《冷菜冷拼与食品雕刻》期末试题

《冷菜冷拼与食品雕刻》期末试题
《冷菜冷拼与食品雕刻》期末试题

《冷菜、冷拼与食品雕刻技艺》期末试题题

一、填空题。

1.糖雕的制作方法有三种:拉捏制法、吹制法、裱挤法。

2.雕刻花卉按先后顺序分为由花瓣向花心雕刻和由花心向花瓣雕刻两种方法。菜肴盘饰的式样从形状和作用上分为:包围式、分隔式、中央式、边角式、象形式。

3.冷菜拼摆的步骤选料、垫底、盖边、盖面、点缀。

4.冻根据口味不同,可分为咸冻、甜冻两种。

5.酱就是将腌制后经焯水或油炸的半成品,放入各种调味料配制的酱汁中,烧沸转至中小火煮至原料成熟、上色的烹调方法。

6.根据所熏的烹饪原料生熟不同,熏分为生熏和熟熏两种。

7.炝的种类有水炝、油炝、生炝。

8.糟的种类有生糟和熟糟两种。

9.冷菜拼摆的式样有馒头形、四方形、菱形、桥形、螺蛳形和花朵形。

10.瓜盅雕刻可分为阳文雕刻和阴文雕刻。

二、选择题。

1.点缀花的类别划分可以按点缀花雕刻造型 C 划分。

A.手段

B.形式

C.类别

2.点缀花可以起到弥补主菜 A 不足的作用。

A.色彩

B.风格

C.食量

3.点缀花在使用时,要注意 B 。

A.营养

B.卫生

C.密封

4.料花的加工方法,可采用戳法、剔法、 C 、切法等方法加工。

A.手撕法

B.剥离法

C.削法

5.料花加工是将原料加工成剖面为不同图案的坯料,而后加工成 A 料花。

A.平面形

B.双面形

C.单面形

6.将经过加工的各种装饰花型,围摆、镶嵌在整盘的四周或中心,此技法称

A 。

A.装饰点缀花

B.制作点缀花

C.应用点缀花

7.插花法是将原料切成薄片, B 或叠制后,用牙签插成不同花形造型的点缀花。

A.压制

B.卷制

C.滚制

8.局部点缀,多用于 B 菜肴的装饰。

A.单一料成品

B.整料成品

C.小型成品

9.半围点缀花的摆放要求是:要掌握好盛装菜品与点缀花的份量、 B 的搭配。

A.品种

B. 色彩、形态

C.式样

10.冷菜装盘的步骤一般分为垫底、围边、 C 三个步骤。

A.盖顶

B.封顶

C.盖面

11.围边要以整齐、匀称、平展来体现技艺的效果,使其形成一个 D 的表面。

A.如画

B. 斑斓

C.完整

12.色彩鲜艳的冷盘均可用 B 原料来点缀。

A.对比度较弱的

B.对比度强烈的

C.对比度一般的

13.制作大型黄油雕刻,涉及的环节有 C 。

A.构思、绘图、剪接

B.浇注、制坯、打磨

C.上油、装饰、修整

14.半围点缀摆放法是在餐盘的一边将点缀花 C 成半圆状的方法。

A.镶嵌

B.堆摆

C.拼制摆放

15.将经过加工的各种装饰花型,围摆或 B 在整盘的四周或中心,此技法称装饰点缀花。

A.贴摆

B.镶嵌

C.叠摆

16.冷盘造型应坚持符合食用、 C 的原则。

A.选料广泛

B.工艺讲究

C.安全卫生

17.冷盘拼摆,色彩搭配上应以和谐为准,即 C 。

A.鲜艳、纯正

B.平和、淡雅

C.艳而不俗,淡而不素

18.点缀品的使用应掌握 A 的原则,要突出主题。

A.少而精

B.既淡而雅

C.既繁不乱

19.冷盘类型划分方法之一是按 C 划分。

A.图案比例 B.形象虚实 C.空间形式

20.适宜蔬果雕刻的原料品种选项有 C 。

A.黄瓜、西瓜、香蕉、龙眼B、哈蜜瓜、木瓜、榴莲 C葱头、南瓜,西红柿

21.冷盘类型可按 A 划分。

A.难易繁简

B.粗细

C.原料品质

22.装盘盛器的规格应与 C 相适应。

A.菜肴的造型

B.菜肴的价位

C.菜肴的数量

23.平面式花色冷盘具备很好的 A ,在筵席中可单独上席。

A.可食性

B.可观形

C.营养性

24.构图主要解决花色冷盘的形体、结构和 B 等问题。

A.色彩

B.层次

C.规格

25.加工点缀花一般以色彩鲜艳,具有 B 的原料为宜。

A.装饰性

B.可塑性

C.雕刻性

26.局部点缀摆放是将点缀花摆放餐盘边上 C 部位的方法。

A.指定

B.固定

C.适当

27.卧式花色冷盘,在画面上追求完整,且 B 。

A.形似

B.形态逼真

C.最佳布局

28.冷盘拼摆时,一般采用 A 的颜色搭配,突出主题。

A.对比强烈

B.形同色

C.相近色

29.花色冷盘在服务形式上常置于筵席的中间,故称 A 。

A.主盘

B.看盘

C.食用盘

30.对烹饪原料进行筛选、刀工处理、 C 、调味、烹制及装盘工艺称热菜工艺。

A.配色

B.配形

C.配制

三、判断题。

(×)1.切配冷菜,运刀要有力度、要稳、准、快。

(×)2.花色冷盘的拼摆只要将其带汁的菜肴分开即成,菜肴味的轻重无需考虑。(√)3.排的手法主要用于组织刀面,对造型影响大。

(×)4.平面式花色拼盘,注重食用,故造型要求比较少。

(×)5.无论哪一种类型的工艺冷盘,用色应暖色多一点,冷色少一点,以求高雅别致。(×)6.果蔬雕刻创作过程主要包括选料、构思、润饰、组装、成形、加工、上油等。(×)7.色彩是物体表面的固有色在人体视觉中形成的感知觉。

