建筑结构弹塑性分析方法简介

合集下载

建筑结构抗震弹塑性分析

建筑结构抗震弹塑性分析

• 多自由度体系与单自由度体系之间存在一定的关系,这意味着结构 的反应主要由单一振型控制;
• 结构沿高度的变形形状可由某一形状向量控制,并且在整个结构反
应过程中,该形状向量保持不变。
– 这两个假定都是不严格正确的,但很多学者研究表明:对于反应主要由第一振 型控制的结构,Pushover 分析方法可以准确、简便地评估结构的抗震性能。
① 你知道自己设计的结构到底能抵抗多大的地震吗? ② 你知道自己设计的结构在大震时什么地方先破坏吗? ③ 你知道自己设计的结构是先发生剪切破坏还是弯曲破坏 ?
④ 结构屈服后还能抵抗多大的地震力和变形· ?
⑤ 你用实配钢筋验算过“强剪弱弯”、“强柱弱梁”吗?
⑥ 大震下要结构要保持弹性需要多大截面和配筋?
Pushover方法的基本原理

Pushover方法的发展
– 静力弹塑性分析 (Pushover)方法最早是 1975年由 Freeman 等提出的,以 后虽有一定发展,但未引起更多的重视; – 九十年代初美国科学家和工程师提出了基于性态的设计方法,引起了日 本和欧洲同行的极大兴趣,Pushover方法随之重新激发了广大学者和设 计人员的兴趣,纷纷展开各方面的研究。 – 一些国家抗震规范也逐渐接受了这一分析方法并纳入其中,如ATC-40
Pushover方法的基本原理

Pushover方法的基本原理
– 其优点突出体现在:较底部剪力法和振型分解反应谱法,它考虑了结构 的弹塑性特性;较时程分析法,其输入数据简单,工作量较小。 – pushover分析还只是一种近似而且是基于静力荷载进行的,因此它不能
精确的代替动力时程分析方法,它不能检测到结构在强烈地震中可能发
位移时停止荷载递增,最后在合作终止状态对结构进行抗震性能评估(

建筑结构静力弹塑性分析方法及其减震控制

建筑结构静力弹塑性分析方法及其减震控制

二、静力弹塑性分析方法的实施 步骤
二、静力弹塑性分析方法的实施步骤
1、定义材料属性:静力弹塑性分析需要输入材料的弹性模量、泊松比、剪切 模量、密度等参数,以及材料的非线性应力-应变关系。
二、静力弹塑性分析方法的实施步骤
2、建立结构模型:使用有限元方法建立结构模型,包括几何形状、边界条件 和载荷条件。
建筑结构静力弹塑性分析方法
建筑结构静力弹塑性分析方法
建筑结构静力弹塑性分析方法的基本原理是在荷载作用下,结构产生变形, 并导致应力和应变的产生。通过考虑材料的弹性和塑性性能,可以得出结构的弹 塑性响应。具体的计算步骤包括以下几个步骤:
建筑结构静力弹塑性分析方法
1、建立结构的计算模型,并确定结构的材料参数和边界条件; 2、对结构进行静力荷载作用下的弹性分析,得出结构的弹性响应;
内容摘要
在进行静力弹塑性分析时,需要考虑多种荷载工况,例如自重、风载、地震 作用等。通过在MIDASGEN中设置相应的荷载工况,可以模拟高层建筑结构在不同 荷载作用下的响应。同时,还需要根据建筑结构的特点,选择合适的分析方法和 计算参数,例如静力弹塑性分析方法、屈服准则等。
内容摘要
在MIDASGEN中,可以通过输出位移、应力、应变等结果,对高层建筑结构的 静力弹塑性进行分析。通过与其他方法(如有限元方法、实验方法等)的比较, 可以发现MIDASGEN在分析高层建筑结构的静力弹塑性方面具有较高的对高层建筑结构进行静力弹塑性分析是可行的,并且能 够得出可靠的结果。在实际工程中,MIDASGEN可以为高层建筑结构的安全性和稳 定性评估提供有力的支持。在进行高层建筑结构的静力弹塑性分析时,需要注意 建模的准确性、参数设置的合理性、荷载工况的全面性以及结果分析的可靠性等 问题。通过不断改进和完善分析过程,可以进一步提高MIDASGEN在高层建筑结构 分析中的精度和效率。

