抗滑桩设计与计算
(完整版)抗滑桩设计与计算

其中,α=
αh2—桩的计算深度(m);
mH—水平方向地基系数随深度而变形的比例系数(KN/m4),其余符号同前。
四.根据桩底的边界条件采用相应的公式计算桩身各截面的变位(位移),内力及侧壁应力等,并计算确定最大剪力、弯矩及其部位。
矩形桩:Bp=Kf*Ka*b=1.0*(1+1/b)*b=b+1
圆形桩:Bp=Kf*Ka*d=0.9*(1+1/d)*d=0.9(d+1)
③根据选定的地基系数及桩的截面形式、尺寸,计算桩的变形系数(α或β)及其计算深度(αh或βh),据以判断是按刚性桩还是弹性桩来设计。
桩的截面形状应从经济合理及施工方便可虑。目前多用矩形桩,边长2~3m,以1.5×2.0m及2.0×3.0m两种尺寸的截面较为常见。
2比较完整的岩质、半岩质地层
桩身对围岩的侧向压应力σmax(kPa)应符合下列条件:
σmax≤K1/. K2/.R0
式中,K1/—折减系数,根据岩层产状的倾角大小,取0.5~1.0;
K2/—折减系数,根据岩层的破碎和软化程度,取0.3~0.5;
R0—岩石单轴极限抗压强度,(kPa)。
2桩底支承条件
抗滑桩的顶端,一般为自由支承;而底端,由于锚固深度不同,可以分为自由支承、铰支承和固定支承三种,通常采用前两种。
抗滑桩设计的步骤
1抗滑桩设计计算步骤
一.首先弄清滑坡的原因、性质、范围、厚度,分析滑坡的稳定状态和发展趋势。
二.根据滑坡地质断面及滑动面处岩土的抗剪强度指标,计算滑坡推力。
三.根据地形地质及施工条件等确定设桩的位置及范围。
①根据滑坡推力大小、地形及地层性质,拟定桩长、锚固深度、桩截面尺寸及桩间距。
抗滑桩设计与计算-简化

xy :地层y处的水平位移,K:地基系数,Bp:桩的计算宽度
桩侧地基系数随深度一般是变化的,根据地基系数随深度变化 情况不同,可以将抗滑桩设计计算方法进行分类:
滑面 锚 固 段 y K n=0 K n=1 K 0<n<1
n
h2
K n>1
设计计 算方法
K = m( y0 + y )
K法 m法
C法
在锚固段长度上地基系 数随深度非线性变化。 公路系统常用,当n= 0.5~0.6时,称为C法。
4.1 概述
一、基本概念 二、抗滑桩的分类 三、抗滑桩的设计原则 四、抗滑桩的计算方法 五、抗滑桩的优点
4.1 概述
一、基本概念
抗滑桩是边坡处治工程中常见常用的一种抗滑工程结 构。它是利用桩体本身优良的抗弯能力和岩土体的承载能 力,将滑体的剩余下滑力传递到下伏稳定岩土体中,从而维 持滑坡的稳定,满足工程安全需要。 强大的 滑坡推 力 稳定的岩土体 锚固段 稳定的岩土体 受荷段 有限的 桩前抗 力
4.1 概述
二、抗滑桩的分类
施工方式 打入桩 钻孔桩 挖孔桩 圆形桩 管形桩 矩形桩 刚 度 刚性桩 弹性桩 排式单桩 承台式桩 排架桩 …
边坡防护之抗滑桩类型、设计及计算

边坡防护之抗滑桩类型、设计及计算一、概述抗滑桩是将桩插入滑面以下的稳固地层内,利用稳定地层岩土的锚固作用以平衡滑坡推力,从而稳定滑坡的一种结构物。
除边坡加固及滑坡治理工程外,抗滑桩还可用于桥台、隧道等加固工程。
抗滑桩具有以下优点:(1) 抗滑能力强,支挡效果好;(2) 对滑体稳定性扰动小,施工安全;(3) 设桩位置灵活;(4) 能及时增加滑体抗滑力,确保滑体的稳定;(5) 预防滑坡可先做桩后开挖,防止滑坡发生;(6)桩坑可作为勘探井,验证滑面位置和滑动方向,以便调整设计,使其更符合工程实际。
