扣式电池电化学性能的测定方法

扣式电池电化学性能的测定方法
扣式电池电化学性能的测定方法

扣式电池电化学性能的测定方法

1.仪器和试剂

1.1 手套箱。(德国布劳恩)

1.2 真空干燥箱。

1.3 鼓风干燥箱。

1.4 多通道电池测试仪。(美国arbin)

1.5 封口机。(深圳美森)

1.6 电子天平(0.1mg)。

1.7 PVDF。

1.8 NMP。

1.9 导电碳黑。

1.10 1M LiPF6 DMC+EMC+EC(1:1:1)。

2.准备工作

2.1 隔膜:锂离子电池专用隔膜剪裁成圆片,入真空干燥箱干燥24小时以上,干燥压力为-0.1MPa,温度为50~60℃,干燥后入手套箱备用。

2.2 电池壳:将2430型扣式电池壳体用无水乙醇洗涤后,先放入真空干燥箱抽真空数次,再用鼓风烘箱鼓风吹干后,放入手套箱中备用。

2.3 粘结剂:以PVDF为溶质,以NMP为溶剂配制质量百分比浓度约为7.5%的溶液,所配溶液置于干燥器中,令溶质充分溶解,备用。

2.4 电解液:锂离子电池电解液,置于手套箱中备用。

2.5 金属锂片:北京有色金属研究总院产高纯金属锂圆片,于手套箱中备用。

2.6 相应工具:常用工具,如刮刀、镊子、滴瓶等,洗涤干燥后于手套箱中备用。

3.极片制作

3.1 称取待测样品,按一定的质量比(1:1.2:0.02)加入粘结剂和导电炭黑,充分搅拌至混匀。

3.2 将混匀的糊状负极材料用模具均匀地涂在铜箔的单面上。

3.3 将极片入真空干燥箱内进行干燥,干燥温度为110℃左右,干燥压力为-0.1MPa,干燥时间4~5个小时。

3.4 将干燥后的极片用辊压机辊压至极片的压实密度在1.4~1.6g/cm3,(不同种类的负极材料需设定不同的压实密度。首次检验时可多做测试寻找最佳参数)切割成φ16mm的圆片,称为待测极片,准确称量其质量(控制在40~45mg)后放在称量瓶中,记录。

3.5 将称量好的待测极片放入手套箱中。

4.装配电池

4.1 在手套箱内H2O的浓度低于10ppm的情况下,开始装配。

4.2 在电池壳内依次放入发泡镍、锂片、隔膜、负极极片,压实,盖上外壳放入称量瓶。4.3 将装配完毕的电池用液压2430型封口机进行封口。

4.4 封口后的电池静置14~16小时后,可以进行测试。

5.电池测试

5.1 首先对电池进行恒电流放电至5mV,静置10min,再恒电流放电至5mV,然后恒电流充电至2.0V,电流为0.6mA(0.1~0.15C),记录此过程的放电容量和充电容量。

5.2 计算极片上活性物质的质量,从而计算其充放电比容量,单位为mA(h/g,充电容量除以放电容量得到首次充放电效率。

5.3 作为实验数据的一部分,电池的初始电压、跳跃电压、每个电池上活性物质的质量予以记录。

6.误差

6.1同一化验室平行实验误差不超过10.0mAh/g。

电池制作及其电化学容量充放电曲线的测定

电池制作及其电化学容量充放电曲线的测定 [单项选择题] 1、下列四种电池(或仪器)中哪一种是不能用作直流电源()。 A.蓄电池 B.干电池 C.标准电池 D.直流稳压电源 参考答案:C [单项选择题] 2、电池在充、放电过程中,两电极间的电势差值常和由能斯特方程计算的不一样,主要原因是()。 A.充电过量 B.放电过量 C.用于连接的导线上的电阻太大 D.电极上极化现象存在 参考答案:D [单项选择题] 3、在实际测量中,电池的实际容量比理论容量()。 A.高 B.低 C.相等 D.不能缺定 参考答案:B [单项选择题] 4、实验中建议的充放电制度一般采用的是()。 A.0.01-0.1C B.0.1-0.4C C.0.5-1.0C D.任意方式 参考答案:B [单项选择题]

5、电池的充放电一般可采用的方式正确的说法是()。 A.恒电流充电 B.恒电压充电 C.恒电流放电 D.上述三种方式都是 参考答案:D [单项选择题] 6、放电控制中,一般放到端电压多少为止?() A.1.0V B.2.0V C.3.0V D.4.0V 参考答案:A [单项选择题] 7、在给定的充或放电条件下,所测得的电池的充电或放电曲线是()。 A.电压随充或放电时间的变化关系曲线 B.电压与电流的变化关系曲线 C.电流随充或放电时间的变化关系曲线 参考答案:A [单项选择题] 8、在电极上产生极化的主要因素是()。 A.来自电极表面电荷的积累 B.来自电极表面浓度的变化 C.来自电极或溶液内阻 D.以上三种因素之和 参考答案:D [单项选择题] 9、根据氢化物电极组成的电池,阴极贮氢的充电过程时电势随KOH浓度的增加而()。 A.升高 B.降低 C.不变 D.不能确定 参考答案:A

超级电容的充放电实验曲线测试(含答案)

超级电容器的充放电实验曲线测试 一、实验目的 了解超级电容器结构组成以及工作原理,理解超级电容器等效电路模型,学会绘制超级电容器充放电曲线。 二、超级电容器结构以及工作原理 超级电容器通常包含双电极、电解质、集流体、隔膜四个部件。超级电容器电极由多孔材料在金属薄膜(常用铝)上沉积而成,而活性炭则是常用的多孔材料。充电时,电荷存储于多孔材料和电解质之间的界面上。电解质的选择往往是电容器单体电压和离子导电性之间妥协的结果,追求离子导电性的最大化可能会导致所选择的电解质分解电压低至1V 。隔膜通常是纸,起绝缘作用,可以防止电极之间任何的导电接触。必须能够浸泡在电解质中,并且不影响电解质的离子导电性。 超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V 以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,