建筑弹塑性分析PUSHOVER

建筑弹塑性分析PUSHOVER

2.需求谱法
结构抗震性能需求谱是在给定地震作用下, 不同周期结构的承载力和位移响应的需求 值。
先将能力曲线转化为A-D格式,能力谱曲线
将不同的周期结构的加速度响应需求Sa和位
移响应需求Sd也在A-D坐标系下给出,由此得
到的Sa-Sd关系曲线即为需求谱。对于弹性结
构,弹性谱加速度需求Sa可以采用地震弹性
其中 Dntqnt/,n D表n 示t 一个对应原结构
第n阶振型的单自由度体系在地震作用 下u g ( t ) 的位移响应,圆频率和阻尼比分别为 和 n 。
从而可n 求得结构第n阶振型的位移,内力,层
间位移等。
对前N阶振型都采用上述方法求算其最大响应 量,并采用某种方法进行组合(SASS法或 CQC法)—振型分解反应谱法。
Fass
T
ass
fs(D,signD)
aTssm ;对于地震响应由结构振型
向 量量成正控a s 比s制a s的s的荷弹载塑进性行结推构覆,,仍即采:用振型sa向ss mass
得到
Fass
Vb Mass
uroof
,DБайду номын сангаасass
roof ass
u u V
V
b
基底剪力, r o o顶f 点位移。 — r o 的o f 关系曲线称为
b
“结构的能力曲线”。或“推覆曲线”
为便于评价结构抗震性能是否达到要求,还
可以按照单阶振型反应谱法将推覆曲线上
各店的承载力和位移转化为谱加速度与谱 位移的关系曲线,得到结构的能力谱曲线,
即 S a S格d 式能力谱曲线。
Sa
Vb M
,
Sd
uroof
roof

结构静力弹塑性分析方法的研究和改进

结构静力弹塑性分析方法的研究和改进

结构静力弹塑性分析方法的研究和改进一、本文概述随着建筑行业的不断发展,对建筑结构的安全性和稳定性的要求也越来越高。

结构静力弹塑性分析方法作为一种重要的结构分析方法,能够更准确地模拟结构在静力作用下的弹塑性行为,因此在工程实践中得到了广泛应用。

然而,现有的结构静力弹塑性分析方法仍存在一些问题和不足,如计算精度不高、计算效率低等,这些问题限制了其在大型复杂结构分析中的应用。

因此,本文旨在深入研究结构静力弹塑性分析方法,探索其改进策略,以提高计算精度和效率,为工程实践提供更为准确和高效的结构分析方法。

本文首先介绍了结构静力弹塑性分析方法的基本原理和计算流程,分析了现有方法的不足和局限性。

在此基础上,本文提出了一种改进的结构静力弹塑性分析方法,通过引入新的算法和优化计算流程,提高了计算精度和效率。

本文还通过实际工程案例的对比分析,验证了改进方法的可行性和有效性。

本文的研究不仅有助于推动结构静力弹塑性分析方法的发展,提高其在工程实践中的应用水平,同时也为相关领域的研究提供了有益的参考和借鉴。

二、结构静力弹塑性分析方法的理论基础结构静力弹塑性分析方法(Pushover Analysis)是一种在结构工程领域广泛应用的非线性静力分析方法,旨在评估结构在地震等极端荷载作用下的性能。

