第三篇+水环境化学(2)水体污染

合集下载

环境化学第3.2章水环境化学水中无机污染物的溶解和沉淀课件

环境化学第3.2章水环境化学水中无机污染物的溶解和沉淀课件
纯水封闭体系中金属碳酸盐的溶解度
20
第三章/第二节/2.3 溶解和沉淀
2.3.4 碳酸盐 四、碳酸盐在开放体系的溶解度(二价金属)
[H2CO3*] = KHpCO2 [CO32-] = K1K2KHpCO2/[H+]2
pH>pK2(10.33) pK1<pH<pK2 (6.35~10.33) [Me2+] ≈ Ksp[H+]2/K1K2KHpCO2 pH<pK1(6.35)
第三章/第二节 水中无机污染物的迁移转化
2.3 溶解和沉淀
溶解/沉淀对迁移过程的影响
溶解/沉淀影响金属化合物溶解度,溶解度决定随水迁移能力 溶解度大,迁移能力大;溶解度小,迁移能力小
溶解/沉淀理论
溶解/沉淀受反应平衡和反应速率控制(化学热力学和动力学控制) 固-液平衡体系中,用溶度积来表征溶解度
第三章/第二节/2.3 溶解和沉淀
2.3.3 硫化物
二、金属硫化物的溶解度(以二价金属为例)
1. 金属硫化物的沉淀-溶解平衡
MeS (s) ⇌ Me2+ + S2-
[Me2+] = Ksp/[S2-]
2. H2S的电离平衡
H2S ⇌ H+ + HS- K1 = 8.9×10-8
HS- ⇌ H+ + S2-
= 2.532×10-3 mol/L
15
第三章/第二节/2.3 溶解和沉淀
2.3.4 碳酸盐
一、碳酸盐的沉淀-溶解平衡(以二价金属为例)
MeCO3 ⇌ Me2+ + CO32[Me2+] = Ksp/[CO32-] = Ksp/(CTα2)
H2CO3* ⇌ HCO3- + H+

第三章水环境化学水中无机污染物的迁移转化

第三章水环境化学水中无机污染物的迁移转化
32
胶体微粒的吸附和聚沉对污染物的影响
④吸附和聚沉对污染物的影响
有人研究某入海河口铬、铜、汞的迁 移机制,测定了该河口底层水和表层底 泥中铬、铜、汞的含量及它们在底泥中 的富集系数(相对底层水),发现多年来 该河口水中铬、铜、汞含量,基本稳定 在标准以下,而部分站位表层底泥中有 时出现超标的情况;而且在表层底泥中 铬、铜、汞的平均富集系数很大,分别 为980~1100、164~500、18~45,呈 现明显的富集能力,其中对铬尤为显著。
第二节 水中无机污染物的迁移转化
无机污染物主要通过沉淀-溶解、氧化-还原、配合作 用、胶体形成、吸附-解吸等一系列物理化学作用进行 迁移转化,参与和干扰各种环境化学过程和物质循环 过程,最终以一种或多种形态长期存留在环境中,造 成永久性的潜在危害。
实际上微量污染物在水体中的浓度和形态分布,在 很大程度上取决于水体中各类胶体的行为。胶体微粒 作为微量污染物的载体,它们的絮凝沉降、扩散迁移 等过程决定着污染物的去向和归宿。在天然水体中, 重金属在水相中含量极微,而主要富集于固相中,在 很大程度上与胶体的吸附作用有关。因此,胶体的吸 附作用对水环境中重金属的过程转化及生物生态效应 有重要影响。
27
胶体微粒的吸附和聚沉对污染物的影响
②不同吸附剂对金属离子的吸附有较大
的差别
P.A.Krenkel和E.B.Shin等研究了各种天然 和人工合成的吸附剂对HgCl2的吸附作用, 其吸附能力大致顺序是:含硫的沉积物(还 原态的)>商业去污剂(硅的混合物、活性 碳)>三维黏土矿物(伊利石、蒙脱石)>含 蛋白去污剂>铁、锰氧化物及不含硫的天 然有机物>不含硫但含胺的合成有机去污 剂、二维黏土矿物和细砂。
26
补充:胶体微粒的吸附和聚沉对污染物的 影响

