Gram-Schmidt正交化方法

合集下载

【免费下载】Gram Schmidt正交化方法

【免费下载】Gram Schmidt正交化方法
(1) det G1, 2 ,, s 0 1,2 ,,s 线性无关; (2) det G1, 2 ,, s 0 1,2 ,,s 线性相关.
证明:只证(2) ) 设1,2,,s 线性相关,则存在一个向量,不妨设为1 ,可由其余向量线 性表示:
i, j 1,2,, s, 有 i , j tik k i , t jk k j

ti1,
ti2
,t
i,i1,1,0,,0

1 t21 ts1,1 0 1 ts1,2
令T

0 0 1

j 1
k 1

s1 .
1 i
t j1
t j1

10
t j1

0
i ,


i 1,2., s
(1)
1,1
2,1



s1 ,1 s ,1
1 , 2 2 , 2
中向量


,,s
det
1
,且上式取等号
(欧),则
(ⅱ)设
det
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

施密特正交化GramSchmidt

施密特正交化GramSchmidt

施密特正交化GramSchmidt施密特正交化 GramSchmidt施密特正交化的原名是 Gram–Schmidt process,是由Gram和schmidt两个⼈⼀起发明的,但是后来因为施密特名⽓更⼤,所以该⽅法被简记为施密特正交化。

借⽤《线性代数》P117-例2 的例⼦来运⾏代码。

a1=(1,2,−1)T a2=(−1,3,1)T a3=(4,−1,0)T正交化后:a1=(1,2,−1)T a2=53(−1,1,1)T a3=2(1,0,1)T单位化后:a1=1√6(1,2,−1)T a2=1√3(−1,3,1)T a3=1√2(4,−1,0)T代码实现python3 的 sympy 包实现了 GramSchmidt ⽅法。

from sympy.matrices import Matrix, GramSchmidtl = [Matrix([1,2,-1]), Matrix([-1,3,1]), Matrix([4,1,0])]o = GramSchmidt(l)计算结果如下:[Matrix([[ 1],[ 2],[-1]]),Matrix([[-5/3],[ 5/3],[ 5/3]]),Matrix([[2],[0],[2]])]单位化也就是在调⽤函数的时候传⼊参数。

from sympy.matrices import Matrix, GramSchmidtl = [Matrix([1,2,-1]), Matrix([-1,3,1]), Matrix([4,1,0])]o = GramSchmidt(l, True)计算结果如下:[Matrix([[ sqrt(6)/6],[ sqrt(6)/3],[-sqrt(6)/6]]),Matrix([[-sqrt(3)/3],[ sqrt(3)/3],[ sqrt(3)/3]]),Matrix([[sqrt(2)/2],[ 0],[sqrt(2)/2]])]sympy.Matrix 与 Numpy 的互操作Matrix 转 Numpy.arrayimport numpy as npfrom sympy.matrices import Matrix, GramSchmidtl = [Matrix([1,2,-1]), Matrix([-1,3,1]), Matrix([4,1,0])]o = GramSchmidt(l, True)m = np.array(o)内积计算(m[0] * m[1]).sum() References Processing math: 100%。

GramSchmidt正交化的一种计算方法及其在QR分解中的应用

GramSchmidt正交化的一种计算方法及其在QR分解中的应用

Gram-Schmidt 正交化的一种计算方法及其在QR 分解中的应用1. Gram-Schmidt 正交化给定线性无关的一个向量组()12,,n ααα ,则由其张成一个线性空间()12,,n V span ααα= 。

如何根据所给出的这个向量组写出这个线性空间中的一个标准正交基()12,,n e e e 。

可以看出比较困难的是如何使选出的向量组中的向量两两正交;至于标准化,选定两两正交的向量组后,各向量除以其范数即可得到。

Gram-Schmidt 正交化给出了一种解法:1. 在给定的向量组中取第一个作为正交基中的第一个向量,并将其标准化;2. 依次取给定向量组中后续的向量,减去其在已有标准正交基中的投影,并将其标准化,作为新的元素添加到标准正交基中,直至取完。

