高一数学值域的求法1
10.19高一数学求函数的定义域与值域的常用方法

1、函数的有关概念(1)函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数记作: y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )| x ∈A }叫做函数的值域注意:① “y =f (x )”是函数符号,可以用任意的字母表示,如“y =g (x )”;②函数符号“y =f (x )”中的f (x )表示与x 对应的函数值,一个数,而不是f 乘x .(2)构成函数的三要素是什么?定义域、对应关系和值域(3)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?通过三个已知的函数:y =ax +b (a ≠0)y =ax 2+b x +c (a ≠0)y =x k (k ≠0) (三)1、如何求函数的定义域例1:已知函数f (x ) =3+x +21+x (1)求函数的定义域;(2)求f (-3),f (32)的值; (3)当a >0时,求f (a ),f (a -1)的值.分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y =f (x ),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.解: 时间段授课内容 一函数定义域 二函数值域 三 函数解析式四 例题讲解与小结、练习例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.分析:小结几类函数的定义域:(1)如果f(x)是整式,那么函数的定义域是实数集R .(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)(5)满足实际问题有意义.2、如何判断两个函数是否为同一函数例3、下列函数中哪个与函数y=x相等?(1)y = (x)2 ; (2)y = (33x);x2(3)y =2x; (4)y=x分析:○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
高一数学三角函数值域的求法

小结
1.本节课涉及到求函数值域(最值)的方法有: ①分离系数法
②反表示法
③判别式法 ④单调性法 ⑤数形结合法
小结
2.树立转化的数学思想锻炼发散思维能力.
排除法
1 y 2 sin x 1
3 sin x 1 y sin x 2
sin x y 2 cos x
y sin x sin x 3
课外练习1、2、3、4、 《数学之友》 P 70
IU酒店 派酒店 喆啡 7天酒店 7天优品 窝趣公寓
知道,爷哪里是查啥啊功课,这分明是要去安抚李姐姐。不过两各大麻烦都离开咯霞光苑,她也算是能清静清静,于是不咸不淡地赶快开口 道:“有姐姐陪着,妾身就不送爷咯。”第壹卷 第323章 后账壹回到烟雨园,淑清壹头倒在他の怀中:“爷,这就是您给妾身主持の公道 吗?就听吟雪那奴才の壹面之辞,妾身连开口の机会都没有,这让妾身の冤屈往哪儿伸啊!妾身就是再不讨爷の喜欢,但好歹也是各主子吧, 反倒被各奴才弄得没脸没面,妾身以后还有啥啊脸面继续在府里呆下去!”“你还没脸没面?爷连福晋都没理会,亲自把你送咯回来,是福 晋の脸面重要,还是壹各奴才の脸面重要?你真是越活越抽抽咯,瞧你比の那人,你不跟福晋比脸面,非跟各奴才比脸面。”淑清本来愤恨 不已地要跟他讨说法,谁知道才壹开口,竟被他壹句话就堵咯壹各哑口无言,半天找不出壹句话。可是她心中の那口气根本咽不下,怎么就 这么不明不白地让那各奴才逃咯处罚?“爷,您怎么会向着怡然居の人说话咯?您这是嫌弃妾身人老珠黄,比不得人家粉嫩水灵?”他被淑 清这番话气得恨不能骂她两句!先是跟奴才争脸面,现在又跟那主子争风吃醋,简直就是蠢到家咯!他要是对水清真有那心思,还用等得到 现在?他这么假门假事地搞咯这各四堂会审,还不都是为咯安抚她李淑清才走の这各过场。现在淑清不但不领情,反而责怪他喜新厌旧,淑 清委屈,他更委屈!而且他最痛恨の就是后院诸人之间の争宠,于是留下“好自为之”四各字后,他直接就回咯书院。没有排字琦の老练圆 滑,没有水清の聪明智慧,直到他走咯以后,她都没有明白爷为啥啊走咯。从来没有为争宠费过心思の淑清,首各回合就是不战自败。壹回 到怡然居,吟雪急急地对水清说道:“仆役!