山东省东营市2014二模数学理含答案
山东省东营市2014届高三第二次模拟数学(理)试题(有答案)

保密★启用前 试卷类型:A教学质量检测 理科数学注意事项:1.本试卷分为第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,第Ⅱ卷为非选择题,考试时间为120分钟, 满分150分.2.把选择题选出的答案标号涂在答题卡上.3.第Ⅱ卷用黑色签字笔在答题纸规定的位置作答,否则不予评分.第Ⅰ卷 选择题(共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.将正确答案填写在答题卷相应位置. 1.已知集合{}{}R x y y N x x x M x∈==≥=,2,2,则MN = ( )A .)(1,0B .]1,0[C .)1,0[D .]1,0(2.“实数1a =”是“复数(1)ai i +(,a R i ∈的 ( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分条件又不必要条件 3.数列{}n a 的前n 项和为n S ,若1(1)n a n n =+,则6S 等于 ( )A .142B .45C .56D .674.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是 ( ) A .48cm 3 B .98cm 3 C .88cm 3 D .78cm 35.执行如图所示的程序框图,输出的S 值为( )A .2B .2-C .4D .4-6.已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是 ( )A .15[,]24B . 13[,]24C . 1(0,]2D .(0,2]7.函数()f x 的部分图像如图所示,则()f x 的解析式可以是 ( )x D .3()()()22f x x x x ππ=--8小的两个编号分别为007,032,则样本中最大的编号应该为 ( ) A . 480 B . 481 C . 482 D . 4839. 偶函数)(x f 满足)1()1(+=-x f x f ,且在]1,0[∈x 时,2)(x x f =,则关于x 的方程xx f ⎪⎭⎫⎝⎛=101)(在]3,2[-上的根的个数是 ( ) A .3 B .4 C .5 D .610.已知1F ,2F 是双曲线22221(0,0)x y a b a b-=>>的左,右焦点,若双曲线左支上存在一点P 与点2F 关于直线bxy a=对称,则该双曲线的离心率为 ( ) A B C D .2第Ⅱ卷 非选择题(共100分)二.填空题:本大题共5小题,每小题5分,共25分.11.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为x 4万元,要使一年的总运费与总存储费用之和最小,则=x ___ ____ 吨.12.设8280128()x a a a x a x a x -=++++,若685-=+a a ,则实数a 的值为 .13.已知x ,y 满足约束条件⎪⎩⎪⎨⎧≥++≤≥+-0306k y x x y x ,且y x z 42+=的最小值为6,则常数k = .14.已知直角梯形ABCD ,AB AD ⊥,CD AD ⊥,222AB AD CD ===,沿AC 折叠成三棱锥,当三棱锥体积最大时,三棱锥外接球的体积为 .15.如图,在正方形ABCD 中,E 为AB 的中点,P 为以A 为圆心,AB 为半径的圆弧上的任意一点,设向量的最小值为则μλμλ++=,AP DE AC .三.解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)在ABC ∆中,角C B A 、、所对的边为c b a 、、,且满足cos 2cos 22cos cos 66A B A A ππ⎛⎫⎛⎫-=-+⎪ ⎪⎝⎭⎝⎭(Ⅰ)求角B 的值; (Ⅱ)若3=b 且a b ≤,求c a 21-的取值范围. 17.(本小题满分12分)在对某渔业产品的质量调研中,从甲,乙两地出产的该产品中各随机抽取10件,测量该产品中某种元素的含量(单位:毫克). 下表是测量数据的茎叶图:规定:当产品中的此种元素含量15≥毫克时为优质品.(Ⅰ)试用上述样本数据估计甲,乙两地该产品的优质品率(优质品件数/总件数);(Ⅱ)从乙地抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优质品数ξ的分布列及数学期望()E ξ.21006542098874286438210乙地甲地18.(本小题满分12分)如图,在底面是正方形的四棱锥P —ABCD 中,PA ⊥面ABCD ,BD 交AC 于点E ,F 是PC 中点,G 为AC 上一点. (Ⅰ)求证:BD ⊥FG ;(Ⅱ)确定点G 在线段AC 上的位置,使FG//平面PBD ,并说明理由. (Ⅲ)当二面角B —PC —D 的大小为32π时,求PC 与底面ABCD 所成角的正切值.19.(本小题满分12分)设数列{}n a 为等差数列,且145=a ,720a =,数列{}n b 的前n 项和为n S ,123b =且132(2,)n n S S n n N -=+≥∈.(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)若,1,2,3,n n n c a b n =⋅=,n T 为数列{}n c 的前n 项和,n T m <对*n N ∈恒成立,求m 的最小值.20.(本小题满分13分)如图,已知椭圆134:22=+y x C ,直线l 的方程为4=x ,过右焦点F 的直线'l 与椭圆交于异于左顶点A 的Q P ,两点,直线AP ,AQ 交直线l 分别于点M ,N . (Ⅰ)当29=⋅AQ AP 时,求此时直线'l 的方程; (Ⅱ)试问M ,N 两点的纵坐标之积是否为定值?若是,求出该定值;若不是,请说明理由.21.(本小题满分14分)设函数ax xxx f -=ln )(. (Ⅰ)若函数)(x f 在),1(+∞上为减函数,求实数a 的最小值;(Ⅱ)若存在212,,x x e e ⎡⎤∈⎣⎦,使a x f x f +'≤)()(21成立,求实数a 的取值范围.教学质量检测 理科数学参考答案一.选择题:DADBD ACCCB 二.填空题:11.20; 12.21; 13.-3; 14.43π; 15.21三.解答题:16.(本小题满分12分)解:(Ⅰ)由已知⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛-=-A A B A 6cos 6cos 22cos 2cos ππ 得2222312sin 2sin 2cos sin 44B A A A ⎛⎫-=-⎪⎝⎭……………………………………………………………3分 化简得23sin =B ………………………………………………………………………………………………5分 故323ππ或=B .………………………………………………………………………………………………6分 (Ⅱ)因为b a ≤,所以3B π=,……………………………………………………………………………7分由正弦定理2sin sin sin 2a c bA C B====,得C c A a sin 2,sin 2==, 故A A A A C A c a cos 23sin 2332sin sin 2sin sin 221-=⎪⎭⎫ ⎝⎛--=-=-π6A π⎛⎫=- ⎪⎝⎭ ……9分因为b a ≤,所以323ππ<≤A ,266πππ<-≤A ,……………………………………………………10分 所以⎪⎪⎭⎫⎢⎣⎡∈⎪⎭⎫ ⎝⎛-=-3,236sin 321πA c a . ……………………………………………………12分17.(本小题满分12分)解:(Ⅰ)甲厂抽取的样品中优等品有7件,优等品率为710,……………………………………2分 乙厂抽取的样品中优等品有8件,优等品率为84105=.…………………………………………………4分 (Ⅱ)ξ的取值为1,2,3.………………………………………………………………………………6分12823101(1)15C C P C ξ⋅===,21823107(2)15C C P C ξ⋅===,157)3(3100238=⋅==C C C P ξ……………………9分所以ξ的分布列为…………………………………………………………………………………………………………………10分 故的数学期望为17712123.1515155E ξ=⨯+⨯+⨯=() …………………………………………………12分 18.(本小题满分12分)解:方法一:(Ⅰ)∵PA ⊥面ABCD ,四边形ABCD 是正方形,其对角线BD ,AC 交于点E∴PA ⊥BD ,AC ⊥BD , ∴BD ⊥平面APC ………………………………………………………2分 ∵FG ⊂平面PAC ,∴BD ⊥FG ……………………………………………………………………3分 (Ⅱ)当G 为EC 中点,即AG=34AC 时,FG ∥平面PBD ,……………………………………………4分 连接PE ,由F 为PC 中点,G 为EC 中点,知FG ∥PE ,………………………………………………5分 而FG ⊄平面PBD ,PB ⊂平面PBD ,故FG ∥平面PBD .……………………………………………6分 (Ⅲ)作BH ⊥PC 于H ,连接DH ,∵PA ⊥面ABCD ,四边形ABCD 是正方形,∴PB=PD ,又∵BC=DC ,PC=PC ,∴△PCB ≌△PCD ,∴DH ⊥PC ,且DH=BH ,∴∠BHD 是二面角B -PC -D 的平面角.