二次函数的性质及图像分析

合集下载

二次函数的图像和性质

二次函数的图像和性质

+
k
y = a(x – h )2
上下平移 y = ax2 左右平移
二次函数 y=2(x+3)2+5 y = -3x(x-1)2 -2 y = 4(x-3)2 +7 y = -5(2-x)2 - 6
开口方向 对称轴 顶点坐标
向上 向下 向上
直对线称x轴=-3 顶( -点3,坐标
直线x=1 (51), -
所以该抛物线的表达式为y=-2x2-12x-13.
(2)点A(-1,3)和B(2,-6)的坐标满足抛
物线的表达式,即
解得
a b 6 3, 4a 2b 6 6.
a 3, b 6.
所以该抛物线的表达式为y=3x2-6x-6.
例. 通过配方,写出下列抛物线的 开口方向、对称轴和顶点坐标.
x<-
b 2a
x>-
b 2a
a>0
向 下
x<-
b 2a
x>-
b 2a
当x=
-
b 2a
时,
y有最小值:4a4ca-b2
当x=
-
b 2a
时,
y有最大值:4a4ca-b2
数学核心素养
一、什么是数学核心素养 二、如何在数学教学活动中体现数学核心素养 三、如何在数学教学评价中考查数学核心素养
一、什么是数学核心素养 文件《教育部关于全面深化课程改革,落实立德树人根本任务》
根据这些特点,我们容易画出它的图像.

列表:
画出的图像如图26.2.4所示.
一般地,我们可以用配方法求 抛物线y=ax2+bx+c(a≠0)的顶点 与对称轴.
y= ax2+bx+c

5.二次函数的图像和性质课件

5.二次函数的图像和性质课件

-1
当x=0时,y取最____值____。
02
知识精讲
平移口诀1
函数y=x2+1的图像可以由函数y=x2的图像向上平移一个单位长度得到;
函数y=x2-1的图像可以由函数y=x2的图像向下平移一个单位长度得到;
函数y=-x2+1的图像可以由函数y=-x2的图像向上平移一个单位长度得到;
函数y=-x2-1的图像可以由函数y=-x2的图像向下平移一个单位长度得到。
的图像和性质
01
情境引入
Q1:用描点法画出y=(x+3)2的图像,并与y=x2作对照
x

y=(x+3)2 …
x
y=x2
-6 -5
9 4


-4
1
-3
9
-3
0
-2
4
-2
1
-1
1
-1
4
0
0
0
9
1
1


2
4
当自变量偏移3个单位长
将点(1,1)向左平移3个
度时,两个函数的值相同
单位长度得(-2,1)……
3
【平移口诀1】上加下减
02
知识精讲
练一练1:根据平移口诀1,完成下列填空:

4
向_____平移_____个单位得到

8
向_____平移_____个单位得到

3
向_____平移_____个单位得到

6
向_____平移_____个单位得到
02
知识精讲
练一练2:根据练一练1平移后的图像,完成下列填空:
5
y=-2x2+3

二次函数的图像和性质ppt课件

二次函数的图像和性质ppt课件
二次函数的图像和性质ppt课件
contents
目录
• 引言 • 二次函数的定义和公式 • 二次函数的图像 • 二次函数的性质 • 二次函数的实际应用 • 总结与回顾 • 课后作业与思考题
01 引言
课程背景介绍
01
二次函数是数学中基础知识之一 ,掌握好二次函数的图像和性质 对于后续学习代数、几何等数学 领域都有重要的意义。
二次函数的定义
01
02
03
定义
一般地,形如$y = ax^2 + bx + c$($a$、$b$、 $c$是常数,$a \neq 0$ )的函数叫做二次函数。
解释
二次函数是包含未知数的 二次多项式的函数,其未 知数的最高次数为2。
示例
$y = 2x^2 + 3x - 4$是 一个二次函数。
二次函数的公式
01
02
03
04
当x增大时,如果a>0,y值会 随之增大;如果a<0,y值会
随之减小。
当x增大时,如果a>1,y值会 快速增大;如果0<a<1,y值
会缓慢增大。
当x减小时,如果a>0,y值会 随之减小;如果a<0,y值会
随之增大。
当x减小时,如果a>1,y值会 快速减小;如果0<a<1,y值
会缓慢减小。
减。
当$\Delta = 0$时,函
数有一个实根;当
$\Delta < 0$时,函数
没有实根。
极值:当$a > 0$时,二 次函数在区间$(-\infty, -b/2a)$上单调递增,在 区间$(-b/2a,+\infty)$ 上单调递减,此时$b/2a$为极小值点;当 $a < 0$时,二次函数在 区间$(-\infty, -b/2a)$ 上单调递减,在区间$(b/2a,+\infty)$上单调递 增,此时$-b/2a$为极 大值点。

