 V2
2
V 2z 1 (R2 r2)B 2 B(R2 r2)
2
1 图3-20 双作用叶片泵的流量计算
1-转子 2-叶片 3-定子
排量公式 V = 2πB(R 2 – r 2)- 2 z BS(R - r)/ cosθ
– 总效率ηp :ηp = P / P r= p q / Tω=ηvηm
式中ηm为机械效率。 V
q qt
qt
q qt
1 q qt
m
Tt Ti
2nTt pqt pVn
Tt
pV
2
m
pV
2Ti
Po pq
Pi 2nTi
Po Pi
pqV
2nTiV
q Vn
pV
2Ti
Vm
邵陽學院機械與能源工程系
• 泵的转速: – 额定转速 n s:额定压力下能连续长时间正常运转的 最高转速。 – 最高转速 n max:额定压力下允许短时间运行的最高 转速。 – 最低转速n min:正常运转允许的最低转速。 – 转速范围:最低转速和最高转速之间的转速。
– 额定流量 q s :泵在额定压力,额定转速下允许连 续运转的流量。
– 容积效率ηv:ηv= q /q t =(q t - Δq)/ q t =1-Δq /qt=1-kp /nV
k 为泄漏系数。
式中Βιβλιοθήκη • 泵的功率和效率:邵陽學院機械與能源工程系
– 输入功率 P r: 驱动泵轴的机械功率为泵的输入功率,P r= Tω – 输出功率 P:泵输出液压功率, P = p q
• 一、柱塞泵的分类
• 1、按缸体与泵轴的相对位置关系,可分为轴向 柱塞泵和径向柱塞泵两大类。
柱塞沿径向放置的泵称为径向柱塞泵,柱塞轴
向布置的泵称为轴向柱塞泵。为了连续吸油和 压油,柱塞数必须大于等于3。
• 2、按配流装置的型式可分为配流盘配流、配流 轴配流柱塞泵和阀配流柱塞泵三大类。
• 3、按排量是否可变分为定量柱塞泵和变量柱塞 泵
邵陽學院機械與能源工程系
邵陽學院機械與能源工程系
由于连杆轴线与柱塞轴线的夹角θ≤2°柱塞所受侧向力可以忽略, 改善了柱塞磨损情况。允许缸体有较大的倾角(一般γmax= 25°~40°) 承载能力大,结构坚固,耐冲击,寿命长。
D G
1
2
3
4
5
G
r
B
¦Θ
B
R
图3-44 斜轴泵工作原理
1-法兰盘 2-连杆 3-柱塞 4-缸体 5-配流盘
▪ 为防止密闭容积在吸、压油转换
时因压力突变引起的压力冲击,在 配流盘的配流窗口前端开有减振槽 或减振孔。
邵陽學院機械與能源工程系
邵陽學院機械與能源工程系
5y
4
12
3
Ψ R4 R3
R2 R1 R6 R5
3 2 x
1
c
h
b
F' p'
FN
γ
a
F1 p
Δ b
图3-37 配流盘
1-配流窗口 2-内密封带 3-外密封带 4-辅助支承 5-泄油槽
邵陽學院機械與能源工程系
• 三、液压泵的分类和选用
1、类型
液压泵 (按构件形状 和运动方式)
柱塞式 叶片式 齿轮式
轴向柱塞式 径向柱塞式 单作用叶片式 双作用叶片式 外啮合式 内啮合式
邵陽學院機械與能源工程系
相关文档
最新文档