即,32π=∠BHD ………………………………………………………………………………………7分 ∵PA ⊥面ABCD ,∴∠PCA 就是PC 与底面ABCD 所成的角 …………………………………8分连结EH ,则PC EH BHE BD EH ⊥=∠⊥,3,π,tan BEBHE EH∴∠==而BE EC =,,33sin ,3==∠∴=∴EC EH PCA EH EC …………………………………………10分,22tan =∠∴PCA ……………………………………………………………………………………11分 ∴PC 与底面ABCD 所成角的正切值是22………………………………………………………12分 方法二:(Ⅰ)以A 为原点,AB ,AD ,PA 所在的直线分别为x ,y ,z 轴建立空间直角坐标系,设正方形ABCD 的边长为1,则A (0,0,0),B (1,0,0),C (1,1,0)D (0,1,0),P (0,0,a )(a>0),)20)(0,,(),2,21,21(),0,21,21(<<m m m G a F E …………1分∵11(1,1,0),(,,)222a BD FG m m =-=---,110022BD FG m m ⎛⎫⎛⎫⋅=--+-+= ⎪ ⎪⎝⎭⎝⎭…………2分∴BD ⊥FG ………………………………………………………………………………3分(Ⅱ)要使FG//平面PBD ,只需FG//EP ,而11,,22EP a ⎛⎫=-- ⎪⎝⎭,由FG EP λ=,可得:11222m a a λλ⎧-=-⎪⎪⎨⎪-=⎪⎩,解得12λ=-,34m =,…………………………………………………………………………………5分 33,,044G ⎛⎫∴ ⎪⎝⎭,34AG AC =,故当34AG AC =时,FG//平面PBD ………………………6分(Ⅲ)设平面PBC 的一个法向量为(),,u x y z =则⎪⎩⎪⎨⎧=⋅=⋅0BC u PC u ,而)0,1,0(),,1,1(=-=BC a PC ⎩⎨⎧==-+∴0y az y x ,取1z =,得)1,0,(a u =,……………………8分 同理可得平面PDC 的一个法向量)1,,0(a v =,设v u ,所成的角为θ,则,21|32cos||cos |==πθ 即,21111,21||||22=+⋅+∴=a a v u v u 1=∴a …………………………………………10分∵PA ⊥面ABCD ,∴∠PCA 就是PC 与底面ABCD 所成的角,2221tan ===∠∴AC PA PCA ∴PC 与底面ABCD 所成角的正切值是22…………………………………………………………12分 19.(本小题满分12分)解:(Ⅰ) 数列{}n a 为等差数列,公差751() 3 2d a a ==-,易得21=a , 所以 13-=n a n ……………………………………………………………………………………1分 由132n n S S -=+,得32n n n S S b =-+,即22n n b S =-, 所以21222()b b b =-+,又123b =,所以229b =,2113b b = ………………………………………2分由132n n S S -=+, 当3n ≥时,得1232n n S S --=+,两式相减得:1123()n n n n S S S S ----=-,即13n n b b -=,所以)3≥…………………4分 ,所以{}n b 是以……………5分6分 8分9分11分∵n T m <对n N +∈恒成立,∴2≥m ∴m 的最小值是2………………………………12分20. (本小题满分13分)解:(Ⅰ)①当直线PQ 的斜率不存在时,由)0,1(F 可知PQ 方程为1=x代入椭圆134:22=+y x C 得)23,1(),23,1(-Q P 又)0,2(-A ),23,3(),23,3(-==∴274AP AQ ⋅=不满足……………………………………2分 ②当直线PQ 的斜率存在时,设PQ 方程为)0)(1(≠-=k x k y代入椭圆134:22=+y x C 得01248)43(2222=-+-+k x k x k …………………………3分 设),(),,(2211y x Q y x P 得2221222143124,438k k x x k k x x +-=+=+…………………………4分 222121221221439)1()1)(1(k k x x x x k x x k y y +-=++--=--=2943274)(2)2)(2(222121212121=+=++++=+++=⋅k k y y x x x x y y x x AQ AP26±=∴k 故直线'l 的方程; ()126-±=x y ………………………………………………6分 (Ⅱ)AP 的方程为11(2)2y y x x =++与l 的方程:4x =联立 得:116(4,)2y M x + 同理得226(4,)2y N x +…………………………………………………8分 12121212126636222()4M N y y y y y y x x x x x x ∴⋅=⋅=+++++ ①k 不存在时,3336()22912(11)4M N y y ⋅⋅-⋅==-+++………………………………………………9分 ②k 存在时,2222223243494121643434M N k k y y k kk k-+⋅==--++++………………………………………12分 M ,N 两点的纵坐标之积为定值9- …………………………………………13分21.(本小题满分14分) 解:(Ⅰ)由已知得x >0,x ≠1.因f (x )在(1)+∞,上为减函数,故2ln 1()0(ln )x f x a x -'=-≤在(1)+∞,上恒成立. ………………1分所以当(1)x ∈+∞,时,max ()0f x '≤. 又()22ln 111()ln ln (ln )x f x a a x xx -'=-=-+-()2111ln 24a x =--+-,………………………………2分 故当11ln 2x =,即2x e =时,max 1()4f x a '=-. 所以10,4a -≤于是14a ≥,故a 的最小值为14. ……………………………………………4分(Ⅱ)命题“若存在212,[,],x x e e ∈使()12()f x f x a '+≤成立”等价于“当2[,]x e e ∈时,有()min max ()f x f x a '+≤”. …………………………………………………5分 由(Ⅰ),当2[,]x e e ∈时,max 1()4f x a '=-,∴()max 14f x a '+=.问题等价于:“当2[,]x e e ∈时,有min 1()4f x ≤”. ………………………………………………6分①当14a ≥时,由(1),()f x 在2[,]e e 上为减函数,则min ()f x =2221()24e f e ae =-≤,故21124a e -≥. ……………………………………………8分②当a <14时,由于'2111()()ln 24f x a x =--+-在2,e e ⎡⎤⎣⎦上的值域为1,4a a ⎡⎤--⎢⎥⎣⎦(ⅰ)0a -≥,即0a ≤,'()0f x ≥在2,e e ⎡⎤⎣⎦恒成立,故()f x 在2,e e ⎡⎤⎣⎦上为增函数,于是,min 1()()4f x f e e ae e ==-≥>,矛盾.……………………………………………10分 (ⅱ)0a -<,即104a <<,由'()f x 的单调性和值域知, 存在唯一20(,)x e e ∈,使'()0f x =,且满足:当0(,)x e x ∈时,'()0f x <,()f x 为减函数;当20(,)x x e ∈时,'()0f x >,()f x 为增函数;所以,0min 0001()()ln 4x f x f x ax x ==-≤,20(,)x e e ∈…………………………………………12分 所以,2001111111ln 4ln 4244a x x e e ≥->->-=,与104a <<矛盾.………………………13分 综上,得21124a e≥-………………………………………………………………………………14分。
东营市2014年初中学生中考模拟考试数学试题(含答案)

二0一四年东营市初中学生中考模拟考试(总分120分考试时间120分钟)注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共7页.2. 数学试题答案卡共9页.答题前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3. 第Ⅰ卷每题选出答案后,都必须用2B铅笔把答题卡上对应题目的答案标号【ABCD】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用0.5mm签字笔答在答题卡的相对应位置上.4. 考试时,不允许使用科学计算器.第Ⅰ卷(选择题共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是准确的,请把准确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n 是正整数),则n的值为().A.5 B.6 C.7 D.8【答案】B.2.下列运算准确的是()A.3x3-5x3=-2x B.6x3÷2x-2=3xC.()2=x6D.-3(2x-4)=-6x-12【答案】C.3.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A.4,5 B.5,4 C.4,4 D.5,5【答案】A.4. 如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A .16B .17C .18D .19 【答案】B .5. 河堤横断面如图所示,堤高BC =6米,迎水坡AB 的坡比为1:,则AB 的长为( )A .12B .4米C .5米 D .6米【答案】B .6. 在一个能够改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg /m 2)与体积V (单位:m 3)满足函数关系式Vk=ρ(k 为常数,k ≠0),其图象如图所示,则k 的值为( )A .9B .-9C .4D .-4 【答案】:A .7. 如图,▱ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC =54°,连接AE ,则∠AEB 的度数为( )S2S 1OVρA (6,1.5)第5题A 、36°B 、46°C 、27°D 63° 【答案】:A .8. 将△DAE 沿DE 折叠,使点A 落在对角线BD 上的点A ′处,则AE 的长为______.A 、10B 、3C 、103D 6 【答案】A9.2013年“中国好声音”全国巡演重庆站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图能反映y 与x 的函数关系式的大致图象是( )【答案】A10.如图,在等腰直角ABC ∆中,90ACB O∠=,O 是斜边AB 的中点,点D 、E 分别在直角边AC 、BC 上,且90DOE O∠=,DE 交OC 于点P .则下列结论: (1)图形中全等的三角形只有两对;(2)ABC ∆的面积等于四边形CDOE 面积的2倍; (3)2CD CE OA +=;x yD.Ox yOx yOx yC.O(第9题图)(4)222AD BE OP OC +=⋅.其中准确的结论有( )第12题图P EO BCADA .1个B .2个C .3个D .4个 【答案】C第Ⅱ卷(非选择题 共84分)二、填空题:本大题共8小题,共24分,只要求填写最后结果,每小题填对得4分. 11. 已知实数a ,b 满足a +b =2,a -b =5,则(a +b )3·(a -b )3的值是__________ 【答案】100012. 