二、抗滑桩类型实际工程应用中,应根据滑坡类型及规模、地质条件、滑床岩土性质、施工条件和工期要求等因素具体选择适宜的桩型。
三、抗滑桩破坏形式总体而言,抗滑桩破坏形式主要包括:(1)抗滑桩间距过大、滑体含水量高并呈流塑状,滑动土体从桩间挤出;(2) 抗滑桩抗剪能力不足,桩身在滑面处被剪断;(3) 抗滑桩抗弯能力不足,桩身在最大弯矩处被拉断;(4) 抗滑桩锚固深度及锚固力不足,桩被推倒;(5)抗滑桩桩前滑面以下岩土体软弱,抗力不足,产生较大塑性变形,使桩体位移过大而超过允许范围;(6)抗滑桩超出滑面的高度不足或桩位选择不合理,桩虽有足够强度,但滑坡从桩顶以上剪出。
对于流塑性地层,滑体介质与抗滑桩的摩阻力低,土体易从桩间挤出。
此时,可在桩间设置连接板或联系梁,或采用小间距、小截面的抗滑桩,因流塑体的自稳性差,当地下水丰富时,开挖截面过大的抗滑桩易造成坍塌,对处于滑移状态的边坡,还可能会加速边坡的滑移速度,甚至造成边坡失稳。
四、抗滑桩设计01基本要求抗滑桩是一种被动抗滑结构,只有当边坡产生一定的变形后,才能充分发挥作用。
因此,抗滑桩宜用于潜在滑面明确、对变形控制要求不高的土质边坡、土石混合边坡和碎裂状、散体结构的岩质边坡。
抗滑桩宜布置在滑体下部且滑面较平缓的地段;当滑面长、滑坡推力大时,可与其它加固措施配合使用,或可沿滑动方向布置多排抗滑桩,多排抗滑桩宜按梅花型布置。
抗滑桩计算书

抗滑桩计算书(最新版)目录1.引言2.抗滑桩的概念与原理3.抗滑桩的设计与计算方法4.抗滑桩的工程应用5.结论正文1.引言随着我国基础设施建设的快速发展,抗滑桩作为一种重要的基础工程结构,在桥梁、隧道、港口等工程中得到了广泛应用。
为了确保抗滑桩的安全、稳定和经济性,对其进行科学合理的设计与计算至关重要。
本文将对抗滑桩的计算书进行探讨,以期为抗滑桩的设计与计算提供参考。
2.抗滑桩的概念与原理抗滑桩,又称抗拔桩,是一种用于防止土体滑动、倾覆的基础工程结构。
其主要原理是利用桩身与周围土体的摩擦力和桩底土体的支撑力,使桩身具有足够的抗拔能力,从而保证工程结构的稳定性。
3.抗滑桩的设计与计算方法抗滑桩的设计与计算主要包括以下几个方面:(1) 确定抗滑桩的类型和尺寸:根据工程地质条件、荷载特性等因素,选择合适的抗滑桩类型(如预制混凝土抗滑桩、钢管抗滑桩等),并确定其尺寸。
(2) 计算抗滑桩的轴向荷载:根据工程结构的荷载特性,计算抗滑桩所承受的轴向荷载。
(3) 计算抗滑桩的摩擦力和桩底支撑力:根据土体的物理力学性质,计算抗滑桩与周围土体之间的摩擦力和桩底土体的支撑力。
(4) 计算抗滑桩的抗拔能力:综合考虑轴向荷载、摩擦力和桩底支撑力,计算抗滑桩的抗拔能力。
(5) 校核抗滑桩的安全性:将抗滑桩的抗拔能力与实际工程中可能产生的最大荷载进行对比,以确保抗滑桩的安全性。
4.抗滑桩的工程应用抗滑桩在我国的基础工程建设中具有广泛的应用,如跨海大桥、山体隧道、港口码头等。
通过合理的抗滑桩设计与计算,可以有效保障工程结构的稳定性和安全性。
5.结论抗滑桩计算书是确保抗滑桩安全、稳定和经济性的重要依据。
本文对抗滑桩的概念、原理、设计与计算方法以及工程应用进行了探讨,为抗滑桩的设计与计算提供了参考。
抗滑桩计算

KV ( kN/m3 ) 4.0×10
5
序 号
饱和极 限 抗 压强度 R (kPa) 6.0×10
4
