拱桥—钢管拱计算书
拱桥满堂支架计算书

满堂支架计算书一、工程概况1、主拱肋截面采用宽9.6m,高1.3m的单箱三室普通钢筋混凝土箱型断面,顶、底板厚度均为22cm,腹板厚度均为35cm,拱脚根部段为2m长的实体段。
拱肋混凝土标号为C40,混凝土数量共计426.7m³,钢筋数量共计182994.5kg。
2、支架采用满堂式碗扣脚手架,平面尺寸为58m*9.6m。
其立杆在桥墩处横距为60cm、纵距60cm;其余横距为60cm、纵距为90cm、横杆步距为120cm组合形式布置纵横向均设置斜向剪力撑,以增加整个支架的稳定性。
3、拱盔采用φ48(d=3.5mm)钢管,钢管壁厚不得小于3.5 mm(+0.025mm)弯制。
4、底模采用15mm竹胶板,竹胶板后背10*8木方,木方横桥向布置,布置间距30cm控制。
二、满堂支架计算书1、支架荷载分析计算依据《公路桥涵施工技术规范》(JTG/F50-2011)《建筑施工碗扣式脚手架安全技术规范》(JGJ166-2008)《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)《路桥施工计算手册》其他现行规范。
2、荷载技术参数a.新浇钢筋混凝土自重荷载25KN/㎡b.振捣混凝土产生的荷载2.0KN/㎡(JTG_TF50-2011 公路桥涵施工技术规范P182)c.施工人员、材料、机具荷载2.5KN/㎡(JTG_TF50-2011 公路桥涵施工技术规范P182)d.模板、支架自重荷载2.5KN/㎡e.风荷载标准值采用0.6KN/㎡f.验算倾覆稳定系数2(JTG_TF50-2011 公路桥涵施工技术规范P182)3、荷载值的确定进行支架设计时,所采用的荷载设计值,取荷载标准值分别乘以下述相应的荷载分项系数,然后组合而得;本工程满堂支架采用碗扣式脚手架搭设,其立杆在桥墩处横距为60cm、纵距60cm;其余横距为60cm、纵距为90cm、横杆步距为120cm组合形式布置,其上设可调顶托,上铺钢管和方木形成模板平台,支架承载最不利情况为拱板混凝土浇注完毕尚未初凝前底板范围内的杆件承载。
第三章拱桥计算该看

2)拱轴系数的确定
(4)拱轴系数取值与拱上恒载分布的关系
矢跨比大,拱轴系数相应取大; 空腹拱的拱轴系数比实腹拱的小 ; 对于无支架施工的拱桥,裸拱 m 1 ,为了改善裸拱受力状态,设计时宜选较小 的拱轴系数;
矢跨比不变,高填土拱桥选小 m ,低填土拱桥选较大 m
3)拱轴线的水平倾角
y1
2、活载横向分布:活载作用在桥面上使主拱截面应力不均匀 的现象。在板拱情况下常常不计荷载横向分布,认为主 拱圈全宽均匀承担荷载。肋拱桥则需考虑横向分布的影 响。
3 内力叠加法与应力叠加法:应力叠加法考虑加载历史,认为 材料是在弹性限度内,内力叠加法按一次成形、一次加 载计算,不考虑应力累加历史。
如果考虑材料的塑性变形、收缩徐变引起的内力重分布, 则内力叠加法也有其合理性。
(ch k 1) 2
f
m 1
m 1 1
2
m 1
1 2(m 1) 2
k
y1/ 4
(ch 1) 2
m 1 1
2
1
f
m 1
m 1
2(m 1) 2
2)拱轴系数的确定
(1)实腹式拱桥拱轴系数的确定
g d 1hd 2d
gj
1hd
2
d
cos j
线外形与施工简便等因素。
拱轴线的形状直接影响主截面的内力分布与大小,选择拱轴 线的原则:尽可能减小主拱圈的弯矩,同时考虑拱轴线外形 与施工简便等因素。
实际工程中由于活载、主拱圈弹性压缩以及温度、收缩等因 素的作用,不存在理想拱轴线(或者说压力线与拱轴线不可能 是吻合的)。
根据混凝土拱桥恒载比重大的特点,在实用中一般采用恒载 压力线作为拱轴线,恒载作用愈大,这种选择就愈显得合理。
630管桩-乌鲁木齐钢管拱支架计算书

乌鲁木齐河特大桥128简支系杆拱钢管拱安装计算书编制:复核:批审:中铁大桥(郑州)工程机械有限公司二0一一年九月乌鲁木齐河特大桥钢管拱安装支架计算一、工程概况乌鲁木齐河特大桥主桥上部结构采用1孔128m简支系杆拱。
拱轴线采用二次抛物线,矢跨比f/L=1/5,理论计算跨度L=128m,理论拱轴线方程为:Y=0.8X-0.00625X²。
横桥向设置两道拱肋,拱肋中心间距13.8m。
