教学设计:集合的基本运算(第2课时)

合集下载

集合的基本运算-教学设计

集合的基本运算-教学设计
例5.已知全集 , ,试求集合 .
解:
,则 且
于是,
1,3,5,7
反思点评:当集合之间的关系比较复杂时,可以利用韦恩图帮助我们理清关系,探索结果.
小结:
今天我们学习了集合的最后一种运算——补集,类比实数的运算,可以看到其实补集运算相当于集合之间的减法,补集 的结果需取决于两个集合:全集 和集合 ,补集的元素特征是: 且 .
集合的基本运算(2)
教学目标
教学目标:
1.理解全集、补集的含义,能求集合的补集.
2.体会使用自然语言、韦恩图和符号语言表达集合的补集,并在具体问题中使用图形语言和符号语言解决问题,体会数学语言在问题解决中的作用.
3.通过集合语言的使用,渗透数形结合的思想,积累数学抽象经验.
教学重点:补集的定义理解和符号语言表达.
解: ,
于是, ,


.
例2.设全集 , , ,求 , .
解: ,
例3.已知集合 , ,求 , , , .
解: ,则
,则




反思点评:对于连续数集的运算,可以运用数轴帮助我们增强直观性.
例4.图中 是全集, 是 的两个子集,用阴影表示:
(1) ; (2)
反思:由这两个问题的解决你能发现两者的关系吗?由此,你还能猜出来相对应的另一个结论吗?
在求解集合的运算时,如果遇到连续数集可以运用数轴增强直观性.如果集合之间的关系较为复杂,可以运用韦恩图的表示方法,更利于理清关系,求得结果.
教科书13页1、2
课后练习题.
1.全集概念:一般地,如果一个集合含有所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作 .
像上面引例中,两种不同情况下的全集分别是 和 .

高中数学 1.1.3 集合间的基本运算(第二课时)教案 新人教A版必修1

高中数学 1.1.3 集合间的基本运算(第二课时)教案 新人教A版必修1

1.1.3 集合的基本运算(第二课时)一. 教学目标:1. 知识与技能(1)理解全集和补集的定义,会求给定子集的补集(2)能使用Venn图、数轴表达集合的运算,体会直观图对理解抽象概念的作用.(3)通过实例分析和阅读教材,培养学生的自学能力、阅读能力和分析应用能力。

2. 过程与方法学生通过观察和类比,借助Venn图、数轴理解集合的基本运算.3.情感.态度与价值观(1)进一步强化数形结合的思想和体会类比思想在数学中的作用.(2)理解集合作为一种语言,在数学应用中的简洁和准确.二.教学重点.难点重点:全集与补集的概念.难点:理解全集与补集的概念,符号之间的区别与联系。

三.学法与教学用具1.学法:利用Venn图和数轴,掌握并理解集合的基本运算.2.教学用具:多媒体教学。

四. 教学过程:(一)自学指导:1、上节课我们已经学习了集合的两个基本运算:并集与交集。

(让学生复述并集与交集的含义及其符号表示)2、创设情境:(1)已知A={x|x+5>0},B={x|x≤-5},你能否在数轴上表示出A、B、R有何关系?(2)U={教室内所有同学}、A={教室内所有女生}、B={教室内所有男生},你能发现集合U、A、B有何关系?你能否利用Venn图标是吗?3、教师提出问题:通过PPT图片,引导学生完善并集与交集的知识点,并要求学生快速阅读教材,完成以下内容:4、教师巡查,鼓励学生分组探讨完成上面表格,组织学生充分讨论、交流,使学生明确集合中的元素,提示学生注意集合中元素的范围,并帮助学生修改、完善,并指出:这就是我们这一堂课所要学习的内容.(二)师生合作,研探新知关于补集与全集,教师引导学生阅读教材P10~P11页中有关补集的内容,并思考回答下例问题:1、什么叫全集?2、补集的含义是什么?用符号如何表示它的含义?用Venn图又表示?在这个过程中,教师要积极参与到小组讨论中,和学生一起交流,使其理解全集的定义,并强调全集常用矩形方框表示,而补集是相对与全集而言的。