KV ( kN/m3 ) 12.0×1 05
1
(1.0~2.0) ×105
4
7
2
1.5×10
4
2.5×105
5
4.0×10
4
6.0×10
58Leabharlann 8.0×104(15.0~2 5.0) ×105
(25.0~2 8.0) ×105
当ah2>2.5时,抗滑桩属弹性桩
其中:为桩的变形系数,以m-1计,可按下式 计算: 1
mH B p EI
5
m H ——水平方向地基系数随深度而变化 式中: 的比例系数(kN/m4)。
第三节、抗滑桩的要素设计
当采用抗滑桩整治滑坡时,首先需要解决桩的平 面布置与桩的埋入深度问题。这是抗滑桩设计 的主要参数,它的合理与否,直接关系到抗滑 桩效用的成败。现将国内以往的做法和考虑的 原则分述如下: (一)桩的平面位置及其间距 抗滑桩的平面位置和间距,一般应根据滑坡的地 层性质、推力大小、滑动面坡度、滑坡厚度、 施工条件、桩截面大小以及锚固深度等因素综 合考虑决定。
第四节、刚性桩的计算
刚性桩的计算方法较多,目前常用的方法 是:滑面以上抗滑桩受荷段上所有的力 均当做外荷载看等,桩前的滑体抗力按 其大小从外荷载中予以折减,将滑坡推 力和桩前滑面以上的抗力折算成在滑面 上作用的弯矩和剪力并作为外荷载。而 抗滑桩的锚固段,则把桩周岩土视为弹 性体计算侧向应力和土的抗力,从而计 算桩的内力。
1 圆形桩:BP K f K B d 0.9 1 d 0.9(d 1) d
(完整版)抗滑桩计算

4.3.3 1-1′剖面抗滑桩设计(1)抗滑桩各参数的确定或选取在滑坡力最大处即边坡1-1′剖面潜在变形区滑面条块21(剩余下滑力828.7KN )附近处设置一排钢筋混凝土抗滑桩,间距为6m ,共布置8根抗滑桩。
初拟抗滑桩桩身尺寸为b×h=1.5m×2.0m。
桩长12m ,自由段h 1为6m ,锚固段h 2为6m 。
采用C30混凝土,查资料得,C30混凝土,423.0010/c E N mm =⨯。
桩的截面惯性矩3341.5 2.011212bh I m ⨯===。
桩的钢筋混凝土弹性模量770.80.8 3.0010 2.4010c E E KPa ==⨯⨯=⨯。
桩的计算宽度 1.51 2.5p B m =+=。
1-1剖面滑动面以下为较完整的岩层(泥灰岩),对于较完整的岩层,其地基系数的选取参考下表(表4-1):H V H V 剖面处滑面以下是泥灰岩,岩石饱和单轴抗压强度标准值为16.85MPa ,根据上表侧向K H 可取:K H =2.7×105kN/m3按K 法计算,桩的变形系数β为:所以抗滑桩属于刚性桩,所谓刚性桩是指桩的位置发生了偏离,但桩轴线仍保持原有线型,变形是由于桩周土的变形所致。
这时,桩犹如刚体一样,仅发生了转动的桩。
桩底边界条件:按自由端考虑。
(2)外力计算每根桩的滑坡推力:kN L 2.497267.828E n r =⨯=⨯=E ,按三角形分布,其kN h E P r 4.165765.02.49725.01=⨯=⨯=桩前被动土压力计算:抗滑桩自由段长度h 1=6m,自由段桩前土为块石土,按勘察报告提高的参数,块石土的c=8.81kP a ψ=15.4O γ=15.4kN/m 3128.01104.24.52107.24417541<=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛⋅=EI B k p H βp K =2(45)2otg ϕ+=215.4(45)2otg ο+=1.662211112h 20.5 6.0 1.6628.816748.75/22p p E h K c kN m =γ+=⨯⨯⨯+⨯=(3)桩身内力计算 ①剪力221p A y 2.7752675.7484.16572)E -(P Q =⨯-=⨯⨯=y y y h ②弯矩23A 75.72y 25.2433y y M Q y y =⋅=⋅= 各截面计算结果见下表(表4-2):(4)锚固段桩侧应力和桩身内力计算 ①滑动面至桩的转动中心的距离该滑面地基系数随深度为常数,K=A=K v =K s =2.7×105kN/m 3滑动面至桩的转动中心的距离为:()()()()m 6.36.927258.54512369.272528.54513623232A A 2A A 20=⨯+⨯⨯⨯⨯+⨯⨯=++=h Q M h Q M h y ②桩的转角()()rad Ah B h Q M p 00112.06107.25.269.27258.5451262635322A A =⨯⨯⨯⨯+⨯⨯=+=∆ϕ③桩侧应力()()()()2550y 112.8y 10064.108800112.0y .6310107.2y y y y my A -+=⨯-+⨯=∆-+=∆ϕδ④最大侧应力位置 令0yd dyσ=,则 100.8224y 0-= y =0.45m⑤剪力()()y y y m B y y y A B Q p p A 2361221Q 020y -∆--∆-=ϕϕ ()y y -⨯⨯⨯⨯⨯⨯⨯-=6.3200112.0107.25.2219.27255 ()y y 26.3200112.0105.26125-⨯⨯⨯⨯⨯- 9.27256.27214.9312632+-+-=y y y 0=yy d dQ ,则06.27212524.932=--y ym y 6.3=⑥弯矩()()[]y y my y y A y B y Q M p A A y -+-∆-+=002232121.M ϕ ()()[]y y y y y -⨯+-⨯⨯⨯⨯⨯⨯-+=6.32106.3310.72200112.05.2121.82725.85451552 8.54518.272513604233.23234++--=y y y y 锚固段桩侧应力、桩身剪力及弯矩计算汇总如下()KN y Q -4347.15 -4198.90 -3561.73 -2357.10 -514.97 2034.70()m y 00.511.522.53()m KN .M y5451.80 6470.91 6798.93 6456.86 5500.68 4021.38 2144.93()m y 3.6 4 4.5 5 5.5 6 ()m KN .M y32.31-2120.52-4082.59-5587.95-6335.64-5989.72根据桩的应力和内力的计算结果,绘出桩的受力图,如下所示:图4-2桩侧应力图图4-3 桩身剪力图图4-4 桩身弯矩图(5)桩侧应力复核比较完整的岩质、半岩质地层桩身对围岩的侧压应力max σ(a kP )应符合下列条件:max 120K K σ≤⋅⋅´´R 式中 1K ´——折减系数,根据岩层产状的倾角大小,取0.5~1.0;2K ´——折减系数,根据岩层破碎和软化程度,取0.3~0.5; 0R ——岩石单轴抗压极限强度,a kP由式得,a a kP kP 25.41281085.1635.07.064.10883=⨯⨯⨯<满足要求(6)桩的结构设计 ①基本指标 混凝土C 25:C25混凝土的轴心抗压强度设计值为211.9/c f N mm =,轴心抗拉强度设计值21.27/t f N mm =。
