解一元一次方程(去括号与去分母
合集下载
5.2.2用去括号与去分母解一元一次方程 考点梳理(课件)人教版(2024)数学七年级上册

,得 7x=-9,系数化为 1,得 x=- .
思路点拨
根据整式之间的相等(互为相反数)的关系
构造出一元一次方程,再把得出的方程解出来即可得到答
案.
解题通法
解决本题的关键是抓住“相等”和“互为相
反数”两个关键性词语,进而根据题意正确列出方程.
■题型二
例 2
一元一次方程的错解问题
小明在对方程
+
;
(2)去括号,得 2x+2=1-x-3,移项,得 2x+x=1-3-2,
合并同类项,得3x=-4,系数化为 1,得 x=-
.
■考点二
利用去分母解一元一次方程
定义
依据
方程的两边同时乘各分母的
去分母 最小公倍数,将分母去掉的
等式的性质 2
过程叫作去分母
注意
事项
去分母时,如果分子是一个多项式,去掉分母后
续表
合并
把方程化为 ax=b
同类项 (a≠0)的形式
合并同类
项法则
(1)系数相加减;
(2)字母及其指
数不变
在方程 ax=b
(a≠0)的两边都
系数
除以未知数的系数 等式的
化为 1 a,得到方程的解 性质 2
为x= (a≠0)
(1)除数不为 0;
(2)不要把分子、
分母弄颠倒
归纳总结
(1)解一元一次方程的步骤不是固定不变的,有时可以
)-6,去括号,得 2x+4=3x-3-6,移项、合并同类项,得x=-13,系数化为 1,得 x=13.
变式衍生
小华在解方程 2x-k=5-x 时,把-x 看成+x
《解一元一次方程》去括号与去分母

方程两边同乘最简公分母
用方程两边的代数式分别乘以最简公分母
得到一个等式
特殊情况的处理
分母是小数时,需 要将小数化为分数
分子是多项式时, 需要分解因式
分母是负数时,需 要将负号提到分子 的位置
03
去括号与去分母的结合
先去括号,再去找最简公分母
先去括号
在解一元一次方程时,首先需要去掉方程中的括号。根据括 号前系数的正负,采取不同的去括号法则。
04
注意事项
注意符号问题
去括号时注意符号变化
在解一元一次方程的过程中,去括号时需 要注意括号前面是负号时,去掉括号后括 号内的各项都要变号。
避免粗心导致错误
有些学生在去括号时容易忽略符号问题, 导致解题错误,因此需要特别注意。
注意不改变原方程
不能随意去掉分母
在解一元一次方程时,不能随意去掉分母, 只有在确定分母为0时才能进行化简。
括号前是正号,去掉括号和正号,各项不变号
总结词
去掉括号和正号后,各项符号不发生改变。
详细描述
当一元一次方程中的括号前出现正号时,去掉括号和正号后,括号内的各项符号 保持不变。例如,$2(x+3)$ 可以化简为 $2x + 6$。
括号前有数字,要看清数字和符号的关系
总结词
括号前的数字和符号必须同时去除。
注意符号和增根问题
注意符号
在去括号和去分母的过程中,要特别留意 符号的变化。特别是当括号前系数为负数 时,需要将括号内的每一项都变号。
VS
增根问题
在去分母的过程中,可能会引入增根。增 根是方程的解在实际情况下无意义,但在 数学上却是有效的根。为了解决增根问题 ,通常需要在方程的两边同时除以同一个 不为零的数,以确保方程的解是有效的。
人教版数学七年级上册_解一元一次方程(二)—去括号与去分母课件(3课时、共71张)

3.3 解一元一次方程(二)
——去括号与去分母 (第3课时)
学习目标: (1)会去分母解一元一次方程. (2)归纳一元一次方程解法的一般步骤,体会解方程中
化归和程序化的思想方法. (3)通过列方程,进一步体会模型思想.