该方法基于结构在地震作用下的弹塑性反应特点,通过模拟结构的静力加载过程,分析结构的弹塑性变形、内力分布和破坏机制,为结构抗震设计和性能评估提供重要依据。

静力弹塑性分析方法的理论基础主要建立在塑性力学、结构力学和地震工程学等多个学科领域。

其中,塑性力学提供了描述材料在弹塑性阶段的应力-应变关系的本构模型,包括理想弹塑性模型、随动硬化模型等多种模型,这些模型能够反映材料在受力过程中的非线性行为和塑性变形累积。

结构力学则为静力弹塑性分析提供了结构整体和局部的力学分析方法,包括静力平衡方程、变形协调条件等,这些方程和条件构成了静力弹塑性分析的数学模型。

结构动力弹塑性分析方法

结构动力弹塑性分析方法

结构动力弹塑性分析方法结构动力弹塑性分析方法是一种基于结构动力学理论和力学原理的计算方法,用于评估和预测结构在复杂荷载条件下的弹性和塑性响应。

在结构设计和分析中,结构动力弹塑性分析方法被广泛应用于工程领域,例如建筑物、桥梁、船舶和飞机等。

结构动力弹塑性分析方法是建立在结构动力学理论基础上的,因此首先需要建立结构的动力学模型。

这个模型可以是离散模型,也可以是连续模型。

离散模型将结构划分为多个节点,每个节点代表结构中的一个质点或刚体。

连续模型则使用连续介质力学理论,将结构看作一个连续的弹性体。

在弹塑性分析中,结构的弹性和塑性响应是重点。

弹性响应发生在结构荷载作用下,结构在荷载移除后可以恢复到初始形状。

而塑性响应发生在结构荷载作用下,结构发生永久形变,无法完全恢复到初始形状。

弹塑性分析方法通常将结构的材料行为建模为弹性-塑性材料行为,即在荷载作用下,材料先发生弹性变形,然后发生塑性变形。

在弹塑性分析中,结构中材料的塑性变形是通过应力-应变关系来计算的。

1.建立初始状态:首先,需要建立结构的初始状态,即结构在没有受到荷载作用时的形状和应力状态。

这通常需要进行结构静力分析或弹性分析。

2.荷载分析:然后,需要进行荷载分析,确定结构所受到的各种荷载,包括静态荷载、动态荷载和地震荷载等。

4.动力分析:进行结构的动力分析,计算结构在不同时间步骤下的位移、速度和加速度等响应。

5.弹塑性分析:根据动力分析的结果,使用弹塑性分析方法计算结构在荷载作用下的变形和应力分布。

这一步通常使用有限元分析方法进行。

6.评估结果和优化:分析结果可用于评估结构的安全性和稳定性,并进行结构设计的优化。

需要注意的是,结构动力弹塑性分析方法是一种比较复杂和计算密集的方法,通常需要使用计算机辅助工具进行计算和分析。

此外,在进行弹塑性分析时,还需要进行一些合理的假设和简化,以提高计算效率。

总之,结构动力弹塑性分析方法提供了一种全面和准确评估结构在复杂荷载条件下的响应的手段,能够帮助工程师进行结构设计和优化,并提高结构的安全性和耐久性。

静力弹塑性分析方法

静力弹塑性分析方法

静力弹塑性分析方法(pushover法)的确切含义及特点结构弹塑性分析方法有动力非线性分析(弹塑性时程分析)和静力非线性分析两大类。

动力非线性分析能比较准切而完整的得出结构在罕遇地震下的反应全过程,但计算过程中需要反复迭代,数据量大,分析工作繁琐,且计算结果受到所选用地震波及构件恢复力和屈服模型的影响较大,一般只在设计重要结构或高层建筑结构时采用。

静力弹塑性分析方法,是对结构在罕遇地震作用下进行弹塑性变形分析的一种简化方法,从本质上说它是一种静力分析方法。

具体地说,就是结构计算模型上施加按某种规则分布的水平侧向力,单调加载并逐级加大;一旦构件开裂(或屈服)即修改其刚度(或使其推出工作),进而修改结构总刚度矩阵,进行下一步计算,依次循环直到结构达到预定的状态(成为机构、位移超限或达到目标位移),从而判断是否满足相应的抗震能力要求。