系梁采用预应力混凝土简支箱梁,采用单箱双室截面,采用支架上分段现浇施工,钢管拱肋在系梁及支架上拼装合拢,即主桥采用先梁后拱的施工方法。
结构设计为刚性系梁刚性拱,设两道拱肋,拱肋采用外径φ1300mm 壁厚δ=20mm的钢管混凝土空腹哑铃型截面,上下两钢管中心距2.6m,拱肋截面高3.9m,拱肋上下钢管之间连接缀板δ=20mm。
施工时按施工拱轴线制作和拼装,拱肋弦管采用2m/2.5m长的直管折线对接起拱。
拱肋钢筋在工厂已制作完成,为便于运输,每条拱肋划分为11个运输节段(不含预埋段)。
全桥共设置6组K形横撑,每道横撑均为空钢管结构。
横撑上下管采用外径φ800mm,壁厚δ=12mm的钢管,每组K撑上、下管采用外径φ600mm,壁厚δ=10mm的钢管。
两道拱肋共设17对吊杆,第一对吊杆距离支点14.4m,其余吊杆中心间距均为6.2m。
每处吊杆均为双根85丝φ7mm的环氧喷涂平行钢丝束组成,双吊杆之间纵向间距50cm,每处吊点系梁设0.35m厚的隔板。
拼装支架采用φ630mm,壁厚δ=8mm的钢管桩,以及工16、槽钢[ 20型钢连接系组成框架结构。
二、计算依据1、中铁第一勘察设计院设计的乌鲁木齐河特大桥施工图:兰乌二线施桥LXTJ-9(标)-A;2、《铁路工程施工安全技术规程》(TB10401—2003)3、《铁路桥涵设计规范》(TB10203—2002)4、《钢结构设计规范》(GB50017—2003)5、《建筑结构荷载规范》(GB 50009—2001)6、《起重机设计规范》(GB /T3811—2008)7、《钢管混凝土拱桥技术规程》(征求意见稿/福建省工程建设地方标准)三、计算模型及假定计算模型选取二分之一的支架结构进行验算,支架钢管桩及连接系简化为梁单元,拱肋结构(含横撑)按照实际尺寸以梁单元的形式加于模型中。
拱桥计算书

16m空腹式拱桥计算书设计计算书一、设计资料(一)设计标准设计荷载:汽车-20级,挂车-100,人群荷载3KN/m2 净跨径:L0=16m净矢高:f0=2.28m桥面净宽:净6.5+2*(0.25+1.5m人行道)(二)材料及其数据拱顶填土厚度h d=0.5m,γ3=22KN/m3拱腔填料单位重γ=20KN/m3腹孔结构材料单位重γ2=24KN/m3主拱圈用10号砂浆砌号60块石,γ1=24KN/m3,极限抗压强度R j a=9.0MP a,弹性模量E=800R a j。
(三)计算依据1、交通部部标准《公路桥涵设计通用规范(JTJ021-89)》,人民交通出版社,1989年。
2、交通部部标准《公路砖石及混凝土桥涵设计规范(JTJ022-85)》,人民交通出版社,1985年。
3、《公路设计手册-拱桥》(上、下册),人民交通出版社,1994年。
4、《公路设计手册-基本资料》,人民交通出版社,1993年。
二、上部结构计算(一)主拱圈1、主拱圈采用矩形横截面,其宽度b0=10.0m,主拱圈厚度d=mkl01/3=6*1.2*16001/3=84.2cm,取d=85cm。
假定m=1.988,相应的y1/4/f=0.225,查《拱桥》附表(Ⅲ)-20(9)得Ψj=33003′32″,sinΨj=0.54551, cosΨj=0.83811 2、主拱圈的计算跨径和矢高L=l0+dsinΨj=16+0.85*0.54551=16.4637mf=f0+d/2-dcosΨ/2=2.28+0.85/2-0.85*0.83811/2=2.3488j3、主拱圈截面坐标将拱中性轴沿跨径24等分,每等分长Δl=l/24=0.6860m,每等分点拱轴线的纵坐标y1=[《拱桥》(上册)表(Ⅲ)-1值]f,相应拱背曲面的坐标y′1=y1-y上/cosΨ,拱腹曲面相应点的坐标y″1=y1+y下/cosΨ,具体位置见图1-1,具体数值见表1-1。
拱桥计算书——精选推荐

