单片机制作控制继电器的电路

合集下载

继电器控制电路图

继电器控制电路图

继电器控制电路图[日期:2008-12-07 ] [来源:东哥单片机学习网 作者:佚名] [字体:大中小] (投递新闻)继电器控制电路图在人们的习惯中,总认为CMOS集成块不能直接带动继电器工作,但实验证明,部分CMOS集成块不仅能直接带动继电器工作,而且工作稳定可靠。

实验中所用继电器的型号为JRC5M-DC12V微型密封继电器(其线圈电阻为750Ω)。

现将CD4066 CMOS集成块带动继电器的工作原理分析如下:电路中,继电器线圈两端均反相并联了一只二极管,它是用于保护集成块的,切不可省去,否则在继电器由吸合状态转为释放时,由于电感的作用线圈上将产生较高的反电动势,极容易导致集成块击穿。

并联了二极管后,在继电器由吸合变为释放的瞬间,线圈将通过二极管形成短时间的续流回路,使线圈中的电流不致突变,从而避免了线圈中反电动势的产生,确保了集成块的安全。

低电压下继电器的吸合措施常常因为电源电压低于继电器的吸合电压而使其不能正常工作,事实上,继电器一旦吸合,便可在额定电压的一半左右可靠地工作。

因此,可以在开始时给继电器一个启动电压使其吸合,然后再让其在较低的电源电压下工作,如图所示的电路便可实现此目的。

制作本电路时,一般可取继电器的额定电压为电源电压的1.5倍左右,一般情况下,任何型号的单向可控硅(或双向可控硅)皆可满足本电路需要。

V2、C1、C3的耐压视电源电压的高低选取。

C2耐压最好不低于电源电压的两倍。

继电器的三种附加电路继电器是电子电路中常用的一种元件,一般由晶体管、继电器等元器件组成的电子开关驱动电路中,往往还要加上一些附加电路以改变继电器的工作特性或起保护作用。

继电器的附加电路主要有如下三种形式:1.继电器串联RC电路:电路形式如图1,这种形式主要应用于继电器的额定工作电压低于电源电压的电路中。

当电路闭合时,继电器线圈由于自感现象会产生电动势阻碍线圈中电流的增大,从而延长了吸合时间,串联上RC电路后则可以缩短吸合时间。

继电器控制实验报告

继电器控制实验报告

继电器控制实验报告单片机原理与应用技术实验报告(实验项目:控制继电器通断)****数学计算机科学系实验报告专业: 计算机科学与技术班级: 实验课程: 单片机原理与应用技术姓名: 学号: 实验室:硬件实验室同组同学: 实验时间: 2013年3月20日指导教师签字:成绩:实验项目:控制继电器通断一实验目的和要求1. 控制继电器通断,同时发出啪啪声。

2.掌握单片机使用。

二实验环境PC机一台,实验仪器一套三实验步骤及实验记录1.在pc机上,打开Keil C。

2.在Keil C中,新建一个工程文件,点击“Project-New Project?”菜单。

3. 选择工程文件要存放的路径 ,输入工程文件名 k2, 最后单击保存。

4. 在弹出的对话框中选择 CPU 厂商及型号。

5. 选择好 Atmel 公司的 89c51 后 , 单击确定。

6. 在接着出现的对话框中选择“是”。

7. 新建一个 C51 文件 , 点击file菜单下的NEW,或单击左上角的 New File 快捷键。

8. 保存新建的文件,单击SAVE。

9. 在出现的对话框中输入保存文件名MAIN.C,再单击“保存”。

10. 保存好后把此文件加入到工程中方法如下 : 用鼠标在 Source Group1 上单击右键 , 然后再单击 Add Files toGroup ‘Source Group 1'。