人教A版高中数学必修1+1.1.3+集合的基本运算+教学设计(第二课时)(2)

人教A版高中数学必修1+1.1.3+集合的基本运算+教学设计(第二课时)(2)

本节课是集合这一章的核心内容,高考常考考点之一,所以一定要掌握并集,补集,交集的概念。

集合的基本运算是在学习集合定义以及集合的性质之后学到的,它对日后学习研究函数的定义域、值域、单调区间等内容起到知识储备作用。

1.教学重点:交集与并集,全集与补集的概念。

2.教学难点:理解交集与并集的概念,以及符号之间的区别与联系。

一、知识梳理1、集合的运算A∩B={x|x∈A且x∈B}.A∪B={x|x∈A或x∈B}.∁U A={x|x∈U,且x∉A}2、性质:A∪B=B∪A,A∪A=A,A∪∅=A,A∪B=A⇔B⊆A,A⊆(A∪B).A∩B=B∩A,A∩A=A,A∩∅=∅,A∩B=A⇔A⊆B,A∩B⊆A∪B,A∩B⊆A,A∩B⊆B.A∪(∁U A)=U,A∩(∁U A)=∅,∁U(∁U A)=A二、题型探究例1.已知A ={ (x,y) | 4 x+y = 6 },B ={ (x,y) | 3 x+2 y = 7 }.求A ∩ B.解:A∩B = {(x,y) | 4 x+y = 6 }∩{(x,y) | 3 x+2 y = 7 }== {(1,2)}.例2.已知x∈R,集合A={-3,x2,x+1},B={x-3,2x-1,x2+1},如果A∩B={-3},求A∪B。

例3.已知集合,且有4个子集,则实数的取值范围是()A.B.C.D.【答案】B.【解析】∵有4个子集,∴有2个元素,∴,∴且,即实数的取值范围是,故选B.例4.已知集合,且,求实数的取值范围.三、达标检测1、设集合Α={1,2,4},Β={x|x2-4x+m=0}.若Α∩Β={1},则Β=( ) A.{1,-3} B.{1,0} C.{1,3} D.{1,5}【答案】C2、设集合,,全集,若,则有( )A. B. C. D. 【解析】由,解得,又,如图则,满足条件.【答案】C 3、已知集合,集合,若,则实数的值为 . 【答案】1或-1或0. 【解析】∵,∵,,对集合B 。

《集合的基本运算》(第2课时补集及应用)PPT

《集合的基本运算》(第2课时补集及应用)PPT
分析:由于U,A,B均为连续的无限集,所求问题是集合间的交集、
并集、补集运算,故考虑借助数轴求解.
解:将集合U,A,B分别表示在数轴上,如图所示,
则∁UA={x|-1≤x≤3};
∁UB={x|-5≤x<-1,或1≤x≤3};
(∁UA)∩(∁UB)={x|1≤x≤3}.
探究一
探究二
探究三
思维辨析
随堂演练
∴A∩B={x|-1<x<2},∁UB={x|x≤-1,或x>3}.
又 P= ≤ 0,或 ≥
5
2
,
5
∴(∁UB)∪P= ≤ 0,或 ≥ 2 .
5
又∁UP= 0 < < 2 ,∴(A∩B)∩(∁UP)={x|-1<x<2}∩ 0 < <
5
={x|0<x<2}.
2
解:(1)∵B∩(∁UA)={2},∴2∈B,但2∉A.
∵A∩(∁UB)={4},∴4∈A,但4∉B.
8
= 7,
2
4 + 4 + 12 = 0,
∴ 2
解得
12
2 -2 + = 0,
=- 7 .
8 12
∴a,b 的值分别为7,- 7 .
探究一
探究二
探究三
思维辨析
随堂演练
集合中的新定义问题
)
A.{1,3,5,6} B.{2,3,7}
C.{2,4,7}
D.{2,5,7}
(2)已知全集U为R,集合A={x|x<1,或x≥5},则∁UA=
.
解析:(1)由A={1,3,5,6},U={1,2,3,4,5,6,7},得∁UA={2,4,7}.故选C.