拱桥计算书⽬录1.设计依据与基础资料 (1)1.1标准及规范 (1)1.1.1标准 (1)1.1.2规范 (1)1.1.3参考资料 (1)1.2主要尺⼨及材料 (1)1.2.1主拱圈尺⼨及材料 (1)1.2.2拱上建筑尺⼨及材料 (2)1.2.3桥⾯系 (2)2.桥跨结构计算 (2)2.1确定拱轴系数 (2)2.2恒载计算 (4)2.2.1主拱圈恒载 (4)2.2.2拱上空腹段恒载 (5)2.2.3拱上实腹段的恒载 (6)2.3验算拱轴系数 (7)2.4拱圈弹性中⼼及弹性压缩系数 (8)2.4.1弹性中⼼计算 (8)2.4.2弹性压缩系数 (8)3.主拱圈截⾯内⼒计算 (8)3.1恒载内⼒计算 (8)3.1.1不计弹性压缩的恒载推⼒ (8)3.1.2计⼊弹性压缩的恒载内⼒ (8)3.2汽车荷载效应计算 (9)3.3⼈群荷载效应计算 (12)4.荷载作⽤效应组合 (13)5.主拱圈正截⾯强度验算 (14)6.拱圈总体“强度-稳定”验算 (16)等截⾯悬链线板拱式圬⼯拱桥1.设计依据与基础资料 1.1标准及规范 1.1.1标准跨径:净跨径m L 600=, 净⽮⾼m f 100=,6100=L f 设计荷载:公路—II 级汽车荷载,⼈群荷载桥⾯净宽:净7+20.75m ⼈⾏道。
1.1.2规范《公路⼯程技术标准》JTG B01-2003《公路桥梁设计通⽤规范》JTG D60-2004(以下简称《通规》)《公路圬⼯桥涵设计规范》JTG D61-2005(以下简称《圬规》)1.1.3参考资料《公路桥涵设计⼿册》拱桥上册(⼈民交通出版社 1994)(以下简称《⼿册》)1.2主要尺⼨及材料半拱⽰意图图1-11.2.1主拱圈尺⼨及材料主拱圈采⽤矩形截⾯,其宽度m B 9=,厚度m D 3.1=,采⽤M10砂浆砌筑MU50粗料⽯,容重为3125M KN=γ,抗压强度设计值:,抗剪强度设计值:,弹性模量:Ef .MPa m cd ==?=210021003858085。
拱桥的设计与计算

§8.1 拱桥设计要点
§8.1.1 确定桥梁的设计标高和矢跨比 §8.1.2 主拱截面尺寸的拟定 §8.1.3 拱轴线选择
大连海事大学----《桥梁工程》
1
第八章 拱桥的设计与计算
一、确定桥梁的设计标高和矢跨比
桥面标高:由两岸线路的纵断面设计来控制;要保证 桥下净空能满足泄洪或通航的要求。
y1 f
gd y
gx=gd+γy1 gj
l/2
12
第八章 拱桥的设计与计算
k 2 l12 gd (m 1)
d 2 y1
d 2
l12 Hg
gd [1 (m 1)
Hg
y1 ] f
f
x
d 2 y1
d 2
l12 gd Hg
k 2 y1
l/ 2
上式为二阶非齐次常系数线性微分方程。 解此方程,则得拱轴线方程为:
基础底面标高
大连海事大学----《桥梁工程》
3
第八章 拱桥的设计与计算
矢跨比 当跨径大小在分孔时已初步拟定后,根据跨径及拱顶、
拱脚标高,就可以确定主拱圈的矢跨比(f /L )。
板拱桥:矢跨比可采用1/3~1/7,不宜超过1/8。
混凝土拱桥:矢跨比多在1/5 ~ 1/8间,以1/6居多;
钢管混凝土拱桥矢跨比:1/4~1/5之间,以1/5最多。 钢拱桥常用的矢跨比为1/5~1/10,有推力拱中1/5~ 1/6最为常用。
M
0 x
ql 2
x
q 2
x2
M
0 l
2
ql 2 8
令 M x 0 可得
(ql x q x2 ) ql 2 y 0
22
8f
钢管混凝土系杆拱空间结构计算书

钢管混凝土系杆拱空间结构计算书一、设计依据1、交通部部颁《公路工程技术标准》(JTG B01-2021);2、交通部部颁《公路桥涵设计通用规范》(JTG D60-2021);3、交通部部颁《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2021);4、交通部部颁《公路桥涵地基与基础设计规范》(JTJ024-85);5、交通部部颁《公路工程抗震设计规范》(JTJ004-89);6、交通部部颁《公路桥涵施工技术规范》(JTJ041-2000); 7、交通部部颁《公路圬工桥涵设计规范》(JTG D61-2021); 8、中国工程建设标准化协会标准《钢管混凝土结构设计与施工规程》(CECS-28:90);9、建设部部颁《钢结构设计规范》(GB50017-2021); 10、Dr.Bridge系统--<>V3.1版; 11、Midas Civil 6.7.1空间有限元分析软件二、技术指标1、路线等级:高速公路,按双向6车道计算;2、计算行车速度100公里/小时;3、半幅桥面宽度:0.5米(护栏)+11.5米(行车道)+0.5米(护栏)=12.50米;5、设计荷载:公路-Ⅰ级;6、结构重要性系数:1.1;7、桥孔布置:跨径60米系杆拱桥;8、桥面采用单向横坡2%(由横梁倾斜形成); 9、护栏类别:采用三横梁护栏,护栏底座宽50厘米三、材料参数1、混凝土:a、系梁采用C50混凝土:轴心抗压标准强度fck=32.4Mpa,抗拉标准强度ftk=2.65Mpa 弹性模量Ec=3.45×104Mpa。