如图6,Rt △ABC 的斜边AB =16, Rt △ABC 绕点O 顺时针旋转后得到C B A Rt '''∆,则C B A Rt '''∆的斜边B A ''上的中线D C '的长度为_____________ .【答案】 8.13.在一只不透明的口袋中放入红球6个,黑球2个,黄球n 个.这些球除颜色不同外,其它无任何差别,搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n = . 【答案】414.若一个一元二次方程的两个根分别是Rt △ABC 的两条直角边长,且S △ABC =3,请写出一.个.符合题意的一元二次方程 . 【答案】x 2-5x +6=0 15.已知反比例函数y =6x在第一象限的图象如图所示,点A 在其图象上,点B 为x 轴正半轴上一点,连接AO 、AB ,且AO =AB ,则S △AOB = . 【答案】6.16.如图,在⊙O 中,过直径AB 延长线上的点C 作⊙O 的一条 切线,切点为D ,若AC =7,AB =4,则sinC 的值为 .【答案】:52. 17.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm ,到屏幕的距离为60cm ,且幻灯片中的图形的高度为6cm ,则屏幕上图形的高度为 cm .【答案】:18.18. 如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(33),点C 的坐标为(12,0),点P 为斜边OB 上的一动点,则P A +PC 的最小值为 . 31.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步ABOD第16题骤.19.(本题满分7分,第⑴题4分,第⑵题4分)(1)计算:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0.解:2cos45°﹣(﹣)﹣1﹣﹣(π﹣)0,=2×﹣(﹣4)﹣2﹣1,=+4﹣2﹣1,=3﹣.(2)先简化,再求值:,其中x=.解:原式=•=,当x=+1时,原式==.20.(本题满分8分)东营市某学校展开课外体育活动,决定开高A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选择一种).随机抽取了部分学生实行调查,并将调查结果绘成如下统计图,请你结合图中信息解答下列问题.[中国#&教育出*版~@网]⑴样本中最喜欢A项目的人数所占的百分比为,其所在扇形统计图中对应的圆心角度数是度;⑵请把条形统计图补充完整;⑶若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?【答案】:(1)40%,144(2)如图:(3)100%101000=⨯人.【解析】:(1)100%-20%-10%-30%=40%,360°×40%=144°;(2)抽查的学生总人数:15÷30%=50,50-15-5-10=20(人).如图所示: (3)1000×10%=100(人).答:全校最喜欢踢毽子的学生人数约是100人.21. (本题满分9分) 如图,四边形ABCD 是平行四边形,以对角线BD 为直径作⊙O ,分别于BC 、AD 相交于点E 、F .(1)求证四边形BEDF 为矩形.(2)若BC BE BD ⋅=2试判断直线CD 与⊙O 的位置关系,并说明理由. 答案:..90,,.2.90,90.//90)1(2相切与,即理由如下:的位置关系为相切与)直线(为矩形四边形是平行四边形,四边形又的直径,为证明:O CD CD BD BED BDC BDC BED CBD DBC BDBCBE BD BC BE BD O CD BEDF BED EDA DFB FBC BC AD ABCD DFB DEB O BD Θ∴⊥︒=∠=∠∴∆∆∴∠=∠=∴⋅=Θ∴︒=∠=∠︒=∠=∠∴∴︒=∠=∠∴Θ22. (本题满分9分) 如图,△ABC 中,AB =BC ,AC =8,tanA =k ,P 为AC 边上一动点,设PC =x ,作PE ∥AB 交BC 于E ,PF ∥BC 交AB 于F .(1)证明:△PCE 是等腰三角形;(2)EM、FN、BH分别是△PEC、△AFP、△ABC的高,用含x和k的代数式表示EM、FN,并探究EM、FN、BH之间的数量关系;(3)当k=4时,求四边形PEBF的面积S与x的函数关系式.x为何值时,S有最大值?并求出S的最大值.【答案】(1)证明:∵AB=BC,∴∠A=∠C,∵PE∥AB,∴∠CPE=∠A,∴∠CPE=∠C,∴△PCE是等腰三角形;(2)解:∵△PCE是等腰三角形,EM⊥CP,∴CM=CP=,tanC=tanA=k,∴EM=CM•tanC=•k=,同理:FN=AN•tanA=•k=4k﹣,因为BH=AH•tanA=×8•k=4k,而EM+FN=+4k﹣=4k,∴EM+FN=BH;(3)解:当k=4时,EM=2x,FN=16﹣2x,BH=16,所以,S△PCE=x•2x=x2,S△APF=(8﹣x)•(16﹣2x)=(8﹣x)2,S△ABC=×8×16=64,S=S△ABC﹣S△PCE﹣S△APF,=64﹣x2﹣(8﹣x)2,=﹣2x2+16x,配方得,S =﹣2(x ﹣4)2+32, 所以,当x =4时,S 有最大值32.23. (本题满分10分) 某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y 与生产数量x 之间是一次函数关系,函数y 与自变量x 的部分对应值如下表:(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z (台)与售价a (万元/台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价-成本)【答案】:解:(1)设y 与x 的函数解析式为y =kx +b , 根据题意,得10602055k b k b +=⎧⎨+=⎩,, 解得1265k b ⎧=-⎪⎨⎪=⎩,.∴y 与x 之间的函数关系式为1652y x =-+(10≤x ≤70).(2)设该机器的生产数量为x 台,根据题意,得x (1652x -+)=2000,解得x 1=50,x 2=80.∵10≤x ≤70,∴x =50. 答:该机器的生产数量为50台.(3)设销售数量z 与售价a 之间的函数关系式为z =ka +b ,根据题意,得55357515k b k b +=⎧⎨+=⎩,,解得190k b =-⎧⎨=⎩,.∴z =-a +90.当z =25时,a =65.设该厂第一个月销售这种机器的利润为w 万元, w =25×(65-200050)=625(万元). 24. (本题满分10分)如图一艘海上巡逻船在A 地巡航,这时接到B 地海上指挥中心紧急通知:在指挥中心北偏西60º方向的C 地有一艘渔船遇险,要求马上前去救援.此时C 地位于A 地北偏西30°方向上.A 地位于B 地北偏调西75°方向上.AB 两地之间的距离为12海里.求A .C 两地之间的距离. (参考数据:2≈l . 41,3≈1.73,6≈2.45.结果精确到0.1.)【解】如图,过点B 作BD ⊥CA ,交CA 的延长线于点D ,由题意,得∠ACB =60°-30°=30°. ∠ABC =75°-60°=15° ∴∠DAB =∠DBA =45°在Rt ⊿ADB 中.AB =12.∠ BAD =45°, ∴BD =AD =2645cos =AB 在Rt ⊿BCD 中,6630tan ==BDCD ∴2.62666≈-=AC (海里) 答:AC 两地之间的距离约为6.2海里25. (本题满分12分) 如图1,已知抛物线的方程C 1:1(2)()y x x m m=-+- (m >0)与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线C 1过点M (2, 2),求实数m 的值;(2)在(1)的条件下,求△BCE 的面积; (3)在(1)的条件下,在抛物线的对称轴上找一点H ,使得BH +EH 最小,求出点H 的坐标;(4)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.图1解答(1)将M (2, 2)代入1(2)()y x x m m =-+-,得124(2)m m=-⨯-.解得m =4. (2)当m =4时,2111(2)(4)2442y x x x x =-+-=-++.所以C (4, 0),E (0, 2). 所以S △BCE =1162622BC OE ⋅=⨯⨯=. (3)如图2,抛物线的对称轴是直线x =1,当H 落在线段EC 上时,BH +EH 最小. 设对称轴与x 轴的交点为P ,那么HP EO CP CO =. 因此234HP =.解得32HP =.所以点H 的坐标为3(1,)2. (4)①如图3,过点B 作EC 的平行线交抛物线于F ,过点F 作FF ′⊥x 轴于F ′. 由于∠BCE =∠FBC ,所以当CE BC CB BF=,即2BC CE BF =⋅时,△BCE ∽△FBC . 设点F 的坐标为1(,(2)())x x x m m -+-,由''FF EO BF CO =,得1(2)()22x x m m x m+-=+. 解得x =m +2.所以F ′(m +2, 0).由'CO BF CE BF =244m BF m +=+.所以2(4)4m m BF m ++=.由2BC CE BF =⋅,得222(4)4(2)4m m m m m +++=+⨯. 整理,得0=16.此方程无解.图2 图3 图4②如图4,作∠CBF =45°交抛物线于F ,过点F 作FF ′⊥x 轴于F ′,由于∠EBC =∠CBF ,所以BE BC BC BF=,即2BC BE BF =⋅时,△BCE ∽△BFC . 在Rt △BFF ′中,由FF ′=BF ′,得1(2)()2x x m x m +-=+. 解得x =2m .所以F ′(2,0)m .所以BF ′=2m +2,2(22)BF m =+. 由2BC BE BF =⋅,得2(2)222(22)m m +=+.解得222m =± 综合①、②,符合题意的m 为222+.。
山东东营2014届中考数学二模试题有解析

