抗滑桩设计与计算
(完整版)抗滑桩计算

4.3.3 1-1′剖面抗滑桩设计(1)抗滑桩各参数的确定或选取在滑坡力最大处即边坡1-1′剖面潜在变形区滑面条块21(剩余下滑力828.7KN )附近处设置一排钢筋混凝土抗滑桩,间距为6m ,共布置8根抗滑桩。
初拟抗滑桩桩身尺寸为b×h=1.5m×2.0m。
桩长12m ,自由段h 1为6m ,锚固段h 2为6m 。
采用C30混凝土,查资料得,C30混凝土,423.0010/c E N mm =⨯。
桩的截面惯性矩3341.5 2.011212bh I m ⨯===。
桩的钢筋混凝土弹性模量770.80.8 3.0010 2.4010c E E KPa ==⨯⨯=⨯。
桩的计算宽度 1.51 2.5p B m =+=。
1-1剖面滑动面以下为较完整的岩层(泥灰岩),对于较完整的岩层,其地基系数的选取参考下表(表4-1):H V H V 剖面处滑面以下是泥灰岩,岩石饱和单轴抗压强度标准值为16.85MPa ,根据上表侧向K H 可取:K H =2.7×105kN/m3按K 法计算,桩的变形系数β为:所以抗滑桩属于刚性桩,所谓刚性桩是指桩的位置发生了偏离,但桩轴线仍保持原有线型,变形是由于桩周土的变形所致。
这时,桩犹如刚体一样,仅发生了转动的桩。
桩底边界条件:按自由端考虑。
(2)外力计算每根桩的滑坡推力:kN L 2.497267.828E n r =⨯=⨯=E ,按三角形分布,其kN h E P r 4.165765.02.49725.01=⨯=⨯=桩前被动土压力计算:抗滑桩自由段长度h 1=6m,自由段桩前土为块石土,按勘察报告提高的参数,块石土的c=8.81kP a ψ=15.4O γ=15.4kN/m 3128.01104.24.52107.24417541<=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛⋅=EI B k p H βp K =2(45)2otg ϕ+=215.4(45)2otg ο+=1.662211112h 20.5 6.0 1.6628.816748.75/22p p E h K c kN m =γ+=⨯⨯⨯+⨯=(3)桩身内力计算 ①剪力221p A y 2.7752675.7484.16572)E -(P Q =⨯-=⨯⨯=y y y h ②弯矩23A 75.72y 25.2433y y M Q y y =⋅=⋅= 各截面计算结果见下表(表4-2):(4)锚固段桩侧应力和桩身内力计算 ①滑动面至桩的转动中心的距离该滑面地基系数随深度为常数,K=A=K v =K s =2.7×105kN/m 3滑动面至桩的转动中心的距离为:()()()()m 6.36.927258.54512369.272528.54513623232A A 2A A 20=⨯+⨯⨯⨯⨯+⨯⨯=++=h Q M h Q M h y ②桩的转角()()rad Ah B h Q M p 00112.06107.25.269.27258.5451262635322A A =⨯⨯⨯⨯+⨯⨯=+=∆ϕ③桩侧应力()()()()2550y 112.8y 10064.108800112.0y .6310107.2y y y y my A -+=⨯-+⨯=∆-+=∆ϕδ④最大侧应力位置 令0yd dyσ=,则 100.8224y 0-= y =0.45m⑤剪力()()y y y m B y y y A B Q p p A 2361221Q 020y -∆--∆-=ϕϕ ()y y -⨯⨯⨯⨯⨯⨯⨯-=6.3200112.0107.25.2219.27255 ()y y 26.3200112.0105.26125-⨯⨯⨯⨯⨯- 9.27256.27214.9312632+-+-=y y y 0=yy d dQ ,则06.27212524.932=--y