用数学语言描述即为:111112222112211;,;,;n nn n n i i n i n w w e w w w e e e w w w e e e w αααα−====−⋅==−⋅=∑<1-1>由其算法可知,给定的线性无关的向量组中的每一个向量,1,i i n α= ,均是由构造出来的SOB 中的前i 个基向量()1,i e e 的线性组合;由{}i n α的线性无关性可知:i α提供了与SOB 中前i-1个向量均正交的分量,即其除去其在前i-1个向量上的分量剩下的部分,由此类推可得出由{}i n α张成的线性空间中的n 个两两正交的向量。

以上讨论可以看出,每取一个正交分量,即进行标准化。

可将其运算过程稍加改动,有如下表达形式:111112122212221121;,;,;n n i nn n i n i niw w e w w w w w e w w w w w w e w w ααααα−====−⋅==−⋅=∑<1-2>由此可以看出式<1-2>中左右两边独立。

即我们可以先求正交基{}i n w ,之后再将其标准化,得出{}i n e 。

施密特正交化方法

施密特正交化方法

施密特正交化方法
1.引言
正交化是在线性代数和数值计算中使用的一种技术,属于建模技术。

它可以将一个多元函数拟合到期望值,并使多变量的线性函数系数之积最大化。

然后,通过分析这些系数,可以获取相关的数据结构以及这些函数的响应状态,从而为我们提供有用的信息。

同时,正交化也可以用于定义软件中的因素,以及解决若干个多元函数之间的冲突和调整。

正交化的技术中,最著名的是Schmidt正交化方法,也称作Gram-Schmidt正交化法,它是一种简便的正交化方法,可以将任意一组线性无关的向量用正交互补的方法正交化。

本文将讨论Schmidt正交化方法的原理,这个方法的主要应用,以及实现的一般步骤,以便让读者更好地理解它。

2.Schmidt正交化法原理
Schimidt正交化法的定义可以说是很宽泛的,即任意一个给定的无关向量组,可以使用此方法把它们正交化,并在此过程中产生一组正交向量组。

通过把正交向量的正交补偿引入,可以使得它们仍处于空间中,并保持它们之间的正交性。

首先, Schimidt正交化法需要确定一个原始向量,并且使用这个原始向量来产生其他的正交向量。

其次,需要计算出原始向量和当前向量的内积,并且把它们的结果成为比例系数。

Gram-Schmidt正交化方法

Gram-Schmidt正交化方法

Gram-Schmidt 正交化方法 正射影设欧式空间V 中向量s ααα ,,21线性无关,令;11αβ= 111122,,ββββααβ-=; (1)222231111333,,,,ββββαββββααβ--=;……111122221111,,,,,,--------=s s s s s s s s s ββββαββββαββββααβ .则s βββ,,,21 均非零向量,且两两正交.再令,1i ii ββγ= s i ,.2,1 =则},,,{21s γγγ 为规范正交组.将(1)重新写成i i i i i i t t βββα+++=--11,11, , s i ,,2,1 = 其中kk k i ik t βββα,,=,,,,2,1s i = .1,,2,1-=i k{},,,2,1,s j i ∈∀有∑∑-=-=++=1111,,j k jk jk i k i k ikji t tββββαα()⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=-001,000,000,0,,0,1,,,1112222111,21j j j i i i i t t t t t t ββββββ 令⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=---101001011,2,2,11,1,121s s s s s s t t t t t t T则TTssssssssssssss⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----ββββββββαααααααααααααααααααααααα,,,,,,,,,,,,,,,,112211/21121112221212111上式左端的实方阵是sααα,,,21的格兰母矩阵,记为:()sGααα,,,21,上式右端中间的对角阵是sβββ,,,21的Gram矩阵.即有:()()TGTGssβββααα,,,,,,21/21=因此()()ssssGGβββββββββααα,,,,,,det,,,det22112121==注意:对任意一个向量组,无论它是线性相关,还是线性无关,它总有Gram矩阵(或者事先给出定义).例1 设sααα,,,21欧式空间V中向量,则(1)()⇔≠0,,,det21sGαααsααα,,,21线性无关;(2)()⇔=0,,,det21sGαααsααα,,,21线性相关.证明:只证(2))⇐设sααα,,,21线性相关,则存在一个向量,不妨设为1α,可由其余向量线性表示:sskkααα++=221给s阶的行列式()sGααα,,,det21的第i行乘数()i k-加到第1行,si,,3,2=得()ssssssisiissiiisiiiskkkGααααααααααααααααααααααααααα,,,,,,,,,,,,,,,det2122212212221211121∑∑∑===---==)⇒法一:由上页证明推理过程立即得证。