环境化学-第三章-第2节-水中无机污染物的迁移转化概述

环境化学-第三章-第2节-水中无机污染物的迁移转化概述
1/ G 1/ G0 ( A / G0 )(1/ C)
G0—单位表面上达到饱和时的最大吸量
A—常数
(p122 图3-4)
2021/3/25
15
4 沉积物中重金属的释放(p125)
沉积物中的重金属可能重新进入水体,这 是产生二次污染的主要原因。
碱金属和碱土金属离子可将吸附在颗粒 物表面的重金属离子置换出来,这是重金属 从颗粒物表面解吸的重要途径之一。
氧化还原条件的变化,使金属以水合离 子解吸。
2021/3/25
16
4 沉积物中重金属的释放(p125)
水环境pH值的降低,导致硫酸盐和氢 氧化物的溶解
废水中配合剂的含量增加,和重金属 形成稳定的可溶性配合物,使重金属 重新进入水体,以上几种途径都有可 能构成环境水体重金属的二次污染
2021/3/25
聚多胺,聚丙烯酰胺,阳离子型 (淀粉-二甲基二烯丙基氯化铵接枝 共聚物), 两性絮凝剂等。
复合型絮凝剂
2021/3/25
24
三、沉淀和溶解
1. 金属氧化物和氢氧化物
M (OH )n (S ) M n nOH
KSP [M n ][OH ]n
[M
n
]
K SP [OH
]n
2021/3/25
25
将[Fe(OH)+] = 1.0×10-7 mol/L代入,
pH = 11.6
(2)
2021/3/25
49
pE – pH 图
Fe(OH)3(S) Fe2+的边界 Fe(OH)3(S) + 3H+ + e = Fe2+ + 3H2O
K
Re d Ox en

环境化学-第三章-水环境化学-第二节-水中无机污染物的迁移转化

环境化学-第三章-水环境化学-第二节-水中无机污染物的迁移转化

对于其他金属碳酸盐则可写为: -lg[Me2+] =0.5p Ksp -0.5pα2 由2 [Me2+] + [H+] = [HCO3-] + 2[CO32-] + [OH-]得: (Ksp/α2)1/2 (2 – α1- 2α2) + [H+] – Kw/[H+] = 0
当pH > pK2 时,α2≈1,CO32-为主,lg[Ca2+] = 0.5 lg KSP
四、氧化还原
氧化-还原平衡对水环境中无机污染物的迁移转化 具有重要意义。水体中氧化还原的类型、速率和平衡, 在很大程度上决定了水中主要溶质的性质。例如,厌 氧型湖泊,其湖下层的元素都将以还原形态存在;碳 还原成-4价形成CH4;氮形成NH4+;硫形成H2S;铁 形成可溶性Fe2+。其表层水由于可以被大气中的氧饱 和,成为相对气体性介质,如果达到热力学平衡时, 则上述元素将以氧化态存在:碳成为CO2;氮成为 NO3-;铁成为Fe(OH)3沉淀;硫成为SO42-。显然这种 变化对水生生物和水质影响很大。
发生吸附的表面净电荷的符号 - 金属离子所起的作用 吸附时所发生的反应 发生吸附时要求体系的pH值 吸附发生的位置 对表面电荷的影响 反离子
阳离子交换 配位体交换 >零电位点 任意值 扩散层 无 内层 负电荷减少 正电荷增加
(2)吸附等温线和等温式:在固定温度下,当吸附达到平 衡时,颗粒物表面的吸附量(G)与溶液中溶质平衡浓度
达到临界状态,就可以发生快速凝聚。
三、溶解和沉淀
溶解与迁移 实际溶解沉淀过程的复杂性 1、氧化物和氢氧化物:氧化物可以视作氢氧化物的脱水产物 Me(OH)n (s) Men+ + n OH根据溶度积: Ksp= [ Men+ ] [ OH- ]n 可转化为: [ Men+ ] = Ksp / [ OH- ]n = Ksp[ H+] / Kwn -lg [ Men+ ] = -lgKsp – n lg [ H+ ] + n lgKw pc = pKsp- n pKw + n pH = pKsp – n pOH 可以做 pc-pH 图,斜率等于 n,即金属离子价; 截距是 pH = 14 - (1/n)pKsp。