山东东营2014届中考数学二模试题(有解析)(时间:120分钟;满分:120分)一、选择题(每小题只有一个正确答案,每小题3分,计30分) 1.2sin 30o的倒数是 ( )A. 0.5B.14 C.4 D.-42.下面是一位同学做的四道题: ①633a a a =+;②632x x x =⋅;③a a a 22)(2=÷-;④63326-)2-(y x xy =.其中做对了几道题 ( )A.0B.1C.2D.33.如图①,有6张写有实数的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图②摆放,从中任意翻开两张都是无理数的概率是( )A.12B.16C.13D.154.两圆的半径分别为,a b ,圆心距为4.若25440a b a a +-+-+=,则两圆( )A .内含B .相交C .外切D .外离5.已知整数x 满足是不等式组⎪⎩⎪⎨⎧+-<--<613424)1(32x x x x ,则x 的算术平方根为( ) A .2B .±2C . 2D . 46.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则1212s s s s k -+=的值为 ( )A .16B .17C .18D .197.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的中垂线上;④S △DAC :S △ABC=1:3 A.1 B.2 C.3 D.48. 如图,正六边形边长为a 的六角螺帽在桌面上滚动(没有滑动)一周,则它的中心O 点所经过的路径长为( )A .6aB .5aC .2a π Dπ 9.给出以下命题:①已知8215-可以被在60~70之间的两个整数整除,则这两个数是63、65; ②若,2=xa ,3=ya 则yx a -2=34;③已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为6-≠->m m 或;其中正确的是( )A .①②B .②③C .①③ D.①②③10.如图①,在梯形ABCD 中,AD ∥BC ,∠A=60°,动点P 从A 点出发,以1cm/s 的速度沿着A →B →C →D 的方向不停移动,直到点P 到达点D 后才停止.已知△PAD 的面积s(单位:cm2)与点P 移动的时间t (单位:s )的函数如图②所示,则下列结论:①AB =BC =2cm ;②cos ∠CDA =12;③梯形A BCD的面积为;④点P 从开始移动到停止移动一共用了(4+秒;其中正确的结论是( )A .①②B .①③C .①③④D .①②③④二、填空题(每小题3分,计24分)11. 2014年3月8日马航失踪后,据央视报道,我国已划定长90海里,宽25海里,总面积约2250平方海里(约合7717平方公里)的长方形区域为12日前的海上搜救范围,1平方公里=1×106平方米,对7717平方公里用科学计数法表示为__________ 平方米.(保留两个有效数字) 12.分解因式: 22a ax ax -+ .14.如图,菱形ABCD 中,60DAB ∠=︒,DF AB ⊥于点E ,且DF DC =,连接FC ,则ACF ∠的度数为 度。
数学_2014年山东省东营市高考数学一模试卷(理科)_(含答案)

2014年山东省东营市高考数学一模试卷(理科)一、选择题1. 若复数i满足z(1+i)=2i,则在复平面内z对应的点的坐标是()A (1, 1)B (1, −1)C (−1, 1)D (−1, −1)2. 设全集U=R,集合A={x|2x>1},B={x||x−2|≤3},则(∁U A)∩B等于()A [−1, 0)B (0, 5]C [−1, 0]D [0, 5]3. 已知命题p、q,“¬p为真”是“p∧q为假”的()A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件4. 若圆C经过(1, 0),(3, 0)两点,且与y轴相切,则圆C的方程为()A (x−2)2+(y±2)2=3B (x−2)2+(y±√3)2=3C (x−2)2+(y±2)2=4 D (x−2)2+(y±√3)2=45. 运行如图所示的程序框图,则输出的结果S为()A 1007B 1008C 2013D 20146. 函数y=a|x|与y=sinax(a>0且a≠1)在同一直角坐标系下的图象可能是()A B CD7. 三棱锥S−ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,则球O的表面积为()A √32π B 32π C 3π D 12π8. 设k=∫(πsinx−cosx)dx,若(1−kx)8=a0+a1x+a2x2+...+a8x8,则a1+a2+ a3+...+a8=()A −1B 0C lD 2569. 对任意实数a ,b 定义运算“⊗”:a ⊗b ={b,a −b ≥1,a,a −b <1,设f(x)=(x 2−1)⊗(4+x),若函数y =f(x)+k 的图象与x 轴恰有三个不同交点,则k 的取值范围是( ) A (−2, 1) B [0, 1] C [−2, 0) D [−2, 1)10. 如图,已知直线l:y =k(x +1)(k >0)与抛物线C:y 2=4x 相交于A 、B 两点,且A 、B 两点在抛物线C 准线上的射影分别是M 、N ,若|AM|=2|BN|,则k 的值是( )A 13 B √23 C 23√2 D 2√2二、填空题:本大题共5小题,每小题5分,共25分.11. 已知某几何体的三视图如图所示,则该几何体的体积为________12. 若x ,y 满足条件{y ≥2|x|−1,y ≤x +1,则z =x +3y 的最大值为________.13. 若α∈(0,π2),则sin2αsin 2α+4cos 2α的最大值为________.14. 如图,茎叶图表示甲、乙两名篮球运动员在五场比赛中的得分,其中一个数字被污损,则甲的平均得分不超过乙的平均得分的概率为________.15. 已知函数y =f(x)为奇函数,且对定义域内的任意x 都有f(1+x)=−f(1−x).当x ∈(2, 3)时,f(x)=log 2(x −1),给出以下4个结论:①函数y =f(x)的图象关于点(k, 0)(k ∈Z)成中心对称; ②函数y =|f(x)|是以2为周期的周期函数; ③当x ∈(−1, 0)时,f(x)=−log 2(1−x);④函数y =f(|x|)在(k, k +1)(k ∈Z)上单调递增. 其中所有正确结论的序号为________.三、解答题:本小题共6小题,共75分.解答时应写出文字说明,证明过程或验算步骤. 16. 已知函数f(x)=sinx +cosx .(1)求函数y =f(x)在x ∈[0, 2π]上的单调递增区间;(2)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,已知m →=(a, b),n →=(f(C),1)且m → // n →,求B .17.如图,在四棱锥E −ABCD 中,EA ⊥平面ABCD ,AB // CD ,AD =BC =12AB ,∠ABC =π3.(1)求证:△BCE 为直角三角形;(2)若AE =AB ,求CE 与平面ADE 所成角的正弦值.18. 某次数学测验共有10道选择题,每道题共有四个选项,且其中只有一个选项是正确的,某考生每道题都选并能确定其中有6道题能选对,其余4道题无法确定正确选项,但这4道题中有2道题能排除两个错误选项,另2道只能排除一个错误选项,于是该生做这4道题时每道题都从不能排除的选项中随机选一个选项作答,且各题作答互不影响. (1)求该考生本次测验选择题得50分的概率;(2)求该考生本次测验选择题所得分数的分布列和数学期望.19. 已知数列{a n }的前n 项和S n =a n +n 2−1,数列{b n }满足3n ⋅b n+1=(n +1)a n+1−na n ,且b 1=3.(1)求a n ,b n ;(2)设T n 为数列{b n }的前n 项和,求T n ,并求满足T n <7时n 的最大值. 20. 已知双曲线C:x 2a2−y 2b 2=1(a >0,b >0)的焦距为2√7,其一条渐近线的倾斜角为θ,且tanθ=√32.以双曲线C 的实轴为长轴,虚轴为短轴的椭圆记为E . (1)求椭圆E 的方程;(2)设点A 是椭圆E 的左顶点,P 、Q 为椭圆E 上异于点A 的两动点,若直线AP 、AQ 的斜率之积为−14,问直线PQ 是否恒过定点?若恒过定点,求出该点坐标;若不恒过定点,说明理由.21. 已知函数f(x)=x 3−x −√x . (1)求函数y =f(x)的零点的个数; (2)令g(x)=2f(x)+√x+lnx ,若函数y =g(x)在(0, 1e )内有极值,求实数a 的取值范围;(3)在(2)的条件下,对任意t ∈(1, +∞),s ∈(0, 1),求证:g(t)−g(s)>e +2−1e.2014年山东省东营市高考数学一模试卷(理科)答案1. A2. C3. A4. D5. A6. D7. C8. B9. D 10. C 11. 12 12. 11 13. 1214. 710 15. ①②③16. 解:(1)∵ f(x)=sinx +cosx =√2sin(x +π4), ∴ 由2kπ−π2≤x +π4≤2kπ+π2,k ∈Z ,得2kπ−3π4≤x ≤2kπ+π4,当k =0时,−3π4≤x ≤π4,k =1时,5π4≤x ≤9π4,∵ x ∈[0, 2π], ∴ x ∈[0,π4]∪[5π4,2π],∴ 函数y =f(x)在x ∈[0, 2π]上的单调递增区间为[0,π4],[5π4,2π]; (2)∵ f(C)=sinC +cosC ,且m → // n →,∴ a −f(C)b =0, 即a =b(sinC +cosC),由正弦定理得sinA =sinB(sinC +cosC),即sin(B +C)=sinBcosC +cosBsinC =sinBsinC +sinBcosC ,即cosBsinC =sinBsinC , ∵ sinC ≠0, ∴ cosB =sinB , 即tanB =1,∴ B =π4. 17. (1)证明:在△ABC 中, ∵ BC =12AB ,∠ABC =π3,∴ 由余弦定理,得AC 2=AB 2+BC 2−2AB ⋅BC ⋅cos π3=3BC 2, ∴ AC =√3BC ,∴ AC 2+BC 2=AB 2,∴ AC ⊥BC , 又∵ EA ⊥平面ABCD ,∴ EA ⊥BC , 又∵ AC ∩AE =A ,∴ BC ⊥平面ACE ,∴ BC ⊥CE , ∴ △BCE 为直角三角形.(2)由(1)知:AC ⊥BC ,AE ⊥平面ABCD ,以点C 为坐标原点,CA →,CB →,AE →的方向分别为x 轴,y 轴,z 轴的正方向, 建立空间直角坐标系,设BC =a ,则AE =AB =2a ,AC =√3a , 如图2,在等腰梯形ABCD 中,过点C 作CG ⊥AB 于点G ,则GB =12a ,∴ CD =AB =2GB =a , 过点D 作DH ⊥BC 于H , 由(1)知∠DCH =60∘, ∴ DH =√32a ,CH =a2,∴ D(√3a2, −a 2). 