ym y 6.3=⑥弯矩()()[]y y my y y A y B y Q M p A A y -+-∆-+=002232121.M ϕ ()()[]y y y y y -⨯+-⨯⨯⨯⨯⨯⨯-+=6.32106.3310.72200112.05.2121.82725.85451552 8.54518.272513604233.23234++--=y y y y 锚固段桩侧应力、桩身剪力及弯矩计算汇总如下()KN y Q -4347.15 -4198.90 -3561.73 -2357.10 -514.97 2034.70()m y 00.511.522.53()m KN .M y5451.80 6470.91 6798.93 6456.86 5500.68 4021.38 2144.93()m y 3.6 4 4.5 5 5.5 6 ()m KN .M y32.31-2120.52-4082.59-5587.95-6335.64-5989.72根据桩的应力和内力的计算结果,绘出桩的受力图,如下所示:图4-2桩侧应力图图4-3 桩身剪力图图4-4 桩身弯矩图(5)桩侧应力复核比较完整的岩质、半岩质地层桩身对围岩的侧压应力max σ(a kP )应符合下列条件:max 120K K σ≤⋅⋅´´R 式中 1K ´——折减系数,根据岩层产状的倾角大小,取0.5~1.0;2K ´——折减系数,根据岩层破碎和软化程度,取0.3~0.5; 0R ——岩石单轴抗压极限强度,a kP由式得,a a kP kP 25.41281085.1635.07.064.10883=⨯⨯⨯<满足要求(6)桩的结构设计 ①基本指标 混凝土C 25:C25混凝土的轴心抗压强度设计值为211.9/c f N mm =,轴心抗拉强度设计值21.27/t f N mm =。
抗滑桩设计验算步骤

抗滑桩设计盐酸步骤一. 采用传递乘数法计算划破推力:下坡推力:ψϕαα1tan cos sin -+-+-=i i i i i i i E L C W KW i Ei ; 传递乘数:i i i i i ϕααααψtan )sin()cos(11---=-- ; 第一块下滑推力:KNL C W KW E i 94.24640517tan 5.60cos 5005.60sin 5002.1tan cos sin 1111111=⨯-⨯-⨯⨯=--=︒ ϕαα 第二块下滑推力:5386.017tan )5.185.60sin()5.185.60cos(tan )sin()(221212=---=---= ϕααααψCOS KNE L C W KW E 63.4235386.094.24658.3117tan 5.18cos 49505.18sin 49502.1tan cos sin 2122222222=⨯+⨯-⨯⨯-⨯⨯=+--⨯= ψϕαα 第三块下滑推力:0168.117tan )225.18sin()225.18cos(tan )sin()cos(332323=---=---= ϕααααψ KNE L C W KW E 74.134163.4230168.137517tan 22cos 660022sin 66002.1tan cos sin 3233333333=⨯+⨯-⨯⨯-⨯⨯=+--⨯= ψϕαα 第四块下滑推力:965.017tan )1722sin()1722cos(tan )sin()cos(443434=---=---= ϕααααψ KNE L C W KW E 60.147874.13419695.058.4217tan 17cos 670017sin 67002.1tan cos sin 4344444444=⨯+⨯-⨯⨯-⨯⨯=+--⨯= ψϕαα第五块下滑推力:9438.017tan )5.817sin()5.817cos(tan )sin()cos(554545=---=---= ϕααααψ KNE L C W KW E 50.89460.14789438.055.1817tan 5.8cos 32805.8sin 32802.1tan cos sin 5455555555=⨯+⨯-⨯⨯-⨯⨯=+--⨯= ψϕαα 二. 