(√)8.冷盘的组装手段在冷盘制作工艺中尤为重要,它是实现美感的重要途径。(×)9. 冷菜装盘的第三个步骤是围边点缀。

(×)10.围边应以整齐和夸张艺术来体现技艺效果。

(√)11.对冷盘装盘类型可概括为单盘、拼盘、艺术盘三类。

(×)12.卧式花色冷盘多作为观赏,不作食用。

(√)13.冷菜是各种筵席必不可少的菜肴,素有菜肴“脸面”之称。

(×)14.贴的手法主要是对形象的感悟,不用刀工。

(√)15.不粘锅不要将锅直接放在明火上干烧。

四、简答题。

1.食品雕刻的原则。

答:①选用题材的正确性。②突出原料的优点性。③讲究雕品的艺术性。④注重雕品的实用性。⑤应用雕品的科学性。

2.简述食品雕刻类型。

答:(1)整雕(又称圆雕)(2)零雕组装(3)浮雕(4)阴文雕(5)镂空雕(6)平雕

3.简述食品雕刻制品的贮藏。

答:(1)半成品的贮藏(2)成品的贮藏①矾水浸润法②低温贮藏法

③包裹低温贮藏法④明胶液贮藏法

4.简述花色冷盘的拼制特点。

答:(1)观赏性和可食性双重功能。(2)原料的特性和形状的个性有机结合。(3)主题和意境相互渲染。(4)烹调技术和工艺美术相互结合。(5)外形和内涵相衬托。

五、论述题。

筵席冷盘的设计原则与要求。

筵席冷盘设计的原则:

1.筵席冷盘设计要有针对性2.筵席冷盘设计要有地方性3.筵席冷盘设计要有季节性4.筵席冷盘设计要有科学性5.筵席冷盘设计要有效益性

筵席冷盘设计的要求:1.要选用不同的原料2.要采用多种烹调方法3.要有多滋多味的口感4.要有绚丽多彩的颜色5.要有各式各样的形状6.要有变换多样的质感7.要有适当比例的荤素搭配8.要有多种的营养成分

《振动力学》习题集(含答案)【精选】精心总结

《振动力学》习题集(含答案) 1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。求系统的固有频率。 图E1.1 解: 系统的动能为: ()2 22 121x I l x m T += 其中I 为杆关于铰点的转动惯量: 2102120131l m dx x l m x dx l m I l l ??==?? ? ??= 则有: ()2212212236 16121x l m m x l m x ml T +=+= 系统的势能为: ()()()2 1212124 1 4121 cos 12cos 1glx m m glx m mglx x l g m x mgl U +=+=-? +-= 利用x x n ω= 和U T =可得: ()()l m m g m m n 113223++= ω

1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。求系统的固有频率。 图E1.2 解: 如图,令θ为柱体的转角,则系统的动能和势能分别为: 22222243212121θθθ mR mR mR I T B =??? ??+== ()[]()22 22 12θθa R k a R k U +=+?= 利用θωθn = 和U T =可得: ()m k R a R mR a R k n 34342 2 +=+=ω

1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。 求系统的固有频率。 图E1.3 解: 系统的动能为: 2 2 1θ J T = 2k 和3k 相当于串联,则有: 332232 , θθθθθk k =+= 以上两式联立可得: θθθθ3 22 33232 , k k k k k k +=+= 系统的势能为: ()2 32323212332222121212121θθθθ?? ????+++=++= k k k k k k k k k k U 利用θωθn = 和U T =可得: ()() 3232132k k J k k k k k n +++= ω

振动力学》习题集(含答案)

《振动力学》习题集(含答案) 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图所示。求系统的固有频率。 图 解: 系统的动能为: ()22 2 121x I l x m T &&+= 其中I 为杆关于铰点的转动惯量: 2102120131l m dx x l m x dx l m I l l ??==?? ? ??= 则有: ()2 212212236 16121x l m m x l m x ml T &&&+=+= 系统的势能为: ()()()2 1212124 1 4121 cos 12 cos 1glx m m glx m mglx x l g m x mgl U +=+=-? +-= 利用x x n ω=&和U T =可得: ()()l m m g m m n 113223++= ω

质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图所示。求系统的固有频率。 图 解: 如图,令θ为柱体的转角,则系统的动能和势能分别为: 2222224321212 1θθθ&&&mR mR mR I T B =?? ? ??+== ()[]()22 22 12θθa R k a R k U +=+?= 利用θωθ n =&和U T =可得: ()m k R a R mR a R k n 34342 2 +=+=ω

转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图所示。求系统 的固有频率。 图 解: 系统的动能为: 22 1θ& J T = 2k 和3k 相当于串联,则有: 332232 , θθθθθk k =+= 以上两式联立可得: θθθθ3 22 33232 , k k k k k k +=+= 系统的势能为: ()232323212 332222*********θθθθ?? ????+++=++=k k k k k k k k k k U 利用θωθ n =&和U T =可得: ()() 3232132k k J k k k k k n +++= ω

(完整版)振动力学试题

1.转动惯量为J 的圆盘由三段抗扭刚度分别为1k 、2k 和3k 的轴约束,如图所示。求系统的固有频率。 解: 系统的动能为 2 2 1?=θJ T 2k 和3k 相当于串联,则 32θθθ += 3322θθk k = 联立以上两式得 θθ3 23 2k k k += θθ3223k k k += 系统的势能为 ( )[]2 2 33222213 23 23212 1212121θ θθθk k k k k k k k k k U +++= ++= 利用θωθn =? 和U T =可得 () () 3232132n k k J k k k k k +++= ω 2.面积为S ,质量为m 的薄板连接于弹簧下端,在粘性流体中振动,如图所示。作用于薄板的阻尼力为νμS F d 2=,S 2为薄板总面积,ν为速度。若测得薄板无阻尼自由振动的周期为0T ,在粘性流体中自由振动的周期为d T 。求系数μ。