又∵ C(0, 0, 0)A(√3a, 0, 0),B(0, a, 0),E(√3a, 0, 2a),∴ AD →=(−√32a,−a 2,0),AE→=(0, 0, 2a),CE →=(√3a, 0, 2a),设平面ADE 的一个法向量为n →=(x,y,z), 则AD →⋅n →=0,AE →⋅n →=0,∴ {−√3a2x −a2y =02az =0,∴ n →=(√3,−3,0), 设CE 与平面ADE 所成角为θ,则sinθ=|cos <CE →,n →>|=|CE →|⋅|n →|˙=√7a√12|=√2114, ∴ 直线CE 与平面ADE 所成角的正弦值为√2114.18. 解:(1)设选对一道“能排除2个选项的题目”为事件A , 选对一道“能排除1个选项的题目”为事件B , 则P(A)=12,P(B)=13,该考生选择题得50分的概率为: P(A)P(A)P(B)P(B)=(12)2⋅(13)2=136.(2)该考生所得分数X =30,35,40,45,50, P(X =30)=(12)2(1−13)2=19,P(X =35)=C 21(12)2(23)2+(12)2⋅C 21⋅13⋅23=13,P(X =40)=(12)2(23)2+2×12×12×2×13×23+(12)2(13)2=1336,P(X =45)=C 21(12)2(13)2+(12)2C 21⋅13⋅23=16,P(X =50)=(12)2(13)2=136, ∴ X 的分布列为:EX =30×19+35×13+40×1336+45×16+50×136=1153.19. 解:(1)由S n =a n +n 2−1,得 S n−1=a n−1+(n −1)2−1 (n ≥2), 两式相减得,a n =a n −a n−1+2n −1, ∴ a n−1=2n −1,则a n =2n +1. 由3n ⋅b n+1=(n +1)a n+1−na n ,∴ 3n ⋅b n+1=(n +1)(2n +3)−n(2n +1)=4n +3. ∴ b n+1=4n+33n.∴ 当n ≥2时,b n =4n−13n−1,由b 1=3适合上式, ∴ b n =4n−13n−1;(2)由(1)知,b n =4n−13n−1,∴ T n =31+73+1132+⋯+4n−53n−2+4n−13n−1①.13T n =33+732+1133+⋯+4n−53n−1+4n−13n②.①-②得,23T n =3+43+432+⋯+43n−1−4n−13n=3+4⋅13(1−13n−1)1−13−4n−13n=5−4n+53n.∴ T n =152−4n+52⋅3n−1.∵ T n −T n+1=4(n+1)+52⋅3n−4n+52⋅3n−1=−(4n+3)3n<0.∴ T n <T n+1,即{T n }为递增数列. 又T 3=152−4×3+52×9=599<7,T 4=152−4×4+52×27=649>7.∴ T n <7时,n 的最大值3. 20. 解:(1)双曲线x 2a 2−y 2b 2=1的焦距2c =2√7,则c =√7,∴ a 2+b 2=7,①渐近线方程y =±b a x ,由题知tanθ=ba =√32,② 由①②解得a 2=4,b 2=3, ∴ 椭圆E 的方程为x 24+y 23=1.(2)在(1)的条件下,当直线PQ 的斜率存在时,设直线PQ 的方程为y =kx +m , 由{x 24+y 23=1y =kx +m ,消去y 得:(3+4k 2)x 2+8kmx +4m 2−12=0,设P(x 1, y 1),Q(x 2, y 2),则x 1+x 2=−8km3+4k 2,x 1x 2=4m 2−123+4k 2,又A(−2, 0),由题知k AP ⋅k BQ =y 1x1+2⋅y 2x2+2=−14, 则(x 1+2)(x 2+2)+4y 1y 2=0,且x 1,x 2≠−2,则x 1⋅x 2+2(x 1+x 2)+4+4(kx 1+m)(kx 2+m) =(1+4k 2)x 1x 2+(2+4km)(x 1+x 2)+4m 2+4=(1+4k 2)(4m 2−12)3+4k 2+(2+4km)−8km 3+4k 2+4m 2+4=0 则m 2−km −2k 2=0, ∴ (m −2k)(m +k)=0, ∴ m =2k 或m =−k .当m =2k 时,直线PQ 的方程为y =kx +2k =k(x +2). 此时直线PQ 过定点(−2, 0),显然不适合题意.当m =−k 时,直线PQ 的方程为y =kx −k =k(x −1),此时直线PQ 过定点(1, 0). 当直线PQ 的斜率不存在时,若直线PQ 过定点(1, 0),P 、Q 点的坐标分别为(1,32),(1,−32),满足k AP ⋅k AQ =−14.综上,直线PQ 过定点(1, 0). 21. 解:(1)∵ f(0)=0,∴ x =0是y =f(x)的一个零点, 当x >0时,f(x)=x(x 2−1−√x),设φ(x)=x 2−1√x,φ′(x)=2x 2√x 3>0,∴ φ(x)在(0, +∞)上单调递增.又φ(1)=−1<0,φ(2)=3√2>0,故φ(x)在(1, 2)内有唯一零点,因此y =f(x)在(0, +∞)内有且仅有2个零点; (2)g(x)=ax 2+ax x 3−x+lnx =ax(x+1)x(x+1)(x−1)+lnx =lnx +ax−1,其定义域是(0, 1)∪(1, +∞), 则g ′(x)=1x −a (x−1)2=x 2−2x+1−ax x(x−1)2=x 2−(2+a)x+1x(x−1)2,设ℎ(x)=x 2−(2+a)x +1,要使函数y =g(x)在(0, 1e )内有极值,则ℎ(x)=0有两个不同的根x 1,x 2,∴ △=(2+a)2−4>0,得a >0或a <−4,且一根在(0, 1e )内,不妨设0<x 1<1e , 又x 1x 2=1,∴ 0<x 1<1e <e <x 2, 由于ℎ(0)=1,则只需ℎ(1e )<0,即1e 2−(a +2)⋅1e+1<0,解得a >e +1e −2;(3)由(2)可知,当x ∈(1, x 2)时,g ′(x)<0,g(x)递减,x ∈(x 2, +∞)时,g ′(x)>0,g(x)递增,故y =g(x)在(1, +∞)内的最小值为g(x 2),即t ∈(1, +∞)时,g(t)≥g(x 2),又当x ∈(0, x 1)时,g ′(x)>0,g(x)单调递增,x ∈(x 1, 1)时,g ′(x)<0,g(x)单调递减, 故y =g(x)在(0, 1)内的最大值为g(x 1),即对任意s ∈(0, 1),g(s)≤g(x 1), 由(2)可知x 1+x 2=2+a ,x 1x 2=1,x 1∈(0,1e ),x 2∈(e, +∞), 因此,g(t)−g(s)≥g(x 2)−g(x 1)=lnx 2+ax2−1−lnx 1−ax1−1=ln x 2x1+ax 2−1−ax1−1=lnx 22+x 2−1x 2(x 2>e),设k(x)=lnx 2+x −1x =2lnx +x −1x ,k ′(x)=2x +1+1x 2>0, ∴ k(x)在(e, +∞)内单调递增,故k(x)>k(e)=2+e −1e ,即g(t)−g(s)>e +2−1e .。
最新2014年全国高考理科数学二模试题及答案-山东卷

最新2014年全国高考理科数学二模试题及答案-山东卷解析:C对于f(x)=ax,当a1时,f(x)在R上是增函数。
对于g(x)=(2-a)x,当2-a>0时,g(x)在R上是增函数;当2-a<0时,g(x)在R上是减函数。
所以当a>2时,f(x)是减函数,g(x)是增函数,两者同时成立,为充分必要条件。
答案选C。
4在平面直角坐标系内,点A(0,0),点B(3,4),点C(4,3),则△ABC的面积为A5B6C7D8解析:BABC的面积可以用向量叉积求解,设向量BA=(3,-4),向量CA=(4,-3),则ABC的面积为1/2|BA×CA|=1/2|3×(-3)-4×4|=6.答案选B。
5已知集合A={x|x2-2x-3<0},则A的取值范围是A(-∞,1)∪(3,∞)B(-∞,1)∪(3,∞)C(-∞,-1)∪(3,∞)D(-∞,-1)∪(1,3)∪(3,∞)解析:Dx2-2x-3=(x-3)(x+1)<0,解得x∈(-∞,-1)∪(3,∞)。
答案选D。
6已知函数f(x)=x3-3x2+5x-1,则f(x)的单调递减区间为A(-∞,1)B(1,2)C(2,+∞)D(1,+∞)解析:Af'(x)=3x2-6x+5,判别式△=6-4×3×5=-560的解不存在,f(x)在R上单调递减。
答案选A。
7已知集合A={x|x2+px+q>0},其中p,q∈R,若A中至少有一个元素,则下列说法正确的是A p2-4q≤0B p2-4q>0C p2+4q≤0D p2+4q>0解析:B当A中至少有一个元素时,x2+px+q>0,即判别式△=p2-4q0.答案选B。
8已知函数f(x)=x2-2ax+a2+3a-1,若对于任意实数x,都有f(x)≥0,则a的取值范围是A(-∞,-2]∪[1,2]B(-∞,-2]∪[2,+∞)C[-1,2]D(-∞,-1]∪[2,+∞)解析:Bf(x)=x2-2ax+a2+3a-1=(x-a)2+(3a-1),当a≥2或a≤-2时,(3a-1)≤0,所以f(x)≤0,不符合条件。
数学_2014年山东省某校高考数学二模试卷(理科)_(含答案)

2014年山东省某校高考数学二模试卷(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分).1. 已知集合A ={x ∈R||x|≤2},B ={x ∈R|x ≤1},则A ∩B =( ) A (−∞, 2] B [1, 2] C [−2, 2] D [−2, 1]2. 函数f(x)是R 上的增函数且f(a)+f(b)>f(−a)+f(−b)则( ) A a >b >0 B a −b >0 C a +b >0 D a >0,b >03. 过点(1, 0)且与直线x −2y −2=0平行的直线方程是( )A x −2y −1=0B x −2y +1=0C 2x +y −2=0D x +2y −1=04. 阅读如图所示的程序框图,如果输出i =4,那么空白的判断框中应填入的条件是( )A S <8B S <9C S <10D S <115. 样本中共有五个个体,其值分别为a ,0,1,2,3.若该样本的平均值为1,则样本方差为( )A √65 B 65C √2D 26. 设定义在R 上的函数f(x)满足f(x)⋅f(x +2)=13,若f(1)=2,则f(99)=( ) A 13 B 2 C 132D 2137. 由0,1,2,3,4这5个数字组成没有重复数字且个位上的数字不能为1的3位数共有( )A 28个B 36个C 39个D 42个8. 实数x ,y 满足{y ≥1y ≤2x −1x +y ≤b ,如果目标函数z =x −y 的最小值为−2,则实数b 的值为( )A 0B 6C 7D 89. 在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且角A =60∘,若S △ABC =15√34,且5sinB =3sinC ,则ABC 的周长等于( )A 8+√19B 14C 10+3√5D 1810. 设互不相等的平面向量组a i (i =1, 2, 3,…),满足①|a i |=1;②a i ⋅a i+1=0.若T m =a 1+a 2+...+a m (m ≥2),则|T m |的取值集合为( )A {0, √2}B {1, √3}C {1, √2, √3}D {0, 1, √2}二、填空题:把答案填在答题卷中的横线上(本大题共4小题,每小题5分,共25分). 11. 双曲线x 24−y 2m =1的焦距为4√2,则m =________. 12. 二项式(ax 2√x)5的展开式中常数项为160,则a 的值为________.13. 已知√2+23=2√23,√3+38=3√38,√4+415=4√415…,照此规律,第五个等式为________.14. 某制冷设备厂设计生产一种长方形薄板,如图所示,长方形ABCD(AB>AD)的周长为4米,沿AC折叠使B到B′位置,AB′交DC于P.研究发现当ADP的面积最大时最节能,则最节能时长方形ABCD的面积为________.二、请在下列三题中任选一题作答,如果多做,则按所做的第一题评分。