11. 选择要加入的文件 , 找到 MAIN.C 后 , 单击 Add, 然后单击 Close。

12. 在编辑框里输入代码如下:#include reg51.h //包含头文件sbit K2=P2 ;//定义继电器控制IO#define uchar unsigned char#define uint unsigned intdelay(uint time) //int型数据为16位,所以最大值为65535{uint i,j;//定义变量i,j,用于循环语句for(i=0;itime;i++)//for循环,循环50*time次for(j=0;j50;j++); //for循环,循环50次}void main() //主函数{while(1) //进入while死循环{K2=0; //断开继电器delay(5000); //延时K2=1; //导通继电器delay(5000); //延时}}13.单击快捷键或单击Project/Rebuild all the files,如果在错误与警告处看到 0 Error(s) 表示编译通过。

基于PIC12F675单片机的可编程多功能时间继电器的设计

基于PIC12F675单片机的可编程多功能时间继电器的设计

基于PIC12F675单片机的可编程多功能时间继电器的设计摘要:定时控制是最基本的自动控制方式,由单片机制作的定时控制,具有定时精确,电路简单等诸多优点,能够实现多种定时模式,利用MCU内部的多个TMR模块,可以设计成多个集成的时间继电器,利用MCU内部的多路ADC转换模块通过各自的电位器独立调整延时时间,而且各定时模块可以级联控制,实现电动机控制电路的简化,如果通过IO口连接外部信号,便于实现多种简单的自动控制。

关键词:MCU、定时器、AD转换、级联控制1、引言常用的电子时间继电器普遍使用CD4060振荡计数分频CMOS集成电流构成,一般采用外部RC振荡器,定时精度低、控制功能单一。

由于这种电子时间继电器内部带有小功率稳压电源模块,用引脚较少的单片机取代原数字电路芯片,可以实现多个定时器集成在一起,或者多个定时级联控制。

如果用较少引脚的单片机构成时间继电器,则提高定时精度,而且实现多个时间继电器的集成,通过编程可以实现多个时间继电器的级联控制。

从而可以大大简化控制电路,节省了线材。

2、单片机及选型单片机又称微控器MCU,生产厂家和品牌很多。

众所周知proteus是开发单片机产品最好用的仿真软件,不但能够进行单片机仿真,而且能够进行电路仿真和PCB电路设计,因此选型时首先考虑容易购置且在proteus中有仿真模型的MCU产品。

经典的普林斯顿构架的51单片机,内部资源少,引脚多,不适合单片机产品的开发。

PIC单片机虽然品种繁多,但是一个IDE软件可以通吃,而且在proteus仿真软件有丰富的仿真模型,这样便于电路研发设计。

其中有PIC12F675[1]单片机是PICF12系列单片机中内部资源较为丰富的品种。

其内部有两个可编程定时器模块TMR0和TMR1,还具有4路10位ADC转换模块和比较器模块,比较适合制作时间继电器的控制电路。

选用PIC单片机的另一个好处是有廉价的替代品,台湾的麦肯单片机质优价廉,可以直接取代。

五、单片机学习——继电器与蜂鸣器实验

五、单片机学习——继电器与蜂鸣器实验

五、单⽚机学习——继电器与蜂鸣器实验实验⽬的:理解并掌握继电器和蜂鸣器驱动电路的⼯作原理; 理解并掌握⽤单⽚机 I/O 驱动⼤电流器件的驱动⽅法;实验模块:核⼼板+流⽔灯与独⽴按键模块+继电器模块+蜂鸣器模块;实验内容:按键控制继电器和蜂鸣器动作,并⽤相应的 led 灯进⾏指⽰,即第⼀ 个按键按下,第⼀位 led 灯点亮,蜂鸣器响应;第⼆个按键按下,第⼆位 led 灯点亮,继电器吸合;第三个按键按下,第⼀个、第⼆个流⽔灯点亮,继电器吸 合、蜂鸣器响应;第四个按键按下,恢复初始状态,所有的 led 灯熄灭、继电器 断开、蜂鸣器不响应。