教学重点: 建立一元一次方程模型解决实际问题以及解含有分数系
数的一元一次方程,归纳解一元一次方程的基本步骤.
根据往返路程相等,列出方程,得
2(x+3)=2.5(x-3)
去括号,得
2x+6=2.5x-7.5
移项及合并同类项,得
0.5x=13.5
系数化为1,得
x 27.
答:船在静水中的平均速度为 27 km/h.
活动3:巩固练习,拓展提高
一架飞机在两城之间航行,风速为24 km/h,顺风 飞行要2小时50分,逆风飞行要3小时,求两城距离.
移项,得
3 x-7 x+7=3-2 x-6
3 x=7 x+2 x=3-6-7
合并同类项,得
-2x=-10
系数化为1,得
x=5
活动2:巩固方法,解决问题
例 一艘船从甲码头到乙码头顺流行驶,用了2 h;从 乙码头返回甲码头逆流行驶,用了2.5 h.已知水流的 速度是3 km/h,求船在静水中的速度.
思考: 1.行程问题涉及哪些量?它们之间的关系是什么?
例:一艘船从甲码头到乙码头顺流行驶,用了2 h;从乙码头返
回甲码头逆流行驶,用了2.5 h.已知水流的速度是3 km/h,求
船在静水中的速度.
问题中的相等
解:设船在静水中的平均速度为x km/h 关系是什么?
则顺流的速度为_(_x_+__3_)_km/h,逆流速度为_(_x_-__3_)km/h.
3.3解一元一次方程一一去括号与去分母(教案)

此外,我还注意到,部分学生在解题过程中容易受到已学知识的干扰,导致解题思路混乱。为了帮助学生理清思路,我将在下一节课中,通过讲解典型例题,引导学生正确运用已学知识,提高解题效率。
在课后,我会认真批改学生的作业,了解他们在去括号与去分母方面的掌握情况,并对他们在课堂上遇到的问题进行总结。针对这些问题,我将设计更具针对性的练习题,以巩固所学知识。
(2)在去分母过程中,正确找到各分母的最小公倍数;
难点解析:学生在找最小公倍数时可能不够熟练,导致去分母后方程仍然存在分数。
(3)将实际问题转化为数学方程,理解方程背后的实际意义;
难点解析:学生在分析题目时可能难以抓住关键信息,不能将实际问题抽象为一元一次方程。
(4)在解题过程中,灵活运用已学知识,如乘法分配律、最小公倍数的求法等;
3.重点难点解析:在讲授过程中,我会特别强调去括号法则与去分母法则这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解如何正确去括号和去分母。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与解一元一次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过实际操作,演示如何去括号与去分母解方程。
具体内容包括:
1.去括号法则:a(x+b)=ax+ab;
2.去分母法则:将方程两边同时乘以各分母的最小公倍数,使方程转化为整数方程;
3.举例说明去括号与去分母在解一元一次方程中的应用;
4.练习:解以下方程:
(1)2(x-3)+4x=10
(2)3/4x+1=5/6x-1/2
(3)5(2x-1)-3(3x+2)=8
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
在课后,我会认真批改学生的作业,了解他们在去括号与去分母方面的掌握情况,并对他们在课堂上遇到的问题进行总结。针对这些问题,我将设计更具针对性的练习题,以巩固所学知识。
(2)在去分母过程中,正确找到各分母的最小公倍数;
难点解析:学生在找最小公倍数时可能不够熟练,导致去分母后方程仍然存在分数。
(3)将实际问题转化为数学方程,理解方程背后的实际意义;
难点解析:学生在分析题目时可能难以抓住关键信息,不能将实际问题抽象为一元一次方程。
(4)在解题过程中,灵活运用已学知识,如乘法分配律、最小公倍数的求法等;
3.重点难点解析:在讲授过程中,我会特别强调去括号法则与去分母法则这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解如何正确去括号和去分母。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与解一元一次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过实际操作,演示如何去括号与去分母解方程。