gramschmidt正交化多项式

gramschmidt正交化多项式

gramschmidt正交化多项式
Gram-Schmidt正交化是一种将一组线性无关的向量转化为正交向量的方法。

对于多项式来说,也可以应用Gram-Schmidt正交化。

假设我们有一组多项式(p_1(x), p_2(x), \ldots, p_n(x)),它们线性无关。

我们想要找到一组正交多项式(q_1(x), q_2(x), \ldots, q_n(x)),使得它们在某个内积空间(比如所有次数不超过(n)的多项式构成的空间,内积定义为(\langle p, q \rangle = \int_a^b p(x)q(x)dx))中是正交的。

Gram-Schmidt正交化的步骤如下:
令(q_1(x) = p_1(x))。

对于(k = 2, 3, \ldots, n),计算
(q_k(x) = p_k(x) - \sum_{j=1}^{k-1} \frac{\langle p_k, q_j \rangle}{\langle q_j, q_j \rangle} q_j(x))
这里,(\langle p_k, q_j \rangle)和(\langle q_j, q_j \rangle)都是内积。

这样,我们就得到了一组正交多项式(q_1(x), q_2(x), \ldots, q_n(x))。

注意,这个过程并不保证(q_k(x))的次数低于或等于(k),所以可能需要进行额外的步骤来得到次数正确
的正交多项式。

以上是一个基本的Gram-Schmidt正交化多项式的过程,对于具体的多项式和内积空间,可能需要进行一些调整。

施密特正交化推导过程

施密特正交化推导过程

施密特正交化推导过程
高斯-施密特正交化(Gram-Schmidt Orthogonalization)是一种向量正交化方法,是有效正交化基底(orthonormal basis)状态的一种方法。

它是定义在实数向量空间上且有限维的。

它的目标是对给定的v1,v2,…,vn基向量族生成一组正交和成比例的替换向量基向量w1,w2,…,wn,从而得到一个正交且比例的基底。

它的推导公式很简单,首先把原来的基向量定义为V1,…,Vn,然后将第一个基向量标准化为Wi,同时Wi是一个和V1正交的基向量,以此类推,后面的基向量Wi,为了使它和前面的基向量正交,通过把它们分别减去与Wi,Wi−1相关的实际上是该线性组合,最后获得Wi。

它的实现算法如下:
(1)第一步:计算Wi=V1/||V1||(| |表示V1的范德蒙范数);
(2)第二步:计算Wi+1=V2−(V2· Wi)Wi/ ||V2−(V2· Wi)Wi||;
(3)第三步:对于第n个基向量Vn,计算
Wn=Vn−(Vn· W1)W1−(Vn·W2)W2−…−(Vn · Wn−1)Wn−1/||Vn−(Vn·W1)W1−(Vn·W2 )W2−…−(Vn· Wn−1)Wn−1||
上述就是高斯-施密特正交化的推导过程,可以使任意多维向量空间的基向量被唯一的正交化。

它的算法比较简单,算法的复杂度只有O(n2),所以,在线性代数运算中很常用。

施密特正交化)

施密特正交化)

施密特正交化在线性代数中,如果内积空间上得一组向量能够张成一个子空间,那么这一组向量就称为这个子空间得一个基。

Gram-Schmidt正交化提供了一种方法,能够通过这一子空间上得一个基得出子空间得一个正交基,并可进一步求出对应得标准正交基。

这种正交化方法以Jørgen Pedersen Gram与Erhard Schmidt命名,然而比她们更早得拉普拉斯(Laplace)与柯西(Cauchy)已经发现了这一方法。