模块连接图:电路原理图:电路驱动原理:(1)蜂鸣器发声原理是电流通过电磁线圈,使电磁线圈产⽣磁场来驱动振动膜发声的,仅仅依靠单⽚机 I/O 不⾜以驱动蜂鸣器进⾏⼯作;蜂鸣器的正极接到三极管的 C 极上⾯,蜂鸣器的负极接到地端,三极管的基极 B 经过限流电阻后由单⽚机的 P1.2 引脚控制,当 P1.2 输出⾼电平时,三极管 T1 截⽌,没有电流流过线圈,蜂鸣器不发声;当 P1.42 输出低电平时,三极管导通,这样蜂鸣器的电流形成回路,发出声⾳。

因此,我们可以通过程序控制 P1.2 脚的电平来使蜂鸣器发出声⾳或关闭。

(2)继电器驱动电路如上,主要通过 PNP 型的三极管 S8550 来实现通过单⽚机的 I/O ⼝控制继电器的吸合与断开;三极管驱动继电器主要是应⽤三极管的放⼤特性和开关特性;当与单⽚机相连的 I/0 ⼝输出低电平时,三极管导通,此时三极管的 E 极(发射极)与 C 极(集电极)间的阻值很⼩,此时电路相当于 VCC 经过继电器,再经过通过三极管接到地形成完整回路,继电器吸合;相反,当与单⽚机相连的 I/0⼝输出⾼电平时,三极管截⽌,此时三极管的 E 极(发射极)与 C 极(集电极)间的阻值很⼤,电路⽆法形成回路,继电器不吸合。

