有机化学第五章旋光异构

合集下载

第05章_旋光异构

第05章_旋光异构
但是,D/L命名法只适应于和甘油醛结构 类似的其它化合物,如糖和氨基酸类。如果结 构上与甘油醛没有相似之处,用不同的原子或 基团类比,则同一种化合物可能确定为D-或 L-构型,从而引起混乱。
酒石酸钠铵的 两种半面晶体
Pasteur J
Pasteur由晶体的外形联想 到酒石酸钠铵的内部结构,认 为物质的旋光活性是由于分子 有手性的缘故。并明确指出, 构造式相同的两物质旋光活性 的差异是由于分子中的原子或 基团在空间的排列不同而引起 的,且为非对称排列。
然而对于两种来源不同的乳 酸,要想证明旋光活性的差异是由 于分子中的原子或基团在空间的排 列不同而引起的,就必须先证实它 们的二维结构相同。德国科学家 Wislisenus 利用10年的时间证实 了肌肉运动和糖发酵产生的乳酸构 造式确实相同——2-羟基丙酸。

光性

的样

品管

5. 比旋光度 为比较各种旋光活性物质旋光性的大小,规定 每毫升含1g旋光性物质的溶液放在1dm 长的样品管 中测得的旋光度为该物质的比旋光度。
[] t =
c ·L
:旋光仪的读数。 T:测定时的温度 c:样品溶液的浓度。 :光源的波长 L:盛溶液的管长。
一般情况下,旋光仪所用的光源是钠光灯,其波长 =589.3nm ,相当于太阳光谱中的 D 线,若测定温度为 20℃ ,则比旋光度表示为[] D20。
2. 手征性分子
手征性分子——与自己的镜像不能重叠的分子. 1848年,法国科学家Pasteur发现无旋光活性的酒
石酸钠铵晶体是两种晶形的混合物,它们之间的关系 类似于两种石英晶体,具有手征性,且互为实物和镜 像不能重叠。用镊子将这两种晶体分开,分别溶于水 ,二者均有旋光活性,测得比旋光度大小相等,方向 相反。

有机化学第五章 旋光异构

有机化学第五章 旋光异构

S
几个?
H H3C CH3CH2 Cs COOH H3C H
S
S
S
试判断下列Fischer投影式中与(s)-2-甲基丁酸成对映关系的有哪
H C2H5 COOH A COOH H3C H C2H5 D CH3 H COOH E COOH H CH3 C2H5 F C2H5 CH3 B C2H5 H CH3 COOH G COOH H
手性分子具有光学活性——旋光性(使平面偏振光发生旋转的
性质)。
平面偏振光: 通过Nicol棱镜,仅 在一个平面上振动的光。
平面偏振光
Nicol prism
普通光
振动方向与晶轴平行 的光才能通过
自1808年首次发现偏振光后不久,到1811年人们就注意到石英晶体有 两种形式,它们之间的关系如同物体和镜像的关系,既完全相似却又 不能互相叠合。这两种晶体对偏振光都有同样的旋光度但旋光方向相 反。还有一些无机盐晶体像氯酸钾,溴酸锌等也有旋光性,但这些晶 体一旦熔化或溶于水,旋光性也随之消失。后来人们又发现像松节油 、樟脑、乳酸等一类天然有机化合物,无论在固态条件下或是在液态 或溶于水后仍能保持旋光性。也就是说,这些化合物的旋光性是由这 些化合物的分子结构所决定的。只要结构不变,旋光性也不会改变。
COOH C H3C H OH
-
与镜象不能重叠的分子,称为手性分子。 分子的构造相同,但构型不同,形成实物与镜象的 两种分子,称为对映异构体(简称:对映体)。
Van’t Hoff J J 提出碳的四面体结构学说,并最早提出 旋光性是由于分子缺少对称性而产生的。 判断化合物的手性——考察分子的对称性(因素)
5.1.2 对称性因素
1)平面对称因素()
Cl C H C Cl H