在李群分解中,这种方法被推广为岩泽分解(Iwasawa deposition)。

在数值计算中,Gram-Schmidt正交化就是数值不稳定得,计算中累积得舍入误差会使最终结果得正交性变得很差。

因此在实际应用中通常使用豪斯霍尔德变换或Givens旋转进行正交化。

记法•:维数为n得内积空间•:中得元素,可以就是向量、函数,等等•:与得内积•:、……张成得子空间•:在上得投影基本思想图1 v在V2上投影,构造V3上得正交基βGram-Schmidt正交化得基本想法,就是利用投影原理在已有正交基得基础上构造一个新得正交基。

设。

V k就是V n上得k维子空间,其标准正交基为,且v不在V k上。

由投影原理知,v 与其在V k上得投影之差就是正交于子空间V k得,亦即β正交于V k得正交基ηi。

因此只要将β单位化,即那么{η1,、、、,ηk+1}就就是V k在v上扩展得子空间span{v,η1,、、、,ηk}得标准正交基。

根据上述分析,对于向量组{v1,、、、,vm}张成得空间V n,只要从其中一个向量(不妨设为v1)所张成得一维子空间span{v1}开始(注意到{v1}就就是span{v1}得正交基),重复上述扩展构造正交基得过程,就能够得到V n得一组正交基。

这就就是Gram-Schmidt正交化。

算法首先需要确定扩展正交基得顺序,不妨设为。

Gram-Schmidt正交化得过程如下:这样就得到上得一组正交基,以及相应得标准正交基。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Gram-Schmidt 正交化方法 正射影设欧式空间V 中向量s ααα ,,21线性无关,令;11αβ= 111122,,ββββααβ-=; (1)222231111333,,,,ββββαββββααβ--=;……111122221111,,,,,,--------=s s s s s s s s s ββββαββββαββββααβ .则s βββ,,,21 均非零向量,且两两正交.再令,1i ii ββγ= s i ,.2,1 =则},,,{21s γγγ 为规范正交组.将(1)重新写成i i i i i i t t βββα+++=--11,11, , s i ,,2,1 = 其中kk k i ik t βββα,,=,,,,2,1s i = .1,,2,1-=i k{},,,2,1,s j i ∈∀有∑∑-=-=++=1111,,j k jk jk i k i k ikji t tββββαα()⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=-001,000,000,0,,0,1,,,1112222111,21j j j i i i i t t t t t t ββββββ 令⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=---101001011,2,2,11,1,121s s s s s s t t t t t t T则TTssssssssssssss⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----ββββββββαααααααααααααααααααααααα,,,,,,,,,,,,,,,,112211/21121112221212111上式左端的实方阵是sααα,,,21的格兰母矩阵,记为:()sGααα,,,21,上式右端中间的对角阵是sβββ,,,21的Gram矩阵.即有:()()TGTGssβββααα,,,,,,21/21=因此()()ssssGGβββββββββααα,,,,,,det,,,det22112121==注意:对任意一个向量组,无论它是线性相关,还是线性无关,它总有Gram矩阵(或者事先给出定义).例1 设sααα,,,21欧式空间V中向量,则(1)()⇔≠0,,,det21sGαααsααα,,,21线性无关;(2)()⇔=0,,,det21sGαααsααα,,,21线性相关.证明:只证(2))⇐设sααα,,,21线性相关,则存在一个向量,不妨设为1α,可由其余向量线性表示:sskkααα++=221给s阶的行列式()sGααα,,,det21的第i行乘数()i k-加到第1行,si,,3,2=得()ssssssisiissiiisiiiskkkGααααααααααααααααααααααααααα,,,,,,,,,,,,,,,det2122212212221211121∑∑∑===---==)⇒法一:由上页证明推理过程立即得证。