为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷相应减少。 三、实验线路图 四、实验步骤 1、充电实验 按照实验线路图连接电路,将开关接到K端,使电源接入电路中,实现超级电容的充电过程,通过串口命令记录电流和电压。 2、放电实验 在超级电容器充电完成后,将开关接到另一端,将电源断开,实现超级电容的放电过程,通过串口命令记录电流和电压。 五、注意事项 1、超级电容器具有固定的极性。在使用前,应确认极性。 2、超级电容器应在标称电压下使用。当电容器电压超过标称电压时,将会导致电解液分解,同时电容器会发热,容量下降,而且内阻增加,寿命缩短,在某些情况下,可导致电容器性能崩溃。 3、超级电容器不可应用于高频率充放电的电路中,高频率的快速充放电会导致电容器内部发热,容量衰减,内阻增加,在某些情况下会导致电容器性能崩溃。 4、外界环境温度对于超级电容器的寿命有着重要的影响。电容器应尽量远离热源。 5、安装超级电容器后,不可强行倾斜或扭动电容器,这样会导致电容器引线松动,导致性能劣化。

选修四第四章电化学基础测试题

高二化学选修四《电化学基础》复习检测试题 可能用到的相对原子质量:H:1 C:12 N:14 O:16 Cu:64 Ag:108 第I卷(选择题共51分) 一、选择题(本题包括17小题,每题只有一个选项符合题意,每题3分共51分)1.下列金属防腐的措施中,属于牺牲阳极的阴极保护法的是( ) A.水中的钢闸门连接电源的负极 B.金属护拦表面涂漆 C.汽水底盘喷涂高分子膜 D.地下钢管连接锌板 2.下列叙述正确的是( ) A.电镀时,通常把待镀的金属制品作阳极 B.氯碱工业是电解熔融的NaCl,在阳极能得到Cl 2 C.氢氧燃料电池(酸性电解质)中O 2通入正极,电极反应为O 2 +4H++4e- ===2H 2 O D.下图中电子由Zn极流向Cu,盐桥中的Cl-移向CuSO 4 溶液 3.下列有关电化学的示意图中正确的是( ) 4.用铁丝、铜丝和CuSO 4 正确的是( ) A.构成原电池时Cu极反应为:Cu—2e =Cu2+ B.构成电解池时Cu极质量可能减少也可能增加 C.构成电解池时Fe极质量一定减少 D.构成的原电池或电解池工作后就可能产生大量气体 Fe Cu

5.如图,将纯Fe棒和石墨棒插入1 L饱和NaCl溶液中。下列说法正确的是A.M接负极,N接正极,当两极产生气体总量为22.4 L(标准状况) 时,生成1 mol NaOH B.M接负极,N接正极,在溶液中滴人酚酞试液,C电极周围溶液变红 C.M接负极,N接正极,若把烧杯中溶液换成1 L CuSO 4 溶液,反 应一段时间后,烧杯中产生蓝色沉淀 D.M接电源正极,N接电源负极,将C电极换成Cu电极,电解质溶 液换成CuSO 4 溶液,则可实现在铁上镀铜 6.为增强铝的耐腐蚀性,现以铅蓄电池为外电源,以Al作阳极、Pb作阴极,电解稀硫酸,铝表面的氧化膜增厚。其反应原理如下: 电池:Pb(s)+PbO 2(s)+2H 2 SO 4 (aq)=2PbSO 4 (s)+2H 2 O(l) 电解池:2Al+3H 2O Al 2 O 3 +3H 2 电池电解池 A H+移向Pb电极H+移向Pb电极 B 每消耗3molPb 生成2molAl 2O 3 C 正极:PbO 2+4H++2e=Pb2++2H 2 O 阳极:2Al+3H 2 O-6e=Al 2 O 3 +6H+ D 7 极b和d上没有气体逸出,但质量均增大,且增重b<d。 选项X Y A.MgSO 4CuSO 4 B.AgNO 3Pb(NO 3 ) 2 C.FeSO 4 Al 2 (SO 4 ) 3 D.CuSO 4AgNO 3 8 2O 7 2-)时,以铁板作阴、阳极,处理 过程中存在反应Cr 2O 7 2+6Fe2++14H+=2Cr3++6Fe3++7H 2 O,最后Cr3+以Cr(OH) 3 形式除 去,说法不正确 ...的是 A.阳极反应为Fe-2e-=Fe2+ B.电解过程中溶液pH不会变化 C.过程中有Fe(OH) 3沉淀生成 D.电路中每转移12mol电子,最多有 Fe C 饱和NaCl溶液 电源 M N

超级电容器原理及电特性

超级电容器原理及电特性 Principle & Electric characteristics of Ultra capacitor 辽宁工学院陈永真孟丽囡宁武 Chen Yongzhen Liao Ning Institute of Technology 摘要:叙述了超级电容器的基本结构和工作原理,比较全面地介绍了超级电容器的特点和在特定测试条件下的电特性,分析了如较大的ESR、发热等特殊电特性产生的原因,提出一些注意事项。 关键词:超级电容器 ESR 放电电流 Abstract:Basic structure & principle of ultra-capacitor are described in this paper. The characteristics about ultra-capacitor and electric characteristics in special measuring conditions are also introduced in detail. Some reasons of special electric characteristics are analyzed, such as big ESR and heat, at last some attentions are also put forward. Key words: ultra-capacitor ESR Discharging current 超级电容器是一种高能量密度的无源储能元件,随着它的问世,如何应用好超级电容器,提高电子线路的性能和研发新的电路、电子线路及应用领域是电力电子技术领域的科技工作者的一个热门课题。 1. 级电容器的原理及结构 1.1 超级电容器结构 图一为超级电容器的模型,超级电容器中,多孔化电极采用活性炭粉和活性炭和活性炭纤维,电解液采用有机电解质,如丙烯碳酸脂(propylene carbonate)或高氯酸四乙氨(tetraetry lanmmonium perchlorate)。工作时,在可极化电极和电解质溶液之间界面上形成的双电层中聚集的电容量c由下式确定: 其中ε是电解质的介电常数,δ是由电极界面到离子中心的距离,s是电极界 面的表面面积。 由图中可见,其多孔化电极是使用多孔性的活性碳有极大的表面积在电解液中吸 附着电荷,因而将具有极大的电容量并可以存储很大的静电能量,超级电容器的这一 特性是介于传统的电容器与电池之间。电池相较之间,尽管这能量密度是5%或是更 少,但是这能量的储存方式,也可以应用在传统电池不足之处与短时高峰值电流之中。 这种超级电容器有几点比电池好的特色。 图1超级电容器结构框图 1.2 工作原理 超级电容器是利用双电层原理的电容器,原理示意图如图2。当外加电压加到 超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷响应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。 2.3 主要特点 由于超级电容器的结构及工作原理使其具有如下特点:

电化学基础知识点总结

电化学基础知识点总结 装置特点:化学能转化为电能。 ①、两个活泼性不同的电极; 形成条件:②、电解质溶液(一般与活泼性强的电极发生氧化还原反应) 原 ?③、形成闭合回路(或在溶液中接触) 锂电池 ①、燃料电池与普通电池的区别 不是把还原剂、氧化剂物质全部贮藏在电池内,而是工作时不断从外界输入,同时 燃料 电极 反应产物不断排出电池。 J 电池 ②、原料:除氢气和氧气外,也可以是 CH 4、煤气、燃料、空气、氯气等氧化剂。 负极:2H 2+2OH --4e -=4H 2O ;正极:O 2+2H 2O+4e -=4OH - ③、氢氧燃料电池:J 总反应:O 2 +2H 2 =2H 2O 特点:转化率高,持续使用,无污染。 废旧电池的危害:旧电池中含有重金属( Hg 2+)酸碱等物质;回收金属,防止污染。 电 池 原 理 基本概念: I 负极:用还原性较强的物质作负极,负极向外电路提供电子;发生氧化反应。 正极:用氧化性较强的物质正极,正极从外电路得到电子,发生还原反应。 电极反应方程式:电极反 应、总反应。 失e -,沿导线传递,有电流产生 反应原理: 氧化反应 Zn-2e -=zn 2+ 负极. 铜锌原电池 不溶 断解 电解质溶液 电极反应: 负极(锌筒)Zn-2e -=zn 2+ ① 、普通锌一一锰干电池 干电池: ② 、碱性锌一一锰干电池 正极(石墨)2NH 4++2e -=2NH 3+H 2 f 总反应:Zn+2NH 4+=Zn 2++2NH 3+H 2 f 电解质溶液:糊状的 NH 4CI 特点:电量小,放电过程易发生气涨和溶液 电极:负极由锌改锌粉(反应面积增大,放电电流增加) 电解液: 由中性变为碱性(离子导电性好) 。 铅畜电池:总 化学电源简介 蓄电池 其它蓄电池 正极(PbO 2) 负极(Pb ) !、反应:PbO 2+Pb+2H 2SO 4 .充电.2PbSO 4+2H 2O 电解 液:1.25g/cm 3?1.28g/cm 3 的 H 2SO 4 溶液 特点:电压稳 定。 PbO 2+SO 42-+4H ++2e -=PbSO 4+2H 2O Pb+SO 42--2e -=PbSO 4 放电 充电 I 、镍 镉(Ni Cd )可充电电池; 放由 Cd+2NiO (OH )+2H 2O .放电* Cd (OH 》+2Ni (OH ) 2 阳E 移 还原反应 2H ++2e -=2H 2 f

第四章 电化学基础知识点总结

第四章电化学基础 第一节原电池 原电池: 1、概念:化学能转化为电能的装置叫做原电池 2、组成条件:①两个活泼性不同的电极②电解质溶液③电极用导线相连并插入电解液构成闭合回路 3、电子流向:外电路:负极——导线——正极 内电路:盐桥中阴离子移向负极的电解质溶液,盐桥中阳离子移向正极的电解质溶液。 4、电极反应:以锌铜原电池为例: 负极:氧化反应:Zn-2e=Zn2+(较活泼金属) 正极:还原反应:2H++2e=H2↑(较不活泼金属)总反应式:Zn+2H+=Zn2++H2↑ 5、正、负极的判断: (1)从电极材料:一般较活泼金属为负极;或金属为负极,非金属为正极。 (2)从电子的流动方向负极流入正极 (3)从电流方向正极流入负极 (4)根据电解质溶液内离子的移动方向阳离子流向正极,阴离子流向负极 (5)根据实验现象①__溶解的一极为负极__②增重或有气泡一极为正极 第二节化学电池 1、电池的分类:化学电池、太阳能电池、原子能电池 2、化学电池:借助于化学能直接转变为电能的装置 3、化学电池的分类:一次电池、二次电池、燃料电池 一、一次电池 1、常见一次电池:碱性锌锰电池、锌银电池、锂电池等 二、二次电池 1、二次电池:放电后可以再充电使活性物质获得再生,可以多次重复使用,又叫充电电池或蓄电池。 2、电极反应:铅蓄电池 放电:负极(铅):Pb+SO 4 2--2e-=PbSO4 正极(氧化铅):PbO2+4H++SO 4 2-+2e-=PbSO4+2H2O 充电:阴极:PbSO4+2H2O-2e-=PbO2+4H++SO 4 2- 阳极:PbSO4+2e-=Pb+SO 4 2- 两式可以写成一个可逆反应:PbO2+Pb+2H2SO4 2PbSO4+2H2O 3、目前已开发出新型蓄电池:银锌电池、镉镍电池、氢镍电池、锂离子电池、聚合物锂离子电池 三、燃料电池 1、燃料电池:是使燃料与氧化剂反应直接产生电流的一种原电池 2、电极反应:一般燃料电池发生的电化学反应的最终产物与燃烧产物相同,可根据燃烧反应写出总的电池反应,但不注明反应的条件。,负极发生氧化反应,正极发生还原反应,不过要注意一般电解质溶液要参与电极反应。以氢氧燃料电池为例,铂为正、负极,介质分为酸性、碱性和中性。 当电解质溶液呈酸性时:负极:2H 2 -4e-=4H+ 正极:O2+4 e-4H+ =2H2O 当电解质溶液呈碱性时:负极:2H 2+4OH--4e-=4H 2 O正极:O2+2H2O+4 e-=4OH- 另一种燃料电池是用金属铂片插入KOH溶液作电极,又在两极上分别通甲烷燃料和氧气氧化剂。电极反应式为: 负极:CH4+10OH--8e-=CO32-+7H2O;正极:4H2O+2O2+8e-=。 电池总反应式为:CH4+2O2+2KOH=K2CO3+3H2O 3、燃料电池的优点:能量转换率高、废弃物少、运行噪音低 四、废弃电池的处理:回收利用