解: 平面在液体中上下振动时: 02=++? ? ?kx x S x m μ d n d n T T m k πξ ωωπω2-1,220==== k S m S m S n n 222,22μξωμξξωμ==?= k S k 2 22 --1μξ= 2020220 -2-22T T T ST m k S k T T T T d d d πμμ=?= 3.如图所示均匀刚性杆质量为1m ,求系统的频率方程。 解:

先求刚度矩阵。 令0x 1,==θ得: 22212111a k b k a a k b b k k +=?+?= b k 221-k = 令1,0==x θ得: a k k 212-= 222-k k = 则刚度矩阵为:?? ? ? ??+=2222221--k a k a k a k b k K 再求质量矩阵。 令0,1==? ?? ?x θ ,得: 0,3 1 212111==m a m m

05_06级振动力学试题

2005级 《振动力学》 课程试题(A 卷) 二、基本概念与简单计算题:(共 50 分) 1.(5分)某粘滞阻尼振动系统,8个振动周期后振幅由10mm 减为1mm ,求 阻尼比。 解:对数衰减率01 ln n X n X δ ??= ???110ln 81??= ???1 ln 108 = ………………..(3分) 而2 21πξδ ξ = -,则阻尼比2 2 4δ ξ π δ = +=0.046……………………(2分) 2. (10分)求图示系统微幅振动的微分方程和固有频率。已知l 、k 、m 、c 、F 。 不计水平杆的质量。 解:方程 493ml cl kl F θ θθ=--+ …………….(6分) 固有频率 3 n k m ω= …………………… …………….(4分) 或 2 2 2194d n mk c m ωωξ =-=-……………………….(4分) 3. (10分)求单自由度无阻尼标准m -k 振动系统在图示干扰力作用下的零初值 响应。 解:干扰力0000 10()0 t F t t F t t t t ??? -≤≤? ? =??? ? >?….(2分) 000 01 ()(1cos )sin 0n n n n F x t t t t t t t t ωωωω??= --+≤≤ ??? ………..(4分) 题二.2图 m c k F l l l 题二、3图 F (t ) F 0 t 0 t

0000 01 ()cos [sin ()sin ]n n n n n F x t t t t t t t t t ωωωωω??=- + --> ??? ……………………..(4分) 4. (15分)图示系统,均质杆 长为l 质量为m ,上端由铰链悬挂,下端用弹性系数为k 1和k 2的弹簧与光滑水平面上的质量m 1和m 2相连处于自然平衡状态。(1)建立系统的微振动微分方程。(2)写出频率方程(可以不求出固有频率) 解:(1)1 12 2213 m x m l x m θ????? ??? ? ???????????? ? 1112 1122222001()02 00k k l x k l k k l m gl k l x k l k θ-?? ?????????? ??+-++ -=????????????????-? ? .(10分) (2)频率方程…… ………(5分) 5. (10分)左端固定,右端自由的均匀杆,长度为l ,轴向拉压刚度为EA ,单 位长度杆的质量为m ,轴向位移用u 表示,轴向力用P 表示。求杆纵向振动(一维波动方程)的固有频率与固有振型。 解:一维波动方程: 2 2(,)u x t x ??2 2 2 1(,)u x t a t ?= ?,0

机械行业振动力学期末考试试题(doc-11页)(正式版)

… 2008年振动力学期末考试试题 第一题(20分) 1、在图示振动系统中,已知:重物C 的质量m 1,匀质杆AB 的质量m 2,长为L ,匀质轮O 的质量m 3,弹簧的刚度系数k 。当AB 杆处于水平时为系统的静平衡位置。试采用能量法求系统微振时的固有频率。 解: 系统可以简化成单自由度振动系统,以重物C 的位移y 作为系统的广义坐标,在静平衡位置时 y =0,此时系统的势能为零。 AB 转角: 系统动能: % m 1动能: m 2动能: m 3动能: 系统势能: 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而有: 上式求导,得系统的微分方程为: E y m m m k y '=+++) 2 1 31(4321 固有频率和周期为: ~ ) 2 131(43210m m m k ++= ω 2、质量为m 1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过定滑轮A 连在质量为m 2的物块B 上;轮心C 与刚度系数为k 的水平弹簧相连;不计滑轮A ,绳及弹簧的质量,系统自弹簧原长位置静止释放。试采用能量法求系统的固有频率。 解:系统可以简化成单自由度振动系统,以重物B 的位移x 作为系统的广义坐标,在静平衡位置时 x =0,此时系统的势能为零。 物体B 动能:2212 1 x m T = 轮子与地面接触点为速度瞬心,则轮心速度为x v c 21=,角速度为x R 21=ω,转过的角度为x R 21 = θ。轮子动能: )83 (21)41)(21(21)41(212121212221212212x m x R R m x m J v m T c =+=+=ω \ x