法二:当()0,,,det21=sGααα 时,()sGααα,,,21的行向量组线性相关,因此存在不全为零的实数12,,,sk k k,使1,0,1,2,,sii ji kj sαα===∑ .即1,0,1,2,,siiji k j sαα===∑ .故11,0ssiiiii i k k αα===∑∑,即有10si i i k α==∑.即有12,,,s ααα 线性相关.注:当12,,,s ααα 线性无关时,12det (,,,)0s G ααα≠ ,且12det (,,,)0s G ααα> .推论1 设12,,,s ααα 是欧氏空间V 中任意向量,则 (ⅰ) 12(,,,)s G ααα 是半正定矩阵;(ⅱ) 12(,,,)s G ααα 是正定阵⇔12,,,s ααα 线性无关. 证明(ⅰ)对任意121k i i i s ≤<<<≤ ,主子式12121212det[(,,,)]det (,,,)k k s i i i k i i i G G i i i αααααα⎛⎫=⎪⎝⎭总大于或等于零. 因此12(,,,)s G ααα 是半正定矩阵.(ⅱ)(⇐)当12,,,s ααα 线性无关时,对任意121k i i i s ≤<<<≤ ,主子式12121212det[(,,,)]det (,,,)k k s i i i k i i i G G i i i αααααα⎛⎫=⎪⎝⎭总大于零(因为12,,,ki i i ααα 线性无关).故12(,,,)s G ααα 是正定阵.(⇒)由例1,这是显然的.推论2 (ⅰ)设欧氏空间V 中向量12,,,s ααα 线性无关,则121det (,,,),ss i i i G ααααα=≤∏,且上式取等号⇔12,,,s ααα 两两正交.(ⅱ)设12,,,s V ααα∈ (欧),则121det (,,,),ss i i i G ααααα=≤∏.(ⅲ)设()n A M ∈ ,12(,,,),n n i A αααα=∈ ,则12(,,,)s G A A ααα'= ,故2211det()(det )nnjij i A A A a=='=≤∑∏.当A 可逆时,上式取等号⇔,{1,2,,},i k n i k ∀∈≠ ,有10nji jk j a a ==∑.例2 设12(),(),,()s f x f x f x 是欧氏空间[,]C a b 中的向量,且它们线性无关. 证明21m ax ()()(),;,1,2,,bb i j k a ai sf x dx f x f x dx j k j k s≤≤≥≠=⎰⎰.证明 令()ij n n B b ⨯=,其中(),()()()b ij i j i j ab f x f x f x f x dx ==⎰.则B 是线性无关向量组12,,,s f f f 的G ram 矩阵,故B 正定.假如B 的元素中,绝对值最大者不在主对角线,设max{,1,2,,}kl ij b b i j s == ,k l ≠.则0kl kk b b >>,0kl ll b b >>.故2kl kk ll b b b >.这样B 的二阶主子式20kk kl kk ll kl lk kk ll kl lkllb b b b b b b b b b b =-=-<.这与B 是正定阵相矛盾.因此B 的元素中,绝对值最大者必是主对角元,结论得证.注:从例2的证明中,可以看出这样一个结论:任意m 阶(实对称)正定阵的元素中,绝对值最大者必在主对角线上.设12{,,,}n ααα 是(0)n >维欧氏空间V 的规范正交基,,V ξη∀∈,1niii a ξα==∑,1niii b ηα==∑,则1),,1,2,,i i a i n ξα== .2)1,ni ii a b ξη==∑.3)2,ξξξ=⇒=4)(,)d ξηξη=-=.设W 是欧氏空间V 的有限维子空间,则V W W ⊥=⊕.,,,V W Wξξηζηζ⊥∀∈=+∈∈,表示法唯一.称η为ξ在W 上的正射影.当12,,,t γγγ 为W 的规范正交基时,ξ在W 上的正射影为1122,,,n n ηξγγξγγξγγ=+++ .例3 证明,3 中向量000(,,)x y z 到平面3{(,,)|0}W x y z ax by cz =∈++=证明 000(,,)x y z ξ=,,,)a b c γ=,ξ在L (γ)的正射影的长度即为所求:,ξγ==.例4 设12{,,,}m ααα 是欧氏空间V 的一个规范正交组.证明,对于任意V ξ∈,以下不等式成立:22,1im i ξαξ≤∑=.证明:令W =L 12(,,,)m ααα ,则V W W ⊥=⊕,,V ξξηζ∀∈=+,,W W ηζ⊥∈∈.简单的计算表明222ξηζ=+.故22ηξ≤.而ξ在W 上的正射影,1i i mi ηξαα=∑=.因此由22ηξ≤知22,1im i ξαξ≤∑=.注:设12,,,m ααα 与12,,,m γγγ 均是V 的规范正交基,且 L 12(,,,)m ααα = L 12(,,,)m γγγ,则22,,11iim m i i ξαξγ=∑∑== .。

相关文档
最新文档