拟定桩身截面尺寸与平面布置主滑面抗滑桩全长19.0m ,滑面上受荷段长9m ,滑面之下的嵌固段长10.0m ,桩间距S=6.0m ,截面尺寸2.0 ⨯2.5m (人工控孔桩),截面模量32208.265.20.26m bh W =⨯==,截面对桩中上部惯性矩4336.2125.20.212m bh I =⨯==。
抗滑桩设计及计算

其中
2
1 2
(sin
xch
x
cos
xsh
x)
3
1 2
sin
xs h
x
4
1 4
(sin
xch
x
cos
xsh
x)
①当桩底为固定端时,有 式,联立求解得:
, yB .0代入式(B4.104)中的第1式和第2
②当桩底为铰接端时,有 中的第1式和第3式,联立求解得:
, yB ,0
MB,0
。将B 边 界0 条件QB带入0(4.8)
y0
0
M0 C1B3 B1C3 Q0 D1B3 B1D3
2EI B1A3 A1B3 3EI B1A3 A1B3
M0
EI
A1C3 B1A3
C1A3 A1B3
Q 2E 0I
A1D3 D1A3 B1A3 A1B3
将上述各种边界条件下相应的y0、φ0带入(4.8),即可求得滑动面以下桩身任一截面的位 移、转角、弯矩和剪力。
2. K法 依假定,桩锚固段的挠曲微分方程为:
由式(4.3),有
d4y EI dx4 KhBpy0
KhBp 4EI上式4可写为:
d4y dx4
4
4
y
0
求解常系数微分方程,整理代换后有:
y
m (3)地基反力系数K, 应通过实验确定。 当地基土为多层土时,采用按层厚以等面积加权求平均的方法求算地基反力系数。
地基土为2层时,有 地基土为3层时,有
mm1l12m2(2l1l2)l2 (l1l2)2
m m 1l1 2m 2(2l1l2)l2m 3(2l12l2l3)l3 (l1l2l3)2
A
(完整版)抗滑桩设计与计算

其中,α=
αh2—桩的计算深度(m);
mH—水平方向地基系数随深度而变形的比例系数(KN/m4),其余符号同前。
四.根据桩底的边界条件采用相应的公式计算桩身各截面的变位(位移),内力及侧壁应力等,并计算确定最大剪力、弯矩及其部位。
矩形桩:Bp=Kf*Ka*b=1.0*(1+1/b)*b=b+1
圆形桩:Bp=Kf*Ka*d=0.9*(1+1/d)*d=0.9(d+1)
③根据选定的地基系数及桩的截面形式、尺寸,计算桩的变形系数(α或β)及其计算深度(αh或βh),据以判断是按刚性桩还是弹性桩来设计。
桩的截面形状应从经济合理及施工方便可虑。目前多用矩形桩,边长2~3m,以1.5×2.0m及2.0×3.0m两种尺寸的截面较为常见。
2比较完整的岩质、半岩质地层
桩身对围岩的侧向压应力σmax(kPa)应符合下列条件:
σmax≤K1/. K2/.R0
式中,K1/—折减系数,根据岩层产状的倾角大小,取0.5~1.0;
K2/—折减系数,根据岩层的破碎和软化程度,取0.3~0.5;
R0—岩石单轴极限抗压强度,(kPa)。
2桩底支承条件
抗滑桩的顶端,一般为自由支承;而底端,由于锚固深度不同,可以分为自由支承、铰支承和固定支承三种,通常采用前两种。
抗滑桩设计的步骤
1抗滑桩设计计算步骤
一.首先弄清滑坡的原因、性质、范围、厚度,分析滑坡的稳定状态和发展趋势。
二.根据滑坡地质断面及滑动面处岩土的抗剪强度指标,计算滑坡推力。
三.根据地形地质及施工条件等确定设桩的位置及范围。
①根据滑坡推力大小、地形及地层性质,拟定桩长、锚固深度、桩截面尺寸及桩间距。