大学有机化学第五章旋光异构

大学有机化学第五章旋光异构
大学有机化学第五章旋光异构
目录
• 引言 • 旋光异构现象 • 旋光异构体的性质 • 旋光异构体的合成与分离 • 旋光异构体的应用 • 结论
01 引言
主题简介
旋光异构
01
是指分子中由于组成原子或基团在空间的相对排列不同而引起
的异构现象。
旋光异构体的性质
02
旋光异构体具有不同的物理和化学性质,如熔点、溶解度、光
谱特征等。
旋光异构体的分类
03
根据旋光方向的不同,旋光异构体可分为左旋和右旋两种类型。
学习目标
掌握旋光异构体的基本概 念和分类。
掌握旋光度的测量和计算 方法。
理解旋光异构体的性质和 光谱特征。
了解旋光异构体在化学反 应中的变化规律。
02 旋光异构现象
旋光异构现象的定义
旋光异构现象
是指物质在偏振光的作用下,表现出旋光性的 现象。
旋光异构体在生物和药物领域具有广泛的应用,如手性药物的开发和 生产,建议了解相关应用实例和发展前景。
THANKS FOR WATCHING
感谢您的观看
旋光测定法
利用旋光仪测定旋光异构体的旋光度,以确定其纯度。
气相色谱法
通过气相色谱仪检测旋光异构体的组成和纯度。
高效液相色谱法
利用高效液相色谱仪对旋光异构体进行分离和纯度检测。
05 旋光异构体的应用
在药物研发中的应用
旋光异构体对药物的生物活性有显著影响,例如某些旋光异构体可能具有更好的疗 效或更低的不良反应。
手性农药的开发和应用,可以避免或减少对非靶标生物的毒性影响,从而降低对环境的负面 影响。
旋光异构体在植物生长调节剂和除草剂等领域也有广泛应用,例如某些旋光异构体可能具有 更好的促进植物生长或抑制杂草生长的作用。

《有机化学》第5章 旋光异构

《有机化学》第5章 旋光异构

22
第四节 含两个手性碳原子化合物的对映异构
一、含两个不同手性碳原子的化合物 这类化合物中两个手性碳原子所连的四个基团不完全相同。例如:
1. 对映异构体的数目
乳酸含有一个手性碳原子,有一对对映体。一般地说,分子中含手性碳原
子的数目越多,旋光异构体也越多。如分子中含有两个不相同的手性碳原子时 ,与它们相连的原子或基团,可有四种不同的空间排列形式,即存在四个旋光 异构体。例如,三羟基丁醛(赤藓糖)是一种含有四个碳原子的糖类,分子中 有两个不相同的手性碳原子。
第五章 旋光异构
【知识目标】
⒈ 熟悉立体(光学)异构、对称因素、手性碳原子、对映体、内(外) 消旋体等基本概念;
⒉ 了解物质产生旋光性的原因,对映异构与分子结构的关系; ⒊ 掌握构型的表示方法(D、L和R、S标记法);掌握书写费歇尔投影 式的方法。
【能力目标】
⒈ 能利用投影法和透视式表示分子构型; ⒉ 能利用R-S构型标记法标记化合物构型; ⒊ 能分析不同构型的同一化合物的性质区别。
许多旋光物质是从自然界生物体内分离出来的,但由合成方法得到的旋光物质, 通常多是外消旋体。而具有光学活性的药物,常常只有一种旋光异构体有显著疗效, 如氯霉素有四个旋光异构体,但只有左旋氯霉素(1R,2R)具有抗菌作用,其它对 映体无作用。因此,需要进行外消旋体的拆分。外消旋体拆分的方法有多种,如化学 拆分法、诱导结晶法、生化拆分法等。
个平面,通过正六边形对角与分子平面垂直的三个平面,另一个是六个 碳原子六个氢原子所在的分子平面。
图5-12 苯分子和顺-1,3-二甲基环丁烷分子的对称面
顺1,3-二甲基环丁烷有两个对称面,即通过四边形对角与四边形 平面垂直的两个平面。
2023/6/13