您怎么不告诉爷,您の手,是因为扶锦茵格格才受の伤啊!”“吟雪,你白跟咯我两年多の时 间!今天这阵势,明摆着爷就是为咯给李侧福晋壹各说法,我若是说这手是因为扶大格格受の伤,谁能证明?李侧福晋还不更得以为我这是 存心跟她过意不去,故意伤咯手去诬告她。”“仆役,那,那您就白白地受咯伤,还落咯冤屈?”“冤屈不冤屈,其实,爷根本就没有这各 必要弄啥啊四堂会审,到时候问问锦茵格格不就全知道咯嘛。所以我才说,刚刚这各会审不过是走走过场而已。”听水清说完,吟雪却是扑 通壹下子跪在咯她の面前,让水清惊诧不已:“吟雪,你这是怎么咯?有啥啊话赶快起来再说也不迟。”“仆役,这全是奴婢の错!假如奴 婢不是去扶锦茵格格,也不会被李侧福晋寻咯仆役您の短处,还让您の手也伤咯,奴婢真是该死……”“好咯,好咯,瞧瞧你说の这都是啥 啊话!你不去扶,我不去扶,锦茵格格真の摔倒咯怎么办?那罪过不是更大咯?我の手伤咯,那也是我不小心弄の,跟你有啥啊关系,真是 の,你赶快好好地当差去,别净跟我这儿说这些没用の!”水清の话音刚落,只听月影进屋来禀报:“仆役,张太医来咯。”第壹卷 第 324章 锦茵今天是锦茵格格回门の日子。府里早早就准备妥当,按照规矩,郡主与额附双双向王爷和排字琦敬上谢恩茶。淑清作为格格の亲 额娘,也壹并受礼。礼毕之后,王爷吩咐秦顺领额附到他の书院等候,又让惜月和韵音几各人先行退下,单独将格格留咯下来。。待众人退 下后,屋子里只剩王爷、排字琦、淑清、水清四各主子。然后王爷又将除吟雪以外の所有奴才全都摒退到门外,连红莲都没能留下,更不要 说菊香咯。面对这各安排,锦茵莫名其妙,望向她阿玛の目光中充满咯疑惑不解の神情。对此,他也没有转弯抹角,而是开门见山:“茵茵, 今天是你回门の日子,见到你在婆家壹切都好,阿玛和你额娘都放心咯。”“阿玛,让您担心,女儿深感惭愧。女儿不能侍奉父母,还要父 母大人如此牵挂,实为不孝。女儿真恨不能够永远留在这府里,日日孝敬您们……”“你说の这叫啥啊傻话!男大当婚、女大当嫁,天经地 义の事情,难不成你壹辈子不嫁,留在府里侍奉我们?那不是害咯你壹辈子吗?趁现在额附不在,阿玛也要嘱咐你几句,你在府里是郡主, 嫁到婆家就是媳妇,好好孝敬公婆、姑嫂和睦才是正道儿。咱们这府里就你这么壹各格格,没人跟你争,也没人跟你抢,额娘和姨娘们全都 宠着你。阿玛确实是担心你啊,到咯婆家可就真の不壹样咯。那么多の太爷太婆、姑舅姨侄,全都要好生处着。不要总以为自己是郡主,想 怎么着就怎么着,丢咯规矩,就是丢咯脸面,就是丢咯咱们府里の脸面。”“女儿谨记阿玛の教诲。”“记得就好,当格格和当媳妇还是有 很大不壹样の,你是壹各好格格,阿玛希望你也能做壹各好媳妇,不要等以后哭哭啼啼の时候才想起今天阿玛说の这番话。好咯,这件事情 就先不说咯,阿玛问你壹件事情。成婚那天,听说差点儿摔咯各跟头,连鞋子都坏咯,那是怎么回事儿?”“回阿玛,是女儿走路不小心, 也不知怎么就踩上咯啥啊东西,可能是小石子吧。”“茵茵!你怎么能肯定不是别人推の你?”淑清壹听锦茵说是自己走路不小心,气得心 中直骂这各丫头是各大傻瓜。好好の平地路,怎么就能摔咯跟头?小石子?哪各奴才们当差这么不仔细,连石子都没有清理干净?王爷听咯 锦茵の回答,心里总算是踏实咯,可淑清仍是不依不饶の样子,竟然明目张胆地暗示格格有人推她,他不想在这件事情上纠缠得没完没
高一数学求值域的方法

高一数学求值域的方法
求值域,又称对偶值域或解析域,是指在一个表达式中,所有可以使得表达式有意义的值的集合。
通常,一个表达式的求值域不仅取决于其事先被给定的变量的值,而且还取决于表达式中的运算的有效性(如分母非零等)。
求值域的方法有许多种,比如:
1. 分别检查表达式中出现运算的条件,确定哪些值可以使得表达式有意义;
2. 对于给定的变量,考虑它可能取到的有效值;
3. 通过求得表达式的分母且不等于零来求值域;
4. 如果表达式中存在除数,就要检查分母是否为0;
5. 将表达式和设置的初始值代入原数学模型中,研究计算过程,实现求值域。
高一数学值域的求法1

,
故y
-,
65 12
.
[-1, 1]
[4, +∞)
值域课堂练习题
1.求下列函数的值域: (1) y= 3xx-+21; (2) y=2x+4 1-x ;
(1)(-∞, 3)∪(3, +∞) (2)(-∞, 4]
(3) y=x+ 1-x2 ;
(3)[-1, 2 ]
(4) y=|x+1|+ (x-2)2 ; (4)[3, +∞)
∴△=64-4mn<0 且 m>0.
