短期交通流量预测

合集下载

短时交通流量预测分析

短时交通流量预测分析

短时交通流量预测分析交通流量的预测对于交通管理和规划至关重要。

在城市中,交通流量的准确预测可以帮助决策者优化交通信号控制系统、规划道路和公共交通线路,以及改善交通拥堵状况,提高出行效率。

短时交通流量预测涉及对未来较短时间范围内交通流量的估计,通常在小时或更短的时间段内。

本文将探讨短时交通流量预测的分析方法和应用。

短时交通流量预测的分析方法可以分为经验模型和机器学习模型两类。

经验模型基于专家经验和规则来建立预测模型,包括时间序列分析、回归分析和模糊推理等方法。

时间序列分析可以利用历史数据的周期性和趋势性来预测未来的交通流量。

回归分析可以根据交通流量与其他因素之间的关系来建立预测模型。

模糊推理可以模拟人类的推理过程来预测交通流量。

这些方法通常需要手动选择模型和参数,并且对数据的要求比较高。

机器学习模型基于数据来学习交通流量的特征和模式,并利用学习的结果来预测未来的交通流量。

常用的机器学习方法包括神经网络、支持向量机、决策树和随机森林等。

这些方法通常不需要手动选择模型和参数,可以自动学习数据的特征和模式。

机器学习模型的性能通常受数据质量、特征选择和模型调优等因素的影响。

短时交通流量预测的应用包括交通信号控制、交通调度和交通规划等。

交通信号控制可以根据预测的交通流量来优化交通信号的配时,以减少交通拥堵和等待时间。

交通调度可以根据预测的交通流量来调整公交车和出租车的行驶路线和时间,以提高服务质量和效率。

交通规划可以根据预测的交通流量来规划道路和公共交通线路,以满足未来的出行需求。

总之,短时交通流量预测是交通管理和规划中的重要任务。

通过收集和处理数据,应用经验模型和机器学习模型,可以对未来较短时间范围内的交通流量进行准确预测。

这些预测结果可以应用于交通信号控制、交通调度和交通规划等多个领域,以优化交通系统的性能和效率。

随着数据收集和分析技术的不断发展,短时交通流量预测的准确性和实用性将进一步提高。

短时交通流预测模型综述

短时交通流预测模型综述

短时交通流预测模型综述引言:随着城市化进程的加快和交通拥堵问题的日益严重,短时交通流预测成为了交通管理和规划的重要工具。

通过准确地预测交通流量,交通部门可以根据预测结果来制定合理的交通管理措施,提高交通效率,缓解交通拥堵,为居民提供更加便捷的出行环境。

本文将综述目前常用的短时交通流预测模型,以便读者对该领域有更全面的了解。

一、基于统计模型的短时交通流预测基于统计模型的短时交通流预测方法是最早应用的预测方法之一。

这种方法通过对历史交通数据进行统计分析,建立数学模型来预测未来的交通流量。

常用的统计模型包括回归模型、ARIMA模型等。

这些模型通过分析交通流量与时间、天气等因素的关系,来预测未来的交通流量。

尽管这类模型在一定程度上能够准确预测交通流量,但是由于模型的线性假设和对历史数据的依赖性,对于复杂的交通流量变化往往预测效果较差。

二、基于人工神经网络的短时交通流预测人工神经网络是一种模拟人脑神经系统的计算模型,可以通过学习和自适应来预测未来的交通流量。

这种方法的优势在于可以对非线性关系进行建模,并且对于历史数据的依赖性较低。

常用的人工神经网络模型包括BP神经网络、RBF神经网络等。

这些模型通过对历史交通数据的学习和训练,来预测未来的交通流量。

然而,人工神经网络模型需要大量的训练数据,并且对网络结构和参数的选择较为敏感,往往需要较长的训练时间和计算资源。

三、基于机器学习的短时交通流预测机器学习是一种通过对大量数据进行学习和自适应来预测未来的交通流量的方法。

与传统的统计模型和人工神经网络相比,机器学习方法能够处理更复杂的非线性关系,并且对于历史数据的依赖性较低。

常用的机器学习方法包括支持向量机、决策树、随机森林等。

这些方法通过对历史交通数据的学习和训练,来预测未来的交通流量。

机器学习方法在短时交通流预测中取得了很好的效果,并且在实际应用中得到了广泛的应用。

四、基于深度学习的短时交通流预测深度学习是一种基于人工神经网络的机器学习方法,可以通过多层次的神经网络结构来提取和学习更高级别的特征。

《基于最小二乘支持向量机的短时交通流预测方法研究》范文

《基于最小二乘支持向量机的短时交通流预测方法研究》范文