振动力学期末考试试题和答案

振动力学期末考试试题和答案 振动力学(试题) 2008 一、填空(每空2分) 1、设周期振动信号的周期为,则其傅里叶级数的展开的基频为,T ,,, 2、单自由度粘性阻尼系统的阻尼因子与阻尼系数的关系为,,, , 作用下系统响应的稳态振3、单自由度粘性阻尼系统在简谐力ptsin,0 动的幅值为,,, 4、粘性阻尼一周期内所消耗的能量与频率成,,,比。 5、无阻尼多自由度系统的主振型正交关系为,,,,,, 6、写出多自由度系统再频率域的输入与输出之间的关系,,,,, 7、写出瑞利商的表达式,,,,,, r8、多自由度系统中共存在个主固有频率,其相应的主振型,,, 正交。 9、无阻尼多自由度系统,利用里兹法计算出的主振型关于M、K是 否正交,,,,(答是或否) 10、写出如图T-1所示梁的左端边界条件,,,,,,,,,, y L x K 图T-1 二、(20分)系统如图T-2所示,杆AB为刚性、均质,长度为,总L 质量为,弹簧刚度为,阻尼系数为。求系统的固有频率及阻mck

尼因子。 图T-2 三、系统如图T-3所示。求系统的固有频率与主振型。 k k k k k m m m X X X 123 图T-3 四、 五、(20分)简支梁如图T-5所示,弹性模量为E,质量密度为,, 横截面积为A,截面惯性矩为J。求梁在中央受集中弯矩M下的响应。(假设梁的初始状态为零)

图T-5 答案 一、填空(每空2分) 1、周期振动信号的周期为,则其傅里叶级数的展开的基频为 T2/,T 2、单自由度粘性阻尼系统的阻尼因子与阻尼系数的关系为, c ,, 2mk 作用下系统响应的稳态振3、单自由度粘性阻尼系统在简谐力ptsin,0 p10动的幅值为 ,,B222k,,,,,(1)(2) 4、粘性阻尼一周期内所消耗的能量与频率成,正,比。 5、无阻尼多自由度系统的主振型正交关系为加权(M,K)正交: 0()ij,0()ij,,,TTTT ,,,,M,K,,,ijijMij(),Kij(),pipi,, 6、写出多自由度系统在频率域的输入与输出之间的关系 21,其中 xHP()()(),,,,HKMiC()(),,,,,, TXKX7、写出瑞利商的表达式 ()RX,TXMX r8、多自由度系统中共存在个重固有频率,其相应的主振型,,加 权(M,K)正交。 MK9、无阻尼多自由度系统,利用里兹法计算出的主振型关于、是

上海交通大学2008年振动力学期末考试试题

上海交通大学2008年振动力学期末考试试题 第一题(20分) 1、在图示振动系统中,已知:重物C的质量m1,匀质杆AB的质量m2,长为L,匀质轮O的质量m3,弹簧的刚度系数k。当AB杆处于水平时为系统的静平衡位置。试采用能量法求系统微振时的固有频率。 解: 系统可以简化成单自由度振动系统,以重物C的位移y作为系统的广义坐标,在静平衡位置时y=0,此时系统的势能为零。 AB转角: 系统动能: m1动能: m2动能: m3动能: 系统势能: 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而 有: 上式求导,得系统的微分方程为:

固有频率和周期为: 2、质量为m1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过 定滑轮A连在质量为m2的物块B上;轮心C与刚度系数为k的水平弹簧相连;不计滑轮A,绳及弹簧的质量,系统自弹簧原长位置静止释放。试采用能量法求 系统的固有频率。 解:系统可以简化成单自由度振动系统,以重物B的位移x作为系统的广义坐标,在静平衡位置时x=0,此时系统的势能为零。 物体B动能: 轮子与地面接触点为速度瞬心,则轮心速度为,角速度为,转过的角度为。轮子动能: 系统势能: 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,有:上式求导得系统的运动微分方程:

固有频率为: 第二题(20分) 1、在图示振动系统中,重物质量为m,外壳质量为2m,每个弹簧的刚度系数均为k。设外壳只能沿铅垂方向运动。采用影响系数方法:(1)以x1和x2为广义坐标,建立系统的微分方程;(2)求系统的固有频率。 解: 系统为二自由度系统。 当x1=1,x2=0时,有:k11=2k,k21=-2k 当x2=1,x2=1时,有:k22=4k,k12=-2k 因此系统刚度矩阵为: 系统质量矩阵为: 系统动力学方程为: 频率方程为: 解出系统2个固有频率: ,

振动理论及应用期末复习题题

2008年振动力学期末考试试题 第一题(20分) 1、在图示振动系统中,已知:重物C 的质量m 1,匀质杆AB 的质量m 2,长为L ,匀质轮O 的质量m 3,弹簧的刚度系数k 。当AB 杆处于水平时为系统的静平衡位置。试采用能量法求系统微振时的固有频率。 解: 系统可以简化成单自由度振动系统,以重物C 的位移y 作为系统的广义坐标,在静平衡位置时 y =0,此时系统的势能为零。 AB 转角:L y /=? 系统动能: m 1动能:2112 1 y m T = m 2动能:2222222 22222)3 1(21))(31(21)31(2121y m L y L m L m J T ====? ω m 3动能:2322 32333)2 1(21))(21(2121y m R y R m J T ===ω 系统势能: 221)2 1 (21)21(y k y g m gy m V ++-= 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而有: E y k gy m gy m y m m m V T =++-++= +2212321)2 1 (2121)2131(21 上式求导,得系统的微分方程为: E y m m m k y '=+++) 2 1 31(4321 固有频率和周期为: ) 2 131(43210m m m k ++= ω 2、质量为m 1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过定滑轮A 连在质量为m 2的物块B 上;轮心C 与刚度系数为k 的水平弹簧相连;不计滑轮A ,绳及弹簧的质量,系统自弹簧原长位置静止释放。试采用能量法求系统的固有频率。 解:系统可以简化成单自由度振动系统,以重物B 的位移x 作为系统的广义坐标,在静平衡位置时 x =0,此时系统的势能为零。 物体B 动能:2212 1 x m T =