因此,我们可以通过程序控制与单⽚机相连 I/O ⼝的电平来控制继电器的吸合与关闭。

stm32单片机控制继电器代码

stm32单片机控制继电器代码

stm32单片机控制继电器代码1.引言1.1 概述在本文中, 我们将探讨如何使用STM32单片机来控制继电器。

继电器是一种常见的电子元件,用于控制电路的打开和关闭。

它可以通过小电流控制大电流,并在电路中起到开关的作用。

本文的目的是介绍如何使用STM32单片机来实现对继电器的控制。

我们将通过编写相应的代码,实现STM32单片机与继电器的连接,并控制继电器的开关。

此外,我们还将介绍继电器的原理和应用,并提供一些实际的应用案例和展望。

通过阅读本文,读者将会了解到如何利用STM32单片机来控制继电器,并且可以将所学知识应用于各种实际情境中。

本文将以易于理解和实践的方式呈现相关内容,以帮助读者更好地理解和掌握这一技术。

1.2文章结构1.2 文章结构本文将分为三个主要部分进行讨论。

首先,引言部分将提供关于文章的背景和主要目标的概述。

其次,正文部分将介绍STM32单片机的基本概念和特性,以及继电器的原理和应用。

最后,结论部分将展示如何实现STM32单片机控制继电器的代码,并提供一些应用案例和展望。

在正文部分中,我们将首先详细介绍STM32单片机的基本知识,包括其架构、性能和应用领域。

随后,我们将探讨继电器的原理和工作方式,以及在各种电子系统中的广泛应用。

通过对继电器的深入理解,我们将能够更好地理解STM32单片机控制继电器的代码实现过程,并加深对其应用的认识。

在结论部分,我们将给出一份实现STM32单片机控制继电器的代码示例,以帮助读者更好地理解如何利用STM32单片机实现对继电器的控制。

此外,我们还将提供一些实际应用案例,展示继电器在各种领域中的重要作用,并展望未来其在智能控制系统中的潜在应用。

通过本文的阅读,读者将能够掌握STM32单片机控制继电器的基本技术,并了解其在各种实际场景中的应用前景。

通过以上的分析和讨论,本文将全面介绍STM32单片机控制继电器的相关知识和技术,为读者提供一份系统而全面的指南。

单片机 光耦继电器

单片机 光耦继电器

单片机光耦继电器
单片机光耦继电器是一种基于光耦技术的微型控制装置,广泛应用于自动化控制、智能家居、工业自动化等领域。

本文将对单片机光耦继电器的工作原理、特点、应用场景以及未来发展进行详细介绍。

一、工作原理
单片机光耦继电器主要由光耦器件和继电器两部分组成。

光耦器件是一种利用光电效应实现电信号传输的半导体器件,具有信号传输速度快、抗干扰能力强等优点。

在单片机光耦继电器中,光耦器件将输入的电信号转换为光信号,通过光导纤维传输到接收端,再由接收端将光信号转换为电信号,实现对电路的通断控制。

二、特点
1、高可靠性:由于光耦继电器采用光电传输方式,避免了传统继电器触点易磨损、接触不良等问题,具有更高的可靠性。

2、长寿命:由于光耦继电器的触点无机械磨损,寿命长,可广泛应用于需要长期稳定运行的场合。

3、快速响应:光耦继电器的响应速度快,可实现快速控制和调节。

4、宽输入范围:光耦继电器的输入电压范围较宽,可适应不同的输入信号。

5、隔离性能好:光耦继电器具有较好的隔离性能,可有效防止电路之间的干扰和耦合。

三、应用场景
单片机光耦继电器在智能家居、工业自动化、电力控制等领域有广泛应用。

例如,在智能家居中,可实现灯光、空调、窗帘等家电的控制;在工业自动化中,可实现设备的自动启停、安全保护等功能;在电力控制中,可实现高压电路的远程控制和保护。

四、未来发展
随着科技的不断发展,单片机光耦继电器将不断优化和升级。

未来,光耦继电器将向着更小型化、集成化、智能化方向发展,同时将不断提升其性能和可靠性,以满足更多领域的需求。

单片机光耦继电器驱动电路

单片机光耦继电器驱动电路大部分电路转载于网络用PNP管驱动继电器电路分析与验证 :元件参数三极管:9012 继电器:DC12V,66.7mA,180Ω。

电路一:不好有不少的设计采用这样的电路来驱动继电器,虽然同样能工作,但实际上这样做是不合理的,经过细致分析后会发现Q1根本就不能完全饱合的。

估且我们不算R1的阻值为多大,假设我们现在使Q1基极电流最大,取R1=0;当控制信号电压为0时,Q1eb极的电压为0.7V,同样ec极电压也为0.7V,而9012的管子在完全饱合的情况下ec极电压应为0.2V。