《基于最小二乘支持向量机的短时交通流预测方法研究》篇一一、引言随着城市化进程的加快和交通网络复杂性的提升,准确预测短时交通流量对于智能交通系统的建设和交通规划显得愈发重要。

准确的短时交通流预测能够提高交通运行效率、降低交通拥堵程度、改善城市居民出行体验,并有助于实现智能交通系统的智能化和自动化。

然而,由于交通流量的动态变化性、非线性和不确定性,传统的预测方法往往难以满足实际需求。

因此,本文提出了一种基于最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)的短时交通流预测方法。

二、最小二乘支持向量机理论最小二乘支持向量机是一种基于统计学习理论的机器学习方法,它通过构建一个高维空间中的超平面来对数据进行分类或回归。

与传统的支持向量机相比,LSSVM在处理回归问题时具有更好的泛化能力和更高的预测精度。

此外,LSSVM还具有算法简单、计算量小等优点,适用于处理大规模数据集。

三、短时交通流预测模型的构建1. 数据预处理:首先,收集历史交通流量数据,并对数据进行清洗、去噪和标准化处理,以消除异常值和噪声对预测结果的影响。

2. 特征提取:从历史交通流量数据中提取出与短时交通流预测相关的特征,如时间、天气、节假日等。

3. 模型构建:利用LSSVM构建短时交通流预测模型。

具体地,将历史交通流量数据作为输入,将预测的目标值(如未来某一时刻的交通流量)作为输出,通过优化算法求解得到模型参数。

4. 模型训练与优化:利用训练数据集对模型进行训练,通过交叉验证等方法对模型进行优化,以提高模型的预测精度。

四、实验与分析1. 数据集与实验环境:本文采用某城市实际交通流量数据作为实验数据集,实验环境为高性能计算机。

2. 实验方法与步骤:将实验数据集分为训练集和测试集,利用训练集对模型进行训练和优化,利用测试集对模型进行测试和评估。

3. 结果与分析:通过对比LSSVM与其他传统预测方法的预测结果,发现LSSVM在短时交通流预测方面具有更高的预测精度和更强的泛化能力。

短时交通流量预测ppt

短时交通流量预测ppt

式中 按推导
模型完成一次学习。
基于遗传算法的BP神经网络改进
由于BP算法的缺点,国内外很多学者提出对BP进 行改进,众多改进方法中通过实践,基于遗传算 法的BP神经网络所得到的交通预测值与实际值更 为接近。 原理:利用遗传算法广泛的适应性和全局寻优的 特点,将遗传学习算法和BP算法相结合,对BP网 络连接权和阀值进行全局寻优,将搜索范围缩小 之后,再用BP寻优,实现优势互补,从而弥补标 准BP神经网络的不足,对短时交通流量进行预测。
输入量设为: 式中,m为训练样本数;n为输入层单元个数。
对应输入模式的输出向量为:
其中q为输出层单元数。 隐含层各单元的输入为: 式中, w ij 为输入层至隐层的连接权重; j 为隐层单元的阈值;p为隐层 单元的个数。转移函数采用函数 ,则隐层单 元的输出为: 。
同理,输出层单元的输入、输 出分别为:
从上述具体的预测结果来看,在要预测的七 个时的交通量中,最后的预测结果中有4个值的相 对误差在5%之内,2个值的相对误差在5%-10%之 间,1个值的相对误差在10%以上。这组数据反映 出短时交通量预测这类问题,遗传算法BP神经网 络与传统的BP神经网络相比,在精度方面能够达 到纯BP网络的预测水平。在BP网络的训练方面, 由于优化选取了BP网络的初始权阀值,采用了LM 训练算法,因此训练收敛的步数大大减少,短时 交通量预测值与实际值较为接近吻合。
短时交通预测
交通流预测是指在某一时刻t 对下 一决策时刻t+∆t乃至以后若干时刻 的交通流作出实时预测,一般认为 ∆t即预测时间跨度不超过15min乃 至小于5min的预测为短时 (Short-Term)交通流预测。
短时交通流预测的特性
由于交通系统是由人直接参与其中的,因此交通系统的显 著特点就是不确定性和非线性。这给交通预测带来很大困 难,尤其是短时交通预测,受随机因素影响更大。 传统的交通流理论方法对于解决不确定性的交通系统很难 得到满意的结果,因此人们综合运用现代信息与通讯技术 等手段来研究短时交通流来提高交通运输的效率,以提高 交通路网的通行能力。运用各种高新技术系统地解决道路 交通问题的思想就应运而生了,这就是智能交通系统 ITS( intelligent transport system)。