电池测试之电化学阻抗谱的详细资料简介

电池测试之电化学阻抗谱的详细资料简介 许多研究电池的小伙伴,在最开始接触交流阻抗相关知识时,可能会非常排斥。因为无论是巴德的《电化学原理与应用》还是曹楚南、张鉴清的《电化学阻抗谱导论》,书中都是通过严谨公式推导来讲述的。今天,我们将尽量的避开公式,尽可能的分析交流阻抗谱尤其是其在锂电池中的应用。 电化学阻抗谱是一种相对来说比较新的电化学测量技术,它的发展历史不长,但是发展很迅速,目前已经越来越多地应用于电池、燃料电池以及腐蚀与防护等电化学领域。 电化学阻抗谱(Electrochemical Impedance Spectroscopy,EIS) 即给电化学系统施加一个频率不同的小振幅的交流正弦电势波,测量交流电势与电流信号的比值(系统的阻抗)随正弦波频率ω的变化,或者是阻抗的相位角f随ω的变化。 可以更直观的从这个示意图来看,利用波形发生器,产生一个小幅正弦电势信号,通过恒电位仪,施加到电化学系统上,将输出的电流/电势信号,经过转换,再利用锁相放大器或频谱分析仪,输出阻抗及其模量或相位角。通过改变正弦波的频率,可获得一些列不同频率下的阻抗、阻抗的模量和相位角,作图即得电化学阻抗谱-这种方法就称为电化学阻抗谱法。由于扰动电信号是交流信号,所以电化学阻抗谱也叫做交流阻抗谱。 利用EIS可以分析电极过程动力学、双电层和扩散等,可以研究电极材料、固体电解质、导电高分子以及腐蚀防护机理等。 基本思路——将电化学系统看成等效电路 利用电化学阻抗谱研究一个电化学系统时,它的基本思路是将电化学系统看作是一个等效电路,这个等效电路是由电阻(R)、电容(C)、电感(L)等基本元件按串联或并联等不同方式组合而成。通过EIS,可以定量的测定这些元件的大小,利用这些元件的电化学含义,来分析电化学系统的结构和电极过程的性质。 我们可以将内部结构未知的电化学系统当作一个黑箱,给黑箱输入一个扰动函数(激励函数),黑箱就会输出一个响应信号。用来描述扰动与响应之间关系的函数,称为传输函数。

电化学技术表征能量存储器件的性能

电化学技术表征能量存储器件的性能 一. 循环伏安曲线(CV) 【原理简介】 循环伏安法是以线性扫描伏安法的电位扫描到头后,再回过头来扫描到原来的起始电位值,所得的电流—电压曲线为基础的分析方法。扫描电压呈等腰三角形。如果前半部扫描(电压上升部分)为去极化剂在电极上被还原的阴极过程,则后半部扫描(电压下降部分)为还原产物重新被氧化的阳极过程。一次三角波扫描完成一个还原过程和氧化过程的循环,故称为循环伏安法。 在一个典型的循环伏安实验中,工作电极一般为浸在溶液中的固定电极。为了尽可能降低欧姆电阻,最好采用三电极系统。在三电极系统中,电流通过工作电极和对电极。工作电极电位是以一个分开的参比电极(如饱和甘汞电极,SCE)为基准的相对电位。在循环伏安测试实验中,工作电极的电位以10 mV/s 到200 mV/s 的扫描速度随时间线性变化(Fig.1a),在此同时记录在不同电位下的电流(Fig.1b)。 图一 【实验原理】 若电极反应为O+e →R,反应前溶液中只含有反应粒子O且O、R在溶液均可溶,控制扫描起始电势从比体系标准平衡电势φ正得多的起始电势j i处开始势作 0附近时,O 正向电扫描,电流响应曲线则如图所示。当电极电势逐渐负移到φ 平 开始在电极上还原,并有法拉第电流通过。由于电势越来越负,电极表面反应物O的浓度逐渐下降,因此向电极表面的流量和电流就增加。当O的表面浓度下

降到近于零,电流也增加到最大值I pc,然后电流逐渐下降。当电势达到j r后,又改为反向扫描。随着电极电势逐渐变正,电极附近可氧化的R粒子的浓度较大, 0时,表面上的电化学平衡应当向着越来越有利于生成R 在电势接近并通过φ 平 的方向发展。于是R开始被氧化,并且电流增大到峰值氧化电流I pa,随后又由于R的显著消耗而引起电流衰降。整个曲线称为“循环伏安曲线”。如图2所示: 图二 【应用】 基于CV曲线的电容器容量计算,可以根据公式(1)计算。 (ν为扫速,单位V/s) (1) 从式(1)来看,对于一个电容器来说,在一定的扫速下做CV测试。充电状态下,通过电容器的电流i是一个恒定的正值,而放电状态下的电流则为一个恒定的负值。这样,在CV图上就表现为一个理想的矩形。由于界面可能会发生氧化还原反应,实际电容器的CV图总是会略微偏离矩形。因此,CV曲线的形状可以反映所制备材料的电容性能。对双电层电容器,CV曲线越接近矩形,说明电容性能越理想;而对于赝电容型电容器,从循环伏安图中所表现出的氧化还原峰的位置,我们可以判断体系中发生了哪些氧化还原反应。 二. 恒电流充放电曲线(CCD) 【原理简介】 恒电流充放电法,又称计时电势法。一种研究材料电化学性能中非常重要的方法之一。在恒流条件下对被测电极进行充放电操作,记录其电位随时间的变化规律,研究电位随时间的函数变化的规律。它的基本工作原理是:在恒流条件下对被测电极进行充放电操作,记录其电位随时间的变化规律,进而研究电极的充

电化学基础知识点(大全)