有机化学理论课 第五章 旋光异构

有机化学理论课 第五章  旋光异构

第五章旋光异构(Optical Isomerism)一、教学目的和要求同分异构是有机化合物的普遍现象,因此同分异构化学即立体化学的一个重要部分,它是研究组成分子的各个原子在空间的不同排布方式所引起的异构现象,以及因这些异构现象而引起的分子的物理和化学性质的差异的影响.所以讨论立体化学时,总是先从立体异构现象谈起.前面我们已在第二章、第三章、第四章讨论了某些立体异构现象,例如,烷烃构像、脂环烃构像、含双键和脂环化合物顺反异构。

本章在对上述内容作简要小结后,重点讨论立体异构现象中最重要,也是不易掌握的对映异构现象,为进一步学习碳水化合物、蛋白质,以及各类反应中的立体化学现象打好基础本章学习的具体要求1、掌握有机化合物异构的分类2、掌握对映异构、手性、手性分子、非手性分子、旋光活性、旋光活性物质、旋光度和比旋光度等有关概念3、掌握对映异构体数目的计算方法和对映、非对映、外消旋体和内消旋体的概念。

4、掌握费歇尔投影式和投影规则5、了解外消旋化。

二、教学重点与难点重点是旋光异构,旋光与分子结构的关系;含不对称碳原子化合物的旋光异构;难点是旋光异构的表示方法;R、S命名法。

三、教学内容1、偏振光和旋光性2、分子的对称性,手性,旋光活性3、构型表示方法D/L,R/S4、含有多于一个手性碳原子的立体异构5、取代丙二烯类和取代联苯类的旋光异构6、立体专一反应和立体有择反应7、外消旋体的拆分四、教学方法和教学学时(1)教学方法:以讲授为主;教具、多媒体为辅助手段,配合适量的课外作业(2)教学学时:4学时五、总结、布置作业5.1 各种异构现象的归纳旋光异构又称对映异构或光学异构,是指两个分子或多个分子间,由于构型的差异而表现出不同的旋光性能的现象,这些分子互为旋光异构体。

5.2 物质的旋光性Optical Activities of Substances偏振光(plane-polarized light )使偏振光的振动平面发生偏转的特性叫旋光性。

第05章 旋光异构

第05章 旋光异构

• 肌肉运动可以产生 • 糖经乳杆菌发酵
这三种途径所得乳酸均可以用上述结构 表示。但它们表现出的性质不尽相同。 显然乳酸应该存在异构体。
• 牛奶变酸也能产生
但是,对于具有相同结构式:CH3CH(OH)COOH 的前提下 讨论异构体,在二维平面似乎有些不可能,但如果我们将其放
入三维空间讨论,那就能理解了,——这就是本章将要讨论的 另一种异构现象:旋光异构。
分子对称因素:对称面、对称中心、对称轴。
1.对称面:若有一个平面能将分子切成两部分,其中
() 一部分正好是另一部分的镜像,这个平面
就是这个分子的对称面。
塔里木大学 有机化学精品课程 Organic Chemistry, Tarim University
例如:对称面
1,1-二氯乙烷
反-1,2-二氯乙烯
5.3 含手性碳原子的链状化合物旋光异构体
5.3.1 含一个手性碳原子的化合物
若分子中只含一个手性碳原子,则这个化合物具有手性。 且只有两种旋光异构体,二者之间互为实物—镜像不能重 叠的关系,为一对对映异构体。
例如: 乳酸 CH3C*H(OH)COOH 含一个手性碳原子,存在一对对映异构体,一个为左旋体,
D、L命名法只适应于和甘油醛类似结构化合物,如:糖和 氨基酸类。 对于其它一些旋光异构体命名常使用—R、S命名法
2. R、S命名法
规则:①先将与手性C原子相连的4个不同基团按次序规 则排列。
塔里木大学 有机化学精品课程 Organic Chemistry, Tarim University
② 找出最小取代基放在对面最远处,再由前面观察 另外三个取代基由大(较优基团)到小顺序,若为顺时 针方向排列,则构型为R;若为反时针,则为S构型。

