油气生产中的二氧化碳腐蚀
某油田开发中二氧化碳腐蚀的危害性现状分析

某油田开发中二氧化碳腐蚀的危害性现状分析要想降低油气田开采中的二氧化碳腐蚀,必须对腐蚀机理以及类型基质影响因素这些进行分析和研究。
通过对腐蚀机理调研可以发现,二氧化碳会产生碳酸,进而产生电化学反应,最终造成钢材腐蚀。
在腐蚀种类上有均匀和冲刷以及坑点腐蚀,影响因素较多。
现在开发中防腐蚀措施也较多,现在主要对腐蚀的危害以及方式方式进行论述。
标签:二氧化碳;腐蚀机理;防腐方式前言:在油田开发中,二氧化碳腐蚀会造成巨大损失同时也会发生灾难性后果。
二氧化碳还石油和天然气开发中产生的常见气体。
在溶于水之后对金属会有加强的腐蚀性,这些对材料造成的破坏可以称之为二氧化碳腐蚀。
这些腐蚀会使得油井寿命大大低于设计寿命,也会使得设备腐蚀失效,现在掌握好腐蚀问题研究现状以及趋势,为减少损失提升效益提供借鉴。
1 二氧化碳腐蚀的机理二氧化碳腐蚀问题一直是人们关注的主要问题。
因为在二氧化碳溶于水之后PH 值升高,不断加速管材腐蚀,金属表面附着的H2C03中没有被电离的分子会被还原为H2分子,在电解质溶液中扩散到金属表面形成H2C03。
从此也可以看出碳酸造成的腐蚀要明显比电离要严重。
腐蚀学认为,坑腐蚀诱发主要是因为有台地腐蚀机制以及流动诱导机制等都会造成膜破损。
也有人通过腐蚀产物膜生产和发展过程,提出台地腐蚀机制:坑蚀最早出现在几个点,之后发展为一片,小孔腐蚀介质会破坏腐蚀产物膜,从而造成腐蚀。
2 二氧化碳腐蚀中的影响因素二氧化碳腐蚀是一个复杂的电化学过程,主要影响因素为PH 值以及二氧化碳分压、温度和流速、水量等各种因素。
2.1 PH 值。
溶液内PH 值会影响到H2C03在水中存在方式,在研究中可以发现PH﹤4 时,主要存在形式为H2C03;在4≤PH≤10 时,主要是以HC03 的形式出现,在PH>10 时,存在形式是CO2。
同时随着PH 值持续增加,H+增加而不断下降,腐蚀速率也会逐渐降低。
随着FeCO3 内的溶解度持续下降,更方便FeCO3 腐蚀膜的形成,这样也会降低腐蚀速率。
油气生产中CO2腐蚀与防腐技术

分压MPa
温度
110℃ 8.4639 8.6012 9.948 7.9002 9.948
0.5 0.75 1 1.25 1.5
在T< 70℃ 时,N80钢的腐蚀速率随温度的升高而增加 在T=70℃时达到极大值 当T> 70 时,N80 钢的腐蚀速率随温度的升高反而减小 在90℃ 附近又出现了腐蚀极小值,当温度再升高时,腐蚀速率也随着加快 当温度大于60℃ 时,随着CO2分压的增加,N80钢片的腐蚀速率出现了线性增大的 趋势
当pH 值小于4时,N80 钢在饱和CO2的3%NaCl水溶液中的腐蚀速率随 着pH 值增大而减小 当pH 值在4-9之间时,腐蚀速率为一常数值 在碱性条件下,腐蚀速率随着pH 值增大而减小
15
二氧化碳腐蚀影响因素
3、温度的影响
图6、温度对腐蚀的影响
T<60 ℃
60 ℃ <T< l00℃
T >150℃
不腐蚀 可能腐蚀 发生腐蚀
0.02MPa
0.2MPa
即当温度一定时,CO2气体的分压愈大,材料的腐蚀就愈快。
14
二氧化碳腐蚀影响因素
2、pH 值的影响
表2 不同pH 值下N80钢的腐蚀速率 pH 值 腐蚀速率mm/a pH 值 腐蚀速率mm/a 1 19.97 7 8.51 2 17.46 8 9.98 3 10.1 9 8.35 4 8.24 10 4.13 5 10.95 11 3.7
(4)
(5) (6)
析氢反应可按如下历程进行(1)(2)(3)(6)或(1)(2)(4)(5) 阴极反应:
pH<4
2H 2e H 2
H+的扩散是控制步骤
4<pH<6 H2CO3(吸附) + e- =H (吸附)+ HCO3- (吸附)
油气井中的二氧化碳腐蚀

(4)
式中 : Ic—腐蚀速率 , mm / a; T—温度 , °K; R —气体常
数 , cal. /mole0 K。
D e W aard等认为 [ 1 ] ,在 70 ℃~80℃时 , CO2 的
腐蚀速率存在一个最大值 ,此后随温度升高 ,腐蚀速
率降低 ,这是因为生成了 FeCO3 或 Fe3 O4 膜 。这种 膜并不是在所有条件下都具有保护性 ,只有在高温
1. CO2 分压的影响 在影响 CO2 腐蚀速率的各个因素中 , CO2 分压
起着决定性作用 ,从式 ( 1)和式 ( 2)便可以看出 CO2 的腐蚀速率和 CO2 分压之间的关系 。Lohodny等 [ 8 ] 的研究表明 : 在气井中 , 当 CO2 分压大于 206. 85 kPa时将发生腐蚀 ;当 CO2 分压在 20. 685~206. 85 kPa 之 间 时 , 腐 蚀 有 可 能 发 生 ; 当 CO2 分 压 小 于
壁的剪切应力联系起来考虑的 ,因为流动直接影响
物质扩散和力矩的传递 。
当流速小于 1 m / s时 ,可以认为是静止的 ,此时
腐蚀速率较大 。因为在静止的条件下 ,没有紊流来
保证液相与保护性的烃及缓蚀成分的混合 ,加剧了
缝隙腐蚀和垢下腐蚀 。
流速在 1~3 m / s之间时 ,通常是层流 。此时 ,
膜的性质发生变化以后才具有保护性 ,这个温度被
称作成膜温度 。此时金属表面局部的 Fe2 + 浓度和
pH 值保证保护性膜的形成 ,这个温度取决于流速 、
pH值和 CO2 的分压等条件 ,当流速和 pH 值增高 、 CO2 分压降低时 ,成膜温度升高 。
成膜温度可以由式 (5)计算
log ( Fscale ) = 2400 / T - 0. 6 log ( FCO2 ) - 6. 7 ( 5) 当 log ( Fscale ) = 0时的温度即是成膜温度 。 将温度的影响用修正因子来表示 。
油气田CO2腐蚀及防控技术

油气田CO2腐蚀及防控技术摘要:在油气田开发中,大力开展二氧化碳驱油技术以提高采收率,该技术不仅适合于常规油藏,尤其对低渗及特低渗油藏,有明显驱油效果。
目前大港油田已规模实施二氧化碳吞吐,取得了显著成效,但CO2导致严重腐蚀问题,研究腐蚀机理及防控技术尤其重要,以形成一套完整有效的防腐技术。
关键词:CO2;腐蚀机理;影响因素;防控技术随着油田二氧化碳吞吐技术的规模实施,腐蚀问题越来越严重,在吞吐和开井生产过程中采取相应的防控措施至关重要。
CO2腐蚀防治是一项系统工程,需要先研究其腐蚀机理及腐蚀情况,采用多种防腐技术,以起到对油杆、油管、泵以及地面集输系统的有效保护。
目前大港油田研究形成了以化学防腐技术为主、电化学保护和材料防腐为辅的防控技术,可实现井筒杆管、套管、地面管线设备的全流程防护。
1CO2腐蚀机理CO2腐蚀机理可以简单理解为CO2溶于水后生成碳酸后引起的电化学腐蚀。
由于水中的H+量增多,就会产生氢去极化腐蚀,从腐蚀电化学的观点看,就是含有酸性物质而引起的氢去极化腐蚀[[1]]。
腐蚀机理主要分为阳极和阴极反应两种。
在阴极处,CO2溶于水形成碳酸,释放出H+,它极易夺取电子还原,可促进阳极铁溶解而导致腐蚀。
阳极反应:Fe → Fe2+ + 2e-阴极反应: H2CO3→ H+ + HCO3-2H+ + 2e → H2↑碳酸比相同pH值下的可完全电离的酸腐蚀性更强,在腐蚀过程中,可形成全面腐蚀和局部腐蚀。