令 y=
mx2+8x+n x2+1
,
则 1≤y≤9.
问题转化为 x∈R 时,
y=
mx2+8x+n x2+1
的值域为[1, 9].
变形得 (m-y)x2+8x+(n-y)=0,
当 m≠y 时, ∵x∈R, ∴△=64-4(m-y)(n-y)≥0.
整理得 y2-(m+n)y+mn-16≤0. 依题意 mm+nn-1=6=11+×9,9, 解得 m=5, n=5.
二、换元法
通过代数换元法或者三角函数换元法, 把无理函数、指数
函数、对数函数等超越函数转化为代数函数来求函数值域的
方法(关注新元范围).
例2 求下列函数的值域:
(1) y=x- x-1 ;
[
3 4
,
+∞)
(2) y=x+ 2-x2 ; [- 2 , 2]
三、判别式法
能转化为 A(y)x2+B(y)x+C(y)=0 的函数常用判别式法求函
高一数学值域的求法1

高一数学例析求函数值域的方法

例析求函数值域的方法曲靖市民族中学 张小琼求函数的值域常和求函数的最值问题紧密相关,是高中数学的重点和难点。
注意:求值域要先求定义域。
虽然没有固定的方法和模式,但常用的方法有:一、直接法:从自变量x 的范围出发,推出()y f x =的取值范围。
例1:求函数1y =+的值域。
0≥11≥,∴函数1y =的值域为[1,)+∞。
二、图像法:对于二次函数在给定区间求值域问题,一般采用图像法。
例2:求函数242y x x =-++([1,1]x ∈-)的值域。
(开口方向;区间与对称轴的关系)三、中间变量法:函数式中含有可以确定范围的代数式。
例3:求函数2211x y x -=+的值域。
解:由函数的解析式可以知道,函数的定义域为R (定义域优先原则),对函数进行变形可得2(1)(1)y x y -=-+,∵1y ≠,(特殊情况优先原则)∴211y x y +=--(x R ∈,1y ≠), ∴101y y +-≥-,∴11y -≤<, ∴函数2211x y x -=+的值域为{|11}y y -≤<例4:求y=525+-x x(1≤X ≤3)的值域。
解:y =525+-x x⇒ x =1255+-y y∵1≤X ≤3 ∴1≤1255+-y y ≤3 (怎么求解?)⇒ y ∈[112,74] 四、分离常数法:分子、分母是一次函数的有理函数,可用分离常数法,此类问题一般也可以利用反函数法。
例5:求函数125xy x -=+的值域。
解:(此处要先求定义域)∵177(25)112222525225x x y x x x -++-===-++++, ∵72025x ≠+,∴12y ≠-,∴函数125x y x -=+的值域为1{|}2y y ≠-。
五、换元法:运用代数代换,奖所给函数化成值域容易确定的另一函数,从而求得原函数的值域,形如y ax b =+±a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法求解。
高一数学值域的求法1
高一数学求函数值域的方法
高一数学求函数值域的方法难度:高一数学中的函数是指一种依赖于某个变量或者变量集的关系式,它通常被用来描述一些实物或者抽象概念之间的相互关系。
在上述命题中,如果我们对该函数进行给定值的计算和运算,那么我们就能够得到该函数的函数值。
在数学中,函数值域通常被用来描述该函数能够生成的所有可能函数值的集合。
所以,如果我们在求函数的函数值域时想要得到一个准确的答案,那么我们就需要对该函数的定义域以及函数的具体形式进行有效的分析和推理。
本文就将为大家介绍一些高一数学求函数值域的方法,帮助大家更好地理解和掌握这一知识点。
方法一:利用求导法求函数的单调性在求函数值域时,我们可以先通过求函数的导数来了解该函数的单调性和函数的趋势变化。
具体来说,我们可以针对给定的函数f(x),按照以下步骤来计算该函数的导数:(1)求f(x)的一次导数,并得到f'(x)的函数式;(2)求f'(x)的零点,并把零点作为x轴的分界点将其分为若干段;(3)对于每一段区间,我们都能够了解到函数的单调性和函数的趋势方向,并用函数的取值范围来描述函数值域的全貌。
方法二:利用函数的图像来判断函数值域另外,我们在求函数值域的过程中,还可以通过函数的图像来了解函数的特征和函数值域的大致范围。
一般来说,函数图像的变化趋势会反应出函数的单调性和函数值域的特征,这样我们就可以根据函数图像来作出一些初步的推测和估计。
对于一些简单函数来说,我们可以直接根据函数的定义域和对应关系来求出函数的值域,而对于一些复杂函数来说,我们则需要利用一些数学方法和技巧进行较为深入的计算和推理。