抗滑桩计算书

抗滑桩计算书一、引言抗滑桩是指为了增加桩基与土壤之间的摩擦阻力而采取的一种措施。
它在土壤较松散或地基承载力较低的情况下,能够有效地提高桩基的抗滑性能,确保工程的安全稳定。
本文将详细介绍抗滑桩的计算方法。
二、抗滑桩计算方法1. 确定土壤参数在进行抗滑桩计算之前,首先需要获取相关的土壤参数。
包括土壤的内摩擦角、容重、黏聚力等。
这些参数可以通过现场勘探或室内试验获得。
2. 计算桩基侧阻力桩基侧阻力是抗滑桩的关键参数,可以通过以下公式计算得到:R = (α × β × c + σ × tanφ) × Ap其中,R为桩基侧阻力,α为侧阻力系数,β为土壤侧阻力分担系数,c为土壤黏聚力,σ为土壤有效应力,φ为土壤内摩擦角,Ap 为桩身周边面积。
3. 计算桩基端阻力桩基端阻力主要由桩尖端的摩擦力和端面摩擦力组成。
可通过以下公式计算得到:Qb = (α × β × c + σ × tanφ) × Ap其中,Qb为桩基端阻力。
4. 计算抗滑桩的抗滑安全系数抗滑安全系数是评价抗滑桩抗滑性能的重要指标。
可以通过以下公式计算得到:FS = (Qs + Qb) / R其中,FS为抗滑安全系数,Qs为水平荷载作用下的桩基摩阻力。
5. 判断抗滑桩的安全性当抗滑安全系数FS大于等于1时,表示抗滑桩的抗滑性能满足设计要求,工程可以继续进行;当FS小于1时,表示抗滑桩的抗滑性能不足,需要采取进一步的加固措施。
三、抗滑桩计算实例为了更好地理解抗滑桩的计算方法,下面以一个实际工程为例进行说明。
假设某工程的土壤参数如下:内摩擦角φ = 30°土壤容重γ = 18 kN/m³土壤黏聚力c = 20 kPa桩身周边面积Ap = 0.5 m²桩基水平荷载Qs = 100 kN根据给定的土壤参数,可以计算出桩基侧阻力和桩基端阻力:R = (α × β × c + σ × tanφ) × ApQb = (α × β × c + σ × tanφ) × Ap然后,计算抗滑安全系数:FS = (Qs + Qb) / R判断抗滑桩的安全性:如果FS大于等于1,则抗滑桩的抗滑性能满足设计要求;如果FS 小于1,则需要采取进一步的加固措施。
抗滑桩设计与计算

pi =k × si
文克尔地基模型
A-承载板面积(m2) (弹簧彼此独立)
14
地基系数k ,一般认为k 随深度y 按幂函数变化。
k m (y0 y)n
n=0时,k=常数。通常按这种规律考虑抗力的计算方法,称为K法;
0<n<1时,k随深度呈凸抛物线变化。通常按这种规律考虑抗力的计 算方法,称为C法; n=1时,k=my0+my=A+my 若y0=0,即k=my,通常 按这种规律考虑抗力的计 算方法,称为m法; n>1时,k随深度呈凹抛物线 变化。
B
自由端
完整 基岩 B
铰支端 固定端
B
MB=0,φB≠0
QB=0, xB≠0
MB=0, φB≠0
QB≠0, xB=0
MB≠0,φB=0
QB≠0 ,xB=0
按固定端支撑设计抗滑桩是不经济的,应少用。
28
4.3
悬臂桩法:
抗滑桩桩身内力计算