【知识点】 装置特点:化学能转化为电能。 ①、两个活泼性不同的电极; 形成条件:②、电解质溶液(一般与活泼性强的电极发生氧化还原反应); 原 ③、形成闭合回路(或在溶液中接触) 电 负极:用还原性较强的物质作负极,负极向外电路提供电子;发生氧化反应。 池 基本概念: 正极:用氧化性较强的物质正极,正极从外电路得到电子,发生还原反应。 原 电极反应方程式:电极反应、总反应。 理 氧化反应 负极 铜锌原电池 正极 还原反应 反应原理:Zn-2e -=Zn 2+ 2H ++2e -=2H 2↑ 电解质溶液 电极反应: 负极(锌筒)Zn-2e -=Zn 2+ 正极(石墨)2NH 4++2e -=2NH 3+H 2↑ ①、普通锌——锰干电池 总反应:Zn+2NH 4+=Zn 2++2NH 3+H 2↑ 干电池: 电解质溶液:糊状的NH 4Cl 特点:电量小,放电过程易发生气涨和溶液 ②、碱性锌——锰干电池 电极:负极由锌改锌粉(反应面积增大,放电电流增加); 电解液:由中性变为碱性(离子导电性好)。 正极(PbO 2) PbO 2+SO 42-+4H ++2e -=PbSO 4+2H 2O 负极(Pb ) Pb+SO 42--2e -=PbSO 4 铅蓄电池:总反应:PbO 2+Pb+2H 2SO 4 2PbSO 4+2H 2O 电解液:1.25g/cm 3~1.28g/cm 3的H 2SO 4 溶液 蓄电池 特点:电压稳定。 Ⅰ、镍——镉(Ni ——Cd )可充电电池; 其它蓄电池 Cd+2NiO(OH)+2H 2O Cd(OH)2+2Ni(OH)2 Ⅱ、银锌蓄电池 锂电池 ①、燃料电池与普通电池的区别 不是把还原剂、氧化剂物质全部贮藏在电池内,而是工作时不断从外界输入,同时 燃料 电极反应产物不断排出电池。 电池 ②、原料:除氢气和氧气外,也可以是CH 4、煤气、燃料、空气、氯气等氧化剂。 负极:2H 2+2OH --4e -=4H 2O ;正极:O 2+2H 2O+4e -=4OH - ③、氢氧燃料电池: 总反应:O 2 +2H 2 =2H 2O 特点:转化率高,持续使用,无污染。 废旧电池的危害:旧电池中含有重金属(Hg 2+)酸碱等物质;回收金属,防止污染。 失e -,沿导线传递,有电流产生 溶解 不断 移 向 阳离 子 化 学电源简介 放电 充电 放电 放电`

第四章电化学基础知识点归纳.doc

第四章电化学基础知识点归纳 一、原电池课标要求1、掌握原电池的工作原理2、熟练书写电极反应式和电池反应方程式要点精讲1、原电池的工作原理(1)原电池概念:化学能转化为电能的装置,叫做原电池。若化学反应的过程中有电子转移,我们就可以把这个过程中的电子转移设计成定向的移动,即形成电流。只有氧化还原反应中的能量变化才能被转化成电能;非氧化还原反应的能量变化不能设计成电池的形式被人类利用,但可以以光能、热能等其他形式的能量被人类应用。(2)原电池装置的构成①有两种活动性不同的金属(或一种是非金属导体)作电极。②电极材料均插入电解质溶液中。③两极相连形成闭合电路。(3)原电池的工作原理原电池是将一个能自发进行的氧化还原反应的氧化反应和还原反应分别在原电池的负极和正极上发生,从而在外电路中产生电流。负极发生氧化反应,正极发生还原反应,简易记法:负失氧,正得还。2、原电池原理的应用(1)依据原电池原理比较金属活动性强弱①电子由负极流向正极,由活泼金属流向不活泼金属,而电流方向是由正极流向负极,二者是相反的。②在原电池中,活泼金属作负极,发生氧化反应;不活泼金属作正极,发生还原反应。③原电池的正极通常有气体生成,或质量增加;负极通常不断溶解,质量减少。(2)原电池中离子移动的方向①构成原电池后,原电池溶液中的阳离子向原电池的正极移动,溶液中的阴离子向原电池的负极移动;②原电池的外电路电子从负极流向正极,电流从正极流向负极。注:外电路:电子由负极流向正极,电流由正极流向负极;内电路:阳离子移向正极,阴离子移向负极。

3、原电池正、负极的判断方法:(1)由组成原电池的两极材料判断一般是活泼的金属为负极,活泼性较弱的金属或能导电的非金属为正极。(2)根据电流方向或电子流动方向判断。电流由正极流向负极;电子由负极流向正极。(3)根据原电池里电解质溶液内离子的流动方向判断在原电池的电解质溶液内,阳离子移向正极,阴离子移向负极。(4)根据原电池两极发生的变化来判断原电池的负极失电子发生氧化反应,其正极得电子发生还原反应。(5)根据电极质量增重或减少来判断。工作后,电极质量增加,说明溶液中的阳离子在电极(正极)放电,电极活动性弱;反之,电极质量减小,说明电极金属溶解,电极为负极,活动性强。(6)根据有无气泡冒出判断电极上有气泡冒出,是因为发生了析出h2的电极反应,说明电极为正极,活动性弱。本节知识树原电池中发生了氧化还原反应,把化学能转化成了电能。 二、化学电源课标要求1、了解常见电池的种类2、掌握常见电池的工作原理要点精讲1、一次电池(1)普通锌锰电池锌锰电池是最早使用的干电池。锌锰电池的电极分别是锌(负极)和碳棒(正极),内部填充的是糊状的mno2和nh4cl。电池的两极发生的反应是: (2)碱性锌锰电池用koh电解质溶液代替nh4cl作电解质时,无论是电解质还是结构上都有较大变化,电池的比能量和放电电流都能得到显著的提高。它的电极反应如下: (3)银锌电池――纽扣电池该电池使用寿命较长,广泛用于电子表和电子计算机。其电极分别为ag2o和zn,电解质为koh溶液。其电极反应式为:3