容重2.6t/m3;b、沥青混凝土铺装8厘米,按9厘米计入受力,容重2.3t/m3;c、整体化混凝土采用10厘米C50混凝土,容重2.6 t/m3; 2、钢材:a、预应力钢绞线:采用��15.20Ⅱ级松弛钢绞线束标准强度fpk=1860 Mpa,弹性模量Ep=1.95×105 Mpa。
京沪高铁某系杆拱桥支架计算书附图片

目录1 编制依据 (1)2工程概况 (1)3 支架方案 (1)3.1支架结构 (1)3.2满堂碗扣支架部分计算 (2)3.2.1计算参数 (2)3.2.2模板面板计算 (4)3.2.3支撑木方的计算 (5)3.2.4 托梁的计算 (5)3.2.5立杆的稳定性计算 (7)3.2.6 基础承载力计算 (8)3.3 门式支架计算 (11)3.3.1 跨度5米钢梁计算 (11)3.3.2 跨度3.5米钢梁计算 (14)3.3.3 立柱的稳定性计算 (15)3.3.4 基础承载力计算 (16)3.4拱肋支架布置 (16)某系杆拱桥支架计算书1 编制依据1、《客运专线铁路桥涵工程施工质量验收暂行标准》铁建设[2005]160号2、《铁路混凝土工程施工技术指南》TZ210-20053、《无砟轨道1-44.5m简支拱》4、现场调查情况。
2工程概况(1-44.5米)简支拱桥横跨××市南外环线,紧邻既有××线。
地层自上到下主要为素填土、粉土、细砂、黏土、粉质黏土。
下部构造采用24根直径1.5m钻孔桩基础,桩长分别为49m,50m,承台为15.5×10.6×3m两个,上设台身。
上部构造为拱梁组合体系,系梁采用双主梁的纵横梁体系,主纵梁梁高1.8m,高跨比1/24.72m,梁宽1.4m,在端部加厚至2.4m,桥面板厚0.3m,端横梁梁高1.8m,宽2.25m。
中间横梁高1.8m,宽0.35m,端次横梁高1.8m,宽0.45m,设二道小纵梁,位于线路中心处,小纵梁高1.8m,宽0.3m。
系梁梁体有纵、横向预应力体系,系杆拱跨径为44.5m。
拱肋采用圆端形钢管混凝土结构,不设横撑,中间拱肋为高0.9m ,宽1.5m的等截面;连接拱脚部分的拱肋截面从高0.9m,宽1.5m逐渐变化为高1.4m,宽2.0m。
拱肋壁厚16mm,内填充C50补偿收缩混凝土,两拱脚之间净宽10.2m;拱轴线为二次抛物线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
潜江河大桥计算书1.基本信息1.1.工程概况祥和路位于安庆市新城中心区,是安庆市城市规划中一条重要的东西走等主要城市道路交叉。
顺安路至潜江路之间路基按38米设计,本桥——潜江河大桥位于顺安路和潜江路之间。
本桥位于规划河流潜江沟上,潜江沟规划河底宽度45m,上口宽度80~100m,设计采用1×60m下承式钢管混凝土系杆拱跨越。
1.2.技术标准(1)设计荷载:公路-Ⅰ级,人群荷载集度3.5kN/m2。
(2)桥面横坡:双向1.5%。
(3)桥梁横断面:2×[4.5m(人行道)+4.5 m(非)+2.5m(隔离带)]+15m(车)=38m(全宽)。
(4)地震动峰值加速度0.1 g(基本烈度7度),按8度抗震设防。
(5)环境类别:I(6)年平均相对湿度:70%(7)竖向梯度温度效应:按现行规范规定取值。
(8)年均温差:按升温20℃。