二次函数图像与性质分析

二次函数图像与性质分析

二次函数图像与性质分析引言:二次函数是高中数学中的重要内容之一,它在数学和实际生活中都有着广泛的应用。

本文将对二次函数的图像和性质进行详细的分析,帮助读者更好地理解和应用二次函数。

一、二次函数的定义和一般形式二次函数是指形式为y=ax^2+bx+c的函数,其中a、b、c为常数且a≠0。

二次函数的图像通常是一个抛物线,其开口方向取决于a的正负。

二、二次函数的图像特征1. 抛物线的开口方向当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

这是因为二次函数的一次导数是一次函数,其斜率为常数,因此二次函数的图像是平滑的曲线。

2. 抛物线的顶点二次函数的顶点是抛物线的最高点或最低点,其横坐标为-x轴对称的点,纵坐标为函数值最大或最小的点。

顶点的坐标可以通过求导数或使用顶点公式来确定。

3. 抛物线的对称轴二次函数的对称轴是通过顶点的垂直线,对称轴方程的形式为x=h,其中h为顶点的横坐标。

4. 抛物线的焦点和准线当抛物线开口向上时,焦点在对称轴上方,准线在对称轴下方;当抛物线开口向下时,焦点在对称轴下方,准线在对称轴上方。

焦点和准线的计算可以使用焦点公式和准线公式。

三、二次函数的性质分析1. 零点和因式分解二次函数的零点是函数值为0的横坐标,可以通过求解二次方程来求得。

而二次函数可以因式分解为两个一次因子的乘积形式,这在求解零点和分析函数性质时非常有用。

2. 增减性和极值二次函数的增减性取决于二次项系数a的正负。

当a>0时,函数在对称轴两侧递增;当a<0时,函数在对称轴两侧递减。

二次函数的极值即为顶点,当a>0时,函数有最小值;当a<0时,函数有最大值。

3. 零点和系数的关系二次函数的零点与系数之间存在着重要的关系。

对于形式为y=ax^2+bx+c的二次函数,其零点的和为-x轴对称点的横坐标的相反数,即x1+x2=-b/a;而零点的乘积等于常数项c的相反数,即x1*x2=c/a。

二次函数的图象和性质课件

二次函数的图象和性质课件

二次函数的解析试.
解:设所求的二次函数 为y ax2 bx c,由题意得:
{a b c 10 abc 4
4a 2b c 7
待定系数法
解得,a 2,b 3, c 5
所求的二次函数是 y 2x2 3x 5
对自己说,你有什么收获? 对老师说,你有什么疑惑? 对同学说,你有什么温馨提示?
x
y 1 x 22
3
y 1 x2
3
5.二次函数y=ax2 的图象和性质
抛物线 y=ax2(a>0)
y=ax2(a<0)
开口方向
对称轴
向上 直线x=0
向下 直线x=0
顶点坐标 (0,0)
(0,0)
增减性
在对称轴的左侧,y随着x的增大 在对称轴的左侧,y随着x的增大
而减小. 在对称轴的右侧, y随 而增大. 在对称轴的右侧, y随
问题3:多边形的对角线数d与边数n有什么关系?
由图可以想出,如果多边形有n
条边,那么它有 n 个顶点,从一
个顶点出发,连接与这点不相邻
M
N 的各顶点,可以作(n-3)条对角线.
此式表示了多边形
的对角线数d与边
数n之间的关系,对
于n的每一值,d都

有唯一的对应值,
即d是n的函数。
问题4:某工厂一种产品现在的年产量是20件,计划今后两年 增加产量。如果每年都比上一年的产量增加x倍,那么两年后 这种产品的产量y将随计划所定的x的值而确定,y与x之间的 关系怎样表示?
返回
在同一坐标系内画出y=2x2、y=2(x-1)2、 y=2(x-1)2+1 的图象
x
-3 -2 -1
0
1