全面研究二氧化碳的腐蚀机理十分关键,2CO2腐蚀影响因素二氧化碳对金属材料的腐蚀受多种因素影响,有材质因素、压力、温度、流速、pH、介质中水和气体、有机酸、共存离子、细菌腐蚀等,本文主要介绍三种重要因素。
2.1 二氧化碳压力碳钢等金属的腐蚀速度随二氧化碳分压压力增大而加大,溶于水介质中CO2的含量增大,酸性增强,H+的还原反应就会加速,腐蚀性加大。
通过高温高压动态腐蚀评价来验证压力的影响,选取二氧化碳不同压力作为试验条件,对采出液在不同压力下评价腐蚀性。
原油腐蚀因素

原油腐蚀因素
原油腐蚀的因素包括:
1.含硫化合物:通过加氢处理法除去原油馏分油中含硫化合物的过程中,会引发环烷酸的氢化反应,生成碳氢化合物和水。
而含硫化合物、二氧化碳和水的存在,都会使原油和馏分油具有腐蚀性。
2.二氧化碳:溶解于原油中的二氧化碳会引发严重的腐蚀,尤其在存在游离水的情况下。
在与二氧化碳接触一段时期后,金属的厚度会被减少。
除了溶解于原油中二氧化碳浓度因素外,原油压力也会加快腐蚀速率。
3.温度:罐顶内侧腐蚀与油品的类型、温度、油气空间的大小有关。
温差作用可能存在结露,油品受热挥发后,其中的H2S,CO2溶解于水膜,再加上氧的作用,形成电化学腐蚀。
4.腐蚀性介质:油品中含有一定比例的水、溶解氧和H2S、CO2、CI-等腐蚀性介质,这些腐蚀性介质会引发罐底内侧的腐蚀。
5.其他因素:罐底板外侧腐蚀机理为罐底宏电化学腐蚀和罐底微电化学腐蚀,此外,罐下部圈板和底板还遭受相对严重的微生物腐蚀。
此外,罐顶外侧的腐蚀主要是由于罐顶受力变形后,表面凹凸不平,凹陷处积水发生电化学腐蚀所致。
而罐底角焊缝的腐蚀也是罐底内侧腐蚀的一种重要原因。
油气田开发中的二氧化碳腐蚀及影响因素

自发现 CO2 腐蚀以来,便开始了对其腐蚀机理的 研究,并且随着科学技术的发展,其研究越来越深 入。虽然许多专家都对此提出了自已的观点,但是到
全面腐蚀控制
万里平等: 油气田开发中的二氧化碳腐蚀及影响因素 2003年第17卷第2期
速度。在含 CO2 介质中,钢表面腐蚀产物膜组成、结 构、形态及特征会受介质组成、Pco2、T、pH 值和钢 组成的影响。膜的稳定性和渗透性会影响钢的腐蚀特
性。视钢种、介质和环境状态参数的不同,膜组成为
CO 2(吸附) + H 2O → H2 CO 3(吸附)
+
H
C
O
3
- (吸附)
H C O3-(吸附) + H 3O+ → H 2CO 3(吸附) + H2O
支持后一机理的实验结果还表明:(1)不同金属
材料有不同的催化活性,因而腐蚀速率也不同;(2)在
一定的 pH 值范围内(pH 值为 4~6),pH 值对阴极反
—14 —
CO2 含量高达 12% 左右;大庆油田、吉林油田也都发 生过因 CO2 腐蚀而造成设备严重腐蚀的情况。CO2 腐 蚀也是一个世界性的问题,例如挪威的Ekofisk油田、 德国北部地区的油气田、美国的一些油气田以及中东 油田等均存在 CO2 腐蚀问题。挪威Ekofisk 气田 1 号 井,CO2 分压高达 0.62MPa,水相 pH 值为 6.0,温度 为93℃,Fe2+浓度为120mg/L,流速在6.4~7.9m/s,在 正常生产309 天后,于井深1740m处的油管便因腐蚀 而断裂,按此估计,其CO2 腐蚀速度为10.2mm/a。由 上诸多实例可以看出,无论在国内还是国外,CO2 腐 蚀都已成为一个不容忽视的问题[1-3]。