1.3集合的基本运算(第2课时集合的补集)课件(人教版)

1.3集合的基本运算(第2课时集合的补集)课件(人教版)
4.设a∈R,b∈R,全集U=R,A={x|a<x<b},∁UA={x|x≤-2或 x≥3},则a+b等于 1 . 解析:由题意得a=-2,b=3,所以a+b=1.
随堂练习
5、集合M,N,P为全集U的子集,且满足M⊆P⊆N,则下列结 论不正确的是( )
A.∁UN⊆∁UP C.(∁UP)∩M=
B.∁NP⊆∁NM
概念透析
问题1:用自己的话概括全集、补集的概念
一.全集
文字语言 记法
一般地,如果一个集合含有我们所研究问题中涉及的所有
元素,那么就称这个集合为_全__集___
通常记作__U__
图示
注意: 通常也把给定的集合称为全集
概念透析
问题1:用自己的话概括全集、补集的概念
二.补集
文字语言 符号语言
对于一个集合 A,由全集 U 中_不__属__于_集合 A 的所有元素组成的集合称为 集合 A 相对于全__集__U__的补集,简称为集合 A 的补集,记作__∁_U_A__
解析:(1)法一(定义法) 因为A={1,3,5,7},∁UA={2,4,6}, 所以U={1,2,3,4,5,6,7}. 又∁UB={1,4,6},所以B={2,3,5,7}.
概念辨析
法二(Venn 图法) 满足题意的 Venn 图如图所示.
由图可知 B={2,3,5,7}.
概念辨析
(2)已知全集U={x|x≤5},集合A={x|-3≤x<5},则∁UA= {x|x<-3或x=5.}
随堂练习
2.已知全集为N,集合A={2,5},B={2,3,4},则图中阴影部分
所表示的集合是( )
A.{5} C.{2}
√BD..{{32,,43},4,5}