有机化学 第5章 旋光异构

有机化学 第5章 旋光异构
称,例如,由肌肉中取得的乳酸的比旋光度为:[α ]2D0 = +3.8°
(ρ=0.1gmL-1,H2O),表示测定该乳酸的旋光度时,是在20。C, 钠光灯源,所用溶液的浓度为10%,是右旋物质,通过公式计
算出比旋光度是3.8°。
上面公式即可用来计算物质的比旋光度,也可用以测定物质 的浓度或鉴定物质的纯度。
H
OH 最小基团(H)
H
Cl 最小基团(H)
位于横线 CH2OH R- 构型
位于横线 CH3 S- 构型
H
最小基团( H)
CH3
最小基团 CH3
H2N COOH 位于竖线
ClCH2
Cl 位于竖线
CH3
R- 构型
CH(CH3)2 S- 构型
七、含两个不相同手性碳原子的化合物
以2,3,4-三羟基丁酸为例:
存在对称面的分子不能与其镜像重叠, 为非手性分子,无旋光性,无对映体。
σ
H Cl
C
H C Cl
因此,上述分子都是对称分子,它们没有手性, 也没旋光性。
有机物分子具有手性的最普遍的因素是手性碳原 子,连有四个各不相同基团的碳原子——手性碳 原子,用C* 表示。
凡是含有一个手性碳原子的有机化合物分子都具 有手性,是手性分子。
COOH
H
OH
CH3
在纸平面
CH3
180°
HO
H
COOH
(2)对调任意两个基团的位置,对调偶数次构型 不变,对调奇数次则为原构型的对映体。例如:
CHO
HO
H
CH2OH
CH2OH
OH与H对调一次
H
OH
CHO
CHO与CH2OH 对调一次

有机化学05旋光异构公开课获奖课件

有机化学05旋光异构公开课获奖课件

纯液
α
[α]λt=
—— d.l
一般 λ 用钠光 D = 5893Å t 常为20℃
表征一种旋光物质旋光 能力和方向特性常数
如: 肌肉乳酸 [α]D20 = +3.8 (右旋3.8度) 葡萄糖 [α]D20 = +52.5(水) (水液中右旋52.5度)
第8页
5.2 对映异构现象和 分子构造之间关系 5.2.1对映异构现象发现
右旋(+)
左旋(-)
第6页
5.1.2 物质比旋光度 ——度量物质旋光能力
旋光度与浓度(分子数有关)— 故用比旋光度来度量
规定: 旋光管长 10cm=1分米; 在一定温度
浓度 1克/ml
波长下
溶液
α
[α]λt=
—— c.l
l —— 分米
c —— 1克/ml
纯溶液(纯物质) 可用 d(1克/cm3)
第7页
★手性碳——碳原子上连有四个不一样样 基团 ——手性碳原子
第10页
有一种手碳C就是一对对映异构体
b
b
c
a
a
c
d
d
如:
CH3
HO CC OH OH
手碳—手性分子 一对对映体
CH3
CH3
H
OH
HO
OH
HOOC
COOH
手性碳原子 — 不是充要条第11页件
5.3 具有一种手性碳原子对映异构 5.3.1 对映体
第15页
5.3.4 构型表达方式
费塞尔投影式 ——立体投影到平面上
如:
COOH
COOH
HO
H
CH3
HO
H
CH3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 旋光异构本章教学要求:1、了解物质的旋光性及其有关概念(平面偏振光、旋光仪和比旋光度等)2、掌握有机化合物对映异构与分子结构的关系3、掌握含一个手性碳原子和两个手性碳原子化合物的对映异构情况4、掌握有机化合物的R/S 命名5、了解外消旋体的拆分6、了解不含手性碳原子化合物的对映异构情况7、掌握亲电加成反应的立体化学 教学重点:1、有机化合物对映异构与分子结构的关系2、含一个手性碳原子和两个手性碳原子化合物的对映异构情3、有机化合物的R/S 命名 计划学时数:5学时同分异构现象在有机化学中极为普遍。

