相似三角形的存在性(讲义及答案)
相似三角形的存在性(三)(含答案)

学生做题前请先回答以下问题问题1:相似三角形存在性的处理思路①分析特征:分析背景图形中的_________、_________及_________,结合图形形成因素(判定等)考虑分类.注:相似三角形存在性问题主要结合_________及不变特征考虑分类.②画图求解:往往先从____________入手,再结合背景中的不变特征分析,综合考虑对应关系和不变特征后列方程求解.注:相似三角形列方程往往借助_____________;③结果验证:回归点的运动范围,画图或推理,验证结果.问题2:相似三角形的判定有哪些?相似三角形的存在性(三)一、单选题(共4道,每道25分)1.如图,直线与x轴、y轴分别交于点A,C,经过A,C两点的抛物线与x轴负半轴的另一交点为B,tan∠CBO=3,D为抛物线的顶点.若P为射线BD上一点,且以P,A,B为顶点的三角形与△ABC相似,则点P的坐标为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:二次函数背景下的存在性问题2.如图,直线与x轴、y轴分别交于点B,C,经过B,C两点的抛物线与x轴的另一个交点为A,顶点为P.若Q为x轴上一点,且以B,P,Q为顶点的三角形与△ABC相似,则点Q的坐标为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:二次函数背景下的存在性问题3.如图,在平面直角坐标系xOy中,顶点为M的抛物线经过点A和x 轴正半轴上的点B,且OA=OB=2,∠AOB=120°.(1)连接OM,则∠AOM的度数为( )A.160°B.120°C.135°D.150°答案:D解题思路:试题难度:三颗星知识点:含30°角的直角三角形4.(上接第3题)(2)如果点C在x轴上,且△ABC与△AOM相似,则点C的坐标为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:二次函数背景下的存在性问题。
专题03 动点引起的相似三角形存在性问题(解析版)

专题04 动点引起的相似三角形存在性问题【相似三角形存在性】以A 、B 、C 为顶点的三角形与已知△DEF 相似,其中,∠ABC =∠DEF 分类讨论:①△ABC ∽△DEF ;②△CBA ∽△DEF 可得到:AB BC DE EF =;AB BC EF DE=,特殊地,当∠ABC =∠DEF =90°时,可借助tan ∠BAC =tan ∠DFE 或tan ∠BCA =tan ∠DFE 解答问题.【一题多解 · 典例剖析】例题1. (2021·山东省济宁市中考)如图,直线1322y x =-+分别交x 轴、y 轴于点A ,B ,过点A 的抛物线2y x bx c =-++与x 轴的另一交点为C ,与y 轴交于点()0,3D ,抛物线的对称轴l 交AD 于E ,连接OE 交AB于点F .(1)求抛物线解析式; (2)求证:OE AB ⊥;(3)P 为抛物线上的一动点,直线PO 交AD 于点M ,是否存在这样的点P ,使以A ,O ,M 为顶点的三角形与ACD △相似?若存在,求点P 的横坐标;若不存在,请说明理由.【答案】(1)y =-x 2+2x +3;(2)见解析;(3)存在,点P 113-±或±3 【解析】解:(1)∵直线1322y x =-+分别交x 轴、y 轴于点A ,B∴A (3,0),B (0,32), 又抛物线经过A (3,0),D (0,3),∴22033300b c c ⎧=-++⎨=-++⎩, 解得:23b c =⎧⎨=⎩即抛物线的解析式为y =-x 2+2x +3;(2)由y =-x 2+2x +3得,抛物线对称轴为x =1 设直线AD 的解析式为:y =kx +a , 将A (3,0),D (0,3)代入得:303k b b +=⎧⎨=⎩, 解得13k b =-⎧⎨=⎩即直线AD 的解析式为:y =-x +3, ∴E (1,2),G (1,0),在Rt △OEG 中,知tan ∠OEG =12OG EG = , 在Rt △OAB 中,tan ∠BAO =12OB OA =, ∴∠OEG =∠BAO , ∵∠OEG +∠EOG =90° ∴∠BAO +∠EOG =90° 即OE ⊥AB . (3)存在.