3.2 CO2分压 CO2 分压是衡量 CO2 腐蚀的一个重要参数。通常 认为,当 CO2 分压超过 20KPa 时,流体具有腐蚀性, 这是一条判别准则。在较低温度下(低于 60℃),由 于温度较低,没有完善的FeCO3 保护膜,腐蚀速度随 CO2 分压的增大而加大。在 100℃左右,FeCO3 膜的 保护不完全,出现坑蚀等局部腐蚀,其腐蚀速度也随 CO2 分压的增大而加大。在150℃左右,致密的FeCO3 保护膜形成,使腐蚀速度大为降低。1975 年, De Waard 和Milliams提出了在无FeCO3保护膜下CO2对 炭钢的腐蚀速度计算公式[5]。该公式已在工业上广泛 应用,其形式如下: lgCR=0.67lg(Pco2)+C 式中:CR 为腐蚀速度,mm/a;Pco2 为 CO2 分压, 105Pa;C 为温度影响校正常数。由上式可以看出:腐 蚀速度与 CO2 分压的 0.67 次幂成正比。 许多实验表明,在温度低于 60℃时,金属表面
二氧化碳腐蚀试验

二氧化碳腐蚀试验引言:二氧化碳腐蚀是一种常见的金属腐蚀现象,特别是在工业环境中,如石油化工、能源、航空航天等领域,二氧化碳腐蚀对设备和结构的安全和可靠性造成了威胁。
因此,研究二氧化碳腐蚀机理和寻找有效的防护措施具有重要意义。
一、二氧化碳腐蚀的机理二氧化碳腐蚀是指金属与二氧化碳气体发生化学反应,导致金属表面出现腐蚀现象。
这种腐蚀通常发生在高温高压的工业环境中,如油气田、化工装置等。
二氧化碳腐蚀主要有以下几个方面的机理:1. 电化学腐蚀:二氧化碳溶解在水中会生成碳酸,而碳酸具有一定的电离能力,形成的氢离子可以加速金属的腐蚀过程。
2. 碱性腐蚀:二氧化碳溶解在水中会生成碳酸根离子,而碳酸根离子具有一定的碱性,对金属具有腐蚀性。
3. 氧化腐蚀:二氧化碳中的氧气和金属表面发生氧化反应,导致金属表面形成氧化物,进而引发腐蚀。
二、二氧化碳腐蚀试验的目的和方法为了研究二氧化碳腐蚀的机理和评估材料的腐蚀性能,科学家们开展了二氧化碳腐蚀试验。
这些试验的主要目的是测量材料在二氧化碳环境中的腐蚀速率和腐蚀形态,以及评估不同防护措施对腐蚀的效果。
常用的二氧化碳腐蚀试验方法包括:1. 重量损失法:将试样暴露在二氧化碳环境中一定时间后,通过测量试样的重量变化来计算腐蚀速率。
2. 电化学法:使用电化学方法测量试样在二氧化碳环境中的腐蚀电流和电位,以评估材料的腐蚀性能。
3. 表面分析法:通过扫描电子显微镜(SEM)、能谱分析(EDS)等表面分析技术,观察和分析试样表面的腐蚀形貌和化学成分。
三、二氧化碳腐蚀试验的影响因素二氧化碳腐蚀的严重程度受多种因素的影响,包括二氧化碳浓度、温度、压力、流速、材料成分等。
其中,二氧化碳浓度是影响二氧化碳腐蚀最重要的因素之一。
随着二氧化碳浓度的增加,腐蚀速率也相应增加。
此外,温度、压力和流速的增加也会加剧二氧化碳腐蚀的程度。
四、二氧化碳腐蚀的防护措施为了减轻二氧化碳腐蚀对设备和结构的损害,科学家们提出了多种有效的防护措施。
海上油气田基本腐蚀机理及其影响因素

第二节海上油气田基本腐蚀机理及其影响因素一、二氧化碳腐蚀机理多年来,二氧化碳的腐蚀机理一直是研究的热点。
干燥的CO2气体本身是没有腐蚀性的。
CO2较容易溶解在水中,而在碳氢化合物(如原油)中的溶解度则更高,气体CO2与碳氢化合物的体积比可以达到3比1。
当CO2溶解在水中时,会促进钢铁发生电化学腐蚀。
根据CO2腐蚀的不同腐蚀破坏形态,能提出不同的腐蚀机理。
以CO2对钢铁和含铬钢的腐蚀为例,有全面腐蚀,也有局部腐蚀。