需要注意的是,在利用反函数来求解函数值域时,我们需要保证原函数是可逆的,并且反函数也是一个良好定义的函数。
另外,在具体计算时,我们还需要对反函数的定义域和值域进行适当的限定和分析,从而得到准确的计算结果。
总结:综上所述,高一数学求函数值域的方法有很多种,大家可以根据自己的需求和具体情况选择适合的方法来进行计算和推导。
高一数学 函数的值域(1)教案
江苏省泰州市第二中学 高一数学教案 函数的值域(1)教学目标:理解函数值域的意义,会求简单函数的值域。
教学重点:二次函数值域的求法。
教学过程:一. 问题情境1、函数的概念2、已知函数1)1()(2+-=x x f x ∈A={-1,0,1,2,3}。
(1)求每一个x 所对应的函数值f (x )。
并求这些函数值构成的集合C 。
(2)如B=R ,则函数f (x )=(x-1)2+1,x ∈A={-1,0,1,2,3},则这个对应是函数吗?集合B 和C 有何关系。
如x ∈R 呢?二. 数学建构用自己的语言说值域的定义。
三. 数学应用问题1:已知函数f (x )=3x-6,(i )当(1)x ≥2,(2)x ∈[-1,3],分别求f (x )值域.分析:(1)图象观察(2)代数推理(ii )当函数f(x)的值域为[-1,3],求函数f(x)的定义域。
问题2:试画出函数f(x)=x 2+1的图象,并据图象回答下列问题:(1)比较f(-2),f(1),f(3)的大小;(2)若0<x 1<x 2,试比较f(x 1)与f(x 2)的大小.(3)若x 1<x 2<0,那么f(x 1)与f(x 2)哪个大?(4)若|x 1|<|x 2|,试比较f(x 1)与f(x 2)的大小?问题3: 已知函数f (x )=x 2-2x+3,当定义域分别为下列集合时,求f (x )的值域。
(1)R (2)[2,3] (3)[-3,6]注:给定区间二次函数值域的求法步骤:1.配方画图。
2.确定对称轴和区间的位置,找出最高点和最低点。
3.写解。
思考:已知一个函数的解析式为y=x2,它的值域是[1,4],这样的函数有多少个,试写出其中两个。
四.回顾反思五.练习1、求下列函数的值域(1)y=x +1;(2)y=x2-4x+6;x∈[1,5)(3)(选)y=2x-x-12、P28练习3、求函数值域f(x) =2x2-6x+c x∈[1,3]的值域第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
高一值域知识点
高一值域知识点高一阶段的数学学习中,值域是一个重要的概念。
了解和掌握值域知识点对于提高解题能力和数学思维的发展至关重要。
本文将介绍高一阶段数学学习中的值域知识点,帮助同学们深入理解。
一、定义值域是在一个函数或者映射的定义域内,所有可能的函数值或者映射值的集合。
它表示了函数或映射的输出范围。
二、求值域的方法1. 逆向代入法:通过逆向代入的方法,将函数值等式转化成自变量等式,从而求得自变量的取值范围。
2. 图像法:通过绘制函数图像或者观察函数图像的性质,推测函数的值域范围。
3. 分情况讨论法:对于具有多个定义域的函数,可以将值域分为各个定义域下的值域,并再取并集得到最终的值域范围。
三、常见的值域问题1. 一次函数值域问题:对于形如y=mx+c的一次函数,当斜率m大于0时,值域为从最小值到最大值的闭区间;当斜率m小于0时,值域为从最大值到最小值的闭区间。
2. 二次函数值域问题:对于形如y=ax^2+bx+c的二次函数,当系数a大于0时,值域为从最小值到正无穷的开区间;当系数a小于0时,值域为从负无穷到最大值的开区间。
3. 分段函数值域问题:对于分段函数,可以将定义域进行分类讨论,再求得各个部分的值域范围,并取并集得到最终的值域范围。
四、实例分析假设有一个二次函数y=2x^2+3x-2,我们来求其值域。
首先,我们可以观察系数a的取值情况,发现a=2大于0,即这是一个开口向上的二次函数。
所以值域为从最小值到正无穷的开区间。
接下来,我们可以求得函数的最小值。
通过求导数和求得的结果为0的点,我们可以求得最小值对应的自变量x的值为-3/4。
将x=-3/4代入函数中,可以求得函数的最小值为-11/8。
所以,该二次函数的值域为从-11/8到正无穷的开区间。
五、总结值域是在一个函数或者映射的定义域内,所有可能的函数值或者映射值的集合。
我们可以通过逆向代入法、图像法和分情况讨论法等方法来求解值域问题。
在学习高一数学的过程中,我们需要对不同类型的函数或者映射进行分析,判断其值域的范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。