北师大版数学必修1《集合的基本运算(第二课时)》导学案附课后作业设计

北师大版数学必修1《集合的基本运算(第二课时)》导学案附课后作业设计

集合的基本运算(第二课时) 导学案【学习目标】1.理解全集、补集的含义,会求给定子集的补集;2.熟练掌握集合的基本运算;3.能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用;4.能利用集合的关系和运算及Venn 图来求有限集合中元素的个数.【学习重点】求给定集合的补集.【学习难点】1.求交、并、补集的运算;2.数形结合思想在解题中的应用.一、知识链接1. 集合间的三种运算 、 、 .2. =⋃B A ;=⋂B A .二、学习过程思考一在下列范围内解方程0)3)(2(2=--x x(1)有理数范围内;(2)实数范围内.1.全集如果一个集合 ,那么我们就称这个集合为 .通常记作 .2.补集文字语言:对于集合A ,由全集U 中 组成的集合,称为 .记作 .符号语言:=A C U .图形语言: .思考二求下列各集合间的运算u C u = ;=φu C ;=⋃A C A u ;=⋂A C A u ;=)(A C C u u . =⋂)(B A C u ;=⋃)(B A C u .三、典例剖析例1.已知全集{}22,3,23,U a a =+-若{}{},2,5U A b C A ==,求实数a b 和的值.变式:已知集合{}x A ,3,1=,{}2,1x B =,若A B C B u =⋃,求B C u .例2.已知全集{}6,5,4,3,2,1=U ,{},6,1=⋂B A C u {}{},4,3,2=⋂=⋂B A B C A u 求B.例3.已知集合{}{}21|,22|<<=<<-=x x B a x a x A ,且B C A R ⊂≠,求a 的取值范围.变式.已知集合{}{}21|,22|<<=<<-=x x B a x a x A ,且A C B R ⊂≠,求a 的取值范围.课后检测一、选择题1.设全集{}60|,≤≤==x x A R U ,则A C R 等于 ( )A {}6,5,4,3,2,1,0 B {}60|><x x x 或 C {}60|<<x x D {}60|≥≤x x x 或 2.设U为全集,集合,M U N U N M ⊆⊆⊆且则 ( ) A U U C N C M ⊆ B U M C ⊆N C U U C N C M = D ()U U C M C ⊆N 3.已知集合{}3|0,|31x M x N x x x +⎧⎫=<=≤-⎨⎬-⎩⎭,则集合{}|1x x ≥是 ( ) A N M ⋂ B N M ⋃ C ()M N ⋂U C D ()M N ⋃U C4.已知全集{}8,5,2=U ,且{}2=A C u ,则集合A 的真子集个数为 ( ) A 3 B 4 C 5 D 65.对于非空集合M和N,定义M与N的差{}|M N x x M x N -=∈∉且,那么M-(M-N)总等于 ( ) A N B M C M N ⋂ D M N ⋃二.填空题6.设集合{}{},(,)|1A B x y x y ==-=-(x,y)|x+2y=7,则A B ⋂=_______.7.设{}{}2,|20,U A x x x N +==<∈x|x 是不大于10的正整数,则U C A =____. 8.已知全集为U,,,D C B B C A u u ==则A 与D 的关系是____.9.设全集{}{},|U A x ==x|x 是三角形x 是锐角三角形,{}|B x =x 是钝角三角形,则U C A B⋃()=______________. 10.已知全集{}{}{}22,4,1,1,2,7U U a a A a C A a =-+=+==则_______.三.解答题11.设全集{}{}{}y A C A x x I I ,2,5,32,3,22==-+=,求x,y 的值.12.设全集R U =,{}m x m x A 213|<<-=,{}31|<<-=x x B ,若B C A u ⊂≠,求实数m的取值范围.。

最新人教A版高数数学必修一课件:1.3 集合的基本运算第2课时并集与交集

最新人教A版高数数学必修一课件:1.3 集合的基本运算第2课时并集与交集
第一章 集合与常用逻辑用语
1.3 集合的基本运算
第2课时 补集及综合运算
学习目标 1.理解在给定集合中一个子集的补集的含义,会求给 定子集的补集 2.能运用Venn图表达补集运算
素养要求 数学运算 直观想象
|自学导引|
补集的概念
1.全集
(1)定义:如果一个集合含有我们所研究问题中涉及的_所__有__元__素_,那么就称这个集合为全集.
|素养达成|
1.补集定义的理解(体现了数学运算的核心素养).
(1)补集是相对于全集而存在的,研究一个集合的补集之前一定要明确其所对应的全集.比如,当研 究数的运算性质时,我们常常将实数集R当做全集.
(2)补集既是集合之间的一种关系,同时也是集合之间的一种运算,还是一种数学思想. (3)从符号角度来看,若x∈U,A U,则x∈A和x∈∁UA二者必居其一.
U (2)记法:全集通常记作________.
2.补集
对于一个集合 A,由全集 U 中_不__属__于__集__合__A___的所有元素组成 文字语言 的集合称为集合 A 相对于全集 U 的补集,记作___∁_U_A___
符号语言
∁UA=_{_x_|x_∈__U__且__x_∉_A_}__
图形语言
A.{1,4}
B.{1}
C.{4}
D.∅
【答案】A
【解析】∁UA={0,1,4},B∩(∁UA)={1,4}.故选A.
2.(题型2)已知集合A={x|x+1>0},B={-2,-1,0,1},则(∁RA)∩B=
A.{-2,-1}
B.{-2}
()
C.{-1,0,1}
D.{0,1}
【答案】A
5.(题型2)已知全集U={x|-5≤x≤3},A={x|-5≤x<-1},B={x|-1≤x<1},求∁UA,∁UB, (∁UA)∩(∁UB).