首先,将受荷段桩身所受的滑坡推力、桩前剩余抗滑力或被动土压 力作为已知力,计算受荷段桩身内力; 然后,将滑面处的弯矩剪 力作为已知力,根据锚固 段地基系数,计算锚固段 M Q 滑动面 桩身内力、桩身变位。
以排式单桩为
例
■滑坡推力T(KN/m)
滑坡推力
受荷段
滑动面
T (KN/m)
锚固段
a b
9
L
(计算单元)
土拱 土拱
土拱 a a b
土拱 a b
滑动面
L
L
b
L L
设:单宽推力T (KN/m) 单桩所受滑坡推力:T×L
10
空间模型
b
a
平面模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
截面形态
圆形桩 管形桩 矩形桩
材料
木桩 钢桩 钢筋混凝土桩
施工方式
打入桩 钻孔桩
挖孔桩
7
抗滑桩的优点
(1)抗滑能力强,圬工数量小,在滑坡推力大、滑动带深的 情况下,能够克服抗滑挡土墙难以克服的困难。(当单排 桩所承受的滑坡推力超过200吨, 桩长超过35m时需作可 行性论证)。
(2)桩位灵活,可以设在滑坡体中最有利于抗滑的部位,可 以单独使用,也可与其他构筑物配合使用。
锚固段地层抗力受限于地层的侧向容许应力
18
四、刚性桩与弹性桩
刚性桩:仅桩的位置发生变化,桩
轴线仍保持原来的线型(尤如刚 体一样)。
弹性桩:桩的位置与桩轴同时发生 改变。
试验研究表明:
刚性桩
弹性桩
当侧向受荷桩埋入稳定地层的计算深度,低于某一临界值时, 可视桩的刚度为无穷大;在侧向荷载作用下,桩的极限承载力 仅取决于桩周土弹性抗力的大小;
第4章 抗滑桩的设计计算
4.1 基本概念 4.2 抗滑桩的要素设计 4.3 抗滑桩的内力计算 4.4 抗滑桩的结构设计 4.5 预应力锚索抗滑桩的设计
1
第4章 抗滑桩的设计计算
教学参考书
(1)《抗滑桩设计与计算》,铁道部第二勘测设计院编, 中国铁道出版社,1983年,北京
(2)李海光,《新型支档结构设计与工程实例》,人民交 通出版社,2003,北京
(3) 郑颖人等,《边坡与滑坡工程治理》,人民交通出版 社,2007
(4)《铁路路基支挡结构设计规范》,中华人民共和国行 业标准,TB10025-2006,中华人民共和国铁道部发布
(5) 公路设计手册《路基》,人民交通出版社,1997
2
4.1 基本概念
一、抗滑桩的类型及特点
抗滑桩是防止地表岩土体发生滑动破坏(滑坡) 的一种地下结构。设于滑坡的适当部位,一般 完全埋置于地下(有时也露出地面),桩的下段 须埋置在滑动面以下稳定地层的一定深度。
计算深度为此临界值时,按刚性桩或弹性桩计算,其水平承载
力及传递到地层的压力图形比较接近。
19
桩的计算深度=桩的埋置深度×桩的变形系数
地基系数 k=常数
k=my
桩的变形系数
k Bp 4E I
1/
4
m Bp EI
1/ 5
刚性桩
h2 1 h2 2.5
弹性桩
h2 1 h2 2.5
(3)配筋合理,可以沿桩长根据弯矩大小合理地布置钢筋(优 于管形状、打入桩)。
(4)施工方便,设备简单。采用混凝土或少筋混凝土护壁, 安全、可靠。
(5)间隔开挖桩孔,不易恶化滑坡状态,有利于抢修工程。 (6)通过开挖桩孔,可校核地质情况,修正原设计方案。 (7)施工影响范围小,对外界干扰小。
8
二、抗滑桩的受力及破坏形式
E-桩的弹性模量(kN/m2);E取 0.8Ec
I-桩的截面惯性矩(m4); I bh3
Bp-抗力计算宽度(m);
12
α、β-桩的变形系数(m-1);