二次函数的图像和性质表格

二次函数的图像和性质表格

配方法
将二次函数通过配方转化为顶点式$y=a(xh)^2+k$,其中$(h,k)$为顶点坐标。根据 $a$的正负和顶点坐标可求得最值。
公式法
对于一般形式的二次函数$y=ax^2+bx+c$ ,其最值可通过公式$-frac{b}{2a}$求得对 称轴,再代入原函数求得最值。
04 典型二次函数图 像举例
对称轴与顶点坐标
对称轴
对于一般形式$y=ax^2+bx+c$的二次函 数,其对称轴为直线$x=-frac{b}{2a}$。
VS
顶点坐标
顶点的横坐标为对称轴与抛物线的交点, 即$x=-frac{b}{2a}$,纵坐标为$cfrac{b^2}{4a}$。
与坐标轴交点情况
与$x$轴交点
解方程$ax^2+bx+c=0$,若$Delta=b^2-4ac>0$,则有两个不相等的实数根,即抛物线与$x$轴 有两个交点;若$Delta=0$,则有两个相等的实数根,即抛物线与$x$轴有一个交点;若$Delta<0$ ,则无实数根,即抛物线与$x$轴无交点。
与$y$轴交点
抛物线与$y$轴的交点为点$(0,c)$。
03 二次函数性质分 析
奇偶性判断方法
观察法
通过观察二次函数的表达式,判断其是否满足$f(-x)=f(x)$或$f(-x)=-f(x)$,若满足则函数为偶函数或奇函数。
代数法
将$-x$代入二次函数的表达式,化简后与原函数比较,若相等则为偶函数,若互为相反数则为奇函数。
二次函数表达式
一般形式为$f(x) = ax^2 + bx + c$ ,其中$a$、$b$、$c$为常数,且$a neq 0$。

二次函数的图像与性质-完整版课件


二次函数与一元二次方程关系
一元二次方程 $ax^2 + bx + c = 0$($a neq 0$)的解即为二次函数 $y = ax^2 + bx + c$ 与 $x$ 轴交点的横坐标。
当 $Delta = b^2 - 4ac > 0$ 时,二次函数与 $x$ 轴有两个交点;当 $Delta = 0$ 时,有 一个交点;当 $Delta < 0$ 时,没有交点。
• 分析:根据题意设交点坐标为$(-1, y_1)$和$(3, y_2)$,代入直线方程可得两个方程。又因为这两个点也在抛 物线上,所以代入抛物线方程也可得两个方程。联立这四个方程即可求出二次函数的解析式。
• 示例2:已知二次函数$y = ax^2 + bx + c (a • eq 0)$的图像与直线$y = x + m (m • eq 0)$相交于两点,且这两点关于原点对称,求二次函数的解析式。 • 分析:根据题意设交点坐标为$(x_1, y_1)$和$(x_2, y_2)$,由于两点关于原点对称,所以有$x_1 = -x_2$和
BIG DATA EMPOWERS TO CREATE A NEW ERA
二次函数的图像与性质-完
整版课件
汇报人:XXX
2024-01-29
• 二次函数基本概念 • 二次函数图像特征 • 二次函数性质探讨 • 典型例题分析与解答 • 实际应用场景举例说明 • 总结回顾与拓展延伸
目录
CONTENTS
零点存在性及个数判断方法
零点定义
二次函数零点存在 性判断方法
对于函数f(x),若存在x0∈D, 使得f(x0)=0,则称x0为函数 f(x)的零点。
通过判别式Δ=b^2-4ac来判断 。当Δ>0时,二次函数有两个 不相等的零点;当Δ=0时,二 次函数有两个相等的零点(即 一个重根);当Δ<0时,二次 函数无零点。