静力弹塑性分析方法(pushover法)分为两个部分,首先建立结构荷载-位移曲线,然后评估结构的抗震能力,基本工作步骤为:第一步:准备结构数据:包括建立模型、构件的物理参数和恢复力模型等;第二步:计算结构在竖向荷载作用下的内力。

第三步:在结构每层质心处,沿高度施加按某种规则分布的水平力(如:倒三角、矩形、第一振型或所谓自适应振型分布等),确定其大小的原则是:施加水平力所产生的结构内力与第一步计算的内力叠加后,恰好使一个或一批构件开裂或屈服。

在加载中随结构动力特征的改变而不断调整的自适应加载模式是比较合理的,比较简单而且实用的加载模式是结构第一振型。

第四步:对于开裂或屈服的杆件,对其刚度进行修改,同时修改总刚度矩阵后,在增加一级荷载,又使得一个或一批构件开裂或屈服;不断重复第三、四步,直到结构达到某一目标位移(当多自由度结构体系可以等效为单自由度体系时)或结构发生破坏(采用性能设计方法时,根据结构性能谱与需求谱相交确定结构性能点)。

对于结构振型以第一周期为主、基本周期在2s以内的结构,pushover方法能够很好地估计结构的整体和局部弹塑性变形,同时也能揭示弹性设计中存在的隐患(包括层屈服机制、过大变形以及强度、刚度突变等)。