很显然该管工作在非完全饱合状态;继电器上最大限度也只能获得11.3V的电压。

要想管子完全饱合,基极电流要足够大,那么基极需要电压为-0.7V以下。

电路二:好再来看看该电路当控制端电压为0时,Q1基极电压为(12-0.7=11.3V),改变R1的大小便可改变基极电流,当基极电流足够大时,三极管饱合。

为了验证以上的分析,我们搭了一个电路,R1取4.7K,此时基极电流为2.4ma,测得Q1ec电压为0.2V,继电器两端电压为11.8V。

注意:R1的取值不能太小,要保证基极电流在安全范围,也不能太大,要保证三极管能完全饱合,这个可以通过电压和电阻算出来。

第一种电路能工作,那是因为继电器有较宽的电压范围,有时它欠电压也能勉强工作,但状况是不稳定的,因此我们在设计时不建议采用这种方式。

正确的电路应该是电路二,正确的连接方式,大小合适的基极电阻才能保证设计的合理和稳定性。

最后注明一下,本次实验采用的12V继电器,因此该电路的控制极不能直接用单片机IO口驱动,否则会关不断。

若选用5V继电器则可以,原理同上一样。

24V继电器的驱动电路说明:VCC是5V。

继电器串联RC电路:这种形式主要应用于继电器的额定工作电压低于电源电压的电路中。

当电路闭合时,继电器线圈由于自感现象会产生电动势阻碍线圈中电流的增大,从而延长了吸合时间,串联上RC电路后则可以缩短吸合时间。

单片机控制继电器实验


手把手教你学单片机
单片机控制继电器实验
单片机轻松入门教学 ------- 『电子驿站』原创,转载请注明出处! -------------------------------------------------------------------------------------------------------------
下面是一个小型信号继电器HK4100F-DC5V-SH的实物照片和主要技术参数。。。
HK4100F电磁继电器
主要技术参数:
触点参数: 触点形式:1C(SPDT) 触点负载: 3A 220V AC/30V DC 阻 抗: ≤100mΩ 额定电流: 3A 电气寿命:≥10万次 机械寿命:≥1000万次
品 牌 :汇科(HUI KE) 型 号 : HK4100F-DC5V-SH 外形尺寸(mm): 10.5*15.5*11.8mm(W*L*H) 重 量 : 3.5g 产 地: 中国宁波
点击此处下载目标文件jdq.hex
下面程序驱动继电器采用了CPL位取反指令,程序的运行结果完全相同:
ORG 0000H AJMP START
;跳转到初始化程序
ORG START: MOV
MOV
0033H SP,#50H P3,#0FFH
;SP初始化 ;端口初始化
MAIN:
CPL P3.6 ACALL DELAY AJMP MAIN
451338254
476485321
『电子驿站』版权所有 Copyright (C) 2005-2007 All Rights Reserved
/mcujx/jdqkz.htm
2010-5-5
二、继电器驱动程序
下面给出了一个简单的继电器控制实验源程序,控制继电器不停地吸合、释放动作,程序很简单。

单片机驱动继电器仿真实验(按键控制)


sbit ks=P2^5; //定义开始按键连接 P 口
main()
{
while(1)
{ if(ks==0) { lamp=0;
//如果开始按键按下 //点亮灯泡
} if(tz==0) { lamp=1;
//如果停止按键按下 //熄灭灯泡
}
}
}
在上述 4 个程序段中我们发现,在程序的开头都进行了位定义。这种编程方 法的一个优点是程序通用性强。读者可以直接把程序复制到自己的系统中,只修 改程序开头的定义行的几个地址即可。
。由于普通按键的原理决定,普通按键都具有抖动的特点,也就是说,当按键 的静触头和动触痛接触瞬间,会产生抖动现象,简单说就是瞬间接通,又瞬间断 开的现象。这种现象会对原理图 1 所示的程序造成影响,产生按键按下后,有时 有效,有时没有效的现象。因此在进行实物制作的时候,原理图 1 对应的程序需 要添加软件防抖或者增加硬件防抖电路。而对于原理图 2 所对应的程序,则不需 要考虑按键抖动。
图 1 所示原理图驱动程序
汇编语言代码如下:
LAMP BIT P2.0 //根据原理图定义灯泡 AJ BIT P2.7 //根据原理图定义按键
ORG 0H
JMP MAIN
ORG 30H
MAIN:
JB AJ,$ JNB AJ,$
//等待按键松开
CPL LAMP
JMP MAIN
END 注意:程序一定要与原理图对应,上述汇编语言程序的前两行,是根据原理图定
ORG 0H
MAIN
ORG 30H
MAIN:
JB KS,$
CLR LAMP
JB TZ,$
SETB LAMP
JMP MAIN
END C 语言代码如下:

用单片机制作的定时开关控制器

用单片机制作的定时开关控制器定时开关控制器在各种场合都有着极为广泛的用途。

本文利用凯思迪公司的k-51a单片机实验板设计的定时开关控制器具有简单易制、价格低廉、控制点数多、控制时间可精确到秒等特点,供有兴趣的朋友参考。

1.主板电路部分本电路主要是利用单片机at89c2051(-24pi)作为主控制元件,通过外围电路控制用电设备的电源,以达到定时开、关机的目的。

at89c2051具有体积小、功能强大、运行速度快、价格低廉等优点,非常适合制作集成度较高的控制电路。

图1为主电路原理图,图2为按其制作的主板(双面)大小只有95mm×70mm的器件位置图。

主板电路包括mcuat89c2051、键盘与显示、输入与输出口、复位和电源滤波等电路组成。

(1)键盘与表明表明电路由u2、u3、q1~q7和l1a、l2a共同组成。

u2为bcd-7段译码器(74ls47),通过单片机u1的p1.4~p1.7口将要显示字符的bcd码输入至u2的四个输出端的,经u2译码后输入适当的笔段驱动led数码管(共阳)。