超级电容常识

超级电容常识 超级电容基本知识 寿命 超级电容具有比电池更长的使用寿命,但是寿命也不是无限延长的。寿命终止失效模式为等效串联内阻的增加(ESR)升高和容量降低。超级电容实际的寿命失效取决于应用要求,比如长期置于 高温下,高电压和超电流将会导致ESR升高和容量降低。这些参数降低将会延长超级电容的寿命。 电压 超级电容具有推荐的额定工作电压,电压值是根据超级电容在最高的额定温度下最长寿命来设定的。如果使用电压超出额定电压,将会导致寿命缩短,若过压时间较长则内部电解液将会分解为气体,当气体的压力逐渐增强时,超级电容内部将会漏液或防爆阀破裂。 极性 超级电容采用对称的电极设计,正负极具有类似的结构,当电容首次装配时,任一电极都可以被当成正极或者负极,一旦超级电容被第一次充满电时,超级电容将会形成极性化。所以我们在生产过程中将会100%的充放电将极性定型,同时在每一个电容的外壳上面都有一个负极标志。提醒一点:虽然超级电容可以被放电使电压降低到零电压,但是电极还是保留非常少的电荷,此时变换极 性是不可以的。超级电容按照一个方向被充电的时间越长,他们的极性就变得越强。若此时更改极性将会使电容的寿命缩短或损坏。 环境温度 能量型超级电容的正常工作温度是-25℃--70℃,功率型超级电容的正常工作温度是-40℃--60℃,温度及电压对超级电容寿命有影响。一般来说,超级电容的环境温度每升高10℃,超级电容的寿 命就会缩短一半。也就是说在可能的情况下尽可能在最低温度下使用超级电容,那么就可以降低电容的衰减与ESR的升高。若低于正常室温环境下,那么可以降低电压以抵消高温对电容的负面 影响。相反在低温下提高超级电容的工作电压,可以有效的抵消超级电容在低温下内阻的升高。在高温情况下,电容内阻升高。在低温下,电容的内阻升高时暂时的,因为在低温下电解液的稠性升高,降低了电离子的远动速度。 放电特性 超级电容放电时,是按照一条斜率曲线放电,当确定应用时超级电容的容量与内阻要求时,最重要的就是要了解电阻及容量对放电特性的影响。在高脉冲电流应用时,ESR是重要的因素。而在低电流应用时,容量是最重要的因素。计算公式如下: Vd=I(R+T/C) Vd是起始工作电压与截止电压之差,I是放电电流,R是超级电容的(ESR),T是放电时间,C是电容的容量。在脉冲应用中,由于瞬间放电流很大,为减少电压的降幅,选用低内阻(ESR) 的超级电容,而在低电流应用中则需要选用高容量的超级电容。 充电方法 超级电容可用各种方法进行充电,如:恒定电流、恒定功率、恒定电压或与能量储存器,或者电源并联(如电池、DC变换器等)。如果超级电容与电池并联,加一个低阻值串联电阻将降低超级 电容的充电电流,并提高电池的使用寿命。但是如果使用串联电阻,必须要保证电容的电压输出端是直接与应用器连接而不是通过电阻与应用器连接,否则超级电容的低内阻特性将是无效的。在高脉冲电流放电时,许多电池系统寿命均会缩短。 超级电容最大充电电流I计算公式如下: I=V/5R I是推荐的充电电流,V是充电电压,R是超级电容的ESR。超级电容持续大电流或者高压充电,超级电容将会过度发热,过度发热将会导致ESR增加,电解液分解气化,缩短寿命、漏液、防爆 阀爆裂。如果要使用高于额定值的电流或电压充电请与生产厂商联系。 自放电与漏电流 以不同方法进行测量时自放电与漏电流在本质上是相同的,针对超级电容的结构,从正极到负极具备高的耐电流特性。也就是说保留电容电荷,需要少量的额外电流,这个电流就是漏电流。而当移除充电电压时,电容不在负荷时,额外的电流会促使超级电容放电,称为自放电流。 电容串联 单体超级电容的电压一般为2.5V或2.7V,而在许多应用领域要求高电压,超级电容可以设置串联的方法来提高工作电压。确保单一的超级电容电压不超过其最大的额定工作电压是很重要的,否 则会导致电解液分解产生气体,ESR升高,寿命减短。 在放电或者充电时,在稳定状态下因容量和漏电流的差异,都将会导致串联的超级电容电压不平衡现象。在充电时,串联的超级电容将起到电压分配作用,因此低容量单体超级电容将承受更大的电压。例如: 2.5V1F的超级电容串联,两个容量分别为+20%与-20%,则电压分配如下: V1=V供*(C1/(C1+C2)) V供是供给给串联两端的充电电压。 假设V1是+20%容量偏差的电容,若供应充电电压是5V,则: V1=5*(1.2/(1.2+0.8))=3V 所以,为避免超出3V的超级电容浪涌电压范围,串联超级电容的容量必须在同一个趋势范围内。在选择上可以用主动电压平衡电路来降低因容量不平衡而产生的电压不平衡。注意大多数的电压 平衡方法都是取决于具体的应用。 主动电压平衡 主动电压平衡电路能使串联的超级电容上的电压与额定电压驱同而不管有多少电压不平衡产生。同时在确保精确的电压平衡时,主动平衡电路在稳定的状态下只有非常低的电流,只有当电压超出平衡范围时才会产生比较大的电流,这些特性使得主动电压平衡电路是超级电容频繁充放电及如电池等能量组件使用的最理想电路。 被动电压平衡 被动电压平衡电路是忽略超级电容的低内阻直接用高电阻来做平衡电路的一种方式,采用与电容并联电阻进行分压,这就允许电流从高电压的超级电容上流至低电压的超级电容上实现电压的平衡。最重要的是选择平衡电阻值来提供超级电容更高电流的流动而不增加超级电容的漏电流。同时要注意:“漏电流在温度升高的时候会上升的”。 被动平衡电路使用在不频繁对超级电容进行充放电的应用,同时要能够承受平衡电阻的额外电流负载时推荐使用。使用平衡电阻时,建议使用平衡电阻的应能提供最差超级电容漏电流50倍以上 的额外电流,根据最高使用温度选择在3.3KΩ-22KΩ。尽管更大阻值的平衡电阻在大多数情况下也能工作,但其不可能在不匹配的超级电容串联时起到保护作用。 逆向电压防护 当串联使用的超级电容被快速放电时,低容量超级电容的电压将潜在地变为负电压。这是不允许的,同时会降低超级电容的使用寿命。一个简单的防护逆向电压的方法是在超级电容上的两端增加一个二极管。使用适当的额定的限流二极管替代标准的二极管,还可以保护超级电容出现过电压现象。在选择二极管时,“二极管必须能够承受电源的峰值电流”。 脉动电流 超级电容虽然有比较低的内阻,但是相对电解电容而言,其内阻还是比较大的,若应用在脉冲电流的环境中容易引起内部发热,从而导致电解液分解、ESR增加,从而引起超级电容寿命缩短。为了保证超级电容的使用寿命,在应用在脉冲环境中时,最好要保证超级电容表面的温度上升不超过3℃。 比能量: 是指电容器在单位重量或单位体积下所给出的能量。(通常也叫:重量比能量、体积比能量、能量密度)单位:WH/KG、WH/L 超级电容器的能量与本身的容量与电压有关。其计算方式: E=CV2/2 (单位焦耳J)