∵A (3,0),抛物线的对称轴为直线x =1,∴C (-1,0), ∴AC =3-(-1)=4, ∵OA =OD =3,∠AOD =90°, ∴232AD OA ==,设直线CD 解析式为y =mx +n ,则:03m n n -+=⎧⎨=⎩,解得33m n =⎧⎨=⎩∴直线CD 解析式为y =3x +3, 易知,∠MAO =∠COD , 分类讨论:①当△AOM ∽△ACD 时,方法一:解析式法欲求P 点坐标,需求直线OP 的解析式,再与抛物线解析式联立即可. 可知,OM ∥CD即直线OP 的解析式为:y =3x , 联立y =3x ,y =-x 2+2x +3得: x 113-±即P 113-±方法二:比例法 易知AM AN AD OA =,AM AOAD AC=,∴=AN AOOA AC 即3=34AN ∴AN =94,ON =34即M (34,94)∴直线OM 解析式为:y =3x 联立y =3x ,y =-x 2+2x +3得: x =1132-±. 方法三:设参数法设M (m ,-m +3),0<m <3,A (3,0) 易知,AM AOAD AC =,即3432AM = 即AM =924∴(3-m )2+(-m +3)2=(924)2解析:m =34或m =214(舍)即M (34,94)∴直线OM 解析式为:y =3x 联立y =3x ,y =-x 2+2x +3得: x =1132-±. ②当△AMO ∽△ACD 时,方法一:比例法易知AM AOAC AD =, 即432AM = ∴AM 2由△AMN 为等腰直角三角形,知MN =AN =2, ∴ON =1,即M (1,2) ∴直线OM 的解析式为y =2x , 联立y =2x ,y =-x 2+2x +3得: x =±3方法二:设参数法 设M (m ,-m +3),0<m <3由AM 2得:(m -3)2+(-m +3)2=(22 解得:m =1或m =5(舍) ∴直线OM 的解析式为y =2x , 联立y =2x ,y =-x 2+2x +3得: x =±3综上所述,点P 113-±±3 【一题多解 · 对标练习】练习1.(2021·湖南省邵阳市中考)如图,在平面直角坐标系中,抛物线C :()20y ax bx c a =++≠经过点()1,1和()4,1.(1)求抛物线C 的对称轴.(2)当1a =-时,将抛物线C 向左平移2个单位,再向下平移1个单位,得到抛物线1C . ①求抛物线1C 的解析式.②设抛物线1C 与x 轴交于A ,B 两点(点A 在点B 的右侧),与y 轴交于点C ,连接BC .点D 为第一象限内抛物线1C 上一动点,过点D 作DE OA ⊥于点E .设点D 的横坐标为m .是否存在点D ,使得以点O ,D ,E 为顶点的三角形与BOC 相似,若存在,求出m 的值;若不存在,请说明理由.【答案】(1)x=2.5;(2)①y=-x2+x+2;②11+33【解析】解:(1)∵抛物线图像过(1,1)、(4,1)两点,∴抛物线对称轴为:x=(1+4)÷2=2.5;(2)①将点(1,1)、(4,1)向左平移2个单位,再向下平移1个单位,得到(-1,0),(2,0),将点(-1,0),(2,0),a=-1,代入抛物线解析式得:y=-x2+x+2.②根据①中的函数关系式,可得:A(2,0),B(-1,0),C(0,2),D(m,-m2+m+2),其中0<m<2可知∠BOC=∠DEO=90°,以点O,D,E为顶点的三角形与△OBC相似有两种情况,(i)当△ODE∽△BCO时,方法一、比例法则OE DEOB OC=,即2-++2=12m m m,解得m=1或-2(舍),方法二、三角函数tan∠BOC=tan∠ODE即OB OEOC DE=,21=2-++2mm m解得:m=1或-2(舍),(ii)当△ODE∽△CBO时,方法一、比例法则OE DEOC OB=,即2-++2=21m m m,解得:1+331-3344=或(舍)m方法二、三角函数tan∠BOC=tan∠DOE即OB DEOC OE=,21-++2=2m mm解得:1+331-3344=或(舍)m综上所述,满足条件的m的值为1或1+334.