具体内容包括:
1.去括号法则:a(x+b)=ax+ab;
2.去分母法则:将方程两边同时乘以各分母的最小公倍数,使方程转化为整数方程;
3.举例说明去括号与去分母在解一元一次方程中的应用;
4.练习:解以下方程:
(1)2(x-3)+4x=10
(2)3/4x+1=5/6x-1/2
(3)5(2x-1)-3(3x+2)=8
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
解一元一次方程——去括号与去分母

月平均用电量×n(月数)=n个月用电量
解:这个工厂去年上半年每月平均用电x度, 根据题意,得 6x+6(x -2 000)=150 000
解方程: 6x+ 6(x-2000)=150000
解:去括号,得 6x + 6x - 12000 = 150000
移项,得 6x + 6x = 150000 + 12000
丢番图的墓志铭:
“坟中安葬着丢番图,多么令人惊讶,它忠实地记录 了所经历的道路.上帝给予的童年占六分之一.又过 十二分之一,两颊长胡.再过七分之一,点燃结婚的蜡 烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及 其父之半,便进入冰冷的墓.悲伤只有用数论的研究 去弥补,又过四年,他也走完了人生的旅途.”
合并同类项,得 系数化为1,得
6x=8. x=- 4 .
3
例题1 解下列方程: (2) 3x-7 (x -1) =3-2(x +3)
解:去括号,得 移项,得
3 x -7 x +7 =3-2 x -6 3 x -7 x +2 x =3-6 -7
合并同类项,得
-2 x =-10
系数化为1,得
x =5
1. 解下列方程:
解方程:2(x+3)=2.5(x-3)
解:去括号得 2x+6=2.5x-7.5 移项,得 2x-2.5x= -7.5 -6 合并同类项得 0.5x=13.5 系数化为1得 x=27
例题1 解下列方程:
(1) 2x-( x+10)=5x+2( x-1)
解:去括号,得 移项,得
2x-x-10=5x+2x-2. 2x-x-5x-2x=-2+10.
解方程:3x 1 2 3x 2 2x 3
2
解:这个工厂去年上半年每月平均用电x度, 根据题意,得 6x+6(x -2 000)=150 000
解方程: 6x+ 6(x-2000)=150000
解:去括号,得 6x + 6x - 12000 = 150000
移项,得 6x + 6x = 150000 + 12000
丢番图的墓志铭:
“坟中安葬着丢番图,多么令人惊讶,它忠实地记录 了所经历的道路.上帝给予的童年占六分之一.又过 十二分之一,两颊长胡.再过七分之一,点燃结婚的蜡 烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及 其父之半,便进入冰冷的墓.悲伤只有用数论的研究 去弥补,又过四年,他也走完了人生的旅途.”
合并同类项,得 系数化为1,得
6x=8. x=- 4 .
3
例题1 解下列方程: (2) 3x-7 (x -1) =3-2(x +3)
解:去括号,得 移项,得
3 x -7 x +7 =3-2 x -6 3 x -7 x +2 x =3-6 -7
合并同类项,得
-2 x =-10
系数化为1,得
x =5
1. 解下列方程:
解方程:2(x+3)=2.5(x-3)
解:去括号得 2x+6=2.5x-7.5 移项,得 2x-2.5x= -7.5 -6 合并同类项得 0.5x=13.5 系数化为1得 x=27
例题1 解下列方程:
(1) 2x-( x+10)=5x+2( x-1)
解:去括号,得 移项,得
2x-x-10=5x+2x-2. 2x-x-5x-2x=-2+10.
解方程:3x 1 2 3x 2 2x 3
2
3.3 解一元一次方程(二)——去括号与去分母(3)去分母;解一元一次方程的步骤

根据等式的性质2,在这个方程的两边乘各分母的 最小公倍数42,得
28 x 21x 6 x 42 x 1386
合并同类项,得 97 x 1386 .