1.3 集合的基本运算(第二课时)课件(共13张PPT)

1.3 集合的基本运算(第二课时)课件(共13张PPT)

B) ;(CU A)
(CU B) CU ( A
B) .
课后练习
1.已知集合U={1,2,3,4},A={1,3},B={1,3,4},则A∪(∁UB)=______. 2.设U=R,A={x|x>0},B={x|x>1},则A∩(∁UB)=( )
A.{x|0≤x<1} B.{x|0<x≤1} C.{x|x<0} D.{x|x>1}
3.设全集U=R, A={x∈R|a≤x≤2},B={x∈R|2x+1≤x+3,且3x≥2}. (1)若B⊆A,求实数a的取值范围; (2)若a=1,求A∪B,(∁UA)∩B.
第一章 集合与常用逻辑用语
1.3 集合的基本运算(第二课时)
知识回顾
并集的概念: 一般地,由所有属于集合A或属于集合B的 元素所组成的集合,称为集合A与B的并集.记作:A∪B (读作:“A并B”)即: A∪B ={x|x∈A,或x∈ B}.
并集的性质:(1)A∪A=A; (2)A∪ =A;
(3)若A⊆(A∪B),B⊆(A∪B);(4)若A⊆B,则A∪B=B, 反之也成立.
{x∈Q|(x-2)(x²-3)=0}={2},在实数范围内有三个解∶2, 3, 3 , 即{x∈R|(x-2)(x²-3)=0}={2, 3, 3 }.
补集
全集的定义:
一般地,如果一个集合包含有所研究问题中涉及的所有元素,
那么就称这个集合为全集(universe set),通常记作U.
补集的定义: 对于一个集合A,由全集U中不属于集合A的所有元素组成的集合
交集的概念:一般地,由所有属于集合A且属于集合B的元 素组成的集合,称为集合A与B的交集.记作:A∩B(读作: “A交B”) 即: A∩B ={ x | x ∈ A ,且 x ∈ B}.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合的基本运算(第2课时)
(一)教学目标
1.知识与技能
(1)了解全集的意义.
(2)理解补集的含义,会求给定子集的补集.
2.过程与方法
通过示例认识全集,类比实数的减法运算认识补集,加深对补集概念的理解,完善集合运算体系,提高思维能力.
3.情感、态度与价值观
通过补集概念的形成与发展、理解与掌握,感知事物具有相对性,渗透相对的辨证观点.
(二)教学重点与难点
重点:补集概念的理解;难点:有关补集的综合运算.
(三)教学方法
通过示例,尝试发现式学习法;通过示例的分析、探究,培养发现探索一般性规律的能力.
(四)教学过程
U