根据介质温度的不同,腐蚀的发生可以分为三类:在温度较低时,主要发生金属的活泼溶解,对碳钢主要发生金属的溶解,为全面腐蚀,而对于含铬钢可以形成腐蚀产物膜;在中间温度区间,两种金属由于腐蚀产物在金属表面的不均匀分布,主要发生局部腐蚀,如点蚀等;在高温时,无论碳钢和含铬钢,腐蚀产物可以较好地沉淀在金属表面,从而抑制金属的腐蚀。
1 二氧化碳全面腐蚀机理铁在CO2水溶液中的腐蚀基本过程的阳极反应为:Fe +OH-FeOH + eFeOH FeOH++ eFeOH+Fe2++ OH-亦即铁的阳极氧化过程G.Schmitt等的研究结果表明在腐蚀阴极主要有以下两种反应。
(下标ad代表吸附在钢铁表面上的物质,sol代表溶液中的物质)1.1非催化的氢离子阴极还原反应当PH < 4时H3O+ + e Had + H2OH2CO3H++ HCO3-HCO3-H++ CO32-当4<PH <6时H2CO3+ e Had + HCO3-当PH>6时2HCO3- +2e H2+ 2CO32-1.2表面吸附CO2,ad的氢离子催化还原反应CO2,sol CO2,adCO2,ad + H2O H2CO3,adH2CO3,ad + e + HCO3-,adH3O+ad + e Had + H2OH2CO3,ad + H3O+2CO3,ad + H2O两种阴极反应的实质都是由于CO2溶解后形成的HCO3-电离出的H+的还原过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
油井油套管在油田水中的腐蚀
试验 条件 温度:100℃;压力:PCO2=0.03MPa,P0=6.8MPa;液相介质: 离子水;试验周期:144h(不更换溶 液);液相介质速度:2.62m/s;试样位置:液相 评价材料 N80钢 1Cr钢 腐蚀速 率,mm/a 0.1956 0.3471 腐蚀形貌描述 均匀腐蚀,点蚀较少。试样表面绝大部分被腐蚀产物膜覆 盖。蚀坑主要呈圆形,且较浅,有均匀的麻点。 材料表面所形成的腐蚀产物膜较疏松,可观察到产物膜的破坏和 部分膜脱落的痕迹,主要表现为均匀腐蚀,蚀坑主要属于开放型 蚀坑,几乎呈圆形,有少量蜂窝状腐蚀,存在麻点。材料中心部位 点蚀严重。 腐蚀产物非常疏松,绝大部分腐蚀产物膜被揭离基体表面,未被 揭离的产物膜已有较大的破裂,点蚀严重。蚀坑主要属于开放 型蚀坑,多数呈圆形,蚀坑较深,有的部位被腐蚀成蜂窝状,麻点 较少。
图1、CO2压力、温度和密度的关系图
纯CO2不具有腐蚀性
二氧化碳腐蚀机理
CO2 (溶液)= CO2 H2CO3(吸附) + e(吸附)
(1) (2) (3)
CO2 (吸附) + H2O= H2CO3(吸附) =H (吸附)+ HCO3- (吸附)
H2CO3(吸附) + H2O= H3O++ HCO3H3O++ e-= H (吸附)+ H2O HCO3- (吸附)+ H3O+= H2CO3(吸附)+ H2O
二氧化碳腐蚀影响因素
10、CO2腐蚀对不同铬含量的合金的影响
表3 铬含量对N80钢的腐蚀速率
合金中铬 含量% 腐蚀速率 mm/a
0.1 5.6
0.5 4.3
1 0.8
1.8 1.2
随着合金中铬含量的增加,合金腐蚀速率先减至最小值,再增大
提 纲 1、前 言 2、CO2腐蚀机理及影响因素 3、CO2腐蚀防护措施 4、我国陆上及海上油田防腐蚀应
发生腐蚀
0.02MPa
0.2MP a
即当温度一定时,CO2气体的分压愈大,材料的腐蚀就愈快。
二氧化碳腐蚀影响因素
2、pH 值的影响
表2 不同pH 值下N80钢的腐蚀速率 pH 值 腐蚀速率mm/a pH 值 腐蚀速率mm/a 1 19.97 7 8.51 2 17.46 8 9.98 3 10.1 9 8.35 4 8.24 10 4.13 5 10.95 11 3.7