电化学基础知识点总结

装置特点:化学能转化为电能。 ①、两个活泼性不同的电极; 形成条件:②、电解质溶液(一般与活泼性强的电极发生氧化还原反应); 原 ③、形成闭合回路(或在溶液中接触) 电 负极:用还原性较强的物质作负极,负极向外电路提供电子;发生氧化反应。 池 基本概念: 正极:用氧化性较强的物质正极,正极从外电路得到电子,发生还原反应。 原 电极反应方程式:电极反应、总反应。 理 氧化反应 还原反应 反应原理:Zn-2e -=Zn 2+ 2H ++2e -=2H 2↑ 1.下列变化中,属于原电池反应的是( ) A .在空气中金属铝表面迅速氧化形成保护层 B .镀锌铁表面有划损时,也能阻止铁被氧化 C .红热的铁丝与水接触表面形成蓝黑色保护层 D .铁与稀H 2SO 4反应时,加入少量CuSO 4溶液时,可使反应加速 2.100 mL 浓度为2 mol/L 的盐酸跟过量的锌片反应,为加快反应速率,又不影响生成氢气的量,可采用的方法是( ) A .加入适量的6 mol/L 的盐酸 B .加入数滴氯化铜溶液 C .加入适量的蒸馏水 D .加入适量的氯化钠溶液 3.称取三份锌粉,分别盛于甲、乙、丙三支试管中,按下列要求另加物质后,塞上塞子,定时测定生成氢气的体积。甲加入50 mL pH =3的盐酸,乙加入50 mL pH =3的醋酸,丙加入50 mL pH =3的醋酸及少量胆矾粉末。若反应终了,生成氢气的体积一样多,且没有剩余的锌。请用“>”“=”或“<”回答下列各题。 (1)开始时,反应速率的大小为__________。 (2)三支试管中参加反应的锌的质量为__________。 (3)反应终了,所需时间为__________。 (4)在反应过程中,乙、丙速率不同的理由是(简要说明)__________。 失e -,沿导线传递,有电流产生

新人教版高中化学选修4知识点总结:第四章电化学基础

电化学基础 一、原电池 课标要求 1、掌握原电池的工作原理 2、熟练书写电极反应式和电池反应方程式 要点精讲 1、原电池的工作原理 (1)原电池概念:化学能转化为电能的装置,叫做原电池。 若化学反应的过程中有电子转移,我们就可以把这个过程中的电子转移设计成定向的移动,即形成电流。只有氧化还原反应中的能量变化才能被转化成电能;非氧化还原反应的能量变化不能设计成电池的形式被人类利用,但可以以光能、热能等其他形式的能量被人类应用。 (2)原电池装置的构成 ①有两种活动性不同的金属(或一种是非金属导体)作电极。 ②电极材料均插入电解质溶液中。 ③两极相连形成闭合电路。 (3)原电池的工作原理 原电池是将一个能自发进行的氧化还原反应的氧化反应和还原反应分别在原电池的负极和正极上发生,从而在外电路中产生电流。负极发生氧化反应,正极发生还原反应,简易记法:负失氧,正得还。 2、原电池原理的应用 (1)依据原电池原理比较金属活动性强弱 ①电子由负极流向正极,由活泼金属流向不活泼金属,而电流方向是由正极流向负极,二者是相反的。

②在原电池中,活泼金属作负极,发生氧化反应;不活泼金属作正极,发生还原反应。 ③原电池的正极通常有气体生成,或质量增加;负极通常不断溶解,质量减少。 (2)原电池中离子移动的方向 ①构成原电池后,原电池溶液中的阳离子向原电池的正极移动,溶液中的阴离子向原电池的负极移动; ②原电池的外电路电子从负极流向正极,电流从正极流向负极。 注:外电路:电子由负极流向正极,电流由正极流向负极; 内电路:阳离子移向正极,阴离子移向负极。 3、原电池正、负极的判断方法: (1)由组成原电池的两极材料判断 一般是活泼的金属为负极,活泼性较弱的金属或能导电的非金属为正极。 (2)根据电流方向或电子流动方向判断。 电流由正极流向负极;电子由负极流向正极。 (3)根据原电池里电解质溶液内离子的流动方向判断 在原电池的电解质溶液内,阳离子移向正极,阴离子移向负极。 (4)根据原电池两极发生的变化来判断 原电池的负极失电子发生氧化反应,其正极得电子发生还原反应。 (5)根据电极质量增重或减少来判断。 工作后,电极质量增加,说明溶液中的阳离子在电极(正极)放电,电极活动性弱;反之,电极质量减小,说明电极金属溶解,电极为负极,活动性强。 (6)根据有无气泡冒出判断 电极上有气泡冒出,是因为发生了析出H2的电极反应,说明电极为正极,活动性弱。 本节知识树