滑坡抗滑桩设计计算

滑坡抗滑桩设计计算抗滑桩设计一:设计题目某高速公路K15+620~K15+880 滑坡处治设计。
二:设计资料1:概述某高速公路K15+620~K15+880位于崩坡积块石土斜坡前缘,原设计为路堑墙支挡块石土,泥岩已护面墙防护。
开挖揭露地质情况与设计差异较大,在坡题前缘全断面开挖临空后,受预计暴雨作用块石土形成牵引式滑坡。
滑坡发生后,对该滑坡进行施工图勘测,并结合工程地质勘测报告,对该滑坡提出处置的方案。
K15+620~K15+880滑坡采用“清方+支档+截排水”综合处理,滑坡处治平面布置图见附图1,要求对抗滑桩进行设计。
2:工程地质条件该高速公路K15+620~K15+880 滑坡区位于条状低山斜坡中上部,沿该段公路左侧展布,前缘高程304m 左右,后缘高程355m 左右,地形坡角约30 度。
滑体纵向长约105 米,宽200~300 米,滑体厚度8~20 米,面积接近1.5×104m2,体积约15×104m3。
主滑动方向202°,属于大型牵引式块石土滑坡。
通过地质测绘及钻探揭露,滑体物质主要由崩坡积块石土(Q4c+dl)组成。
块石土呈紫红、灰褐等色,稍湿~湿,松散~稍密,成份主要为砂岩、少量粉砂质泥岩,多为中等风化,棱角状,粒径20cm~50cm,约占60%,次为小块石,约占10%,其间由紫红色低液限粘土充填。
在滑体后部相对较薄,厚5~8m;在滑体中部、前端分布较厚,厚9~24m。
滑动带(面)多为块石土与基岩的接触带,滑带厚0.2~0.6m 左右,滑带土中小块石含量较低(<5%),低液限粘土湿、可塑~软塑,有搓揉现象,见镜面、擦痕等。
滑床物质主要为侏罗系沙溪庙组泥岩、砂岩。
泥岩多为紫红色,主要由粘土矿物组成,砂质含量不均,局部富集,泥质结构、厚层状构造;砂岩多为灰白色,主要由长石、石英、云母等矿物组成,泥、钙质胶结,细粒结构,厚层状构造。
岩层产状265º~290º∠15º~28º,基岩顶面的产状近似于岩层产状。
抗滑桩设计与计算-简化

图6-13 不同桩间距桩最大剪力变化曲线
上排桩 下排桩
(三)桩的锚固段深度h2
桩埋入滑面以下稳定地层内的适宜锚固深 度,与地层强度、桩所承受的滑坡推力、桩的相 对刚度以及桩前滑面以上滑体对桩的反力等有 关。一般等于(1/4~1/2)总桩长。 合理锚固段长度确定标准: (1)锚固段对地层的侧向压应力不得大于该地 层的容许侧向抗压强度—桩侧支承条件问题 (2)桩底约束条件—影响桩体变形,并从而影 响桩侧应力。 (3)桩基底的最大压应力不得大于地基的容许 承载力。— 一般都能满足 上述两方面不能满足要求时,应主要通过调 整桩间距来满足设计要求。
⎝ d⎠
a
b
4.2 抗滑桩的设计计算
三、确定桩侧岩(土)的地基系数
桩侧岩(土)的弹性抗力系数简称地基系数,地基承受 的侧压力与桩在该处产生的侧向位移的比值。 温克尔假定(虎克定律): f= K x 弹性抗力:作用于桩侧任一点y处的弹性抗力fy和桩侧 应力分别为:
f y = KBp x y
σ y = Kx y
⎛ K ⋅Bp β = ⎜ ⎜ 4 EI ⎝
⎞ ⎟ ⎟ ⎠
1 4
a
K——地基系数(kN/m3); BP——桩的正面计算宽度(m); E——桩的弹性模量(kPa);
b
3
ba I= 4)。 I——桩的截面惯性矩(m 12
4.2 抗滑桩的设计计算
(2) “m”法计算中桩体刚度判别 当α h2≤2.5时,抗滑桩属刚性桩; 当α h2>2.5时,抗滑桩属弹性桩。 其中:α为桩的变形系数,以m-1计,可按下式 1 计算: ⎛ mB p ⎞ 5
4.1 概述
四、抗滑桩的计算方法
理论基础:将地基土视为弹性介质,应用弹性地基梁原 理,以捷克学者温克勒提出的“弹性地基”的假说作为计算的 理论基础。 温克勒公式: 式中,x为位移
抗滑桩类型、设计及计算,这样讲解容易多了吧!