led数码管表明使用动态读取方式,即为在某一时刻,只有一个数码管被照亮。

数码管的位选信号由单片机u1的p3.3~p3.5输入,经u3(74hc138)译码后通过q1~q6压缩,驱动适当的数码管。

r17~r24为限流电阻。

由于u2只能输出7段笔段码,而数码管除了七段笔段外,还要控制点亮小数点,因此,小数点必须有另外的驱动电路来完成,在这里,通过q7来驱动小数点。

当需要点亮小数点时,在u1的p1.3输出高电平即可。

键盘电路跟显示电路一样,采用扫描方式,利用动态显示时的数码管驱动位置信号来判断相应按键的状态。

u1的p3.3~p3.5口输出的bcd码经u3译码后,相应y口呈低电平,而u1的p3.7口平时为高电平(由于r8上拉),当某一键按下时,p3.7被下拉为低电平,这时mcu利用程序查询p3.7是否为低电平,如果p3.7为低电平,就读回u1p3.3~p3.5口的值(从缓冲区读取),则可判断是哪个按键按下,然后调用相应的处理程序进行处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单片机制作控制继电器的电路
单片机是一种集成电路,可用于控制和管理各种电子设备。

通过编程,单片机能够对电路中的继电器进行控制,实现各种功能。

本文将介绍如何
使用单片机制作控制继电器的电路,并编写相应的程序。

一、电路设计
1.硬件部分
控制继电器的电路中,主要需要以下元件:单片机、继电器、电源、
电阻、电容等。

其中,单片机负责接收外部信号并控制继电器的开关,电
源为整个电路提供电能,电阻用于限流,电容用于稳压。

以下是一个简单
的电路设计作为示例:
电路连接方式:
-将单片机的IO口与继电器的控制端连接;
-将电源的正极与继电器的电源端连接;
-将电源的负极与继电器的地线连接;
-将继电器的常开端与负载(例如灯泡、电机等)连接;
-将继电器的常闭端与地线连接;
2.软件部分
对于单片机的程序设计,可以采用C语言或者汇编语言进行编写。


下是一个使用C语言编写的控制继电器的程序框架:
```c
#include <reg52.h>
void delay(unsigned int n)
unsigned int i,j;
for(i=0;i<n;i++)
for(j=0;j<125;j++);
void main
while(1)
//控制继电器打开
//将IO口输出高电平
//延时一段时间
//控制继电器关闭
//将IO口输出低电平
//延时一段时间
}
```
二、功能实现
在程序中,使用delay函数来产生延时,在第一部分中,我们可以调整延时时间来控制继电器的工作时间和停止时间。

同时,在控制继电器打开和关闭的部分,通过控制IO口的电平来实现。

```c
#include <reg52.h>
void delay(unsigned int n)
unsigned int i,j;
for(i=0;i<n;i++)
for(j=0;j<125;j++);
void main
while(1)
//控制继电器打开
P2=0xFF;//将P2口的所有引脚置高电平
delay(500); //延时0.5秒
//控制继电器关闭
P2=0x00;//将P2口的所有引脚置低电平
delay(500); //延时0.5秒
}
```
通过以上的程序,单片机将会每0.5秒循环一次,控制继电器的开关动作。

当继电器打开时,继电器的常闭端断开,常开端导通,负载(例如灯泡、电机等)开始工作;当继电器关闭时,继电器的常开端断开,常闭端导通,负载停止工作。

三、应用拓展
控制继电器的电路可以应用到各个领域,例如:
-家庭控制系统:通过单片机控制家庭中的电器设备,例如灯光、窗帘、空调等;
-工业自动化系统:通过单片机控制生产线中的机器、设备,实现自
动化生产;
-能源管理系统:通过单片机控制电力设备,实现能源的高效利用;
-电子通信系统:通过单片机控制通信设备,例如无线对讲机、遥控
器等。

总结
通过单片机制作控制继电器的电路,可以实现对各种电子设备的控制。

通过编写程序,我们可以灵活地控制继电器的开关动作,在各个领域应用
广泛。

当然,以上只是一个简单的示例,实际的应用中还需要根据具体需
求进行电路设计和程序开发。

相关文档
最新文档