2014年全国卷2理科数学试题及答案

2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A. {1} B 。
{2}C 。
{0,1}D. {1,2}【答案】D 【解析】把M={0,1,2}中的数,代入不等式,023-2≤+x x 经检验x=1,2满足.所以选D 。
2。
设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( ) A 。
- 5 B 。
5C. — 4+ iD. - 4 — i【答案】B 【解析】.,5-4-1-∴,2-,2212211B z z i z z z i z 故选关于虚轴对称,与==+=∴+=3。
设向量a,b 满足|a+b|a —b则a ⋅b = ( ) A. 1 B 。
2C. 3D. 5【答案】A 【解析】.,1,62-102∴,6|-|,10||2222A b a b a b a b a b a b a b a 故选联立方程解得,,==+=++==+4.钝角三角形ABC 的面积是12,AB=1,,则AC=( )A 。
5B.C. 2 D 。
1【答案】B 【解】..5,cos 2-43π∴ΔABC 4π.43π,4π∴,22sin ∴21sin 1221sin 21222ΔABC B b B ac c a b B B B B B B ac S 故选解得,使用余弦定理,符合题意,舍去。
为等腰直角三角形,不时,经计算当或=+======•••==5。
某地区空气质量监测资料表明,一天的空气质量为优良的概率是0。
75,连续两为优良的概率是0。
6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A 。
0。
8B 。
0.75 C. 0.6 D. 0.45【答案】 A 【解析】.,8.0,75.06.0,A p p p 故选解得则据题有优良的概率为则随后一个空气质量也设某天空气质量优良,=•=6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A 。
数学_2014年山东省某校高考数学二模试卷(文科)(1)_(含答案)

2014年山东省某校高考数学二模试卷(文科)(1)一、选择题:(本大题共10小题,每小题5分,共50分.) 1. 在复平面内,复数−1+i i对应的点位于( )A 第一象限B 第二象限C 第三象限D 第四象限2. 定义集合A ∗B ={x|x ∈A, 且x ∉B},若A ={1, 3, 5, 7},B ={2, 3, 5},则A ∗B 的子集个数为( )A 1B 2C 3D 43. 等比数列{a n ]中,“a 1<a 3”是“a 4<a 6”的( )A 充分而不必要条件B 必要而不充分条件C 充要条件D 既不充分又不必要条件 4. 已知函数y =f(x)是奇函数,当x >0时,f(x)=lgx ,则f(f(1100))的值等于( )A 1lg2 B −1lg2C lg2D −lg25. 给出的图象中可能为函数f(x)=x 4+ax 3+cx 2+bx +d(a, b, c, d ∈R)的图象是( )A ①③B ①②C ③④D ②④6. 如图是一个组合几何体的三视图,则该几何体的体积是( )A27√32+64π B27√32+128π C 12+64π D 36+128π7. 如图,共顶点的椭圆①、②与双曲线③、④的离心率分别为e 1、e 2、e 3、e 4,其大小关系为( )A e 1<e 2<e 4<e 3B e 1<e 2<e 3<e 4C e 2<e 1<e 3<e 4D e 2<e 1<e 4<e 38. 已知函数f(x)的部分图象如图所示,则f(x)的解析式可能为( )A f(x)=2cos(x 2−π3) B f(x)=√2cos(4x +π4) C f(x)=2sin(x 2−π6) D f(x)=2sin(4x +π4)9. 已知z =2x +y ,x ,y 满足{y ≥xx +y ≤2x ≥m ,且z 的最大值是最小值的4倍,则m 的值是( )A 14B 15C 16D 1710. 若函数f(x)在给定区间M 上,存在正数t ,使得对于任意x ∈M ,有x +t ∈M ,且f(x +t)≥f(x),则称f(x)为M 上的t 级类增函数,则以下命题正确的是( )A 函数f(x)=4x +x 是(1,+∞)上的1级类增函数 B 函数f(x)=|log 2(x −1)|是(1, +∞)上的1级类增函数 C 若函数f(x)=sinx +ax 为[π2,+∞)上的π3级类增函数,则实数a 的最小值为2 D 若函数f(x)=x 2−3x 为[1, +∞)上的t 级类增函数,则实数t 的取值范围为[1, +∞)二、填空题:本大题共5小题,每小题5分,共25分. 11. 阅读程序框图,则输出的数据S 为________.12. 200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速不低于60km/ℎ的汽车数量为________辆.13. 已知抛物线y 2=2px(p >0)的准线与圆x 2+y 2−6x −7=0相切,则p 的值为________. 14. 设0<m <12,若1m+21−2m≥k 恒成立,则k 的最大值为________.15. 在四边形ABCD 中,AB →=DC →=(1, 1),1|BA →|BA →+1|BC →|BC →=√3|BD →|BD →,则四边形ABCD 的面积是________.三、解答题:本大题共6小题,共75分.解答应写出文字说明,演算步骤或证明过程.16. 已知f(x)=cos(2x+π3)+1−2cos2x.(1)求函数f(x)的单调递减区间;(2)在△ABC中,a,b,c分别是角A,B,C的对边,且a=1,b+c=2,f(A)=−12,求△ABC的面积.17. 袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个,已知从袋子随机抽取1个小球,取到标号为2的小球的概率是12.(I)求n的值;(II)从袋子中不放回地随机抽取2个球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记“a+b=2”为事件A,求事件A的概率;②在区间[0, 2]内任取2个实数x,y,求事件“x2+y2>(a−b)2恒成立”的概率.18. 已知矩形ABCD所在的平面和梯形ABEF所在的平面互相垂直,AB // FE,G, H分别为AB, CF的中点,AB=2,AD=EF=1,∠AFB=π2.(1)求证:GH // 平面DAF;(2)AF⊥平面BFC;(3)求平面CBF将几何体EFABCD分成两个锥体F−ABCD与F−BCE的体积之比.19. 已知数列{a n}(n∈N⋅)的前n项和为S n,数列{S nn }是首项为0,公差为12的等差数列.(1)求数列{a n}的通项公式;(2)设b n=415⋅(−2)a n(n∈N⋅),对任意的正整数k,将集合{b2k−1, b2k, b2k+1}中的三个元素排成一个递增的等差数列,其公差为d x,求数列{d k}的通项公式.(3)对(2)中的{d k}的前n项和T n.20. 设椭圆C:x2a2+y2b2=1(a>b>0)的离心率e=12,短轴的一个端点与两焦点构成的三角形的面积为√3,O为坐标原点.(1)求椭圆C的方程;(2)过点O作两条互相垂直的射线,与椭圆C分别交于A,B两点,证明:点O到直线AB的距离为定值,并求弦AB长度的最小值.21. 已知函数f(x)=xlnx,g(x)=−x2+ax−3.(1)求函数f(x)的最小值;(2)对一切x∈(0, +∞),2f(x)≥g(x)恒成立,求实数a的取值范围;(3)证明:对一切x∈(0, +∞),都有lnx>1e x −2ex成立.2014年山东省某校高考数学二模试卷(文科)(1)答案1. A2. D3. D4. D5. A6. D7. A8. A9. A10. D11. 412. 7613. 214. 815. √316. 解:(1)f(x)=cos(2x+π3)+1−2cos2x=12cos2x−√32sin2x−cos2x=−12cos2x−√3 2sin2x=−sin(2x+π6).由要求函数f(x)的单调递减区间,即求y=sin(2x+π6)的递增区间,由−π2+2kπ≤2x+π6≤π2+2kπ,即kπ−π3≤x≤π6+kπ.即函数的单调递减区间为[kπ−π3, π6+kπ],k∈Z.(2)∵ f(A)=−12,∴ sin(2A+π6)=12,∵ 0<A<π,则π6<2A+π6<13π6,即2A+π6=5π6,解得A=π3,在△ABC中,a=1,b+c=2,A=π3,则由余弦定理得1=b2+c2−2bccosA,即1=(b+c)2−3bc=4−3bc,故bc=1,则△ABC的面积S=12bcsinA=12×1×√32=√34.17. 解:(1)由题意,根据从袋子随机抽取1个小球,取到标号为2的小球的概率是12,可得n1+1+n =12∴ n=2(2)①从袋子中不放回地随机抽取2个球,共有基本事件12个,其中“a+b=2”为事件A的基本事件有4个∴ P(A)=412=13②记“x2+y2>(a−b)2恒成立”为事件B,则事件B等价于“x2+y2>4恒成立,(x, y)可以看成平面中的点,则全部结果所构成的区域为Ω={(x, y)|0≤x≤2, 0≤y≤2, x, y∈R},而事件B构成的区域B={(x, y)|x2+y2>4, (x, y)∈Ω}∴ P(B)=1−π418. (1)证明:设DF的中点为M,连接AM,MH则MH // CD,MH=12CD,又矩形ABCD中,G是中点,∴ MH // AG,MH=AG,∴ 四边形MHGA为平行四边形,∴ AM // GH,又AM⊂平面DAF,GH⊄平面DAF,∴ GH // 平面DAF;(2)证明:∵ 平面ABCD⊥平面ABEF,CB⊥AB,平面ABCD∩平面ABEF=AB,∴ CB⊥平面ABEF,而AF⊂平面ABEF,∴ AF⊥CB.