城市主干道短时交通流预测研究

城市主干道短时交通流预测研究

城市主干道短时交通流预测研究随着城市化进程的不断加快,城市的交通压力也日益加大。

城市主干道作为城市交通的血脉,其交通流量的预测对于优化城市交通管理、提高交通效率至关重要。

因此,对城市主干道短时交通流进行准确预测的研究成为了学术界和实际应用中的热点问题。

城市主干道短时交通流预测是指根据历史交通数据和相关环境因素,对未来一段时间内城市主干道上的车辆流量进行估计和预测。

其研究的目的是通过理解和分析交通流量的规律,预测未来交通状况,从而为交通管理部门制定合理的交通控制策略提供科学依据。

城市主干道短时交通流预测的研究方法多种多样,其中常用的方法包括时间序列分析、神经网络模型、支持向量机等。

时间序列分析是通过对历史交通数据进行统计分析,建立数学模型,推断未来交通流量的变化趋势。

神经网络模型则是通过对大量历史数据的学习和训练,建立一个能够模拟人脑神经网络的数学模型,从而预测未来交通流量。

支持向量机是一种基于统计学习理论的机器学习方法,通过构建一个能够将数据映射到高维特征空间的超平面,从而实现对未来交通流量的预测。

在进行城市主干道短时交通流预测时,需要考虑的因素包括历史交通数据、天气状况、节假日等。

历史交通数据是进行预测的基础,通过对历史数据的分析,可以发现交通流量的规律和趋势。

天气状况是影响交通流量的重要因素之一,例如下雨、雾霾等恶劣天气会导致交通拥堵。

节假日则会对交通流量产生显著影响,人们的出行方式和时间会发生变化,因此需要对节假日进行适当的调整和修正。

城市主干道短时交通流预测的研究对于城市交通管理的科学化、智能化具有重要意义。

通过准确预测交通流量,可以合理安排交通信号灯的配时,优化交通流动性,减少交通拥堵,提高交通效率。

此外,交通流量预测还可以为交通管理部门提供决策支持,帮助他们制定合理的交通规划和控制策略,提高城市交通的整体运行效果。

综上所述,城市主干道短时交通流预测的研究是一个复杂而重要的问题。

通过运用合适的预测模型和适当的数据处理方法,可以实现对城市交通流量的准确预测,为城市交通管理和规划提供科学依据,提高城市交通的运行效率和服务水平。

高速公路短时交通量预测

高速公路短时交通量预测

高速公路短时交通量预测高速公路短时交通量预测随着城市化进程的不断加快,交通拥堵问题日益突出。

高速公路作为主要的城市交通干道,交通量的预测对于交通管理和规划非常重要。

高效准确地预测高速公路短时交通量,可以为交通管理部门提供决策依据,优化交通流量,缓解交通拥堵问题。

高速公路交通量预测是指预测未来一段时间内高速公路上的车辆数目,准确预测能够帮助交通管理部门提前做好交通组织、交通控制和资源调配等准备工作。

现代交通量预测方法主要基于历史数据与实时数据相结合的方式。

下面将介绍几种常见的高速公路短时交通量预测方法。

一、基于时间序列的预测方法时间序列预测方法是通过分析历史交通量数据的变化趋势和规律,对未来的交通量进行预测。

常用的时间序列模型有ARIMA 模型、指数平滑模型等。

ARIMA模型是一种常见的线性模型,通过分析历史数据的自相关性和移动平均性来进行参数估计,从而进行未来交通量的预测。

指数平滑模型是一种多项式拟合方法,通过对历史数据进行平滑处理,利用平滑后的数据来进行预测。

二、基于回归分析的预测方法回归分析可以通过建立交通量与影响因素(如时间、天气、节假日等)之间的数学模型,来进行交通量的预测。

回归分析方法需要准备足够的历史交通量数据和影响因素数据,通过线性或非线性回归模型,对交通量进行建模预测。