(9)结构重要性系数:11.3.主要规范《城市桥梁设计准则》(CJJ 11-93)《公路桥涵设计通用规范》(JTG D60-2004)《桥梁抗震设计细则》(JTG/T B02-01-2008)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JT GD62-2004)《公路桥涵地基与基础设计规范》(JT GD63-2007)《公路桥涵施工技术规范》(JTG/T F50-2011)《城市桥梁工程施工与质量验收规范》(CJJ2-2008)《公路桥涵钢结构及木结构设计规范》(JTJ025-86)《钢管混凝土结构设计与施工规程》(CECS28:90)《钢管混凝土结构技术规范》(DBJ 13-51-2003)福建省地方标准《钢结构设计规范》(GB 50017-2003)其他相关的国家标准、规范1.4.结构概述桥梁横向布置:4.5m(人行道)+4.5m(非机动车道)+2.5m(隔离带)+15m(机动车道)+2.5m(隔离带)+4.5m(非机动车道)+4.5m(人行道),桥梁总宽38m。
采用1×60m下承式钢管拱结构,计算跨径60m,矢跨比1/4。
拱肋采用D=150cm,t=2cm单圆形钢管,内灌微膨胀混凝土;系梁采用150cm×180cm预应力混凝土结构,系梁在拱脚位置加宽到200cm,加高到240cm宽;端横梁采用360cm×190cm双室箱梁,腹板厚度50cm;中横梁采用底宽65cmT梁,梁高135cm;桥面板厚25cm。
系梁、横梁及桥面板采用整体支架现浇,结构整体性好;吊杆间距4m,采用新型低应力防腐拉索PESFD7-109;横向设五道风撑,风撑D=80cm,t=16mm钢管。
1.5.主要材料及材料性能(1)混凝土:C50,重力密度γ=26.0kN/m3,弹性模量为Ec=3.45×104MPa;(2)钢管混凝土:Q345C钢管,内部填充C50微膨胀混凝土,计算内力时,刚度直接叠加;计算挠度与一类稳定时,考虑混凝土折减,折减系数0.8。
(3)预应力钢筋:弹性模量E p=1.95×105MPa,松驰率ρ=0.035,松驰系数ζ=0.3;(4)锚具:锚具变形、钢筋回缩取6mm(一端);(5)金属波纹管:摩擦系数:u=0.25;偏差系数:κ=0.0015;(6)吊杆:计算截面积41.95cm2,σb=1670Mpa,计算弹性模量E=2.05×105MPa(7)沥青混凝土:重力密度γ=24.0kN/m3;1.6.计算方法、内容本桥静力结构分析采用Midas Civil 2010和桥梁博士3.20分别独立建模,平行计算。
荷载考虑自重、二期铺装、年均温差(升温20℃)、温度梯度、收缩徐变(按D62规范)、汽车、人群,冲击力等因素。
按照正装模型分析,考虑施工阶段联合截面及收缩徐变效应,迭代优化成桥最优索力。
手算成桥最优状态拉索无应力长度,作为施工张拉的最终控制参量。
应用Midas Civil建立空间有限元模型,用于计算端横梁面内弯矩,按照A类预应力混凝土结构进行配束,中横梁也在模型中予以考虑和计算。
其中中横梁受力类似于简支悬臂梁,支座位置有扭转刚度约束,故采用桥梁博士建立中横梁平面杆系计算复核。
模型中桥面板采用板单元进行模拟,提取板单元纵桥向和横梁桥向截面弯矩,进行纵向和横向(分布筋)配筋设计。
拱脚节点由系梁、拱肋及端横梁三者连接而成的强大的钢筋混凝土块,受力复杂。
按照各方向分解法考虑。
桥梁稳定性分析,采用Midas Civil建立的空间有限元模型,考虑空钢管施工过程、混凝土灌注过程,钢管拱侧向风载或者自重作用下的屈曲分析,安全系数均在4以上。
1.7. 控制标准(1)承载能力极限状态验算:钢管拱:依据《钢管混凝土结构技术规程》(DBJ 13-51-2003)、《钢结构设计规范》(GB 50017-2003)并参考《钢管混凝土拱桥》(陈宝春)一书。
验算轴心受压承载力、验算整体稳定极限承载力、组合材料抗剪承载力。
系梁、横梁:依据《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JT GD62-2004)进行常规验算。
(2)正常使用极限状态验算:钢管拱:主要依据《公路工程结构可靠度设计统一标准》(GB/T50283-1999)系梁、横梁:依据《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JT GD62-2004)按A 类构件进行常规验算。
(3)施工阶段应力验算:参照《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JT GD62-2004)、《公路桥涵钢结构及木结构设计规范》(JTJ025-86)。