【多题一解·典例剖析】例题2.(2021·湖南省怀化市中考)如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且2OA=,4OB=,8OC=,抛物线的对称轴与直线BC交于点M,与x轴交于点N.(1)求抛物线的解析式;(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与MNB相似?若存在,求出点P的坐标,若不存在,请说明理由.【答案】(1)y=-x2+2x+8;(2)存在,(1,2)或17 1,2⎛⎫ ⎪⎝⎭.【解析】解:(1)∵OA=2,OB=4,OC=8,∴A(-2,0)、B(4,0)、C(0,8),设二次函数的解析式为y=ax2+bx+c,∴84201640c a b c a b c =⎧⎪-+=⎨⎪++=⎩ 解得:812c a b =⎧⎪=-⎨⎪=⎩∴二次函数的解析式为y =-x 2+2x +8;(2)存在以点P 、C 、M 为顶点的三角形与△MNB 相似, 理由如下:由(1)知抛物线对称轴为直线:x =1,设直线BC 的解析式为y =kx +t ,将点B 、C 坐标代入可得:408k b b +=⎧⎨=⎩, 解得:28a b =-⎧⎨=⎩,∴直线BC 的解析式为y =-2x +8, ∴点M (1,6),N (1,0),∴BN =3,MN =6,BM =35,CM =5, 由∠BMN =∠CMP 知,分两种情况讨论: ①当∠CPM =∠MNB =90°时,如图所示:易知CP ∥x 轴,∴点P 坐标为(1,8).②当∠PCM =∠MNB =90°时,如图所示:∴cos ∠CMP =cos ∠MNB 即CM MNPM BM=, 535=∴PM =52,即点P 坐标为171,2⎛⎫⎪⎝⎭.综上所述,符合要求的P 点坐标为(1,8)或171,2⎛⎫ ⎪⎝⎭. 【多题一解 · 对标练习】练习2.(2021·四川省遂宁市中考)如图,已知二次函数的图象与x 轴交于A 和B (-3,0)两点,与y 轴交于C (0,-3),对称轴为直线1x =-,直线y =-2x +m 经过点A ,且与y 轴交于点D ,与抛物线交于点E ,与对称轴交于点F .(1)求抛物线的解析式和m 的值;(2)在y 轴上是否存在点P ,使得以D 、E 、P 为顶点的三角形与△AOD 相似,若存在,求出点P 的坐标;若不存在,试说明理由.【答案】(1)y =(x +1)2-4;m =2;(2)存在,(0,12)或(0,14.5).【解析】解:(1)∵二次函数的图象与x 轴交于A 和B (-3,0)两点,对称轴为直线x =-1, ∴A (1,0),设二次函数解析式为:y =a (x -1)(x +3), 把C (0,-3)代入得: -3=a (0-1)(0+3), 解得:a =1,即二次函数解析式为:y = (x -1)(x +3),即:y =(x +1)2-4, ∵直线y =-2x +m 经过点A , ∴0=-2×1+m ,解得:m =2;(2)由(1)得:直线AF 的解析式为:y =-2x +2, 又直线y =-2x +2与y 轴交于点D ,与抛物线交于点E , ∴当x =0时,y =2,即D (0,2),联立()22214y x y x =-+⎧⎪⎨=+-⎪⎩,解得:11512x y =-⎧⎨=⎩,2210x y =⎧⎨=⎩, ∵点E 在第二象限, ∴E (-5,12),以D 、E 、P 为顶点的三角形与△AOD 相似,由∠EDP =∠ADO 知,分两种情况讨论. ①当∠EPD =∠AOD =90°时, 过点E 作EP ⊥y 轴于点P ,此时P (0,12);②当∠PED =∠AOD =90°时,过点E 作EP ’⊥AE ,则tan ∠ADO =tan ∠PEP’, ∴OA PP OD EP '=,即:125PP '=, 解得:PP ’=2.5,此时P’(0,14.5),综上所述:点P 的坐标为(0,12)或(0,14.5).