2008年期末振动力学考试试题

2008年振动力学期末考试试题 大学期末考试https://www.360docs.net/doc/6f14761728.html, 第一题(20分) 1、在图示振动系统中,已知:重物C的质量m1, 匀质杆AB的质量m2,长为L,匀质轮O的质量 m3,弹簧的刚度系数k。当AB杆处于水平时为 系统的静平衡位置。试采用能量法求系统微振 时的固有频率。 解: 系统可以简化成单自由度振动系统,以重物C的位移y作为系统的广义坐标,在静平衡位置时y=0,此时系统的势能为零。 AB转角: 系统动能: m1动能: m2动能: m3动能: 系统势能: 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而有:

上式求导,得系统的微分方程为: 固有频率和周期为: 2、质量为m1的匀质圆盘置于粗糙水平面上,轮缘 上绕有不可伸长的细绳并通过定滑轮A连在质量 为m2的物块B上;轮心C与刚度系数为k的水平 弹簧相连;不计滑轮A,绳及弹簧的质量,系统自 弹簧原长位置静止释放。试采用能量法求系统的固 有频率。 解:系统可以简化成单自由度振动系统,以重物B的位移x作为系统的广义坐标,在静平衡位置时x=0,此时系统的势能为零。 物体B动能: 轮子与地面接触点为速度瞬心,则轮心速度为,角速度为,转过的角度为。轮子动能: 系统势能:

在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,有: 上式求导得系统的运动微分方程: 固有频率为: 第二题(20分) 1、在图示振动系统中,重物质量为m,外壳质量为2m, 每个弹簧的刚度系数均为k。设外壳只能沿铅垂方向运 动。采用影响系数方法:(1)以x1和x2为广义坐标, 建立系统的微分方程;(2)求系统的固有频率。 解: 系统为二自由度系统。 当x1=1,x2=0时,有:k11=2k,k21=-2k 当x2=1,x2=1时,有:k22=4k,k12=-2k 因此系统刚度矩阵为: 系统质量矩阵为:

振动力学考题集[]

1、四个振动系统中,自由度为无限大的是()。 A. 单摆; B. 质量-弹簧; C. 匀质弹性杆; D. 无质量弹性梁; 2、两个分别为c1、c2的阻尼原件,并连后其等效阻尼是()。 A. c1+c2; B. c1c2/(c1+c2); C. c1-c2; D. c2-c1; 3、()的振动系统存在为0的固有频率。 A. 有未约束自由度; B. 自由度大于0; C. 自由度大于1; D. 自由度无限多; 4、多自由度振动系统中,质量矩阵元素的量纲应该是()。 A. 相同的,且都是质量; B. 相同的,且都是转动惯量; C. 相同的,且都是密度; D. 可以是不同的; 5、等幅简谐激励的单自由度弹簧-小阻尼-质量振动系统,激励频 率()固有频率时,稳态位移响应幅值最大。 A. 等于; B. 稍大于; C. 稍小于; D. 为0; 6、自由度为n的振动系统,且没有重合的固有频率,其固有频率

的数目(A )。 A. 为n; B. 为1; C. 大于n; D. 小于n; 7、无阻尼振动系统两个不同的振型u(r)和u(s),u(r)T Mu(s)的值一定 ()。 A. 大于0; B. 等于0; C. 小于0; D. 不能确定; 8、无阻尼振动系统的某振型u(r),u(r)T Ku(r)的值一定()。 A. 大于0; B. 等于0; C. 小于0; D. 不能确定; 9、如果简谐激励力作用在无约束振动系统的某集中质量上,当激 励频率为无限大时,该集中质量的稳态位移响应一定()。 A. 大于0; B. 等于0; C. 为无穷大; D. 为一常数值; 10、相邻固有频率之间的间隔呈近似无限等差数列的振动系统是 ()。 A. 杆的纵向振动; B. 弦的横向振动; C. 一般无限多自由度系统; D. 梁的横向振动; 11、两个刚度分别为k1、k2串连的弹簧,其等效刚度是()。 A. k1+k2; B. k1k2/(k1+k2);

振动力学研究生期末考试题

西南交通大学2009-2010学年第( 1 )学期考试试卷 课程代码 6332200 课程名称 振动力学 考试时间 120 分钟 阅卷教师签字: 一、如图所示系统,设杆AB 为刚性杆,其对A 点的转动惯量为I =1 kgm 2,杆长L =1 m 。在B 端有一集中质量块,杆的中间和B 端分别有弹簧支承。已知质量块质量m =10 kg ,弹簧系数k 1=40 N/m ,k 2=100 N/m 。试以集中质量块的位移x 为参照,(1)求系统的等效质量和等效刚度;(2)系统的周期是多少?(3)建立系统的运动微分方程。 (15分) 班 级 学 号 姓 名 密封装订线 密封装订线 密封装订线 x

二、横截面面积为A、质量为m的圆柱形浮子,静止在密度为ρ的液体中。设从静平衡位置压低距离x0,然后无初速地释放,假定阻尼可以忽略不计。 (1)试建立浮子的运动方程; (2)给出浮子的固有频率及初始条件; (3)求浮子自由运动的响应。(15分)

三、如图所示滑轮系统,在运动过程中,假设不可伸长绳与滑轮之间无相对滑动。已知m1=9 kg,m2=8 kg,滑轮A的半径R A=0.1 m,对其转轴的惯性矩I A=0.01 kgm2,滑轮B的半径R B=0.2 m,对其转轴的惯性矩I B=0.08 kgm2,弹簧系数k1=k2= k3=1000 N/m。试求: (1)系统的运动方程; (2)系统的频率及振型; (3)验证振型关于质量阵加权正交。(20分) 1 m

四、图所示的弹簧质量系统,x 1为质量m 1的绝对位移,x 2为质量m 2的绝对位移, 取k k k k m m m =====32121,2,m 。已知系统的运动方程为: ?? ? ???=????????????+--++????????????0000213222212121x x k k k k k k x x m m (1) 采用瑞利商估算系统的基频; (2) 采用矩阵迭代法求系统的基频及振型。 (20分)