2.模型建立与分析2.1.计算模型使用迈达斯建立全桥空间有限元程序,拱肋、系梁、横梁采用梁单元模拟;吊杆、风撑梁预应力布置在系梁截面中心,预应力基本不产生附加弯矩。
端横梁预应力布置9根12Φs15.2预应力钢束,两端张拉,张拉控制应力0.75fpk。
布置见设计图纸。
中横梁预应力布置6根10Φs15.2预应力钢束,两端张拉,张拉控制应力0.75fpk。
布置见设计图纸。
2.2.荷载及组合荷载考虑自重、二期铺装、温度梯度、收缩徐变、系统升温、汽车(含冲击力)、人群等按《公路桥涵设计通用规范》(JTG D60-2004)组合结构基频f 按本空间模型计算竖向一阶振型得到。
3.承载力能力极限状态验算结果3.1拱肋验算(1)拱肋按照统一理论,计算复核强度设计值c sc f f )02.114.1(0ξ+=cc s s f A f A =0ξf sc =40.8Mpa考虑混凝土收缩徐变对组合截面轴压强度设计值的折减kp=0.8考虑钢管初应力对钢管混凝土构件承载能力的影响,灌注完混凝土后,钢管最大截面应力为11.8Mpa ,经过计算后的影响系数为1。
修正后f sc =32.5Mpa主拱轴线长度l 轴=68.88m ,结构体系为无铰拱,计算长度l 0=0.36*l 轴=24.79m 。
计算长细比:d l 04=λ=66——d 钢管外径 查《钢结构设计规范》得稳定系数864.0=ϕ读取拱肋承载力力组合最大压力Nmax=24096.3kNsc sc A f ϕ=49625kN>Nmax ,显然满足要求。
(2)按偏心受压构件进行稳定性承载力验算 1) 当()sc sc f V V A N ϕ2012.0-≥时()14.01204.100≤⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-+V V M N N M N N E m βϕ 2) 当()sc sc f V V A N ϕ2012.0-<时()14.014.1204.100≤⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-+V V M N N M N N E m βϕ sc sc f A N =0sc sc m f W M γ=0scv sc v f A V γ=022λπsc sc E A E N =式中 N ,M ,V ——所计算构件段内的m ax M 和相应的N 、V 组合设计值;以及max N 和相应的M 、V 组合设计值,此时M 取所计算构件段内的最大值;N E ——欧拉临界力;m γ——构件截面抗弯塑性发展系数,ξξγ92.148.0+-=m ; v γ——构件截面抗剪塑性发展系数,ξξγ30.130.0+-=v ;ξ——钢管混凝土的套箍系数标准值,ckc y s f A f A =ξ;c A ——钢管内混凝土的截面面积;y f ——钢材的抗拉、抗压、抗弯强度标准值;ck f ——混凝土的轴心抗压强度标准值;W sc ——构件截面抵抗矩,323d W sc π=;βm ——等效弯矩系数,按表4.3.1采用。
计算过程:βm=0.85等效弯矩系数,一般取小值0.85 Wsc=3.31E+08构件截面抵抗矩 fck=32.4混凝土轴心抗压强度标准值 fy=345钢材的抗拉、抗压、抗弯强度标准值ζ=0.59 钢管混凝土套箍系数标准值 γm=1.19 构件抗弯塑性发展系数 γv=0.82 构件抗剪塑性发展系数 as=0.056 钢管拱含钢量NE=171482 欧拉临界力(kN),比承载力强度大很多,说明压曲也不那么容易。
No=57448.0 kN Mo=12847.1 kN*m Vo=17668.0 kN 从模型中提取一下内力Mmax=1838可分别提取跨中,拱脚,4分点,这里只计算4分点作为代表,其余不在赘述。
N=18225最大弯矩对应N V=722最大弯矩对应V N/Asc=10.310.2(1-(V/Vo)^2)^2ψfsc=5.61()sc sc f V V A N ϕ2012.0-<所以使用公式(2)验算()1375.04.014.1204.100≤=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-+V V M N N M N N E m βϕ满足要求。