三、基于神经网络的预测方法神经网络是一种模拟人脑神经元连接方式的数学模型,可以通过学习历史数据的规律,对未来交通量进行预测。

神经网络模型可以通过调整各层之间的连接权值,使得网络的输出结果与实际交通量相匹配。

神经网络模型具有良好的非线性逼近能力,可以更好地适应交通量数据的复杂特征。

高速公路短时交通量预测的准确性和可靠性受多个因素的影响。

首先,数据质量是预测模型的基础,只有收集到准确完整的历史数据和实时数据,才能构建有效的预测模型。

其次,影响因素的选择也非常重要,需要考虑交通量的周期性、趋势性以及外界因素的影响。

为了提高交通量预测的准确性和可靠性,可以采用以下方法。

短时交通流预测的研究

短时交通流预测的研究

短时交通流预测的研究随着城市化进程的加速和交通工具的普及,城市交通流量不断增加,给城市交通管理带来了巨大挑战。

为了更好地提高城市交通的运行效率和减少交通拥堵,研究人员开始关注短时交通流预测的问题。

短时交通流预测是指对未来一段时间内交通流量的变化进行预测,通常是以分钟或小时为单位。

这种预测可以帮助交通管理部门做出合理的决策,包括交通信号灯的调整、交通疏导的安排以及交通资源的合理配置等。

同时,对于驾驶员来说,短时交通流预测也可以提供实时的交通信息,帮助他们选择最佳的出行路线,减少出行时间。

短时交通流预测的研究面临着许多挑战。

首先,交通流量受到许多影响因素的影响,包括天气、道路状况、节假日等。

因此,需要考虑这些因素,并将其纳入预测模型中。

其次,交通流量的变化具有一定的不确定性,因此需要建立合适的模型来捕捉这种不确定性。

最后,交通流量的预测需要具备高的准确性和实时性,以满足实际应用的需求。

为了解决这些问题,研究人员提出了各种各样的短时交通流预测方法。

其中,基于统计模型的方法是最常见的一种。

这种方法利用历史交通数据来建立预测模型,通过分析历史数据中的交通流量与影响因素的关系,来预测未来一段时间内的交通流量。

另外,基于机器学习的方法也被广泛应用于短时交通流预测中。

这种方法通过训练模型来学习交通数据的模式和规律,从而预测未来的交通流量。

除了以上方法,还有一些新兴的研究方向,如基于深度学习的方法和基于移动手机信号数据的方法。

这些方法利用大数据和人工智能的技术,可以更好地预测交通流量,并且具有较高的准确性和实时性。

总之,短时交通流预测的研究对于改善城市交通管理和提高出行效率具有重要意义。

随着技术的不断发展,我们相信短时交通流预测的准确性和实时性将会得到进一步提高,为城市交通运行带来更大的便利。

短时交通流量预测分析

短时交通流量预测分析

短时交通流量预测分析短时交通流量预测分析随着城市化进程的加速,交通拥堵已经成为现代城市面临的一个重大问题。

为了有效应对交通拥堵,交通管理部门和交通研究人员迫切需要开发可靠的短时交通流量预测模型。

本文将重点探讨短时交通流量预测分析的方法和技术。

首先,我们需要了解短时交通流量预测的概念和意义。

短时交通流量预测是指通过对交通流量数据进行分析和建模,根据历史数据和当前交通状况,对未来一段时间内的交通流量进行预测。

这对于交通管理部门和交通研究人员来说是至关重要的,因为准确预测未来交通流量可以帮助他们采取相应的交通管理措施,优化交通流动,并减少交通拥堵。

在短时交通流量预测分析中,首先需要收集和准备交通数据。

这些数据包括交通流量、车辆速度、车流密度等。

一般来说,交通流量数据是由交通监控设备(如交通摄像头、交通流量监测器)收集得到的。

这些数据通常是以时间序列的形式进行记录,包括每个时间点的交通流量。