1386 系数化为1,得 x . 97
你能解这个方程吗?
这个 方程 中各 分母 的最 小公 倍数 是多 少?
3x 1 3x 2 2x 3 2 2 10 5
A.15x-5(x+1)=1-3(x+3)
B. 15x-(x-1)=15-3(x+3) C.x-5(x-1)=1-3(x+3) D. 15x-5(x-1)=15-3(x+3) x 1 x +7 2 4.如果方程 的解也是方程 3 6 7. 那么a的值是
2 ax 0 3
的解,
5.小张和小王从甲地去乙地,小张早出发1小时,却晚到 1小时,他的速度为4千米/时,小王的速度为6千米/时, 则甲、乙两地的距离是 24 千米.
2
3
互为相反数.
6.解下列方程:
19 21 () 1 x ( x 2); 100 100 (2) x 1 x 2 ; 2 4
5 x 1 3x 1 2 x 3x 2 2x 1 2x 1 (3) ; (4) 1 . 4 2 1 3 2 5 9 4
x=21
B.4x+2-x+1=12 D.x=3
B.7 C.8 D.-1 x 1 3 2x 5 4.方程 的解是( C ) 4 6 2 A.x=-1 B.x=-2 C.x=-3 D.x=-4
1 1 ( x 1) 3.若式子 与 ( x 2)的值相等,则x的值是( B ) 2 3
13 3 2x 2 x 5.当x=____ 时,式子 与 8
人教版解一元一次方程——去括号与去分母

解下列方程(1)
5x12x12 44
(2) x14x22(x1) 25
x1 2x1
(3) 3x 3
2
3
(1)x 2
(2) x 29 17
(3)x 23 25
大家有疑问的,可以询问和交流
可以互相讨论下,但要小
如何求解方程呢?
x 0.3
=1+ 1.2-0.3x 0.2
指出解方程
X-1 2
=
4x+2 5
y=-8
典例解析
例 题 2 : 解 方 程 3 x 1 2 3 x 2 2 x 3
解:去分母,2 得
1 0 5
5(3x +1)-10×2 = (3x -2)-2 (2x +3)
去括号 15x +5-20 = 3x -2-4x -6
移项 15x - 3x + 4x = -2-6 -5+20
❖通过本节课的学习,你认为解一 元一次方程主要有哪些步骤?
❖在这些步骤中你认为在哪些方面 要注意?
课后习题,做一做
作业布置
❖ 课本作业:P98第3题,第7题,第10题 练习册52页
谢谢各位, 再见!
3.3 解一元一次方程——去分母
知识回顾
解含有括号的一元一次方程的步骤:
去括号 要熟记去括号法则
移项
移项要变号。
合并同类项
即化简为方程的标准 形式:ax=b(a≠0)
方程两边同除以未知数前
系数化为1 面的系数,即
你能解决下列古代问题吗?
一个数,它的三分之二,它的一半,它的七 分之一,它的全部,加起来总共是33,求这 个数。
分析:你认为本题用算术方法解方便,还是用 方程方法解方便?