k-地基系数 (kN/m3);
桩周土破坏
桩间土挤出
a
a
a
b
b
b
越顶
13
三、桩周土地层(岩土)抗力
1.地基系数k
k pi P / A P si si A si
物理意义:使得单
位面积的岩土体,
p
发生一个单位的
i
压缩变形所需的 外力,或者岩土
si
体产生的抗力。
单位:KN/m3
p i
=k×
si
A-承载板面积(m2) (弹簧彼此独立)
在滑坡推力作用下,桩依靠埋入滑面以下部 分的锚固作用,以及桩前滑面以上滑体的桩拱墙
承台式抗滑桩 排架式抗滑桩 椅式抗滑桩 п式抗滑桩
h式抗滑桩
锚拉式抗滑桩
4
桩拱墙
桩板墙
5
排架式抗滑桩
承台式抗滑桩 椅式抗滑桩
6
4.1 基本概念
抗滑桩的其它分类
滑坡推力 滑动面
当桩的受荷段产生较小的位移时, 岩土体处于弹性状态,此时的地 层抗力,属于弹性抗力。
4.锚固段地层抗力
当位移继续增大时,桩前滑体将 沿滑动面产生滑动或者达到被动 极限状态。桩前抗力受限于桩前 剩余抗滑力或被动土压力。
当桩的锚固段产生较小的位移时,岩土体处于弹性状态,此时 的地层抗力,属于弹性抗力。当桩周土进入塑性状态时,抗力 增加不多(略有增加);当桩周土进入破坏状态时,抗力不再增 加(甚至降低)。
b× q b× q= T×L
0.5 h1
a h1
h2
11
滑坡推力 滑动面
除滑坡推力以外,桩身所受荷载: ■受荷段地层抗力
受荷段
■锚固段地层抗力 ■桩侧壁摩阻力
锚固段
■桩底反力(桩底应力) ■桩身自重
设计中忽略不计
12
滑动面
断桩
滑动面 滑动面
“坐船”
抗滑桩破坏的基本形式
滑动面
实际滑动面 推测滑动面
按这种规律考虑抗力的计 算方法,称为m法;
n>1时,k随深度呈凹抛物线 变化。
y0
y0
y0
m
n=0 0<n<1
n=1
1n5>1
地基系数k=常数 的假定—— 适合于较完整硬质岩
层、未扰动硬粘土或半岩质地层; 地基系数k=my 的假定 —— 适合于一般硬质~半坚
硬砂粘土、碎石土、或风化破碎成土状的软质岩 层,密实度随深度增加的地层。 地基系数k=A+my 的假定——适合于超固结粘土层、 地面有超载的地层或某些半硬质地层。
例
以排式单桩为
■滑坡推力T(KN/m)
滑坡推力
受荷段
T (KN/m)
a b
滑动面
锚固段
9
L
(计算单元)
滑动面
土拱
土拱
L L
土拱
土拱
a
a
a
bL bL b
设:单宽推力T (KN/m)
单桩所受滑坡推力:T×L
10
空间模型
T×L
ba h1
平面模型
b×△q △q
q
h2
T×L=b×
1 2
q× h 1
当作一维杆件(计算桩 内力)时,推力分布
通常以滑动面为界,将桩分成两段分别选取地基系数。
16
2.弹性抗力
x0 y
xy
设某一深度y处桩侧位移为xy(全部为 土体的压缩量),则该深度处弹性 抗力为:
σy= Bp k Xy
Bp-桩的抗力计算宽度
xy
b a
Bp k xy
矩形桩 Bp b 1
圆形桩 Bp 0.9 (d 1)
17
3.受荷段地层抗力
文克尔地基模型
14
地基系数k ,一般认为k 随深度y 按幂函数变化。
k m (y0 y)n n=0时,k=常数。通常按这种规律考虑抗力的计算方法,称为K法;
0<n<1时,k随深度呈凸抛物线变化。通常按这种规律考虑抗力的计 算方法,称为C法;
n=1时,k=my0+my=A+my 若y0=0,即k=my,通常