同分异构现象可以归纳如下:第一节 物质的旋光性一、平面偏振光和旋光性光波是一种电磁波,它的振动方向与前进方向垂直。

同分异构构造异构碳干异构位置异构构型异构光源(1 )光的前进方向与振动方向C'(2)普通光的振动平面图 6-1 光的传播在光前进的方向上放一个(Nicol )棱晶或人造偏振片,只允许与棱晶晶轴互相平行的平面上振动的光线透过棱晶,而在其它平面上振动的光线则被挡住。

这种只在一个平面上振动的光称为平面偏振光,简称偏振光或偏光。

2.物质的旋光性能使平面偏振光振动平面旋转的物质称为物质的旋光性,具有旋光性的物质称为旋能使偏振光振动平面向右旋转的物质称右旋体,能使偏振光振动平面向左旋转的物质称左旋体,使偏振光振动平面旋转的角度称为旋光度,用α表示。

二、旋光仪和比旋光度 1.旋光仪测定化合物的旋光度是用旋光仪,旋光仪主要部分是有两个尼可尔棱晶(起偏棱晶和检偏棱晶),一个盛液管和一个刻度盘组织装而成。

若盛液管中为旋光性物质,当偏光透过该物质时会使偏光向左或右旋转一定的角度,如要使旋转一定的角度后的偏光能透过检偏镜光栅,则必须将检偏镜旋转一定的角度,目镜处视野才明亮,测其旋转的角度即为该物质的旋光度α。

如下图所示A'C 普通光平面偏振光晶轴Nicol 棱晶A'A'C2.比旋光度旋光性物质的旋光度的大小决定于该物质的分子结构,并与测定时溶液的浓度、盛液的长度、测定温度、所用光源波长等因素有关。

为了比较各种不同旋光性物质的旋光度的大小,一般用比旋光度来表示。

比旋光度与从旋光仪中读到的旋光度关系如下。

当物质溶液的浓度为1g/ml ,盛液管的长度为1分米时,所测物质的旋光度即为比旋光度。

若所测物质为纯液体,计算比旋光度时,只要把公式中的C 换成液体的密度d 即可。

最常用的光源是钠光(D ),λ=589.3nm,所测得的旋光度记为所用溶剂不同也会影响物质的旋光度。

因此在不用水为溶剂时,需注明溶剂的名称,例如,右旋的酒石酸在5%的乙醇中其比旋光度为: = +3.79 (乙醇,5%)。

上面公式即可用来计算物质的比旋光度,也可用以测定物质的浓度或鉴定物质的纯度。

3.产生旋光性的原因我们知道光是一种电磁波,平面偏振光也是电磁波,它可以看作是由两种圆偏振光合并组成的。

它们都围绕着光前进方向的轴呈螺旋形向前传播,其中一种圆偏振光呈右螺旋行,称为右旋圆偏光,而另一种呈左螺旋形称为左旋圆偏光。

起偏镜检偏镜盛液管αλ=αL x C比选光度波长(钠光D)盛液长度(分米dm )溶液的浓度(g/ml )α[ ]t Dα[ ]20 D这两种光互为不能重叠的镜象关系。