抗滑桩类型、设计及计算,这样讲解容易多了吧!抗滑桩是桩式抗流系统(SLTS)的重要组成部分,其设计的基本目的是抵御水流的滑动作用,从而稳固滩堤或堤坝的结构,避免破坏。
目前,抗滑桩的设计既受到以往经验和研究者实验,也受到工程计算机辅助设计(CAD)技术的影响。
在此基础上,本文将讨论抗滑桩的类型、设计及计算。
一、抗滑桩类型抗滑桩不仅可以根据桩型设计不同,还可以根据是否具有抗滑能力来分类:1.通桩:即普通桩,其包括弯桩、柱桩和坑桩等,用于固结围堰及护坡,其结构物不具有任何抗滑能力,承受水流的滑动作用十分弱,不可以从单一的普通桩上获得足够的抗滑能力。
2.滑桩:即抗滑桩,其结构物具有抗滑能力,抗流形式包括抗滑桩、焊接抗滑桩和砼抗滑桩。
二、抗滑桩设计抗滑桩的设计包括以下方面:1.构物的设计:抗滑桩的结构物应考虑桩头形状、桩身布置形式、抗滑桩间隔、桩径、桩长等,以获得滩堤防护构筑物的最优结构设计。
2.程计算机模拟设计:为了获得有效的抗滑桩设计,当今的设计师们经常使用工程计算机模拟设计。
通过计算机模拟,可以仿真出抗滑桩的水流特性以及水力场,以确保深浅桩形和桩深等确定抗滑桩设计方案的正确性。
三、抗滑桩计算抗滑桩的计算主要围绕抗滑桩的抗滑性能及护坡的稳固性来进行,下面介绍两部分:1.滑性能计算:主要包括水流方向和深浅桩布置对抗滑桩抗滑效能的影响,以及抗滑桩的抗滑系数,并将通过计算机模拟设计仿真抗滑桩的水力场,来评估抗滑桩的抗滑性能。
2.坡稳固性计算:主要包括各种因素对护坡稳定性的影响,结合抗滑桩设计方案,对护坡及其附近的水力场进行计算,根据各种计算结果评估护坡的稳定性。
四、总结抗滑桩的设计与计算关系密切,抗滑桩的性能与滩堤稳定性密不可分,要想获得抗滑桩的最佳效能,就必须考虑桩身布置形式、抗滑桩间隔、桩径、桩长等设计要素,此外,还需要重视有关稳定性的水力场计算和结构安全性。
因此,抗滑桩的设计与计算都需要综合考虑,在此基础上,才能获得抗滑桩的最佳效能,以确保滩堤的安全及稳定。
抗滑桩计算

KV ( kN/m3 ) 4.0×10
5
序 号
饱和极 限 抗 压强度 R (kPa) 6.0×10
4
KV ( kN/m3 ) 12.0×1 05
1
(1.0~2.0) ×105
4
7
2
1.5×10
4
2.5×105
5
4.0×10
4
6.0×10
58Leabharlann 8.0×104(15.0~2 5.0) ×105
(25.0~2 8.0) ×105
当ah2>2.5时,抗滑桩属弹性桩
其中:为桩的变形系数,以m-1计,可按下式 计算: 1
mH B p EI
5
m H ——水平方向地基系数随深度而变化 式中: 的比例系数(kN/m4)。
第三节、抗滑桩的要素设计
当采用抗滑桩整治滑坡时,首先需要解决桩的平 面布置与桩的埋入深度问题。这是抗滑桩设计 的主要参数,它的合理与否,直接关系到抗滑 桩效用的成败。现将国内以往的做法和考虑的 原则分述如下: (一)桩的平面位置及其间距 抗滑桩的平面位置和间距,一般应根据滑坡的地 层性质、推力大小、滑动面坡度、滑坡厚度、 施工条件、桩截面大小以及锚固深度等因素综 合考虑决定。
第四节、刚性桩的计算