5, 7},求A ∩(U
B ),(U A )∩(U B ). 总结: (U
A )∩(U
B ) = U
(A ∪B ), (
U A )∪(U B ) =
U
(A ∩B ).
∪B )并比较与(U A )∩(U B )的
结果.
解:因为
U
A = {1, 3, 6, 7},
U
B = {2, 4, 6},所以A ∩(U B )
= {2, 4}, (
U
A )∩(U
B ) = {6}.
应用举例
例2 填空
(1)若S = {2,3,4},A = {4,3},则
S
A = . (2)若S = {三角形},
B = {锐角三角形},则
S
B = . (3)若S = {1,2,4,8},A = ,则
S
A = . (4)若U = {1,3,a 2 + 3a + 1},A = {1,3},U A = {5},则a . (5)已知A = {0,2,4},U A = {–1,1},
U
B = {–1,0,2},求B = . (6)设全集U = {2,3,m 2 + 2m – 3},A = {|m + 1| ,2},U
A = {5},求m .
(7)设全集U = {1,2,3,4},A = {x | x 2 – 5x + m = 0,x ∈U },求U
A 、m .
师生合作分析例题.
例2(1):主要是比较A 及S 的区别,从而求
S A
.
例2(2):由三角形的分类找B 的补集.
例2(3):运用空集的定义. 例2(4):利用集合元素的特征.
综合应用并集、补集知识求解. 例2(7):解答过程中渗透分类讨论思想. 例2(1)解:S A = {2}
例2(2)解:
S
B = {直角三角
形或钝角三角形} 例2(3)解:S A = S
例2(4)解:a 2 + 3a + 1 = 5,
a = – 4或1.
例2(5)解:利用韦恩图由A 设
U
A 先求U = {–1,0,1,2,
4},再求B = {1,4}.
进一步深化
理解补集的概念. 掌握补集的求法.
备选例题
例1 已知A = {0,2,4,6},S A = {–1,–3,1,3},S B = {–1,0,2},用列举法写出集合B.
【解析】∵A = {0,2,4,6},S A = {–1,–3,1,3},
∴S = {–3,–1,0,1,2,3,4,6}
而S B = {–1,0,2},∴B =S (S B) = {–3,1,3,4,6}.
例2 已知全集S = {1,3,x3 + 3x2 + 2x},A = {1,|2x– 1|},如果S A = {0},则这样的实数x是否存在?若存在,求出x;若不存在,请说明理由.
【解析】∵S A= {0},∴0∈S,但0∉A,∴x3+ 3x2+ 2x= 0,x(x+ 1) (x + 2) = 0,
即x1 = 0,x2 = –1,x3 = –2.
当x = 0时,|2x– 1| = 1,A中已有元素1,不满足集合的性质;
当x= –1时,|2x– 1| = 3,3∈S;当x = –2时,|2x– 1| = 5,但5∉S.
∴实数x的值存在,它只能是–1.
例3 已知集合S = {x | 1<x≤7},A = {x | 2≤x<5},B = {x | 3≤x <7}. 求:
(1)(S A)∩(S B);(2)S (A∪B);(3)(S A)∪(S B);(4)S (A∩B).
【解析】如图所示,可得
A∩B = {x | 3≤x<5},A∪B = {x | 2≤x<7},
S A = {x | 1<x<2,或5≤x≤7},
S
B = {x | 1<x<3}∪{7}.
由此可得:(1)(S A)∩(S B) = {x | 1<x<2}∪{7};
(2)S (A∪B) = {x | 1<x<2}∪{7};
(3)(S A)∪(S B) = {x | 1<x<3}∪{x |5≤x≤7} = {x | 1<x<3,或5≤x≤7};
(4)S (A∩B) = {x | 1<x<3}∪{x | 5≤x≤7} = {x | 1<x<3,或5≤x≤7}.
例4 若集合S = {小于10的正整数},A S
⊆,B S
⊆,且(S A)∩B = {1,9},A∩B = {2},(S A)∩(S B) = {4,6,8},求A和B.
【解析】由(S A)∩B = {1,9}可知1,9∉A,但1,9∈B,
由A∩B = {2}知,2∈A,2∈B.
由(S A)∩(S B) = {4,6,8}知4,6,8∉A,且4,6,8∉B
下列考虑3,5,7是否在A,B中:
若3∈B,则因3∉A∩B,得3∉A. 于是3∈S A,所以3∈(S A)∩B,
这与(S A)∩B = {1,9}相矛盾.
故3∉B,即3∈(S B),又∵3∉(S A)∩(S B),
∴3∉(S A),从而3∈A;同理可得:5∈A,5∉B;7∈A,7∉B. 故A = {2,3,5,7},B = {1,2,9}.
评注:此题Venn图求解更易.。

相关文档
最新文档