请你列出本题的方程。
解一元一次方程-去括号与去分母(教案)-2020年秋人教版七年级数学上册

解一元一次方程-去括号与去分母(教案)-2020年秋人教版七年级数学上册
一、教学内容
本节课选自2020年秋人教版七年级数学上册第三章《一元一次方程》的3.4节“解一元一次方程-去括号与去分母”。教学内容主要包括以下两个方面:
1.去括号法则:在解一元一次方程过程中,当方程中存在括号时,运用去括号法则将方程简化。具体内容包括:
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《解一元一次方程-去括号与去分母》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要平均分配或解决比例问题的情况?”(例如:分糖果给小朋友)。这个问题与我们将要学习的内容密切相关。通过这个问题方程来解决问题。
(3)将实际问题抽象成一元一次方程:学生在面对实际问题时,可能难以将其转化为数学语言,即一元一次方程。
举例:在解决上述提到的实际问题“某数加上其一半等于12”时,学生可能不知道如何将“一半”表示为数学式子$\frac{1}{2}x$。
在教学过程中,教师应针对这些重点和难点内容,通过讲解、示范、练习和反馈等方式,帮助学生理解和掌握核心知识,确保学生能够透彻理解并灵活运用所学知识。
3.培养学生的数学建模能力:通过解决实际生活中的问题,引导学生运用一元一次方程建立数学模型,培养学生将现实问题转化为数学问题的能力,激发学生的创新意识和实践能力。
本节课将紧扣核心素养目标,注重培养学生的数学思维能力,提高学生解决实际问题的综合素养。
三、教学难点与重点
1.教学重点
(1)掌握去括号法则:在解一元一次方程时,能够正确运用去括号法则,包括同号括号相乘和异号括号相乘的情况,确保在简化方程过程中各项符号的正确性。
其次,去分母法则对学生来说是个难点。找最小公倍数这个过程让学生们感到有些困难,导致消去分母时出现错误。针对这个问题,我考虑在下一节课中,先带领学生们复习最小公倍数的概念和求解方法,然后再进行去分母的练习。
一、教学内容
本节课选自2020年秋人教版七年级数学上册第三章《一元一次方程》的3.4节“解一元一次方程-去括号与去分母”。教学内容主要包括以下两个方面:
1.去括号法则:在解一元一次方程过程中,当方程中存在括号时,运用去括号法则将方程简化。具体内容包括:
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《解一元一次方程-去括号与去分母》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要平均分配或解决比例问题的情况?”(例如:分糖果给小朋友)。这个问题与我们将要学习的内容密切相关。通过这个问题方程来解决问题。
(3)将实际问题抽象成一元一次方程:学生在面对实际问题时,可能难以将其转化为数学语言,即一元一次方程。
举例:在解决上述提到的实际问题“某数加上其一半等于12”时,学生可能不知道如何将“一半”表示为数学式子$\frac{1}{2}x$。
在教学过程中,教师应针对这些重点和难点内容,通过讲解、示范、练习和反馈等方式,帮助学生理解和掌握核心知识,确保学生能够透彻理解并灵活运用所学知识。
3.培养学生的数学建模能力:通过解决实际生活中的问题,引导学生运用一元一次方程建立数学模型,培养学生将现实问题转化为数学问题的能力,激发学生的创新意识和实践能力。
本节课将紧扣核心素养目标,注重培养学生的数学思维能力,提高学生解决实际问题的综合素养。
三、教学难点与重点
1.教学重点
(1)掌握去括号法则:在解一元一次方程时,能够正确运用去括号法则,包括同号括号相乘和异号括号相乘的情况,确保在简化方程过程中各项符号的正确性。
其次,去分母法则对学生来说是个难点。找最小公倍数这个过程让学生们感到有些困难,导致消去分母时出现错误。针对这个问题,我考虑在下一节课中,先带领学生们复习最小公倍数的概念和求解方法,然后再进行去分母的练习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
去分母(重点) 例 2:解方程:x-4 4-2x-6 1=1.
思路导引:先去分母,方程两边同乘分母的最小公倍数 12. 解:去分母,得 3(x-4)-2(2x-1)=12, 去括号,得 3x-12-4x+2=12, 移项,得 3x-4x=12+12-2, 合并同类项,得-x=22, 系数化为 1,得 x=-22.
答:甲车的速度为 20 m/s,乙车的速度为 16 m/s.