环境学概论 第三章水体环境解读

环境学概论  第三章水体环境解读

3.水资源的特性(与其它自然资源相比)
A B C D 资源的循环性 储量的有限性 分布的不均衡性 利用的多用性
E
利害的两重性(图)
5
4.地球上局部存在水荒的原因
A B C 淡水在地球上的分布极不平衡 城市、工业区高度集中,耗水量大。 水污染严重,“水质型缺水” 突出。(图A) (图B)
二.天然水的水质 1.天然水化学成份的形成 2.天然水的化学组成 3.各种类型的天然水质 4.天然水体的自净作用
*放射性类
来源:核武器试验;原子能工业排放或泄漏 。 危害:主要通过α、β、γ等射线损害人体组织,并可在人
体内蓄积,促成贫血、白血球增生、恶性肿瘤等病
症,严重的可导致生命危险。
19
第二节
污染物在水体中的扩散
一. 污染物在水体中的运动特征
1.推流迁移:指污染物在水流作用下产生的迁移作用 此过程中污染物质总量不变,浓度也不变 2.分散作用:包含分子扩散、湍流扩散和弥散三个方面。 此过程中污染物质总量不变,但浓度减小 3.污染物的衰减和转化 进入水环境中的污染物可以分为两大类: 保守物质和非保守物质 此过程中污染物质总量与浓度均发生变化
1.有机物生物化学分解 ①水解反应:指复杂的有机物分子与水电离出的H+或OH-
结合生成较简单化合物的反应。
②氧化反应:包括脱氢作用和脱羧作用两类 2.耗氧有机物的生物降解
代表性有机物:碳水化合物;脂肪和油类;蛋白质 (1)碳水化合物
25
(2)脂肪和油类
(3)蛋白质
26
需氧有机物降解的共同规律是:首先在细胞体外发生水解, 然后在细胞内部继续水解和氧化。降解的后期产物都是生成各 种有机酸,在有氧条件下,可以继续分解,其最终产物是CO2、 H2O及NO3-等;在缺氧条件下则进行反硝化、酸性发酵等过程, 其最终产物除CO2、H2O外,还有NH3、有机酸、醇等。 2.耗氧有机物降解与溶解氧的平衡 在污染河流中耗氧作用和复氧作用影响着水中溶解氧的含量 耗氧作用:指有机物分解和有机体呼吸时耗氧,使水中溶解

第三章水环境化学

第三章水环境化学
总含盐量(TDS):
TDS=[K++Na++Ca2++Mg2+]+[HCO3-+NO3-+Cl-+SO42-
2、天然水的性质
(Characteristic of Natural Waters) (1)碳酸平衡(Balance of H2CO3) 水体中存在四种化合态:
CO2、CO32-、HCO3-、H2CO3
第三章 水环境化学
(Water Environmental Chemistry)
本章重点
1、无机污染物在水体中进行沉淀-溶解、氧化-还原、 配合作用、吸附-解吸、絮凝-沉淀的基本原理;
2、计算水体中金属存在形态;
3、pE计算;
4、有机污染物在水体中的迁移转化过程和分配系数、 挥发速率、水解速率、光解速率和生物降解速率的 计算方法。
农药
有机氯 有机磷
多氯联苯 (PCBS) 卤代脂肪烃 醚
单环芳香族化合物 苯酚类和甲酚类 酞酸酯类 多环芳烃(PAH) 亚硝胺和其他化合物
2、金属污染物 (Metal Pollutant)
Cd、 Hg、 Pb、 As、 Cr、 Cu、 Zn、 Tl、 Ni、 Be
第二节 水中无机污染物的迁移转化
强酸 弱酸 强酸弱碱盐
总酸度= [H+]+ [ HCO3-] +2[H2CO3*] - [ OH-] CO2酸度= [H+]+ [H2CO3*] - [CO32-] - [ OH-] 无机酸度= [H+]- [ HCO3-]-2 [CO32-] - [ OH-]
二、水中污染物的分布及存在形态
1、有机污染物 (Organic Pollutant)

环境学概论 3水体污染


③总有机碳量(TOC):水中溶解性和 悬浮性有机物中存在的全部碳量 ④ 总需氧量(TOD):当有机物全部被 氧化时,碳被氧化为二氧化碳,而氢、 氮、硫则被氧化为水、一氧化氮和二氧 化硫等。此时氧化所需的氧量称为总需 氧量。 • 在水质状况基本相同的情况下,BOD5与 TOC或TOD之间存在一定的相关关系。 通过实验建立相关,则可快速测定出 TOC,从而推算出其他有机物污染指标。
• 用BOD、DO两组方程式来表达水质变化。则 S-P模型的基本形式:
dL k1 L dt dc k1 L k2 (cs c ) dt
这两个方程式是耦合的。当取边界条件时
L 0
• 可得解析解为
L L0e k1 L0 k1t k2t k2t C C ( e e ) ( C C ) e s s 0 k2 k1
(一)河流 • 污染程度随径流量变化 • 污染扩散快 • 污染影响大 (二)湖泊(水库) • 污染来源广、途径多、类型复杂 • 污染稀释和搬运能力弱 • 生物降解和累积能力强
(三)地下水 • 污染来源广泛 • 污染难于治理 • 污染危害严重 (四)海洋 • 污染源多而复杂 • 污染持续性强 • 污染扩散范围大
• 常用的表示耗氧有机物污染的指标有: ① 化学耗氧量(COD):在规定条件下, 使水样中能被氧化的物质氧化所需耗用氧 化剂的量。常用的氧化剂K2Cr2O7、 KMnO4。 2K2Cr2O7+3C+8H2SO4→ 2K2SO4+2Cr2(SO4)3+3CO2+8H2O ② 生化需氧量(BOD):指在好气条件下, 微生物分解水体中有机物质的生物化学过 程中所需溶解氧的量,是反映水体中有机 污染程度的综合指标之一