(4)
(5) (6)
析氢反应可按如下历程进行(1)(2)(3)(6)或(1)(2)(4)(5) 阴极反应:
pH<4
2H 2e H 2
H+的扩散是控制步骤
4<pH<6 H2CO3(吸附) + e- =H (吸附)+ HCO3- (吸附)
阳极反应: 反应产物:
Fe Fe2 2e
Fe H2CO3 FeCO3 H2
二氧化碳腐蚀影响因素
9、流速的影晌
(1)流动的气体或液体将对设备内壁构成强烈的冲刷,抑制致
密保护膜的形成、影响缓蚀剂作用的发挥; (2) 材料内壁己不光滑的条件下,某点处的流速可能远远高 于整体流速,而且还可能出现紊流,因此,必然会对腐蚀速度 有一定的影响。 (3)流速的提高并不都带来负面效应,它对腐蚀速率的影响和 碳钢的钢级有关。
金属表面
CO2腐蚀产物膜的特点及形成机理
20
20
图3
中间层大颗粒的FeCO3晶体
图4 中间层中的空洞
CO2腐蚀产物膜的特点及形成机理
200
图5
腐蚀产物最内层的细密但有孔形貌
腐蚀速率计算
lg ν 5.8 1710/ 0.671lg CO2
各种系数充分考虑了溶液的化学成分、腐蚀产物、乙二醇、冷凝相等对腐 蚀速率的影响。
CO2腐蚀产物膜的特点及形成机理
CO2腐蚀产物膜类型
腐蚀产物膜 传递膜 Fe3C 形成温度℃ 室温或低于室温 不限 自然属性 厚度1um,具有 保护性 100um,具金 属性,可导电, 无附着力, 生长特点及组成 室温时形成较快 Fe、O 疏松多孔 Fe、C
FeCO3
50-70
附着力强,不导 电,具保护性
研究背景
2、CO2溶于水中对金属材料,尤其是钢铁材料有极强的腐蚀性,对钢
铁材料的腐蚀比盐酸还要严重,CO2对低碳钢的腐蚀速率可达
7mm/a以上。 3 据不完全统计,从2004年7月14日开始,PY4-2平台共发生腐蚀泄
漏或损坏事件8起; PY5-1平台共发生腐蚀泄漏或损坏事件7起;
从平台到油轮的海管共发生了3起腐蚀事件,其中包括立管、海管 内管泄漏,海管柔性软管泄漏;海洋石油111号共发生腐蚀泄漏或 损坏事件98起,其中2006年之前发生91起腐蚀穿漏事件, 2006年 至今发生了7起腐蚀穿漏。油田由腐蚀造成的直接经济损失超过1 亿元。
二氧化碳腐蚀防护措施
3、防腐涂层或非金属材料——酚醛涂料、环氧涂料、塑料衬
管、纤维增强塑料、橡胶等
(1)四川石油管理局川西南矿区
威93井、威23井、威35井——聚苯硫醚涂
(2)美国西德克萨斯,为防CO2腐蚀油管通常采用聚乙烯衬 里,油套环空采用防腐剂,防腐剂可将腐蚀速度降到 2.5mm/a
二氧化碳腐蚀防护措施
依赖于 Fe3C+FeCO3
立方晶体
Fe、C Fe3C+FeCO3
Fe3C+FeCO3
150<
CO2腐蚀产物膜的特点及形成机理
腐蚀反应的过程包括FeCO3晶核形成和晶粒长大两部分 受晶粒长大和物质传递等影响形成界限分明的三层腐蚀产物形态。
最外层 中间层 最内层
图2 CO2腐蚀产物膜三层腐蚀产物形态
二氧化碳腐蚀影响因素
4、原油的影响 在饱和CO2的溶液中,原油的存在可能对CO2的腐蚀产生有益的影响。 5、氯离子 在CO2腐蚀系统中有氯离子存在时,CO2对钢材的腐蚀速率随着氯离于浓 度的增大而增大,这是因为吸附于金属表面的氯离子妨碍形成完整的碳 酸铁保护膜所致。 6、氧气 氧气本身就存在对钢材的氧化腐蚀问题,因此,CO2对钢材的腐蚀速率 通常随气相中氧含量的增加而增加。 7、H2S 少量的H2S就可使CO2对钢材的腐蚀速率成倍的增加。当H2S的浓度增加 时,由于形成了H2S保护膜,反而减缓了CO2对钢材的腐蚀;当H2S的浓度 增加到一定量时,钢材由坑蚀变成均匀腐蚀,使腐蚀速率降低。