基于收集到的交通数据,短时交通流量预测分析可以采用不同的方法和技术。

其中最常见的是基于统计方法的预测模型,如时间序列模型、回归分析模型等。

这些模型可以通过对历史交通流量数据的拟合和建模,预测未来一段时间内的交通流量。

时间序列模型中,传统的ARIMA模型和SARIMA模型常被应用于交通流量预测。

回归分析模型中,可以考虑影响交通流量的因素,如天气、事件等,以构建更准确的预测模型。

另外,近年来,机器学习方法在短时交通流量预测分析中得到了广泛应用。

机器学习方法通过从历史交通数据中学习交通流量模式和规律,构建预测模型。

其中,支持向量回归、随机森林、神经网络等方法都可以用于短时交通流量预测。

这些方法具有较强的非线性建模能力,能够更好地应对复杂的交通流量变化。

此外,短时交通流量预测分析还可以结合交通流模拟模型。

交通流模拟模型是一种仿真工具,可以模拟路网中车流的动态变化。

通过将短时交通流量预测模型和交通流模拟模型相结合,可以获得更准确的交通流量预测结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

短期交通流量预测摘要交通流量是一种对于一段时间在某个路口通过的交通实体量,在现在的社会中,智能运输系统等交通理论的研究已经渐渐成为发达国家的研究对象,而交通流量预测分析是其中的核心研究之一。

所以,对于交通流量的预测成为叩开智能交通系统大门的最有力的那一把钥匙。

在前面,我们首先面临的一个问题是对于数据的处理。

题目以15分钟为一个时间段来测量交通流量,一共有三天的数据,应该有288个数据,但是题目只给出了276个。

另外,在数据中还有两个为负的数据。

面对缺失数据和异常数据,我们分别使用了热卡插补法和平均值填补法来解决。

然后在进行预测时,我们分别使用了不同的软件来建立不同的预测模型。

首先我们使用了灰色预测GM软件来进行灰色模型的预测,在预测前,我们先用模型和前两天的交通流量来预测第三天的交通流量,然后将第三天的真实交通流量与预测交通流量进行相关性检验,检验通过后,再用于预测第四天的交通流量,最后评价模型的好坏。

接着,我们使用了spss软件来进行回归分析模型的预测。

在预测之前,我们需要先对数据进行相关性检验,若没有相关性,则回归方程会没有意义。

接下来,通过对回归方法的决定性系数检验和方差分析检验,得到最合适方法。

之后再进行第四天的预测及预测结果的评价。

然后,我们使用了metlab软件来实现BP神经网络模型的预测。

BP神经网络的实质是用已给出的数据来推出需要的数据,并将新预测出的数据重新返回输入中,得到误差,一直重复,直到误差到达合理的围。

在预测之前,我们先得出了误差在合理围,并且看到已给出数据的真实值与预测值得对比。

在确保模型是可用的之后,在进行预测与预测结果的评价。

最后,我们使用了eview软件来进行时间序列的预测。

时间序列预测要求数据必须是平稳的,所以在预测前,先要对数据进行ADF检验,在检验通过后,才能进行预测,得到预测后的表达式和残差。

在最后,还必须对残差进行分析估计。

这样之后,对模型进行评价。

在本文的最后,我们进行了进一步的讨论和改进,对四种预测方法进行了一个比较,判断出那个模型是最适合这个题目的。

并且对文章中所涉及的模型进行推广,使其更便于运用于生活实际中。

关键词:eviews 热卡插补法相关性检验神经网络时间序列ADF检验1 问题重述1.1问题背景交通流量指的是在一段时间通过道路某一地点、某一断面或某一车道的交通实体数。