高层建筑结构抗震弹塑性分析方法及抗震性能评估的研究

高层建筑结构抗震弹塑性分析方法及抗震性能评估的研究

高层建筑结构抗震弹塑性分析方法及抗震性能评估的研究一、本文概述本文旨在探讨高层建筑结构在地震作用下的弹塑性分析方法及其抗震性能评估。

地震是自然界中常见的灾害性事件,对人类社会和建筑结构产生深远影响。

高层建筑由于其特殊的结构特点和高度,使其在地震中更容易受到破坏。

因此,研究高层建筑结构的抗震性能,特别是在弹塑性阶段的分析和评估,对于提高建筑结构的抗震能力,减少地震灾害损失具有重要意义。

本文将首先介绍高层建筑结构抗震弹塑性分析的基本理论和方法,包括弹塑性力学基础、结构分析模型、地震动输入等。

在此基础上,探讨高层建筑结构在地震作用下的弹塑性响应特点,包括结构变形、内力分布、能量耗散等。

然后,本文将重点介绍高层建筑结构抗震性能评估的方法和技术,包括静力弹塑性分析、动力弹塑性分析、易损性分析等。

这些方法和技术可以用于评估高层建筑结构在地震中的安全性能和抗震能力。

本文还将对高层建筑结构抗震弹塑性分析方法和抗震性能评估的应用进行案例研究。

通过实际工程案例的分析,探讨不同分析方法和技术在实际工程中的应用效果,为高层建筑结构的抗震设计和评估提供参考和借鉴。

本文将对高层建筑结构抗震弹塑性分析方法和抗震性能评估的未来发展趋势进行展望,提出相关的研究建议和展望。

通过本文的研究,可以为高层建筑结构的抗震设计和评估提供更为科学、合理的方法和技术支持,有助于提高高层建筑结构的抗震能力,减少地震灾害损失。

二、高层建筑结构抗震弹塑性分析方法的研究高层建筑结构的抗震弹塑性分析是评估建筑在地震作用下的响应和性能的重要手段。

随着建筑高度的增加,结构的柔性和非线性特性愈发显著,因此,采用弹塑性分析方法可以更准确地模拟结构在地震中的实际行为。

材料本构关系的研究:高层建筑的抗震性能与其组成材料的力学特性密切相关。

研究材料在循环加载下的应力-应变关系、滞回特性以及损伤演化规律,是弹塑性分析的基础。

通过试验和数值模拟,可以建立更精确的材料本构模型,为结构分析提供数据支持。

sap2000弹塑性分析方法

sap2000弹塑性分析方法

SAP2000弹塑性分析方法运用总结结构的抗震设计一般可通过三个方面来实现,一种是增加结构的截面和刚度来“抗震”,此时如果要使结构在大震作用下保持弹性状态,结构需要具有如右图所示的承载能力,此时结构的设计截面会变得非常不经济;第二种方法是容许结构发生一定的塑性变形,并保证结构不发生倒塌的"耐"震设计(或叫延性设计);第三种方法是通过一些装置地震响应比较(如阻尼器、隔振装置等)来吸收能量的"减"震或"隔"震设计。

当结构和结构构件具有一定的延性时,大震作用下部分构件会发生屈服,此时结构的周期会变长,结构周期的变长反过来减小了地震引起的惯性力,即塑性铰的出现吸收了部分地震能量,从而避免了结构的倒塌。

对结构抗震性能的评价以往多从强度入手,但结构在发生屈服后仍具有一定的耗能和变形能力,因此用能够反映结构延性和耗能能力的变形评价结构的抗震性能应更为合适。

通过动力弹塑性分析我们不仅要了解结构发生屈服和倒塌时的地震作用的大小,同时也要了解结构的变形能力(弹塑性层间位移角、延性系数等)、构件的变形能力、铰出现顺序等,从而实现“小震不坏、中震可修、大震不倒”的三水准设防目标。

目的:1) 评价建筑在罕遇地震下的抗震性,根据主要构件的塑性破坏情况和整体变形情况,确认结构是否满足性能目标的要求。

2) 研究超限对结构抗震性能的影响,包括罕遇地震下的最大层间位移;3)根据以上分析结果,针对结构薄弱部位和薄弱构件提高相应的加强措施。

弹塑性分析两种方法:1、静力弹塑性方法push-over2、动力弹塑性时程分析《建筑抗震设计规范》GB50011-2010(以下简称《抗规》)第1.0.1条中规定了三水准设防目标为“小震不坏、中震可修、大震不倒”。

《抗规》5.5.2条中分别规定了"应"进行弹塑性变形验算和"宜"进行弹塑性变形验算的结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹塑性分析方法
静力弹塑性分析(PUSH-OVER ANAL YSIS)方法也称为推覆法,该方法基于美国的FEMA-273抗震评估方法和A TC-40报告,是一种介于弹性分析和动力弹塑性分析之间的方法,其理论核心是“目标位移法”和“承载力谱法”。

弹塑性时程分析方法将结构作为弹塑性振动体系加以分析,直接按照地震波数据输入地面运动,通过积分运算,求得在地面加速度随时间变化期间内,结构的内力和变形随时间变化的全过程,也称为弹塑性直接动力法。

1引言
《建筑抗震设计规范》5.5.2条规定,对于特别不规则的结构、板柱-抗震墙、底部框架砖房以及高度不大于150m的高层钢结构、7度三、四类场地和8度乙类建筑中的钢筋混凝土结构和钢结构宜进行弹塑性变形验算。

对于高度大于150m的钢结构、甲类建筑等结构应进行弹塑性变形验算。

《高层建筑混凝土结构技术规程》5.1.13条也规定,对于B级高度的高层建筑结构和复杂高层建筑结构,如带转换层、加强层及错层、连体、多塔结构等,宜采用弹塑性静力或动力分析方法验算薄弱层弹塑性变形。

历史上的多次震害也证明了弹塑性分析的必要性:1968年日本的十橳冲地震中不少按等效静力方法进行抗震设防的多层钢筋混凝土结构遭到了严重破坏,1971年美国San Fernando 地震、1975年日本大分地震也出现了类似的情况。

相反,1957年墨西哥城地震中11~16层的许多建筑物遭到破坏,而首次采用了动力弹塑性分析的一座44层建筑物却安然无恙,1985年该建筑又经历了一次8.1级地震依然完好无损。