∵ AB为圆O的直径,∴ AF⊥BF.又BF∩CB=B,∴ AF⊥平面CBF;(3)解:过点F作FO⊥AB于O,∵ 平面ABCD⊥平面ABEF,∴ FO⊥平面ABCD,∴ V F−ABCD=2V F−ACD=2V D−AFB=23FO.∵ CB⊥平面ABEF,∴ V F−CBE=V C−FBE=13⋅12⋅EF⋅FO⋅CB=16FO,∴ V F−ABCD :V F−CBE=4:1.19. 解:(1)由已知得S nn =0+(n−1)⋅12=n2(n−1),∴ a n=n−1(2)由(1)可知,b n=415⋅(−2)n−1,∴ b2k−1=415(−2)2k−2=415⋅22k−2,b2k=415(−2)2k−1b2k=−415⋅22k−1,b2k+1=415(−2)2k=415⋅22k由2b2k−1=b k+b k+1及b2k<b2k−1<b2k+1得b2k,b2k−1,b2k+1依次成递增的等差数列,∴ d k=b2k+1−b2k−1=4k5,(3)由(2)得d k+1d k =4k+154k5=4,∴ 数列{d k}为等比数列,∴ T n=45−4n5 1−4=415(4n−1)20. (1)解:∵ 椭圆C:x2a2+y2b2=1(a>b>0)的离心率e=12,短轴的一个端点与两焦点构成的三角形的面积为√3,∴ {ca=121 2⋅2c⋅b=√3,解得a=2,b=√3,∴ 椭圆C的方程为x24+y23=1,(2)证明:设A(x1, y1),B(x2, y2),当直线AB的斜率不存在时,AB的方程为x=±2√217,∴ 原点O到直线AB的距离为2√217,当直线AB斜率存在时,设直线的方程为y=kx+m,联立{x24+y23=1y=kx+m,得(4k2+3)x2+8kmx+(4m2−12)=0,∴ x1+x2=−8km4k2+3,x1x2=4m2−124k2+3,∵ OA ⊥OB ,∴ x 1x 2+y 1y 2=0, ∴ x 1x 2+(kx 1+m)(kx 2+m)=0, ∴ (k 2+1)4m 2−123+4k 2−8k 2m 23+4k 2+m 2=0,整理,得7m 2=12(k 2+1), ∴ 原点O 到直线AB 的距离d =√1+k 2=2√217为定值, 综上所述O 到直线AB 的距离d =2√217为定值, ∵ OA ⊥OB ,d ⋅AB =OA ⋅OB ≤OA 2+OB 22=AB 22,∴ AB ≥2d =4√217, ∴ 当OA =OB 时,弦AB 长的最小值为4√217. 21. 解:(1)f(x)的定义域为(0, +∞),f(x)的导数f ′(x)=1+lnx . 令f ′(x)>0,解得x >1e ; 令f ′(x)<0,解得0<x <1e .从而f(x)在(0, 1e )单调递减,在(1e , +∞)单调递增. 所以,当x =1e 时,f(x)取得最小值−1e . (2)若2f(x)≥g(x),则a ≤2lnx +x +3x ,设ℎ(x)=2lnx +x +3x,则ℎ′(x)=2x +1−3x 2=x 2+2x−3x 2=(x+3)(x−1)x 2∵ x ∈(0, 1)时,ℎ′(x)<0,ℎ(x)单调递减, x ∈(1, +∞)时,ℎ′(x)>0,ℎ(x)单调递增, ∴ ℎ(x)min =ℎ(1)=4 故a ≤4即实数a 的取值范围为(−∞, 4] 证明: (3)若lnx >1e x−2ex则lnx ⋅x >xe x −2e ,由(1)得:lnx ⋅x ≥−1e ,当且仅当x =1e 时,取最小值; 设m(x)=xe x −2e ,则m′(x)=1−x e x,∵ x∈(0, 1)时,m′(x)>0,m(x)单调递增,x∈(1, +∞)时,m′(x)<0,m(x)单调递减,故当x=1时,m(x)取最大值−1e故对一切x∈(0, +∞),都有lnx>1e x −2ex成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
保密★启用前 试卷类型:A教学质量检测 理科数学注意事项:1.本试卷分为第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,第Ⅱ卷为非选择题,考试时间为120分钟, 满分150分.2.把选择题选出的答案标号涂在答题卡上.3.第Ⅱ卷用黑色签字笔在答题纸规定的位置作答,否则不予评分.第Ⅰ卷 选择题(共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.将正确答案填写在答题卷相应位置. 1.已知集合{}{}R x y y N x x x M x∈==≥=,2,2,则MN = ( )A .)(1,0 B .]1,0[ C .)1,0[ D .]1,0( 2.“实数1a =”是“复数(1)ai i +(,a R i ∈的 ( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分条件又不必要条件 3.数列{}n a 的前n 项和为n S ,若1(1)n a n n =+,则6S 等于 ( )A .142B .45C .56D .674.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是 ( ) A .48cm 3 B .98cm 3 C .88cm 3 D .78cm 35.执行如图所示的程序框图,输出的S 值为( )A .2B .2-C .4D .4-6.已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是 ( )A .15[,]24B . 13[,]24C . 1(0,]2 D .(0,2]7.函数()f x 的部分图像如图所示,则()f x 的解析式可以是 ( )x D .3()()()22f x x x x ππ=--8小的两个编号分别为007,032,则样本中最大的编号应该为 ( ) A . 480 B . 481 C . 482 D . 4839. 偶函数)(x f 满足)1()1(+=-x f x f ,且在]1,0[∈x 时,2)(x x f =,则关于x 的方程xx f ⎪⎭⎫⎝⎛=101)(在]3,2[-上的根的个数是 ( ) A .3 B .4 C .5 D .610.已知1F ,2F 是双曲线22221(0,0)x y a b a b-=>>的左,右焦点,若双曲线左支上存在一点P 与点2F 关于直线bxy a=对称,则该双曲线的离心率为 ( ) A B C D .2第Ⅱ卷 非选择题(共100分)二.填空题:本大题共5小题,每小题5分,共25分.11.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为x 4万元,要使一年的总运费与总存储费用之和最小,则=x ___ ____ 吨. 12.设8280128()x a a a x a x a x -=++++,若685-=+a a ,则实数a 的值为 .13.已知x ,y 满足约束条件⎪⎩⎪⎨⎧≥++≤≥+-0306k y x x y x ,且y x z 42+=的最小值为6,则常数k = .14.已知直角梯形ABCD ,AB AD ⊥,CD AD ⊥,222AB AD CD ===,沿AC 折叠成三棱锥,当三棱锥体积最大时,三棱锥外接球的体积为 .15.如图,在正方形ABCD 中,E 为AB 的中点,P 为以A 为圆心,AB 为半径的圆弧上的任意一点,设向量的最小值为则μλμλ++=, .三.解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)在ABC ∆中,角C B A 、、所对的边为c b a 、、,且满足cos 2cos 22cos cos 66A B A A ππ⎛⎫⎛⎫-=-+⎪ ⎪⎝⎭⎝⎭(Ⅰ)求角B 的值; (Ⅱ)若3=b 且a b ≤,求c a 21-的取值范围.17.(本小题满分12分)在对某渔业产品的质量调研中,从甲,乙两地出产的该产品中各随机抽取10件,测量该产品中某种元素的含量(单位:毫克). 下表是测量数据的茎叶图:规定:当产品中的此种元素含量15≥毫克时为优质品.(Ⅰ)试用上述样本数据估计甲,乙两地该产品的优质品率(优质品件数/总件数);(Ⅱ)从乙地抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优质品数ξ的分布列及数学期望()E ξ.21006542098874286438210乙地甲地18.(本小题满分12分)如图,在底面是正方形的四棱锥P —ABCD 中,PA ⊥面ABCD ,BD 交AC 于点E ,F 是PC 中点,G 为AC 上一点. (Ⅰ)求证:BD ⊥FG ;(Ⅱ)确定点G 在线段AC 上的位置,使FG//平面PBD ,并说明理由. (Ⅲ)当二面角B —PC —D 的大小为32π时,求PC 与底面ABCD 所成角的正切值.19.(本小题满分12分)设数列{}n a 为等差数列,且145=a ,720a =,数列{}n b 的前n 项和为n S ,132(2,)n n S S n n N -=+≥∈.(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)若,1,2,3,n n n c a b n =⋅=,n T 为数列{}n c 的前n 项和,n T m <对*n N ∈恒成立,求m 的最小值.20.(本小题满分13分)如图,已知椭圆134:22=+y x C ,直线l 的方程为4=x ,过右焦点F 的直线'l 与椭圆交于异于左顶点A 的Q P ,两点,直线AP ,AQ 交直线l 分别于点M ,N . (Ⅰ)当29=⋅时,求此时直线'l 的方程; (Ⅱ)试问M ,N 两点的纵坐标之积是否为定值?若是,求出该定值;若不是,请说明理由.21.(本小题满分14分)设函数ax xxx f -=ln )(. (Ⅰ)若函数)(x f 在),1(+∞上为减函数,求实数a 的最小值;(Ⅱ)若存在212,,x x e e ⎡⎤∈⎣⎦,使a x f x f +'≤)()(21成立,求实数a 的取值范围.教学质量检测 理科数学参考答案一.选择题:DADBD ACCCB 二.填空题:11.20; 12.21; 13.-3; 14.43π; 15.21三.解答题:16.(本小题满分12分)解:(Ⅰ)由已知⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛-=-A A B A 6cos 6cos 22cos 2cos ππ 得2222312sin 2sin 2cos sin 44B A A A ⎛⎫-=-⎪⎝⎭……………………………………………………………3分 化简得23sin =B ………………………………………………………………………………………………5分 故323ππ或=B .