1.下列变形正确的是( B ) A.由 3(x-1)-2=1 得 3x-1-2=1 B.由 3(x-1)-2=1 得 3x-3-2=1 C.由 1-2(y-3)=6 得 1-2y-6=6 D.由 1-2(y-3)=6 得 1-2y+3=6
2.把方程32x4+1-1=22x3+1去分母,正确的是( A ) A.9(2x+1)-12=8(2x+1) B.9(2x+1)-1=8(2x+1) C.3(2x+1)-12=2(2x+1) D.3(2x+1)-1=8(2x+1)
3.解下列方程: (1)2(x-1)-(x+2)=3(4-x); (2)2(x-2)-3(4x-1)=9(1-x). 解:(1)去括号,得 2x-2-x-2=12-3x, 移项,得 2x-x+3x=12+2+2, 合并同类项,得 4x=16,系数化为 1,得 x=4. (2)去括号,得 2x-4-12x+3=9-9x, 移项,得 2x-12x+9x=9+4-3, 合并同类项,得-x=10,系数化为 1,得 x=-10.
解:设做上衣需要 x m,则做裤子为(750-x) m, 依题意得23x=37530-x. 去分母,得 2x=3(750-x), 去括号,得 2x=2 250-3x, 移项,得 2x+3x=2 250, 合并同类项,得 5x=2 250, 系数化为 1,得 x=450, 所以 750-x=750-450=300(m). 4503×2=300(套). 答:用 450 m 做上衣,300 m 做裤子恰好配套,共能生产 300 套.
4.解方程: (1)17(2x+14)=4-2x; (2)2x-3 1-10x6+1=2x+4 1-1. 解:(1)去分母,得 2x+14=28-14x, 移项,得 2x+14x=28-14, 合并同类项,得 16x=14, 系数化为 1,得 x=78.
(2)去分母,得 4(2x-1)-2(10x+1)=3(2x+1)-12, 去括号,得 8x-4-20x-2=6x+3-12, 移项,得 8x-20x-6x=3-12+4+2, 合并同类项,得-18x=-3,系数化为 1,得 x=16. 5.星光服装厂生产一些某种型号的学生服的订单,已知每 3 m 长的某种布料可做上衣 2 件或裤子 3 件,一件上衣和一条裤 子为一套,计划用 750 m 长的这种布料生产学生服,应分别用 多少布料生产上衣和裤子恰好配套?共能生产多少套?
技巧总结:解一元一次方程的一般步骤 (1)去分母:方程两边同乘分母的最小公倍数. (2)去括号. (3)移项:把含有未知数的项移到一边,常数项移到另一边, 注意变号. (4)合并同类项:将方程化为 ax=b(a≠0). (5)系数化为 1:x=ba(a≠0).用一元一次方程解应用题
例 3:甲、乙两列火车的长度分别为 144 m 和 180 m,甲车 比乙车每秒多行驶 4 m,两列车相向行驶,从相遇到全部错开需 9 s,问:两列车的速度各是多少?
思路导引:相向行驶时,从相遇到全部错开,两车行程关 系为甲车行程+乙车行程=甲车长+乙车长.
解:设乙车的速度为 x m/s,则甲车的速度为(x+4)m/s. 根据题意得 9(x+4)+9x=144+180, 去括号,得 9x+36+9x=144+180, 移项,得 9x+9x=144+180-36, 合并同类项,得 18x=288, 系数化为 1,得 x=16. x+4=16+4=20.
去括号 例 1:解方程:3(x+1)-(5+x)=18-2(x-1).
解:去括号,得 3x+3-5-x=18-2x+2. 移项,得 3x-x+2x=18+2-3+5. 合并同类项,得 4x=22. 系数化为 1,得 x=121. 【易错警示】去括号法则的依据是乘法分配律,在使用乘 法分配律时,不要漏乘括号里的项.
3.3 解一元一次方程(二)—— 去括号与去分母
1.去括号 探究:解方程:
-
归纳:括号外的因数是正数,去括号后各项的符号与原括 号内相应各项的符号__相__同____;括号外的因数是负数,去括号 后各项的符号与原括号内相应各项的符号___相__反___.
2.去分母 探究:解方程:
88
x
归纳:去分母的方法是方程两边同乘各分母的最__小__公__倍__数__. 注意:不要漏乘不含分母的项,注意分数线的括号作用.