练习3. (2021·四川省泸州市中考)如图,在平面直角坐标系xOy 中,抛物线213442y x x =-++与两坐标轴分别相交于A ,B ,C 三点(1)求证:∠ACB =90°(2)点D 是第一象限内该抛物线上的动点,过点D 作x 轴的垂线交BC 于点E ,交x 轴于点F . ①求DE +BF 的最大值;②点G 是AC 的中点,若以点C ,D ,E 为顶点的三角形与AOG 相似,求点D 的坐标.【答案】(1)(2)①9;②(4,6)或(3,254).【解析】解:(1)在213442y x x =-++中,当x =0,y =4即C (0,4)当y =0时,即2134042x x -++=解得:x =-2或x =8即A (-2,0),B (8,0)∴AB =10,AC 5BC 5则102=(52+(52即AB 2=AC 2+BC 2∴∠ACB =90°(2)①设直线BC 的解析式为:y =kx +b ,将(0,4),(8,0)代入得: 804k b b +=⎧⎨=⎩,解得:k =-0.5,b =4即直线BC 解析式为y =-0.5x +4设D (m ,213442m m -++),则BF =8-m ,DE =2124m m -+∴DE +BF =2124m m -++8-m =()21294m --+ ∵14-<0∴当m =2时DE +BF 取最大值,最大值为9.②∵点G 是AC 的中点,在Rt △AOC 中,OG =AG 5即△AOG 为等腰三角形,∵∠CAO +∠ACO =∠ACO +∠OCB =90°∴∠CAO =∠OCB又OC ∥DF∴∠OCB =∠CED∴∠CAO =∠CED设D (m ,213442m m -++),则E (m ,-0.5m +4),DE =2124m m-+ 当以点C ,D ,E 为顶点的三角形与△AOG 相似, 分两种情况讨论:①△ECD ∽△AOG 则CEDEAO AG =, 即212425m mCE -+=∴CE 21425m m -+又OC ∥DF ∴CEOFBC OB =845m=∴CE 5m21425m m -+5m解得:m =0(舍)或m =3即D (3,254)②△EDC ∽△AOG ,则CE DEAG OA=,212425m m-+=,∴CE=212452m m-+又OC∥DF,知,CE5m∴212452m m-+5m解得:m=0(舍)或m=4 即D(4,6)综上所述,D点坐标为(3,254)或(4,6).。
相似三角形的性质及应用(知识点串讲)(解析版)

专题12 相似三角形的性质及应用知识网络重难突破知识点一相似三角形的性质①对应角相等,对应边成比例.②周长之比等于相似比;面积之比等于相似比的平方.③对应高线长之比、对应角平分线长之比、对应中线长之比都等于相似比.【典例1】(2020•衢州模拟)如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC,CD于点P,Q.平行四边形ABCD的面积为6,则图中阴影部分的面积为.【点拨】由四边形ABCD和四边形ACED都是平行四边形,易证得△BCP∽△BER,△ABP∽△CQP∽△DQR,又由点R为DE的中点,可求得各相似三角形的相似比,继而求得答案.【解析】解:∵四边形ABCD和四边形ACED都是平行四边形,∴AD=BC=CE,AB∥CD,AC∥DE,∴平行四边形ACED的面积=平行四边形ABCD的面积=6,△BCP∽△BER,△ABP∽△CQP∽△DQR,∴△ABC的面积=△CDE的面积=3,CP:ER=BC:BE=1:2,∵点R为DE的中点,∴CP:DR=1:2,∴CP:AC=CP:DE=1:4,∵S△ABC=3,∴S△ABP=S△ABC=,∵CP:AP=1:3,∴S△PCQ=S△ABP=,∵CP:DR=1:2,∴S△DQR=4S△PCQ=1,∴S阴影=S△PCQ+S△DQR=.故答案为:.【点睛】此题考查了平行四边形的性质以及相似三角形的判定与性质.熟记相似三角形的面积比等于相似比的平方是解题的关键.【典例2】(2019秋•河北区期末)如图在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)如AF=3,AG=5,求△ADE与△ABC的周长之比.