二次函数的图像及其性质


单调性
二次函数的开口 方向由系数a决 定,a>0时开口 向上,a<0时开 口向下
二次函数的对称 轴为x=-b/a
二次函数的最值 在对称轴上取得, 即x=-b/2a时的 函数值y=cb^2/4a
二次函数在区间 (-∞,-b/2a)和(b/2a,+∞)上单 调性相反
最值点
二次函数的最值点为顶点 顶点的坐标为(-b/2a, f(-b/2a)) 当a>0时,函数在顶点处取得最小值 当a<0时,函数在顶点处取得最大值
开口大小与一次项 系数和常数项无关
开口变化趋势
二次函数的开口方向由二次项系数a决定,a>0时向上开口,a<0时向下开口。 二次函数的开口大小由二次项系数a和一次项系数b共同决定,a的绝对值越大,开口越小。 二次函数的对称轴为x=-b/2a,当a>0时,对称轴为x=-b/2a;当a<0时,对称轴为x=-b/2a。 二次函数的最值点为顶点,顶点的坐标为(-b/2a, c-b^2/4a)。
在物理领域的应用
二次函数在抛物线运动中的应用 二次函数在弹簧振荡中的应用 二次函数在单摆运动中的应用 二次函数在简谐振动中的应用
在其他领域的应用
二次函数在经济学中的应用, 例如计算成本、收益、利润等。
二次函数在生物学中的应用, 例如种群增长、药物疗效等。
二次函数在物理学中的应用, 例如弹簧振动、单摆运动等。
二次函数的应用
解决实际问题
二次函数在物理学中的应用,例如计算抛物线的运动轨迹 二次函数在经济学中的应用,例如计算商品价格与销售量的关系
二次函数在日常生活中的应用,例如计算最优化问题,如最小费用、最大效率等
二次函数在科学实验中的应用,例如模拟实验数据,预测实验结果

二次函数的图像与性质


弹簧振动:描述弹 簧振动的规律
波动:描述波动现 象,如声波、水波 等
电路:在交流电路 中,二次函数用于 描述电流与电压的 关系
与一次函数的比较
表达式不同:二次函数的一般形式为y=ax^2+bx+c,一次函数的一般形式为y=kx+b 图像不同:二次函数的图像是抛物线,一次函数的图像是直线 开口方向不同:二次函数的开口方向由a的符号决定,一次函数没有开口方向 顶点不同:二次函数有顶点,一次函数没有顶点

对称轴的证明
证明方法:利用 二次函数的对称 性,通过代入法 证明对称轴的存 在
证明过程:通过 计算二次函数在 x轴上的交点, 推导出对称轴的 方程
证明结论:二次 函数的图像关于 对称轴对称,且 对称轴的方程为 x=-b/2a
证明意义:理解 二次函数图像的 对称性质,有助 于解决与二次函 数相关的数学问 题
与坐标轴交点坐标的证明
证明方法:通过令二次函数等于0,解出x的值,得到与y轴交点的坐标
证明过程:将二次函数的一般形式代入x=0,得到y的值,即为与y轴的交点坐标
证明结果:当x=0时,y的值即为与y轴的交点坐标 证明结论:通过以上步骤,可以证明二次函数与y轴的交点坐标为(0,c)
汇报人:XX
与反比例函数的比较
函数形式:二次 函数的一般形式
为 y=ax^2+bx+c,
反比例函数的一 般形式为y=k/x,
其中k为常数且 k≠0
添加标题
图像:二次函数的 图像是一个抛物线, 反比例函数的图像 是两条渐近线,当 k>0时,图像在第
一、三象限;当 k<0时,图像在第
二、四象限
添加标题
性质:二次函数有 最小值或最大值, 而反比例函数没有 最小值和最大值, 当k>0时,函数在 x>0时单调递减, 在x<0时也单调递 减;当k<0时,函 数在x>0时单调递 增,在x<0时也单

二次函数的基本性质和图像

二次函数的基本性质和图像二次函数是高中数学中的一种重要函数,它的图像形状为抛物线。

在学习二次函数之前,我们需要了解一些基本性质和图像特征。

本文将介绍二次函数的基本性质和图像特点,帮助读者更好地理解和掌握这一概念。

一、二次函数的标准形式二次函数的标准形式为:f(x) = ax² + bx + c其中,a、b、c为实数,且a≠0。

二、二次函数的图像特点1. 开口方向二次函数的开口方向由二次项的系数a的正负确定。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