振动力学试卷A

重庆大学 课程试卷 A卷 B卷 2011 ~2012 学年 第 2 学期 开课学院: 资环 课程号:24008020 考试日期:2012.5.18 考试方式: 开卷闭卷 其他 考试时间: 120 分钟 注:1.大标题用四号宋体、小标题及正文推荐用小四号宋体;2.按A4纸缩小打印一、 如下图所示系统中, 均匀刚性杆AB 的质量为m ,长度为L , A 端弹簧的刚度为K 、C 点为铰链支座,AC=nL(即AC 为杆长的n 倍。 (1)导出系统的自由振动微分方程,并求出系统 的固有频率。(2)C 点铰链支座放在何处时系统的固有频率最高。(20分) 二、 一质量m=2000Kg,以匀速度v=3cm/s 运动,与弹簧K ,阻 尼器C 相撞后一起作自由振动,如图所示.。已知,K=48020N/m ,C=1960 N.s/m ,问质量m 在相撞后多少时间达到最大振幅,最大振幅是多大?。(20分) 三、 在下图所示系统中, 已知m,c,k,ω和F, 用模态迭加法求系统的稳态响应。(20分)。 四、 如下图所示系统,已知m 和k 。 (1) 用邓克利法求系统的第一阶固有频率的近似值; (2) 用矩阵迭代法求系统的第一阶固有频率和模态的近似值 v 命 题人:蹇开林 组题人: 审 题人: 命 题时间: 教务处制 学院 专业、班 年级 学号 姓名 公平竞争、诚实守信、严肃考纪、拒绝作弊 封 线 密

(3)给出系统第一阶固有频率真实值所在的区间范围。(20分) 五、长度为L ,截面积为S的均直杆,材料的密度和弹性模 量为ρ和E。如下图所示。 (1)基于连续系统模型,求系统纵向振动的频率方程。(2)若采用有限单元法,将杆等长度划分为两个单元,求系统纵向振动的第一阶固有频率。(20分)

振动力学期末考试试题以及答案(很有参考价值哦)

2006《振动力学》课程本科生考试试题标准答案 1. 圆筒质量m 。质量惯性矩o J ,在平面上在弹簧k 的限制下作纯滚动,如图所示,求其 固有频率。(10分) 解:令t A x t A x ωωωcos ,sin == t A x r J m x r J m r x J x m J x m T o o o o ωωθ22 2222 2222 2cos )(21)(21)(21212 121 +=+=+=+= t kA kx U ω2 22sin 2121== 2 2 2222max max /2 1)(21r J m k kA A x r J m U T o o += =+∴=ωω 2. 图示的弹簧质量系统,两个弹簧的连接处有一激振力t P t P ωsin )(0=的作用,求质量m 稳态响应的幅值。(10分) )(t 2 x x m 11x k (t P 22x k

解:设m 的位移为x ,则21x x x += (1) 其中,1x 为弹簧1k 的变形,2x 为弹簧2k 的变形 对m 列运动微分方程: 022=+x k x m (2) 对连接点列平衡方程: )(2211t P x k x k += (3) 由(3)式可以得出: 12 21)(k x k t P x += 将上式代入(1)式可得出: 2 112)(k k x k t P x ++-= 将上式代入(2)式可得出:0)(2 12 2121=+-++t P k k k x k k k k x m 令m k k k k k k e e e =+= ω,212 1,有 t k k k P t P k k k x k x m e ωsin )(2 120212 +=+=+ t k P t k k k k P x e e e ωωωωωωsin )(11sin )(11 12 102 2120-?=-??+= ∴ 3. 建立如图所示系统的运动微分方程并求稳态响应。(10分) 解:对物体m 列运动微分方程,有: 0)(1=--+x x k x c x m 即: t kA kx x c x m ωsin =++ t A ωsin 1= x m )x -

【免费下载】振动力学 习题

《振动力学》——习题第二章 单自由度系统的自由振动2-1 如图2-1 所示,重物悬挂在刚度为k 的弹簧上并处于静止平衡位置,另一重物 1W 2 W 从高度为h 处自由下落到上且无弹跳。试求下降的最大距离和两物体碰撞1W 2W 后 的运动规律。 图2-1 图2-22-2 一均质等直杆,长为l ,重量为w ,用两根长h 的相同的铅垂线悬挂成水平位置,如图2-2所示。试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。2-3 一半圆薄壁筒,平均半径为R , 置于粗糙平面上做微幅摆动,如图2-3所示。试求 其摆动的固有频率。 图2-3 图2-42-4 如图2-4 所示,一质量m 连接在一刚性杆上,杆的质量忽略不计,试求下列情况系统作垂直振动的固有频率: (1)振动过程中杆被约束保持水平位置; (2)杆可以在铅垂平面内微幅转动; (3)比较上述两种情况中哪种的固有频率较高,并说明理由。2-5 试求图2-5所示系统中均质刚性杆AB 在A 点的等效质量。已知杆的质量为 m ,A 、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

完整版振动力学研究生期末考试题

线订装封密线订装封密 西南交通大学2009—2010学年第(1 )学期考试试卷课程代码6332200 课程名称振动力学考试时间120 分钟 一、如图所示系统,设杆AB为刚性杆,其对A点的转动惯量为1=1 kgm2,杆长L=1 m。在B 端有一集中质量块,杆的中间和B端分别有弹簧支承。已知质量块质量m=10 kg,弹簧系数k1=40 N/m,k2=100 N/m。试以集中质量块的位移x为参照,(1)求系统的等效质量和等效刚度;(2)系统的周期是多少?(3)建立系统的运动微分方程。(15分) L/2L/2 --------- —--- 予 线订装封密 题号-一一二二二-三四五六七八九十总成绩得分 阅卷教师签字:_________________________________________________________________