刚性桩的计算方法较多,目前常用的方法 是:滑面以上抗滑桩受荷段上所有的力 均当做外荷载看等,桩前的滑体抗力按 其大小从外荷载中予以折减,将滑坡推 力和桩前滑面以上的抗力折算成在滑面 上作用的弯矩和剪力并作为外荷载。而 抗滑桩的锚固段,则把桩周岩土视为弹 性体计算侧向应力和土的抗力,从而计 算桩的内力。
1 圆形桩:BP K f K B d 0.9 1 d 0.9(d 1) d
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.按m法计算 当ah2≤2.5时,抗滑桩属刚性桩 当ah2>2.5时,抗滑桩属弹性桩 其中:为桩的变形系数,以m-1计,可按下式计算:
1
mH Bp EI
5
m 式中: ——水平方向地基系数随深度而变化的比例系数(kN/m4)。 H
第三节、抗滑桩的要素设计
当采用抗滑桩整治滑坡时,首先需要解决桩的平面布置与桩的埋入深度问题。这是抗滑桩 设计的主要参数,它的合理与否,直接关系到抗滑桩效用的成败。现将国内以往的做法 和考虑的原则分述如下:
(三)桩侧岩(土)的弹性抗力系数
桩侧岩(土)的弹性抗力系数简称地基系数,是地基承受的侧压力与桩在该处产生的侧向 位移的比值。换句话说,地基系数是在弹性变形限度以内,单位面积的土产生单位压缩 变形时所需要的侧向压力。
1.计算弹性地基内的侧向受荷桩时,有关地基系数目前有两种不同的假定:
(1)认为地基系数是常数,不随深度而变化,以“K”表示之,相应的计算方法称为“K” 法,可用于地基较为完整岩层的情形。(2)认为地基系数随深度按直线比例变化,即 在地基内深度为y处的水平地基系数为CH=mH·y或CH=AH+mHy,竖直方向的地基系数为 Cv=mv·y或Cv=Ar+mvy。、表示某一常量,、分别表示水平及竖向地基系数的比例系数。 相应这一假定的计算方法称为“m”法,可用于地基为密度土层或严重风化破碎岩层的 情形。
10.对于钢筋混凝土桩,还需进行配筋设计。
第二节 、抗滑桩设计的基本假定
(一)作用于抗滑桩上的力系 作用于抗滑桩的外力包括:滑坡推力、受荷段地层(滑体)抗力、锚固段地层抗力、桩侧
摩阻力和粘着力以及桩底应力等。这些力均为分布力。 1.滑坡推力作用于滑面以上部分的桩背上,可假定与滑面平行。由于还没有完全弄清桩间
抗滑桩设计与计算
抗滑桩的设计任务就是根据以上要求,确定抗滑桩的桩位,间距、尺寸、埋深、配筋、 材料和施工要求等。这是一个很复杂的问题,常常要经分析研究才能得出合理的方案。
(二)抗滑桩设计计算步骤 1.首先弄清滑坡的原因、性质、范围、厚度,分析滑坡的稳定状态、发展趋势。
2.根据滑坡地质断面及滑动面处岩(土)的抗剪强度指标,计算滑坡推力。
(二)抗滑桩的计算宽度
抗滑桩受滑坡推力的作用产生位移,则桩侧岩(土)对桩作用着抗力。当岩(土)变形处 于弹性变形阶段时,桩受到岩(土)的弹性抗力作用。岩(土)对桩的弹性抗力及其分 布与桩的作用范围有关。
为了将空间的受力简化为平面受力,并考虑桩截面形状的影响,将桩的设计宽度(或直径 )换算成相当于实际工作条件下的矩形桩宽BP,此BP称为桩的计算宽度。
现以桩身置于均质岩土层中,滑面以上为同 一m值,桩底自由,滑面处的弹性抗力系数 A1 及 A2, 且 各 为 某 一 数 值 的 情 况 为 例 , 说 明刚性桩的计算方法,如图所示。其中H为 滑坡推力与剩余抗滑力之差;h0为H作用点 距滑面的垂直距离。
(1)当0≤y≤y0时
变位:
桩侧应力: x (y 0 y ) t g (y 0 y )
试验研究表明,当侧向受荷桩埋入稳定地层内的计算深度(桩的埋置深度与桩的变形系数的 乘积)为某一临界值时,可视桩的刚度为无穷大;在侧向荷载作用下,桩的极限承载力 仅取决于桩周岩(土)的弹性抗力大小;计算深度为此临界值时,不管按刚性桩或按弹 性桩计算,其水平承载力及传递到地层的压力图形均比较接近。因此,目前将这个临界 值作为判别刚性桩或弹性桩的标准。
1.试验表明,对不同尺寸的圆形桩和矩形桩施加水平荷载时,直径为d的圆形桩与正面边 长为0.9d的矩形桩,在其两侧土体开始被挤出的极限状态下,其临界水平荷载值相等。 所以,矩形桩的形状换算系数为Kf=1,而圆形桩的形状换算系数为Kf=0.9。
2.同时,由于将空间受力状态简化成为平面受力状态,在决定桩的计算宽度时,应将实际 宽度乘以受力换算系数KB。由试验资料可知,对于正面边长b大于或等于1m的矩形桩受 力换算系数为,对于直径d大于或等于1m的圆形桩受力换算系数为。
3.埋于滑床中的桩将滑坡推力传递给桩周的岩(土),桩的锚固段前、后岩(土)受力后 发生变形,从而产生由此引起的岩(土)抗力作用。
4.抗滑桩截面大,桩周面积大,桩与地层间的摩阻力、粘着力必然也大,由此产生的平衡 弯矩对桩显然有利。但其计算复杂,所以,一般不予考虑。
抗滑桩的基底应力,主要是由自重引起的。而桩侧摩阻力、粘着力又换工消了大部分自重。 实测资料表明,桩底应力一般相当小,为简化计算,对桩底应力通常也忽略不计。计算 略偏安全,而对整个设计影响不大。
刚性桩的计算方法较多,目前常用的方法是:滑面以上抗滑桩受荷段上所有的力均当做外 荷载看等,桩前的滑体抗力按其大小从外荷载中予以折减,将滑坡推力和桩前滑面以上 的抗力折算成在滑面上作用的弯矩和剪力并作为外荷载。而抗滑桩的锚固段,则把桩周 岩土视为弹性体计算侧向应力和土的抗力,从而计算桩的内力。
(一)单一地层
K '2
2.桩底的支承条件
抗滑桩的顶端,一般为自由支承;而底端,由于锚固程度不同,可以分为自由支承、铰支 承、固定支承三种,通常采用前两种。
(1)自由支承
如图a所示,当锚固段地层为土体、松软破碎岩时,现场试验表明,在滑坡推力作用下 ,桩底有明显的位移和转动。这种条件,桩底可按自由支承处理,即令QB=0、MB=0。 (2)铰支承
3.0×105
6
5.0×104
8.0×105
9
8.0×104
(25.0~28.0) ×105
(四)刚性桩与弹性桩的区分
抗滑桩受到滑坡推力后,将产生一定的变形。所谓变形是指桩的相对位置发生了改变。根 据桩和桩周岩(土)的性质和桩的几何性质,其变形可有两种情况。一种是桩的位置虽 发生了偏离,但是桩轴仍保持原有的线型;它之所以变形是由于桩周的岩(土)变形所 致。另一种是桩的位置和桩轴线型同时发生改变,即桩轴和桩周岩(土)同时发生变形。 产生前一种变形特征的桩,由于桩在变形过程中保持着原来的形状,尤如刚体一样,仅 产生了转动,因此,可称它为刚性桩;而后者称为弹性桩。
2)比较完整的岩质、半岩质地层 桩身对围岩的侧向压应力应符合下列条件:
max K'1K'2R0
式中: ——折减系数,根据岩层产状的倾角大小,取0.5~1.0;
K '——折减系数,根据岩层的破碎和软化程度,取0.3~0.5; 1