当偏光经过一个对称的区域时,这两种圆偏光受到分子的阻碍相等,所以它们以相同的速度经过这个区域,因此,合成光仍保持原来偏光的振动平面,不表现出旋光性。

一般规定若先沿OE方向传播,从E点向O点看过去,螺旋前进是顺时针时,称为右圆偏振光;反之,为左圆偏振光。

倘若偏光遇到的是手性分子[手性分子在左、右圆偏振光中的折射率不同]则左、右圆偏振光通过手性分子的速度不同,因而由它们叠加产生的平面偏振光的振动方向也会改变。

平面偏振光通过光学活性介质产生的旋光。

由上述讨论可知,旋光产生的根本原因是因为入射光的左、右圆偏振光在手性介质中的传播速度不同。

如:右旋圆偏光对右旋乳酸的折射率为1.10011,而左旋圆偏光对右旋乳酸的折射率为1.10017第二节对映异构现象与分子结构的关系一、对映异构现象的发现早在十九世纪就发现许多天然的有机化合物如樟脑、酒石酸等晶体有旋光性,而且即使溶解成溶液仍具有旋光性,这说明它们的旋光性不仅与晶体有关,而且与分子结构有关。

1848年巴斯德[L.Pasteur (1822-1895)]在研究酒石酸钠铵的晶体时,发现无旋光性的酒石酸钠铵是两种互为镜象不同的晶体的混合物。

他用一只放大镜和一把镊子,细心地、辛苦地、把混合物分成两小堆:一小堆是右旋的晶体,另一小堆是左旋的晶体,很象是在柜台上分开乱堆在一起的右手套和左手套一样。

虽然原先的混合物是没有旋光性的,现在各堆晶体溶于水以后都是有旋光性的!还有,两个溶液的比旋光度完全相等,但旋光方向相反。

就是说,一个溶液使平面偏振光向右旋转,而另一个溶液以相同的度数使平面偏振光向左旋转。

这两个物质的其他性质都是相同的。

由于旋光度的差异是在溶液中观察到的,Pasteur推断这不是晶体的特性而是分子的特性。

(他提出,构成晶体的分子是互为镜象的,正像这两种晶体本身一样。

他提议,存在着这样的异构体,即其结构的不同仅仅是在于互为镜象,性质的不同也仅仅是在于旋转偏振光的方向不同)。

指出,对映异构现象是由于分子中的原子在空间的不同排列所引起的。

Pasteur的这些观点,为对映异构现象的研究奠定了理论基础。

1874年随着碳原子四面体学说的提出,Van't Hoff指出,如果一个碳原子上连有四个不同基团,这四个基团在碳原子周围可以有良种不同的排列形式,即两种不同的四面体空间构型。

它们互为镜像,和左右手之间的关系一样,外形相似但不能重合。

二、手性和对称因素物质分子互为实物和镜象关系(象左手和右手一样)彼此不能完全重叠的特征,称为分子的手性。

(chirality)具有手性(不能与自身的镜象重叠)的分子叫做手性分子。

(chiral molecule)连有四个各不相同基团的碳原子称为手性碳原子(chiral carbon)用C*表示。

凡是含有一个手性碳原子的有机化合物分子都具有手性,是手性分子。

凡物质分子在结构上不具有对称面、对称中心或四重更替对称轴,这个物质就具有手性,它和镜象互为对映异构,具有旋光性。

1.对称面(σ):假如有一个平面可以把分子分割成两部分,而一部分正好是另一部分的镜象,这个平面就是分子的对称面(σ)。

如:分子中有对称面,它和它的镜象就能够重合,分子就没有手性,是非手性分子(achiral molecule),因而它没有对映异构体和旋光性。

2.对称中心(i)若分子中有一点P,通过P点画任何直线,两端有相同的原子,则点P称为分子的对称中心(用i表示)。

如:具有对称中心的化合物和它的镜象是能重合的,因此它不具有手性。

3.对称轴(Cn)如果穿过分子画一直线,分子以它为轴,旋转一定角度后,可以获得与原来分子相同的形象,此直线即为对称轴(Cn表示)。

当分子沿轴旋转360°/n,得到的构型与原来的分子相重合,这个轴即为该分子的n 重对称轴。

如:因此,有无对称轴不能作为判断分子有无手性的标准。

4.更替对称轴(Sn)如果一个分子沿一根轴旋转了360°/n的角度以后,再用一面垂直于该轴的镜象将分子反射,所得的镜象如能与原物重合,此轴即为该分子的n重更替对称轴(用Sn表示)。