【点拨】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)依据△ADE∽△ABC,利用相似三角形的周长之比等于对应高之比,即可得到结论.【解析】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC;(2)由(1)可得△ADE∽△ABC,又∵AG⊥BC于点G,AF⊥DE于点F,∴△ADE与△ABC的周长之比==.【点睛】本题考查相似三角形的判定,解题的关键是熟练运用相似三角形的判定,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.【变式训练】1.(2020春•甘州区校级月考)两个相似三角形面积比是4:9,其中一个三角形的周长为24cm,则另一个三角形的周长是()cm.A.16 B.16或28 C.36 D.16或36【点拨】根据相似三角形的性质求出相似比,得到周长比,根据题意列出比例式,解答即可.【解析】解:∵两个相似三角形面积比是4:9,∴两个相似三角形相似比是2:3,∴两个相似三角形周长比是2:3,∵一个三角形的周长为24cm,∴另一个三角形的周长是16cm或36cm,故选:D.【点睛】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键.2.(2019秋•慈溪市期末)如图所示,若△ABC∽△DEF,则∠E的度数为()A.28°B.32°C.42°D.52°【点拨】先求出∠B,根据相似三角形对应角相等就可以得到.【解析】解:∵∠A=110°,∠C=28°,∴∠B=42°,∵△ABC∽△DEF,∴∠B=∠E.∴∠E=42°.故选:C.【点睛】本题考查相似三角形的性质的运用,全等三角形的对应角相等,是基础知识要熟练掌握.3.(2019秋•奉化区期末)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB,若AB=3BD,则S△ADE:S△EFC的值为()A.4:1 B.3:2 C.2:1 D.3:1【点拨】由题意可证四边形BDEF是平行四边形,可得BD=EF,AD=2EF,通过证明△ADE∽△EFC,可求解.【解析】解:∵AB=3BD,∴AD=2BD,∵DE∥BC,EF∥AB,∴四边形BDEF是平行四边形,∴BD=EF,∴AD=2EF,∵DE∥BC,EF∥AB,∴∠AED=∠C,∠FEC=∠A,∴△ADE∽△EFC,∴S△ADE:S△EFC的=()2=4:1,故选:A.【点睛】本题考查了相似三角形的判定和性质,平行四边形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.4.(2020•下城区模拟)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,如果=,AD=9,那么BC的长是()A.4 B.6 C.2D.3【点拨】证明△ADC∽△CDB,根据相似三角形的性质求出CD、BD,根据勾股定理求出BC.【解析】解:∵∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠A+∠ACD=90°,∴∠A=∠BCD,又∠ADC=∠CDB,∴△ADC∽△CDB,∴=,=,∴=,即=,解得,CD=6,∴=,解得,BD=4,∴BC===2,故选:C.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.5.(2019•纳溪区模拟)如图,已知矩形ABCD,AB=6,BC=10,E,F分别是AB,BC的中点,AF与DE相交于I,与BD相交于H,则四边形BEIH的面积为()A.6 B.7 C.8 D.9【点拨】延长AF交DC于Q点,由矩形的性质得出CD=AB=6,AB∥CD,AD∥BC,得出=1,△AEI∽△QDE,因此CQ=AB=CD=6,△AEI的面积:△QDI的面积=1:16,根据三角形的面积公式即可得出结果.