(完整版)第三章水环境化学

化学反应平衡:
分布分数:α0 、α1、α2分别表示化合物在总量中的比 例则:
α0=[H2CO3*]/{[H2CO3*]+[HCO3]+[CO32-] } α1 =[HCO3-]/{[H2CO3*]+[HCO]+[CO32-] } α2=[CO32-]/{[H2CO3*]+[HCO3-]+[CO32-] }
2003年我国万元GDP用水量为465m3,是世界平均水平的4 倍;农业灌溉用水有效利用系数为0.4~0.5,是发达国家 的1/2;水的重复利用率为50%,发达国家已达到了85%; 全国城市供水管网漏损率达20%左右。
水危机的出现
根据水利部《21世纪中国水供求》分析,2010年 我国工业、农业、生活及生态环境总需水量在中 等干旱年为6988亿立方米,供水总量6670亿立方 米,缺水318亿立方米。这表明,2010年后我国 将开始进入严重的缺水期。
CT=[H2CO3*]+[HCO3- ]+[CO32- ]
试计算封闭体系和开放体系中各碳酸形态的表示式? (1)封闭体系
总碳酸量不变 (2)开放体系
[H2CO3*]保持不变
封闭体系:
0
H]
k1k2 [H ]2
)1
1
HCO3 CT
(1
[H k1
]
k2 [H
)1 ]
溶解于水中气体的量可能高于亨利定律表示的量。
氧在25℃ ,1.013X105Pa下溶解度计算:
由亨利定律[G(aq)]=KH*pG
不同温度下,气体在水中溶解度的计算:
CO2在25℃ ,1.013X105Pa下溶解度计算
(4)水体富营养化(eutrophication) 由于水体中氮磷营养物质的富集,引起

环境化学(袁加程)第三章-水环境化学

工业废水:废水中污染物浓度大;废水成分复杂且不易净化; 很多工业废水带有颜色或异味,或呈现出令人生厌的外观,易 产生泡沫,含有油类污染物等;废水水量和水质变化大;某些 工业废水的水温高,甚至有高达40℃以上。
3. 水体污染及水体污染源
主要的水环境污染物
悬浮物 植物性营养物 酸碱污染 难降解有机物 热污染
总碱度 = [HCO3-] + 2[CO32-] + [OH-] – [H+]
2. 天然水体中的化学平衡
酸度是指水中能与强碱发生中和作用的全部物质,亦即放 出H+或经水解能产生H+的物质总量。包括强酸、弱酸、强酸弱 碱盐等。
总酸度 = [H+] + [HCO3-] + 2[H2CO3] – [OH-]
第三章 水环境化学
第一节 水环境化学基础
天然水的基本特性 天然水体中的化学平衡 水体污染及水体污染源 水体的自净作用与水环境容量
1. 天然水的基本特性
1.1 天然水的组成
(1) 天然水的主要离子组成: K+, Na+, Ca2+, Mg2+, HCO3-, NO3-, Cl-, SO42- 为天然水中常 见的八大离子,占天然水离子总量的95-99%。
[HCO
3
]
K1[H2CO3 ] [H ]
[CO32- ]
K1K2[H2CO3 ] [H ]2
0
[H2CO3 ]
[H2CO3 ]
K1[H 2 CO 3 [H ]
]
K1K2[H2CO3 ] [H ]2
(1
K1 [H
]
K1 K 2 [H ]2
) 1
2. 天然水体中的化学平衡