可以看出,随着建筑高度迅速增长,复杂程度日益提高,完全采用弹性理论进行结构分析计算和设计已经难以满足需要,弹塑性分析方法也就显得越来越重要。

2静力弹塑性分析
计算方法
(1) 建立结构的计算模型、构件的物理参数和恢复力模型等;
(2) 计算结构在竖向荷载作用下的内力;
(3) 建立侧向荷载作用下的荷载分布形式,将地震力等效为倒三角或与第一振型等效的水平荷载模式。

在结构各层的质心处,沿高度施加以上形式的水平荷载。

确定其大小的原则是:水平力产生的内力与前一步计算的内力叠加后,恰好使一个或一批杆件开裂或屈服;
(4) 对于开裂或屈服的杆件,对其刚度进行修改后,再增加一级荷载,又使得一个或一批杆件开裂或屈服;
(5) 不断重复步骤(3)、(4),直至结构达到某一目标位移或发生破坏,将此时的结构的变形和承载力与允许值比较,以此来判断是否满足“大震不倒”的要求。

计算模型
POA方法中结构的弹塑性是通过定义构件力和变形的关系曲线实现。

对于梁和柱,可以较为准确的模拟。

但是对于剪力墙,一直没有理想的计算模型,目前可以进行POA的商用计算软件包括MIDAS/GEN等,是将剪力墙简化为两根刚体梁通过非线性弹簧(包括轴向变形、弯曲变形、剪切变形弹簧)连接的形式,如图1所示,相对于壳单元而言比较粗糙。

而SAP2000、ETABS等程序目前只能对框架结构进行POA分析,对于带剪力墙的结构只能人为简化为杆系模拟。

POA方法的优缺点
该方法的优点是:
(1) 相比目前的承载力设计方法,POA可以估计结构和构件的非线性变形,比承载力方法接近实际;
(2) 相对于弹塑性时程分析,POA方法的概念、所需参数和计算结果相对明确,构件设计和配筋是否合理能够直观的判断,易被工程设计人员接受;
(3) 可以花费相对较少的时间和费用得到较稳定的分析结果,减少分析结果的偶然性,达到工程设计所需要的变形验算精度。

该方法的缺点是:
(1) POA方法将地震的动力效应近似等效为静态荷载,只能给出结构在某种荷载作用下的性能,无法反映结构在某一特定地震作用下的表现,以及由于地震的瞬时变化在结构中产生的刚度退化和内力重分布等非线性动力反应;
(2) 计算中选取不同的水平荷载分布形式,计算结果存在一定的差异,为最终结果的判断带来了不确定性;
(3) POA方法以弹性反应谱为基础,将结构简化为等效单自由度体系。

因此,它主要反映结构第一周期的性质,对于结构振动以第一振型为主、基本周期在2秒以内的结构,POA方法较为理想。

当较高振型为主要时,如高层建筑和具有局部薄弱部位的建筑,POA方法并不适用;
(4) 对于工程中常见的带剪力墙结构的分析模型尚不成熟,三维构件的弹塑性性能和破坏准则、塑性铰的长度、剪切和轴向变形的非线性性能有待进一步研究完善。

正是由于存在以上的一些缺点,对于目前工程中遇到的许多超限结构分析,POA方法显得力不从心,人们逐渐开始重视动力弹塑性分析方法的理论研究和工程应用。

3动力弹塑性时程分析
弹塑性时程分析方法将结构作为弹塑性振动体系加以分析,直接按照地震波数据输入地面运动,通过积分运算,求得在地面加速度随时间变化期间内,结构的内力和变形随时间变化的全过程,也称为弹塑性直接动力法。

基本原理
弹塑性动力分析包括以下几个步骤:
(1) 建立结构的几何模型并划分网格;
(2) 定义材料的本构关系,通过对各个构件指定相应的单元类型和材料类型确定结构的质量、刚度和阻尼矩阵;
(3) 输入适合本场地的地震波并定义模型的边界条件,开始计算;
(4) 计算完成后,对结果数据进行处理,对结构整体的可靠度做出评估。