………………………………………………………………………………………………6分 (Ⅱ)因为b a ≤,所以3B π=,……………………………………………………………………………7分由正弦定理2sin sin sin a c bA C B====,得C c A a sin 2,sin 2==, 故A A A A C A c a cos 23sin 2332sin sin 2sin sin 221-=⎪⎭⎫ ⎝⎛--=-=-π6A π⎛⎫=- ⎪⎝⎭ ……9分因为b a ≤,所以323ππ<≤A ,266πππ<-≤A ,……………………………………………………10分 所以⎪⎪⎭⎫⎢⎣⎡∈⎪⎭⎫ ⎝⎛-=-3,236sin 321πA c a . ……………………………………………………12分17.(本小题满分12分)解:(Ⅰ)甲厂抽取的样品中优等品有7件,优等品率为710,……………………………………2分 乙厂抽取的样品中优等品有8件,优等品率为84105=.…………………………………………………4分 (Ⅱ)ξ的取值为1,2,3.………………………………………………………………………………6分12823101(1)15C C P C ξ⋅===,21823107(2)15C C P C ξ⋅===,157)3(3100238=⋅==C C C P ξ……………………9分所以ξ的分布列为…………………………………………………………………………………………………………………10分故的数学期望为17712123.1515155Eξ=⨯+⨯+⨯=() …………………………………………………12分 18.(本小题满分12分)解:方法一:(Ⅰ)∵PA ⊥面ABCD ,四边形ABCD 是正方形,其对角线BD ,AC 交于点E∴PA ⊥BD ,AC ⊥BD , ∴BD ⊥平面APC ………………………………………………………2分 ∵FG ⊂平面PAC ,∴BD ⊥FG ……………………………………………………………………3分 (Ⅱ)当G 为EC 中点,即AG=34AC 时,FG ∥平面PBD ,……………………………………………4分 连接PE ,由F 为PC 中点,G 为EC 中点,知FG ∥PE ,………………………………………………5分 而FG ⊄平面PBD ,PB ⊂平面PBD ,故FG ∥平面PBD .……………………………………………6分 (Ⅲ)作BH ⊥PC 于H ,连接DH ,∵PA ⊥面ABCD ,四边形ABCD 是正方形,∴PB=PD ,又∵BC=DC ,PC=PC ,∴△PCB ≌△PCD ,∴DH ⊥PC ,且DH=BH ,∴∠BHD 是二面角B -PC -D 的平面角.即,32π=∠BHD ………………………………………………………………………………………7分 ∵PA ⊥面ABCD ,∴∠PCA 就是PC 与底面ABCD 所成的角 …………………………………8分连结EH ,则PC EH BHE BD EH ⊥=∠⊥,3,π,tan BEBHE EH∴∠==而BE EC =,,33sin ,3==∠∴=∴EC EH PCA EH EC …………………………………………10分,22tan =∠∴PCA ……………………………………………………………………………………11分 ∴PC 与底面ABCD 所成角的正切值是22………………………………………………………12分 方法二:(Ⅰ)以A 为原点,AB ,AD ,PA 所在的直线分别为x ,y ,z 轴建立空间直角坐标系,设正方形ABCD 的边长为1,则A (0,0,0),B (1,0,0),C (1,1,0)D (0,1,0),P (0,0,a )(a>0),)20)(0,,(),2,21,21(),0,21,21(<<m m m G aF E …………1分 ∵11(1,1,0),(,,)222a BD FG m m =-=---,110022BD FG m m ⎛⎫⎛⎫⋅=--+-+= ⎪ ⎪⎝⎭⎝⎭…………2分∴BD ⊥FG ………………………………………………………………………………3分(Ⅱ)要使FG//平面PBD ,只需FG//EP ,而11,,22EP a ⎛⎫=-- ⎪⎝⎭,由F G E P λ=,可得:11222m a a λλ⎧-=-⎪⎪⎨⎪-=⎪⎩,解得12λ=-,34m =,…………………………………………………………………………………5分 33,,044G ⎛⎫∴ ⎪⎝⎭,34AG AC =,故当34AG AC =时,FG//平面PBD ………………………6分(Ⅲ)设平面PBC 的一个法向量为(),,u x y z =则⎪⎩⎪⎨⎧=⋅=⋅0BC u ,而)0,1,0(),,1,1(=-=BC a PC ⎩⎨⎧==-+∴0y az y x ,取1z =,得)1,0,(a =,……………………8分 同理可得平面PDC 的一个法向量)1,,0(a =,设,所成的角为θ,则,21|32cos||cos |==πθ ,21111,21||||22=+⋅+∴=a a v u 1=∴a …………………………………………10分∵PA ⊥面ABCD ,∴∠PCA 就是PC 与底面ABCD 所成的角,2221tan ===∠∴AC PA PCA ∴PC 与底面ABCD 所成角的正切值是22…………………………………………………………12分 19.(本小题满分12分)解:(Ⅰ) 数列{}n a 为等差数列,公差,易得21=a , 所以 13-=n a n ……………………………………………………………………………………1分 由132n n S S -=+,得32n n n S S b =-+,即22n n b S =-, 所以21222()b b b =-+,又123b =2分 由132n n S S -=+, 当3n ≥时,得1232n n S S --=+,两式相减得:1123()n n n n S S S S ----=-,即13n n b b -=,所以)3≥…………………4分 ,所以{}n b 是以……………5分6分 8分9分11分∵n T m <对n N +∈恒成立,∴2≥m ∴m 的最小值是2………………………………12分20. (本小题满分13分)解:(Ⅰ)①当直线PQ 的斜率不存在时,由)0,1(F 可知PQ 方程为1=x代入椭圆134:22=+y x C 得)23,1(),23,1(-Q P 又)0,2(-A ),23,3(),23,3(-==∴274AP AQ ⋅= 不满足……………………………………2分②当直线PQ 的斜率存在时,设PQ 方程为)0)(1(≠-=k x k y代入椭圆134:22=+y x C 得01248)43(2222=-+-+k x k x k …………………………3分 设),(),,(2211y x Q y x P 得2221222143124,438k k x x k k x x +-=+=+…………………………4分 222121221221439)1()1)(1(k k x x x x k x x k y y +-=++--=--=2943274)(2)2)(2(222121212121=+=++++=+++=⋅k k y y x x x x y y x x26±=∴k 故直线'l 的方程; ()126-±=x y ………………………………………………6分 (Ⅱ)AP 的方程为11(2)2y y x x =++与l 的方程:4x =联立 得:116(4,)2y M x + 同理得226(4,)2y N x +…………………………………………………8分12121212126636222()4M N y y y y y y x x x x x x ∴⋅=⋅=+++++ ①k 不存在时,3336()22912(11)4M N y y ⋅⋅-⋅==-+++………………………………………………9分 ②k 存在时,2222223243494121643434M N k k y y k kk k-+⋅==--++++………………………………………12分 M ,N 两点的纵坐标之积为定值9- …………………………………………13分21.(本小题满分14分) 解:(Ⅰ)由已知得x >0,x ≠1.因f (x )在(1)+∞,上为减函数,故2ln 1()0(ln )x f x a x -'=-≤在(1)+∞,上恒成立. ………………1分所以当(1)x ∈+∞,时,max ()0f x '≤. 又()22ln 111()ln ln (ln )x f x a a x xx -'=-=-+-()2111ln 24a x =--+-,………………………………2分 故当11ln 2x =,即2x e =时,max 1()4f x a '=-. 所以10,4a -≤于是14a ≥,故a 的最小值为14. ……………………………………………4分(Ⅱ)命题“若存在212,[,],x x e e ∈使()12()f x f x a '+≤成立”等价于“当2[,]x e e ∈时,有()min max ()f x f x a '+≤”. …………………………………………………5分 由(Ⅰ),当2[,]x e e ∈时,max 1()4f x a '=-,∴()max 14f x a '+=.问题等价于:“当2[,]x e e ∈时,有min 1()4f x ≤”. ………………………………………………6分①当14a ≥时,由(1),()f x 在2[,]e e 上为减函数,则min ()f x =2221()24e f e ae =-≤,故21124a e -≥. ……………………………………………8分②当a <14时,由于'2111()()ln 24f x a x =--+-在2,e e ⎡⎤⎣⎦上的值域为1,4a a ⎡⎤--⎢⎥⎣⎦(ⅰ)0a -≥,即0a ≤,'()0f x ≥在2,e e ⎡⎤⎣⎦恒成立,故()f x 在2,e e ⎡⎤⎣⎦上为增函数,于是,min 1()()4f x f e e ae e ==-≥>,矛盾.……………………………………………10分 (ⅱ)0a -<,即104a <<,由'()f x 的单调性和值域知, 存在唯一20(,)x e e ∈,使'()0f x =,且满足:当0(,)x e x ∈时,'()0f x <,()f x 为减函数;当20(,)x x e ∈时,'()0f x >,()f x 为增函数; 所以,0min 0001()()ln 4x f x f x ax x ==-≤,20(,)x e e ∈…………………………………………12分 所以,2001111111ln 4ln 4244a x x e e ≥->->-=,与104a <<矛盾.………………………13分 综上,得21124a e ≥-………………………………………………………………………………14分。