第三章 水环境化学


pKc1
pKc2
结论:
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ pH<<pKc1 pH=pKc1 pH=pKc2 pH>>pKc2 pH=1/2(pKc1+pkc2) H2CO3* αH2CO3*=αHCO3αHCO3-=αCO32CO32HCO3-
3:开放碳酸体系
= -21.6 + 2pH
由以上方程式作lgc—pH图可看出
3. 碱度的测定:
(原理: 中和滴定法,根据消耗的酸量求出)
c V 1000 碱度(mmol/L ) Vs 单位:mmol[H ]/L
式中:Vs——水样体积)(mL) c——HCl浓度(mol/L) V——HCl体积(mL)
思考:碱度和碱性的区别
例如:若一个天然水的pH为7.0,碱度为1.4mmo1/l, 求需加多少酸才能把水体的pH降低到6.0。
二、水体中的污染物
病原体污染物
耗氧污染物 植物营养物 石油类污染物 放射性物质
酸、碱、盐无机污染物
热污染
有毒污染物
(1)重金属
(2)无机阴离子 (3)有机农药、多氯联苯 (4)致癌物质 (5)一般有机物质
三、水体中的污染物的运动过程
大气降落物 污水排入
1.稀释、扩散过程
3.转化过程
溶解在天然水中的物质
1、主要离子 主要阳离子有: Ca2+、Mg2+、Na+、K+。 主要阴离子有: Cl-、SO42-、HCO3-、CO32-。 这八种离子可占水中溶解固体总量的95%~99%以上。 陆地水中下列成分的含量顺序一般为: HCO3- >SO42- >Cl-,Ca2+ >Na+ >Mg2+ 海水中相应的含量顺序为: Cl- >SO42- >HCO3-,Na+ >Mg2+ >Ca2+。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
第二章 水体污染
酸、碱、盐无机物污染 热污染
热污染是一种能量污染,是由工矿企业向水体排放高温废水 造成。
水环境中污染物,总体上可划分为金属污染物和有机污染物 两大类。
8
水体中的污染物
水体污染包括无机和有机有毒物质、耗氧有机物、石油类、 放射性物质、热污染以及病原微生物等。 病原体污染物
生活污水、畜禽饲养场污水以及制革、洗毛、屠宰业和医院 等排出的废水,常含有各种病原体,如病毒、病菌、寄生虫。 病原体污染的特点 (1)数量大,(2)分布广,(3)存活时间较长,(4)繁殖速 度快,(5)易产生抗药性,很难绝灭,(6)传统的二级生化污 水处理及加氯消毒后,某些病原微生物、病毒仍能大量存活。
第二章 水体污染
水体污染与自净
水体污染
由于人类活动排放的污染物进入河流、湖泊、海洋或地下水 等水体,使水和水体底泥的物理、化学性质或生物群落组成发生 变化,从而降低了水体的使用价值,这种现象称为水体污染。
水体自净
指受污染的水体由于物理、化学、生物等方面的作用,使污 染物浓度逐渐降低,经一段时间后恢复到受污染前状态的过程。
4
第二章 水体污染
有毒污染物质
有毒污染物质是指进入生物体后累积到一定数量能使体液和 组织发生生化和生理功能的变化,引起暂时或特久的病理状态, 甚至危及生命的物质。
有毒污染物对生物的综合效应 相加作用 两种以上毒物共存时,其总效果大致是各成分效果之和。 协同作用 两种以上毒物共存时,一种成分能促进另一种成分毒性急剧增加。 拮抗作用 两种以上的毒物共存时,其毒性可以抵消一部分或大部分。
5
第二章 水体污染
有毒污染物类型:
(1)重金属 (2)无机阴离子 (3)致癌有机物质 (4)ห้องสมุดไป่ตู้般有机物质
6
第二章 水体污染
石油污染
石油是烷烃、烯烃和芳香烃混合物。 石油污染物主要来自工业排放,清洗石油运输船只的船舱、 机件及发生意外事故,海上采油等均可造成石油污染。
放射性污染物
放射性污染是由放射性物质进入水体造成。 放射性污染物主要来源于核动力工厂排出的冷却水,向海洋 投弃的放射性废物,核爆炸降落到水体的散落物,核动力船舶事 故泄漏的核燃料;开采、提炼和使用放射性物质时,如果处理不 当,也会造成放射性污染。
3
第二章 水体污染
耗氧污染物
耗氧有机物浓度常用单位体积水中耗氧物质生化分解过程所 消耗的氧量表示,即以生化需氧量(BOD5)表示。
植物营养物
植物营养物主要指氮、磷等能刺激藻类及水草生长、干扰水 质净化,使BOD5升高的物质。
富营养化是指在人类活动的影响下,生物所需的氮、磷等营 养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其它 浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其它 生物大量死亡的现象。
1
第二章 水体污染
自净作用:
物理自净 污染物进入水体后,可沉性固体逐渐沉至水底形成污泥,悬浮物、 胶体和溶解性污染物则因混合稀释而逐渐降低浓度。
化学自净 污染物进入水体后经络合、氧化还原、沉淀反应等而得到净化。
生物自净 在生物的作用下,污染物的数量减少,浓度下降,毒性减轻或消 失.
2
第二章 水体污染
相关文档
最新文档