二、横截面面积为A、质量为m的圆柱形浮子,静止在密度为p的液体中。设从静平衡位置压低距离x o,然后无初速地释放,假定阻尼可以忽略不计。 (1)试建立浮子的运动方程; (2)给出浮子的固有频率及初始条件; (3)求浮子自由运动的响应。(15分) o

三、如图所示滑轮系统,在运动过程中,假设不可伸长绳与滑轮之间无相对滑动。已知m i=9 kg , m2=8 kg,滑轮A的半径R A=0.1 m,对其转轴的惯性矩|A=0.01 kgm2,滑轮B的半径R B=0.2 m,对其转轴的惯性矩I B=0.08 kgm2,弹簧系数k i=k2= k3=1000 N/m。试求: 1)系统的运动方程; (2)系统的频率及振型; (3)验证振型关于质量阵加权正交。(20分)

《振动力学》习题集(含答案)

《振动力学》习题集(含答案) 1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。求系统的固有频率。 图E1.1 解: 系统的动能为: ()2 22 121x I l x m T += 其中I 为杆关于铰点的转动惯量: 210212 0131l m dx x l m x dx l m I l l ??==?? ? ??= 则有: ()2212212236 16121x l m m x l m x ml T +=+= 系统的势能为: ()()()2 1212124 1 4121 cos 12 cos 1glx m m glx m mglx x l g m x mgl U +=+=-? +-= 利用x x n ω= 和U T =可得: ()()l m m g m m n 113223++= ω 1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。求系统的固有频率。

图E1.2 解: 如图,令θ为柱体的转角,则系统的动能和势能分别为: 22222243212121θ θθ mR mR mR I T B =?? ? ??+== ()[]()22 22 12θθa R k a R k U +=+?= 利用θωθn = 和U T =可得: ()m k R a R mR a R k n 34342 2 +=+=ω

1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。求系统的固有频率。 图E1.3 解: 系统的动能为: 22 1θ J T = 2k 和3k 相当于串联,则有: 332232 , θθθθθk k =+= 以上两式联立可得: θθθθ3 22 33232 , k k k k k k +=+= 系统的势能为: ()2 32323212332222121212121θθθθ?? ????+++=++=k k k k k k k k k k U 利用θωθn = 和U T =可得: ()() 3232132k k J k k k k k n +++= ω 1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。求固有频率。 图E1.4 答案图E1.4 解: mg b a +2 x x 2

振动力学习题集

2 振动力学》习题集(含答案) 质量为 m 的质点由长度为 l 、质量为 m 1 的均质细杆约束在铅锤平面内作微幅摆动,如 图所 示。求系统的固有频率。 解: 系统的动能为: 1 2 1 2 T m xl I x 22 其中 I 为杆关于铰点的转动惯量: 利用x n x 和T U 可得: 3 2m m 1 g 2 3m m 1 l m l 1dx x 2 l m 1 x 2dx l m 1l 31 则有: 系统的势能为: 1 2 2 1 2 2 ml x m 1l x 2 6 1 1 2 2 3m m 1 l x 6 U mgl 1 cosx m 1g cosx 1 2 mglx 1 4 m 1glx 1 2m 4 m 1 glx 2 图

质量为m、半径为R的均质柱体在水平面上作无滑动的微幅滚动,在 两根弹性刚度系数为k 的水平弹簧,如图所示。求系统的固有频率。 CA=a的A 点系有 解: 如图,令为柱体的转角,则系统的动能和势能分别为: 利用 1212 1 2 23 T I B mR2mR2 2mR 2B 224 1222 U2k Ra2 k R a 2 4k R a 2 3mR2R 3m 图 U 可 得:

n J k 2 k 3 转动惯量为 J 的圆盘由三段抗扭刚度分别为 k 1 , k 2 和 k 3 的轴约束,如图所示。求系 统的固有频率。 k 2 解: 系统的动能为: 12 J 2 k 2和 k 3相当于串联,则有: 以上两式联立可得: 系统的势能为: k 2k 3 k 1 k 2 k 3 k 1 3 , k 2 k 2 k 3 k 3 k 2 k 2 k 3 利用 U 12 k 1 k 2 22 12 k 3 k 1 k 2 k 3 k 2k 3 2 k 2 k 3 n 和 T U 可得:

机械行业振动力学期末考试试题(doc 11页)

机械行业振动力学期末考试试题(doc 11页)

2008年振动力学期末考试试题 第一题(20分) 1、在图示振动系统中,已知: 重物C的质量m1,匀质杆 AB的质量m2,长为L,匀 质轮O的质量m3,弹簧的 刚度系数k。当AB杆处于水 平时为系统的静平衡位置。 试采用能量法求系统微振时的固有频率。 解: 系统可以简化成单自由度振动系统,以重物C 的位移y作为系统的广义坐标,在静平衡位置时y=0,此时系统的势能为零。

AB 转角:L y /=? 系统动能: m 1动能:211 2 1 y m T = m 2 动 能:2 2 2222222222)3 1 (21))(31(21)31(2121y m L y L m L m J T ==== ?ω m 3动能: 2322 3 2333)2 1(21))(21(2121y m R y R m J T ===ω 系统势能: 2 21)2 1 (21)21(y k y g m gy m V ++-= 在理想约束的情况下,系统的主动力为有势 力,则系统的机械能守恒,因而有: E y k gy m gy m y m m m V T =++-++=+2 2 1 2 3 2 1 )2 1 (2121)2131(21 上式求导,得系统的微分方程为: E y m m m k y '=+++) 2 1 31(4321 固有频率和周期为: ) 2 131(43210m m m k ++= ω 2、质量为m 1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过定滑轮A 连在质量为m 2的物块B 上; 轮心C 与刚度系数为k 的水平弹簧相连;不计滑轮A ,绳及弹簧的质量,系统自弹簧原长位置静止释放。试采用能量法求系统的固有频率。 解:系统可以简化成单自由度振动系统,以重物 x