随着交通基础设置建设和智能运输系统的发展,交通规划和交通诱导已成为交通领域研究的热点。

对于交通规划和交通诱导来说,准确的交通流量预测是其实现的前提和关键。

交通流量预测根据时间跨度可分为长期交通流量预测和短期交通流量预测,长期交通流量预测以小时、天、月甚至年为时间单位,是宏观意义上的预测;短期交通流量预测一般的时间跨度不超过15分钟,是微观意义上的预测。

短期交通流量预测是智能运输系统的核心容和实现其智能化功能的基础平台。

短期交通流量预测具有高度非线性和不确定性等特点,并且同时间相关性较强,研究表明,城市交通路网中交通路段上某时刻的交通流量与本路段前几个时段的交通流量有关,并且交通流量具有24小时准周期的特征。

1.2问题研究现有3天的交通流量数据,假设从第1天0时15分开始,每隔15分钟记录一次该段时间的交通流量,预测出第4天的交通流量,并指出模型的优缺点。

2 问题分析题目要求我们根据已给出的三天的数据来预测第四天的交通流量,并且评价判断模型的优缺点。

首先,题目给出的是三天的数据,以15分钟为一个截点,应该有3*24*4个数据,但实际只有266个数据。

另外,在数据中有负数的情况,按照该题的实际情况而言,不可能出现为负的情况,交通流量不可能为负。

所以,首先要对缺失数据进行处理,我们使用了单一插值法中的热卡插补法来补齐缺失数据和异常数据。

然后我们需要进行预测第四天的数据,在这里我们只需要进行短期的交通流量预测。

在短期预测中,我们以原始的15分钟为一个时段,预测未来一天的交通流量。

在这里我们一共运用了四种预测方法,分别是灰色预测模型,回归分析预测方法,时间序列和神经元网络,最后,通过对每种方法预测结果的分析与判断,总结出每种方法的优点和缺点。

3 符号说明符号含义说明第一二三天中,不同时间点的交通流量i 一天中,以15分钟为时间段的时间序列编号权值时间数列交通流量数列时间的平均值交通流量的平均值4 模型假设1假设题目所给的所有数据都是真实有效的。

2假设在这四天中并没有特殊的会聚集人群的事件发生。

3 假设测量的误差小,对结论的影响程度低,甚至没有影响。

4 假设灰色模型、MATLAB、SPSS软件、EViews软件选取的预测模型都是最好的。

5 假设测量交通流量时,把测量路段的所有车辆看作一个点。

6 假设随机选取检验的的数据,对结论没有影响。

5 模型建立与求解这道题目是一道关于交通流量的研究的问题,我们以某三天的每15分钟一个时段的交通流量为基础,在以15分钟时间段为时间窗宽的情况下,构建不同的预测模型,对第四天做出了预测,验证了模型的可行性,最后通过对模型结果的分析,评价模型的好与坏。

5.1 模型数据的处理问题中要求我们根据前三天的数据预测出第四天的数据,前三天的数据应该有288个,但是实际给出的数据只有276个,且给出的数据中还存在有两个为负数的数据,在题目的现实意义中,交通流量根本不可能为负数。

所以据判断,这组数据中存在着缺失值和异常数据,如何处理数据是一个重要的点。

Step1 缺失数据的处理首先对于缺失数据来说,我们并不知道缺失的数据是随机缺失数据还是非随机缺失数据,所以我们先将数据点作图,观察曲线的趋势,折线图一如下:图一从图中可以明显看出,这组数据有明显的周期性,所以可以大胆判断缺失的12个数据为第三天的21点到24点的数据。

对此,我们选择了热卡插补法进行缺失值的填补,所谓热卡插补法(Hot deck imputation),即对于一个包含缺失值的对象,在完整数据中找到一个与它最相似的对象,然后用这个相似对象的值来进行填补。

在这里,我们用与缺失值最相似的前两天同一时段的数据的平均值来代替缺失值。

用替换掉缺失值的数据画折线图得到图二:图二Step2 异常数据的处理对于数据中两个为负的异常数据,由于所占比例较小,只有0.7%左右,而直接去掉会影响数据分析的准确性,所以我们直接用平均值填充法(Mean/Mode Completer)来进行,用异常数据的前后两个数据的平均值来代替异常数据,得到完整数据。