R0——岩石单轴挤压极限强度,(kPa)。 计算结果若不符合上式,则调整桩的锚固深度或截面尺寸、间距,直至满足为止。
故桩的计算宽度应为: 矩形桩:
圆形桩:
B pK f K Bb1.0 1b 1 bb1 B P K fK Bd 0 .9 1 d 1 d 0 .9 (d 1 )
3.桩的截面形状应从经济合理及施工方便考虑。目前多用矩形桩,边长2~3m,以1.5m2.0m 及2.0m3.0m两种尺寸的截面为常见。
(一)桩的平面位置及其间距 抗滑桩的平面位置和间距,一般应根据滑坡的地层性质、推力大小、滑动面坡度、滑坡厚
度、施工条件、桩截面大小以及锚固深度等因素综合考虑决定。
1.滑体的上部,滑动面陡,拉张裂缝多,不宜设桩;中部滑动面往往较深且下滑力大,亦 不宜设桩;下部滑动面较缓,下滑力较小或系抗滑地段,经常是较好的设桩位置。
土拱对滑坡推力的影响,通常是假定每根桩所承受的滑坡推力等于桩距(中至中)范围 之内的滑坡推力。
2.根据设桩的位置及桩前滑坡体的稳定情况,抗滑桩可分为悬臂式和全埋式两种。受力情 况如图所示。当桩前滑坡体不能保持稳定可能滑走的情况下,抗滑桩应按悬臂式桩考虑; 而当桩前滑坡体能保持稳定,抗滑桩将按全埋式桩考虑。
7.根据桩底的边界条件采用相应的公式计算桩身各截面的变位,内力及侧壁应力等,并计算 确定最大剪力、弯矩及其部位。
8.校核地基强度。若桩身作用于地基的弹性应力超过地层容许值或者小于其容许值过多时, 则应调整桩的埋深或桩的截面尺寸,或桩的间距,重新计算,直至符合要求为止。
9.根据计算的结果,绘制桩身的剪力图和弯矩图。
2.抗滑桩的间距受许多因素的影响,目前尚无较成熟的计算方法。合适的桩距应该使桩间 滑体具有足够的稳定性,在下滑力作用下不致从桩间挤出。也就是说,可按桩间土体与 两侧被桩所阻止的土体的摩擦力大于桩所承受的滑坡推力来估算
(二)桩的锚固深度
桩埋入滑面以下稳定地层内的适宜锚固深度,与该地层的强度、桩所承受的滑坡推力、桩 的相对刚度以及桩前滑面以上滑体对桩的反力等有关。 原则上由桩的锚固深度传递到滑面以下地层的侧向压应力不得大于该地层的容许侧向抗压 强度,桩基底的最大压应力不得大于地基的容许承载力。 锚固深度不足,易引起桩效用的失败;但锚固过深则将导致工程量的增加和施工的困难。 有时可适当缩小桩的间距以减小每根桩所承受的滑坡推力,有时可调整桩的截面以增大桩 的相对刚度,从而达到减小锚固深度的目的。
5000~10000
5
砾砂、角砾砂、砾石土、 碎石土、卵石土
3Байду номын сангаас000~80000
3
硬塑粘性土(0 .5>IL>0), 细砂、中砂
10000~20000
6
块石土、漂石土
80000~120000
较完整岩层的地基系数KV值
序 号
饱和极限 抗压强度 R(kPa)
KV (kN/m3)
序 号
饱和极限 抗压强度 R(kPa)
3.根据地形、地质及施工条件等确定设桩的位置及范围。
4.根据滑坡推力大小、地形及地层性质,拟定桩长、锚固深度、桩截面尺寸及桩间距。
5.确定桩的计算宽度,并根据滑体的地层性质,选定地基系数。
6.根据选定的地基系数及桩的截面形式、尺寸,计算桩的变形系数(或)及其计算深度( h或h),据以判断是按刚性桩还是按弹性桩来设计。
(2)当≤≤时
变位
桩侧应力 x (y 0 y ) t g (y 0 y )