计算模型
在常用的商业有限元软件中,ABAQUS、ADINA、ANSYS、MSC.MARC都内置了混凝土的本构模型,并提供了丰富的单元类型及相应的前后处理功能。

在这些程序中一般都有专用的钢筋模型,可以建立组合式或整体式钢筋。

以ABAQUS为例,它提供了混凝土弹塑性断裂和混凝土损伤模型以及钢筋单元。

其中弹塑性断裂和损伤的混凝土模型非常适合于钢筋混凝土结构的动力弹塑性分析。

它的主要优点有:
(1) 应用范围广泛,可以使用在梁单元、壳单元和实体单元等各种单元类型中,并与钢筋单元共同工作;
(2) 可以准确模拟混凝土结构在单调加载、循环加载和动力荷载下的响应,并且可以考虑应
变速率的影响;
(3) 引入了损伤指标的概念,可以对混凝土的弹性刚度矩阵进行折减,可以模拟混凝土的刚度随着损伤增加而降低的特点;
(4) 将非关联硬化引入到了混凝土弹塑性本构模型中,可以更好的模拟混凝土的受压弹塑性行为,可以人为指定混凝土的拉伸强化曲线,从而更好的模拟开裂截面之间混凝土和钢筋共同作用的情况;
(5) 可以人为的控制裂缝闭合前后的行为,更好的模拟反复荷载作用下混凝土的反应。

对于钢材等材料的屈服和强化,ABAQUS提供了各种屈服准则,流动法则和强化准则,并可以考虑加载时的应变速率等问题。

在ABAQUS的后处理模块中,可以给出整个模型在地震作用下每个时刻的结构变形形态、应力等相关数据,可以查看结构所有混凝土单元的损伤、混凝土中分布的钢筋应力等,了解结构的破坏情况,也可以根据结构的总侧移量和层间位移等控制指标对结构进行整体的判定分析。

优缺点
相比弹性分析中的振型分解反应谱法和POA方法,弹塑性时程分析方法的优点是:
(1) 由于输入的是地震波的整个过程,可以真实反映各个时刻地震作用引起的结构响应,包括变形、应力、损伤形态(开裂和破坏)等;
(2) 目前许多程序是通过定义材料的本构关系来考虑结构的弹塑性性能,因此可以准确模拟任何结构,计算模型简化较少;
(3) 该方法基于塑性区的概念,相比POA中单一的塑性铰判别法,特别是对于带剪力墙的结构,结果更为准确可靠。

该方法的缺点是:
(1) 计算量大,运算时间长,由于可进行此类分析的大型通用有限元分析软件均不是面向设计的,因此软件的使用相对复杂,建模工作量大,数据前后处理繁琐,不如设计软件简单、直观;
(2) 分析中需要用到大量有限元、钢筋混凝土本构关系、损伤模型等相关理论知识,对计算人员要求较高。

但是随着理论研究的不断发展,计算机软硬件水平的不断提高,动力弹塑性时程分析方法已经开始应用于少数超高层和复杂的大型结构分析中。

4结语
结构的动力弹塑性分析方法是一项非常复杂的工作,从计算模型的简化、恢复力模型的确定、地震波的选用,直至计算结果的分析和后处理都需要进行大量的工作,而且数据量庞大,计算周期较长。

但是它是目前进行结构抗震分析最为理想的方法,具有其它方法无可比拟的优势。

当前,建筑结构的形式日益丰富,高度和跨度不断增长,对于结构的计算分析手段也提出了越来越高的要求。

随着计算机软硬件水平的不断提高,将动力弹塑性时程分析方法应用于工程实践中已经逐渐变为现实,相信动力弹塑性分析方法必将在结构设计中得到更加广泛的应用。

相关文档
最新文档