燃料电池专业词汇

Fuel Cell Glossary Activation voltage loss: 活化电压损失 Activation energy: 活化能 Activation impedance loop:活化阻抗回路 Activation kinetics: 活化反应动力学 Activation barrier: 活化壁垒 Activation overpotential: 活化过电位 Air relative permeability: 空气相对渗透率 Air-water two-phase flow: 水-气两相流 Anode heat exchanger: 阳极热交换器 Anode subsystem: 阳极子系统 Arrhenius relationship: 阿伦尼乌斯关系 Associative pathway: 旁路,侧路 Atmospheric CO2 concentration: 大气CO2浓度Automotive fuel cells: 汽车用燃料电池 Avogadro’s number: 阿伏伽德罗常数 AC/DC converter: 交流/直流转换器 Alkaline fuel cell: 碱性燃料电池 AFM: atomic force microscopy: 原子力显微镜 Air blower: 风机 Air pollution: 空气污染 Air supply: 供气 Aqueous potassium hydroxide: 氢氧化钾溶液Ammonium borohydride:NH4BH4硼氢化铵 Anaerobic digester gas(ADG): 厌氧沼气 Anode Galvani potential: 阳极伽伐尼电位 Anode supported MEA: 阳极支撑膜电极 Aqueous alkaline electrolyte: 含水的碱性电解质Aqueous electrolyte/ionic liquids: 含水电解质/离子溶液Area-normalized reaction rates: 面积归一化的反应速率Area-specific resistance: 面阻抗 Arhenius conductivity equation: 阿伦尼乌斯导电率方程Aromatic hydrocarbon membranes: 芳香族碳氢化合物膜Asiplex(Asahi Chemical Industry): 朝日化工 Back-diffusion water fluxes: 反扩散水通量 Backward flux: 反向通量 Batteries: 电池 Binary diffusion coefficient: 二元扩散系数 Biological fuel cells: 生物燃料电池 Bipolar plates: 双极板

锂离子电池材料的制备和电化学性能表征

锂离子电池材料的制备和电化学性能表征(24学时) 一、实验目的 1.了解尖晶石化合物的组成和结构特点。 2.了解无机材料制备方法-共沉淀制备前驱体、高温固相煅烧制备的反应原理和反应过程中影响产物性质的一般因素。 3.了解嵌入-脱嵌反应和锂离子电池的工作原理。 4.了解电池性能的主要参数和测试的主要方法。 二、实验原理 由于具有电压高、容量高、无污染、安全性好、无记忆效应等优异性能,锂离子电池自1991年实现商品化以来,其种类、性能和应用领域都得到了巨大的发展,已经成为最重要的二次电池之一,在手机、笔记本电脑、摄像机、便携式DVD、电动汽车甚至核潜艇上都得到了广泛应用。而锂离子电池的相关研究也成为当前化学电源研究的重要领域。 锂离子电池性能的优劣主要取决于电池的正极。锰酸锂LiMn2O4是重要的锂离子电池正极活性材料之一,其结构见图1。该结构为锂离子的迁移提供了三维通道。 图1 尖晶石晶体结构图 在充电过程中,锂离子从正极脱出,嵌入负极活性物质;而放电过程中,是锂离子的回嵌的过程,因此锂离子电池又称为“摇椅式”电池。电池充放电时,正极活性材料中Li+的迁移过程可用下式表示。 充电时:LiMn2O4→ xLi+ + Li1-x Mn2O4 + xe- 放电时:Li1-x Mn2O4 + yLi++ ye-→ Li1-x+y Mn2O4(0≤x≤1,0≤y≤x)

LiMn2O4的制备方法很多,常用的有高温固相法、低温固相法和液相法等。其中,低温固相法和液相法(溶胶-凝胶法)虽然反应温度低,但产物的电化学性能不能令人满意,且不适合工业化生产的需要。所谓高温固相法,就是在高温下使锰源化合物与锂源化合物反应生成LiMn2O4。 由于LiMn2O4在高温下容量衰减较快,需通过钴离子掺杂进行改性制备LiMn1.85Co0.15O4. 对固相反应而言,原料的分散状态(粒度)、孔隙度、装填密度、反应物的接触面积等对固-固反应速度有很大的影响。必须将反应物粉碎并混合均匀以使原子或离子的扩散比较容易进行。就本实验所制LiMn1.85Co0.15O4,采用共沉淀制备锰钴碳酸盐前驱体以达到离子程度的均匀混合,然后混锂后再进行高温煅烧制备出目标化合物。 三、仪器和试剂 1.仪器 X射线衍射仪,充放电测试仪,箱式电阻炉(马弗炉,Mufflefurnace),磁力搅拌器,陶瓷坩埚, 电子分析天平,恒温鼓风干燥箱,研钵,压力机,手套箱。 2.试剂 2 mol·L-1硝酸锰钴(Mn/Co=1.85:0.15)溶液,碳酸钠,碳酸锂,金属锂片,Celgard 2400隔膜,PVDF粘合剂(13%),导电炭黑,石墨,电解液(1.15mol·L-1LiPF6的碳酸乙烯酯(EC)-碳酸二甲酯(DMC)-碳酸二乙酯混合溶液(质量比:EC:DMC:DEC=3:1:1),电池壳。所有试剂均为分析纯。 四、实验步骤 1.Mn0.925Co0.075CO3的制备 取2mol·L-1的硝酸锰钴溶液40mL(约0.08mol), 至于烧杯中。称取8.9g碳酸钠(MW105.99)(0.084mol)至于另一烧杯中,然后加去离子水约80mL,摇动至完全溶解。将搅拌磁子至于硝酸锰钴溶液中,然后置于电磁搅拌器上进行搅拌,并开动加热,待温度升至约50℃,用滴管将碳酸钠溶液缓慢加入到硝酸锰钴溶液中(约半小时加完),控制溶液最终pH值约7.5~8,持续搅拌1h,将沉淀抽滤并用蒸馏水洗涤5~6次,而后置于恒温鼓风干燥箱中于110℃烘干。 2.锂锰钴复合氧化物LiMn1.85Co0.15O4的制备 将干燥的Mn0.925Co0.075CO3(MW 115.24)与摩尔比1:0.27的碳酸锂(MW 73.89)在研钵中研磨混匀(约需45~60min),转入陶瓷坩埚中,压实,开口放置在马弗炉中,于600℃下反应4h,然后升温至850℃反应12h,自然冷却到室温。 3.结构表征 将反应产物从马弗炉中取出,用研钵研细,装袋,标明合成人和合成条件,然后进行XRD表征。 4.电极的制备 将LiMn2O4粉末、石墨、乙炔黑以及作为粘合剂的PVDF(13%)按质量分数比86:2:6:6的比例混合均匀,加入适量的溶剂N-甲基吡咯烷酮(NMP)后,

相关文档
最新文档