【解析】解:延长AF交DC于Q点,如图所示:∵E,F分别是AB,BC的中点,∴AE=AB=3,BF=CF=BC=5,∵四边形ABCD是矩形,∴CD=AB=6,AB∥CD,AD∥BC,∴=1,△AEI∽△QDE,∴CQ=AB=CD=6,△AEI的面积:△QDI的面积=()2=,∵AD=10,∴△AEI中AE边上的高=2,∴△AEI的面积=×3×2=3,∵△ABF的面积=×5×6=15,∵AD∥BC,∴△BFH∽△DAH,∴==,∴△BFH的面积=×2×5=5,∴四边形BEIH的面积=△ABF的面积﹣△AEI的面积﹣△BFH的面积=15﹣3﹣5=7.故选:B.【点睛】本题考查了矩形的性质、相似三角形的判定与性质、三角形面积的计算;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.6.(2020•杭州)如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.【点拨】(1)由平行线的性质得出∠DEB=∠FCE,∠DBE=∠FEC,即可得出结论;(2)①由平行线的性质得出==,即可得出结果;②先求出=,易证△EFC∽△BAC,由相似三角形的面积比等于相似比的平方即可得出结果.【解析】(1)证明:∵DE∥AC,∴∠DEB=∠FCE,∵EF∥AB,∴∠DBE=∠FEC,∴△BDE∽△EFC;(2)解:①∵EF∥AB,∴==,∵EC=BC﹣BE=12﹣BE,∴=,解得:BE=4;②∵=,∴=,∵EF∥AB,∴△EFC∽△BAC,∴=()2=()2=,∴S△ABC=S△EFC=×20=45.【点睛】本题考查了相似三角形的判定与性质、平行线的性质等知识;熟练掌握相似三角形的判定与性质是解题的关键.知识点二相似三角形的应用【典例3】(2019秋•解放区校级期中)一块直角三角形木板的面积为1.5m2,一条直角边AB为1.5m,怎样才能把它加工成一个无拼接的面积最大的正方形桌面?甲、乙两位木匠的加工方法如图所示,请你用所学的知识说明哪位木匠的方法符合要求(加工损耗不计,计算结果中的分数可保留)【点拨】结合相似三角形的判定与性质进而得出两个正方形的边长,进而求出面积比较得出答案.【解析】解:由AB=1.5m,S△ABC=1.5m2,可得BC=2m,由图甲,过点B作Rt△ABC斜边AC上的高,BH交DE于P,交AC于H.由AB=1.5m,BC=2m,得AC==2.5(m),由AC•BH=AB•BC可得:BH==1.2(m),设甲设计的桌面的边长为xm,∵DE∥AC,∴Rt△BDE∽Rt△BAC,∴=,即=,解得x=(m),由图乙,若设乙设计的正方形桌面边长为ym,由DE∥AB,得Rt△CDE∽Rt△CBA,∴=,即=,解得y=(m),∵x=,y=,∴x<y,即x2<y2,∴S正方形甲<S正方形乙,∴第二个正方形面积大【点睛】此题主要考查了相似三角形的应用,正确表示出正方形的边长是解题关键.【变式训练】1.(2019秋•嘉兴期末)如图,小明在打乒乓球时,为使球恰好能过网(设网高AB=15cm),且落在对方区域桌子底线C处,已知小明在自己桌子底线上方击球,则他击球点距离桌面的高度DE为()A.15cm B.20cm C.25cm D.30cm【点拨】证明△CAB∽△CDE,然后利用相似比得到DE的长.【解析】解:∵AB∥DE,∴△CAB∽△CDE,∴=,而BC=BE,∴DE=2AB=2×15=30(cm).故选:D.【点睛】本题考查了相似三角形的应用:利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.2.(2019秋•鹿城区月考)如图,AB和CD表示两根直立于地面的柱子,AC和BD表示起固定作用的两根钢筋,AC与BD相交于点M,已知AB=8m,CD=12m,则点M离地面的高度MH为()A.4 m B.m C.5m D.m【点拨】根据已知易得△ABM∽△DCM,可得对应高BH与HD之比,易得MH∥AB,可得△MDH∽△ADB,利用对应边成比例可得比例式,把相关数值代入求解即可.【解析】解:∵AB∥CD,∴△ABM∽△DCM,∴===,(相似三角形对应高的比等于相似比),∵MH∥AB,∴△MCH∽△ACB,∴==,∴=,解得MH=.