二氧化碳腐蚀防护措施
1、耐腐蚀材料选择——根据不同情况具体确定。
表4 部分耐腐蚀钢材的适应环境
耐蚀材料 9Cr-1Mo,304不锈钢 Monel 316不锈钢,9Cr,9Ni,Ni-Cu,NiCr, Ni-Fe-Cr 碳钢和低合金钢 3%-4%Mo317不锈钢
适用环境 用在退火困难的环境下,如热交 换器 应力腐蚀破坏环境 湿CO2环境 低CO2分压环境或经充分的涂层 或抑制剂处理 含氯化物的湿CO2环境
腐蚀 评价 及试 验结 果
3Cr钢
0.6173
二氧化碳腐蚀防护措施
2、缓蚀剂——在腐蚀环境中加入少量缓蚀剂,就能和金属表面发生物理与化 学作用,从而显著降低金属的腐蚀。 注入缓蚀剂进行防腐,不需要改变金属构件的 性质, 因而具有经济,适应性强, 效率高等优点 。 表6 部分缓蚀剂的缓蚀环境 缓蚀剂 聚马来酸铵盐 乙烯基饱和醛遇有机多胺 的反应 CT2-1 CT2-4 咪唑啉与复合缓蚀剂 硫脲衍生物 缓蚀环境 油包水乳状液中CO2腐蚀 150-230oC高温下 含凝析油、产水量小的气 井 产水量大、井筒积液不宜 带出的井 处于CO2饱和的NaCl溶液 中的碳钢 在CO2饱和溶液中的碳钢 较低浓度时效果明显 反应产物需处理加热 油溶性 水溶性 备注
当pH 值小于4时,N80 钢在饱和CO2的3%NaCl水溶液中的腐蚀速率随 着pH 值增大而减小 当pH 值在4-9之间时,腐蚀速率为一常数值 在碱性条件下,腐蚀速率随着pH 值增大而减小
二氧化碳腐蚀影响因素
3、温度的影响
图6、温度对腐蚀的影响
T<60 ℃
60 ℃ <T< l00℃
T >150℃
二氧化碳腐蚀
某井油管CO2腐蚀形貌图 某井因二氧化碳所致的油管腐蚀 (失重率:63% ;平均腐蚀速度=4.84 mm/年)
原油漏失
污染的粮田
提 纲 1、前 言 2、CO2腐蚀机理及影响因素 3、CO2腐蚀防护措施 4、我国陆上及海上油田防腐蚀应
用研究
CO2基本性质
Pc-临界压力 Tc-临界温度 Cp-临界点 Tp-三相点
表1 不同分压温度下N80钢的腐蚀速率
分压MPa
温度
25℃ 2.4721 2.6023 2.8044 2.8956 3.1304
50℃ 4.206 4.4137 5.4671 5.2668 6.3276
70℃ 5.8194 8.6568 7.5775 7.1324 10.952
90℃ 4.6251 7.3994 3.8759 8.1338 3.7943
110℃ 8.4639 8.6012 9.948 7.9002 9.948
0.5 0.75 1 1.25 1.5
在T< 70℃ 时,N80钢的腐蚀速率随温度的升高而增加 在T=70℃时达到极大值 当T> 70 时,N80 钢的腐蚀速率随温度的升高反而减小 在90℃ 附近又出现了腐蚀极小值,当温度再升高时,腐蚀速率也随着加快 当温度大于60℃ 时,随着CO2分压的增加,N80钢片的腐蚀速率出现了线性增大的 趋势
二氧化碳腐蚀影响因素
8、原油中含水率
(1)小于30%时,发生CO2腐蚀的倾向较小。 一般说来,油藏中油水混合介质在油气井流动过程中会形成乳 状液,当油中含水量小于30%时会形成油包水型乳状液,这些水相 对钢铁表面的润湿将受到抑制,发生CO2腐蚀的倾向较小; (2)当水含量大于40%时,CO2腐蚀的倾向较大。 当水含量大于40%时,会形成水包油型乳状液,这时水相对钢铁 材料表面发生润湿而引发CO2腐蚀。