5.2 数据的预测在这里,有几种不同预测方法可以这样使用,我们将一一进行预测并进行评价,得到最合适的模型。

5.2.1 灰色模型的建立求解与评价首先,我们运用了灰色预测模型,灰色模型是一种对含有不确定因素的系统进行预测的方法,灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。

Step1 灰色模型的检验如果要得到检验结果,必须要先检验使用模型的可行性,检查误差是否在合理围。

为此,我们先随机抽取每一天的20个时间点,用前两天的这20个数据来预测第三天的这20个时间点的交通流量。

然后用这20个时间点的真实值和预测值作误差检验。

检验结果为下图:通过图表可以看出,真实值与预测值的相关系数为0.785,说明这两组数据之间的相关性相对比较高,表明这个灰色模型是不错的,可以用于第四天的预测。

Step2 灰色模型的预测灰色系统理论认为,尽管客观表象复杂,但总是有整体功能的,因此必然蕴含某种在规律。

关键在于如何选择适当的方式去挖掘和利用它。

灰色系统是通过对原始数据的整理来寻求其变化规律的,这是一种就数据寻求数据的现实规律的途径,即为灰色序列的生成。

一切灰色序列都能通过某种生成弱化其随机性,显现其规律性。

数据生成的常用方式有累加生成、累减生成和加权累加生成。

在这里我们使用的是加权累加生成,将第一天,第二天和第三天的权值分别设为1/3,将一天中每个时间点对应的三个数据设为(i=1,2,3….95,96)称的邻值。

当权值都为1/3时,则生成数为在实际操作中,可以有现成的灰色预测软件进行计算。

以15分钟为一个时间点,将三天中每个相对应的时间点的交通流量作为样本量,代入于灰色预测模型中,得到96个预测值。

在预测过程,由于第一天早上六点时的一个异常数据,导致预测值出现异常数值,所以我们使用之前处理异常数据的方法处理了这个数据,重新进行了预测。

将预测出来的第四天的交通流量和前三天的交通流量并在一起,画出折线图三,如下:图三Step3 灰色模型的评价一优点1、数据量量较少,易于计算2、样本不需要有规律性分布,对于有周期性的不需要去趋势。

3 准确度相对较高。

二缺点1 可以分析的数据量的围狭窄,太少数据量和太多数据量的都不能分析预测,只适用于Recent、短期、中长期预测。

2 软件在计算后没有直接给出参数进行检验,必须自己另外进行检验分析,操作不方便。

5.2.2 回归分析预测的分析求解与评价回归分析预测法,是在分析市场现象自变量和因变量之间相关关系的基础上,建立变量之间的回归方程,并将回归方程作为预测模型,根据自变量在预测期的数量变化来预测因变量关系,大多表现为相关关系。

在前面的图形中,我们已经发现了每一天的交通流量与时间有强烈的周期性,难以得出三天在一起时的整体趋势,所以我们在进行回归分析预测时只选取了一天为研究对象。

并且,由于第三天与需要预测的第四天最接近,所以我们选择了第三天来进行分析预测。

Step1 回归分析预测的相关性分析回归分析是对具有因果关系的影响因素和预测对象所进行的数理统计分析处理。

只有当变量与因变量确实存在某种关系时,建立的回归方程才有意义。

所以,我们必须要先判断作为自变量的因素与作为因变量的预测对象是否有关,相关程度如何,以及这种相关程度的把握性多大,在这里,我们用相关关系的大小来判断自变量和因变量的相关的程度。

将自变量时间设为,因变量交通流量设为,在这里我们运用R系数来计算两者之间的相关性系数:表示时间与交通流量的平均数在软件中我们通过计算得到以下结果:相关性时间交通流量时间Pearson 相关性 1 .606**显著性(双侧).000N 96 96交通流量Pearson 相关性.606** 1显著性(双侧).000N 96 96**. 在 .01 水平(双侧)上显著相关。

由结果可以看出,交通流量和时间之间的相关性系数为0.606,在(0.5,0.8)的围,属于中度相关,可以进行回归分析。

Step2 回归分析预测的检验回归预测模型是否可用于实际预测,取决于对回归预测模型的检验和对预测误差的计算。

回归方程只有通过各种检验,且预测误差较小,才能将回归方程作为预测模型进行预测。

相关文档
最新文档