机械行业振动力学期末考试试题

2008年振动力学期末考试试题 第一题(20分) 1、在图示振动系统中,已知:重物C 的质量m 1,匀质杆AB 的质量m 2,长为L ,匀质轮O 的质量m 3,弹簧的刚度系数k 。当AB 杆处于水平时为系统的静平衡位置。试采用能量法求系统微振时的固有频率。 解: 系统可以简化成单自由度振动系统,以重物C 的位移y 作为系统的广义坐标,在静平衡位置时 y =0,此时系统的势能为零。 AB 转角:L y /=? 系统动能: m 1动能:2 11 2 1y m T &= m 2动能:2 22222222222)3 1(21))(31(21)31(2121y m L y L m L m J T &&&====?ω m 3动能:2 32232333)2 1(21))(21(2121y m R y R m J T &&===ω 系统势能: 221)2 1 (21)21(y k y g m gy m V ++-= 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,因而有: E y k gy m gy m y m m m V T =++-++= +2212 321)2 1(2121)2131(21& 上式求导,得系统的微分方程为: E y m m m k y '=+++ ) 2 1 31(4321&&

固有频率和周期为: ) 2 131(43210m m m k ++= ω 2、质量为m 1的匀质圆盘置于粗糙水平面上,轮缘上绕有不可伸长的细绳并通过定滑轮A 连在质量为m 2的物块B 上;轮心C 与刚度系数为k 的水平弹簧相连;不计滑轮A ,绳及弹簧的质量,系统自弹簧原长位置静止释放。试采用能量法求系统的固有频率。 解:系统可以简化成单自由度振动系统,以重物B 的位移x 作为系统的广义坐标,在静平衡位置时 x =0,此时系统的势能为零。 物体B 动能:2 21 2 1x m T &= 轮子与地面接触点为速度瞬心,则轮心速度为x v c &21= ,角速度为x R &21=ω,转过的角度为x R 21 = θ。轮子动能: )83(21)41)(21(21)41(2121212 12221212212x m x R R m x m J v m T c &&&=+=+=ω 系统势能: 22228)21(21)(2121x k xR R k R k kx V c ==== θ 在理想约束的情况下,系统的主动力为有势力,则系统的机械能守恒,有: E x k x m m V T =++= +22 218 )83(21& 上式求导得系统的运动微分方程: 08322 1=++ x m m k x && 固有频率为: 2 10832m m k += ω 第二题(20分) 1、在图示振动系统中,重物质量为m ,外壳质量为2m ,每个弹簧的刚度系数均为k 。设外壳只能沿铅垂方向运动。采用影响系数方法:(1)以x 1和x 2为广义坐标,建立系统的微分方程;(2)求系统的固有频率。 解: 系统为二自由度系统。 当x1=1,x2=0时,有:k11=2k ,k21=-2k 当x2=1,x2=1时,有:k22=4k ,k12=-2k 因此系统刚度矩阵为: x

振动力学-习题

《振动力学》——习题 第二章 单自由度系统的自由振动 2-1 如图2-1 所示,重物1W 悬挂在刚度为k 的弹簧上并处于静止平衡位置,另一重物2W 从高度为h 处自由下落到1W 上且无弹跳。试求2W 下降的最大距离和两物体碰撞后 的运动规律。 图2-1 图2-2 2-2 一均质等直杆,长为l ,重量为w ,用两根长h 的相同的铅垂线悬挂成水平位置, 如图2-2所示。试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求 出振动固有周期。 2-3 一半圆薄壁筒,平均半径为R , 置于粗糙平面上做微幅摆动,如图2-3所示。试求 其摆动的固有频率。 图2-3 图2-4 2-4 如图2-4 所示,一质量m 连接在一刚性杆上,杆的质量忽略不计,试求下列情况 系统作垂直振动的固有频率: (1)振动过程中杆被约束保持水平位置; (2)杆可以在铅垂平面内微幅转动; (3)比较上述两种情况中哪种的固有频率较高,并说明理由。 2-5 试求图2-5所示系统中均质刚性杆AB 在A 点的等效质量。已知杆的质量为m ,A 端弹簧的刚度为k 。并问铰链支座C 放在何处时使系统的固有频率最高?

图2-5 图2-6 2-6 在图2-6所示的系统中,四个弹簧均未受力。已知m =50kg ,19800N m k =, 234900N m k k ==,419600N m k =。试问: (1)若将支撑缓慢撤去,质量块将下落多少距离? (2)若将支撑突然撤去,质量块又将下落多少距离? 2-7 图2-7所示系统,质量为m 2的均质圆盘在水平面上作无滑动的滚动,鼓轮绕轴的 转动惯量为I ,忽略绳子的弹性、质量及各轴承间的摩擦力。试求此系统的固有频 率。 图2-7 2-8 如图2-8所示的系统中,钢杆质量不计,建立系统的运动微分方程,并求临界阻尼 系数及阻尼固有频率。 图2-8 图2-9 2-9 图2-9所示的系统中,m =1kg ,k =224N/m ,c =48N.s/m ,l 1=l =0.49m ,l 2=l /2,l 3=l /4,不计钢杆质量。试求系统的无阻尼固有频率n ω及阻尼ζ。 第三章 单自由度系统的强迫振动 3-1 如图3-1所示弹簧质量系统中,两个弹簧的连接处有一激振力0()sin P t P t ω=。试

相关文档
最新文档