2. 最值点当二次函数的开口方向向上时,函数的最值点为抛物线的顶点,记作(h,k),其中h为顶点的横坐标,k为顶点的纵坐标。

当二次函数的开口方向向下时,函数的最值点为抛物线的谷点。

3. 对称轴二次函数的对称轴是通过抛物线的最值点和对称轴的直角中点所得直线。

对称轴与x轴垂直,并且通过抛物线的顶点。

4. 零点二次函数的零点即函数的根,可以通过求解二次方程ax² + bx + c = 0来得到。

二次函数的零点可以有0个、1个或2个零点,取决于二次方程的判别式b²-4ac 的值。

三、二次函数的图像画法和变换1. 平移变换对于二次函数f(x) = ax² + bx + c,当x平移h个单位和y平移k 个单位时,变换后的函数表达式为f(x-h)+k。

2. 垂直方向的伸缩变换对于二次函数f(x) = ax² + bx + c,当a变为ka(k≠0)时,函数的图像在y轴方向上发生伸缩。

当a>1时,抛物线变瘦高;当0<a<1时,抛物线变粗矮;当a<0时,抛物线变为开口向下。

3. 水平方向的伸缩变换对于二次函数f(x) = ax² + bx + c,当b变为kb(k≠0)时,函数的图像在x轴方向上发生伸缩。

当b>1时,抛物线朝y轴正方向平移;当0<b<1时,抛物线朝y轴负方向平移;当b<0时,抛物线左右翻转。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的性质及图像分析
引言:
二次函数是高中数学中一个重要的概念,它在数学和实际问题中都有广泛的应用。

本文将介绍二次函数的性质及图像分析,帮助读者更好地理解和应用二次函数。

一、二次函数的定义与一般形式
二次函数是指形如y=ax^2+bx+c的函数,其中a、b、c为实数且a≠0。

其中,a
决定了二次函数的开口方向和开口的大小,b决定了二次函数的对称轴位置,c决
定了二次函数的纵轴截距。

二、二次函数的图像特点
1. 开口方向:当a>0时,二次函数开口向上;当a<0时,二次函数开口向下。

2. 对称轴:二次函数的对称轴是一个垂直于x轴的直线,其方程为x=-b/2a。

3. 零点:二次函数与x轴的交点称为零点,即使y=0的解,可以通过求解二次
方程ax^2+bx+c=0得到。

4. 极值点:当二次函数开口向上时,函数的最小值称为极值点;当二次函数开
口向下时,函数的最大值称为极值点。

5. 函数增减性:二次函数的增减性与a的正负有关,当a>0时,二次函数在对
称轴两侧递增;当a<0时,二次函数在对称轴两侧递减。

三、二次函数图像的分析与应用
1. 开口方向的影响:二次函数的开口方向决定了函数的增减性和极值点的位置。

在实际问题中,可以通过二次函数的开口方向来判断某一现象的趋势,例如物体的
抛射运动中,开口向上的二次函数可以表示物体上升的高度,开口向下的二次函数可以表示物体下降的高度。

2. 对称轴的作用:二次函数的对称轴决定了函数图像的对称性。

在实际问题中,对称轴可以帮助我们找到函数图像的关键点,例如求解二次函数的最值、求解二次函数与其他图像的交点等。

3. 零点的意义:二次函数的零点表示函数与x轴的交点,即函数的解。

在实际
问题中,零点可以帮助我们求解方程,解决实际问题,例如求解二次方程来确定某一物体的位置、时间等。

4. 极值点的应用:二次函数的极值点表示函数的最值,可以帮助我们求解最优
解问题。

在实际问题中,可以通过求解二次函数的极值点来确定某一问题的最优解,例如求解最短路径、最大利润等。

5. 函数增减性的分析:二次函数的增减性可以帮助我们确定函数的变化趋势。

在实际问题中,可以通过二次函数的增减性来分析某一现象的变化趋势,例如根据二次函数的增减性来分析某一物体的速度变化、某一现象的发展趋势等。

结论:
通过对二次函数的性质及图像分析,我们可以更好地理解和应用二次函数。


次函数的图像特点可以帮助我们分析问题、解决实际问题,并且在数学中有着广泛的应用。

因此,掌握二次函数的性质及图像分析是我们学习数学的重要一步。

相关文档
最新文档