(3)抗剪验算f sc v =12.16 钢管混凝土组合抗剪强度设计值 R=21484.98 kN模型中承载能力极限状态最大剪力 Nmax=1793.4kN 满足要求3.2.系梁、中横梁、端横梁承载力验算抽取系梁、中横梁、端横梁关键截面,见下图:验算截面位置图承载力验算表格:单元位置类型验算rMu (kN*m) Mn (kN*m) 408 I[338] MY-MAX OK -3719.0 19947.5 408 I[338] MY-MIN OK -4652.8 19947.5 441 I[365] MY-MAX OK -724.3 4844.7 441 I[365] MY-MIN OK -1518.1 4844.7 745 I[671] MY-MAX OK 12.2 20643.8 745 I[671] MY-MIN OK 1.0 20643.8 747 I[673] MY-MAX OK 95.1 20643.8 747 I[673] MY-MIN OK -6594.3 75242.7 788 I[714] MY-MAX OK 5731.1 34836.5 788 I[714] MY-MIN OK -2646.8 34836.5 794 I[720] MY-MAX OK 6355.8 34836.5 794 I[720] MY-MIN OK -3421.0 34836.5 796 I[722] MY-MAX OK 6061.5 34836.5 796 I[722] MY-MIN OK -3142.4 34836.5 799 I[725] MY-MAX OK 5458.6 34836.5 799 I[725] MY-MIN OK -3058.0 34836.5 802 I[728] MY-MAX OK 4332.0 34836.5 802 I[728] MY-MIN OK -2922.7 34729.0 805 I[731] MY-MAX OK 2784.1 13982.3 805 I[731] MY-MIN OK -3186.3 13982.3 809 I[735] MY-MAX OK -239.6 75242.7 809 I[735] MY-MIN OK -631.2 75242.7 811 I[673] MY-MAX OK -8018.8 20444.2811 I[673] MY-MIN OK -15191.4 20444.2 817 I[700] MY-MAX OK -3180.3 6068.6 1071 I[941] MY-MAX OK -2620.8 19719.0 1071 I[941] MY-MIN OK -9105.5 19719.0 1476 I[1276] MY-MAX OK 528.8 11655.5 1476 I[1276] MY-MIN OK -6770.5 16634.4 1509 I[1303] MY-MAX OK 1751.6 4180.5 1509 I[1303] MY-MIN OK -1444.0 4566.5 1881 I[1611] MY-MAX OK -2515.1 19718.8 1881 I[1611] MY-MIN OK -9050.2 19718.8 2203 I[1879] MY-MAX OK -9188.2 20440.1 2203 I[1879] MY-MIN OK -13924.0 20440.1 2209 I[1906] MY-MAX OK -3606.3 6068.6 2544 I[2214] MY-MAX OK -3760.6 19946.7 2544 I[2214] MY-MIN OK -4700.5 19946.7 2868 I[2482] MY-MAX OK -409.9 11866.2 2868 I[2482] MY-MIN OK -445.6 11866.2 2901 I[2509] MY-MAX OK 205.4 2696.9 2901 I[2509] MY-MIN OK 172.9 2696.93.3.支反力计算标准组合最大支反力:17578kN。