如果旋转的角度为90°(360°/4),就称为四重更替对称轴(S4)。

如:具有四重更替对称轴。

具有四重更替对称轴的化合物和镜象能够重叠,因此不具旋光性。

在一般情况下,四重更替对称轴往往和对称面或对称中心是同时存在的。

上述化合物就同时存在两个对称面,而且在化合物分子中只具有四重更替对称轴的是极少量的。

因此要判断一个化合物的分子有没有手性,一般只要考虑它有没有对称面和对称中心就可以了。

有对称中心的分子没有手性。

物质分子在结构上具有对称面或对称中心的,就无手性,因而没有旋光性。

物质分子在结构上即无对称面,也无对称中心的,就具有手性,因而有旋光性。

第三节含一个手性碳原子化合物的对映异构一、对映体1.对映体——互为物体与镜象关系的立体异构体。

含有一个手性碳原子的化合物一定是手性分子,含有两种不同的构型,是互为物体与镜象关系的立体异构体,称为对映异构体(简称为对映体)。

对映异构体都有旋光性,其中一个是左旋的,一个是右旋的。

所以对映异构体又称为旋光异构体。

2.对映体之间的异同点(1)、物理性质和化学性质一般都相同,比旋光度的数值相等,仅旋光方向相反P 128。

(2)、在手性环境条件下,对映体会表现出某些不同的性质,如反应速度有差异,生理作用的不同等。

二、外消旋体等量的左旋体和右旋体的混合物称为外消旋体,一般用(±)来表示。

外消旋体与对映体的比较(以乳酸为例):旋光性 物理性质 化学性质 生理作用 外消旋体 不旋光 mp 18℃ 基本相同 各自发挥其左右 对映体 旋光 mp 53℃ 基本相同 旋体的生理功能 三、构型表示方法――费歇尔投影式1.构型的表示方法对映体的构型可用立体结构(楔形式和透视式)和费歇尔(E ·Fischer )投影式表示,(1)、立体结构式(2)、Fischer 投影式为了便于书写和进行比较,对映体的构型常用费歇尔投影式表示:33HCOOH 3乳酸优点: 形象生动,一目了然缺点: 书写不方便楔形式透视式HOHCH 3COOH乳酸对映体的费歇尔投影式投影原则:1° 横、竖两条直线的交叉点代表手性碳原子,位于纸平面。

2° 横线表示与C *相连的两个键指向纸平面的前面,竖线表示指向纸平面的后面。

3° 将含有碳原子的基团写在竖线上,编号最小的碳原子写在竖线上端。

使用费歇尔投影式应注意的问题: a 基团的位置关系是“横前竖后”b 不能离开纸平面翻转180°;也不能在纸平面上旋转90°或270°与原构型相比。

C 将投影式在纸平面上旋转180°,仍为原构型。

2.判断不同投影式是否同一构型的方法:(1)、 将投影式在纸平面上旋转180°,仍为原构型。

(2)、任意固定一个基团不动,依次顺时针或反时针调换另三个基团的位置,不会改变原构型。

(3)、对调任意两个基团的位置,对调偶数次构型不变,对调奇数次则为原构型的对映体。

例如:HOHCOOH CH 3H HOCOOHCH 3在纸平面180°HCH 3OHC 2H 5HOH CH 3HOH CHH 3COHHC 2H 5C 2H 5C 2H 5===HOCHOCH 2OHH HOHCH 2OHCHO HOCHOH HCHOOHOH 与H 对调一次CHO 与 对调一次同一构型CH 2OH第四节 含两个手性碳原子化合物的对映异构一、含两个不相同手性碳原子的化合物 例如:以氯代苹果酸为例来讨论 1. 对映异构体的数目 其Fischer 投影式如下:含n 个不同手性碳原子的化合物,对映体的数目有2 n 个,外消旋体的数目2 n-1个。

相关文档
最新文档