故选:B.【点睛】此题主要考查了相似三角形的应用;用到的知识点为:平行于三角形一边的直线与三角形另两边相交,截得的两三角形相似;相似三角形的对应边成比例;对应高的比等于相似比;解决本题的突破点是得到BH与HD的比.3.(2019秋•滨江区期末)如图,小华同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,使斜边DF与地面保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=30cm,EF=15cm,测得边DF离地面的高度AC=120cm,CD=600cm,则树AB的高度为420cm.【点拨】利用直角三角形DEF和直角三角形BCD相似求得BC的长,再加上AC的长即可求得树高AB.【解析】解:∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴BC:EF=DC:DE,∵DE=30cm,EF=15cm,AC=120cm,CD=600cm,∴,∴BC=300cm,∴AB=AC+BC=120+300=420cm,故答案为:420.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.4.(2020•秦皇岛一模)如图所示,AD、BC为两路灯,身高相同的小明、小亮站在两路灯杆之间,两人相距6.5m,小明站在P处,小亮站在Q处,小明在路灯C下的影长为2m,已知小明身高1.8m,路灯BC 高9m.①计算小亮在路灯D下的影长;②计算建筑物AD的高.【点拨】解此题的关键是找到相似三角形,利用相似三角形的性质,相似三角形的对应边成比例求解.【解析】解:①∵EP⊥AB,CB⊥AB,∴∠EP A=∠CBA=90°∵∠EAP=∠CAB,∴△EAP∽△CAB∴∴∴AB=10BQ=10﹣2﹣6.5=1.5;②∵FQ⊥AB,DA⊥AB,∴∠FQB=∠DAB=90°∵∠FBQ=∠DBA,∴△BFQ∽△BDA∴=∴∴DA=12.【点睛】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出建筑物AB的高与小亮在路灯D下的影长,体现了方程的思想.巩固训练1.(2019秋•连州市期末)两个相似三角形的对应边分别是15cm和23cm,它们的周长相差40cm,则这两个三角形的周长分别是()A.45cm,85cm B.60cm,100cm C.75cm,115cm D.85cm,125cm【点拨】根据题意两个三角形的相似比是15:23,可得周长比为15:23,计算出周长相差8份及每份的长,可得两三角形周长.【解析】解:根据题意两个三角形的相似比是15:23,周长比就是15:23,大小周长相差8份,所以每份的周长是40÷8=5cm,所以两个三角形的周长分别为5×15=75cm,5×23=115cm.故选:C.【点睛】本题考查对相似三角形性质的理解:(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.2.(2018秋•临安区期末)如图,在△ABC中,BC=8,高AD=6,点E,F分别在AB,AC上,点G,H 在BC上,当四边形EFGH是矩形,且EF=2EH时,则矩形EFGH的周长为()A.B.C.D.【点拨】通过证明△AEF∽△ABC,可得,可求EH的长,即可求解.【解析】解:如图,记AD与EF的交点为M,∵四边形EFGH是矩形,∴EF∥BC,∴△AEF∽△ABC,∵AM和AD分别是△AEF和△ABC的高,∴∴∴EH=,∴EF=,∴矩形EFGH的周长=2×(+)=故选:C.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,灵活运用相似三角形的性质是本题的关键.3.(2019秋•庐阳区校级期中)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:4,则S△DOE:S△AOC的值为()A.B.C.D.【点拨】由已知条件易求BE:BC=1:5;证明△DOE∽△AOC,得到DE:AC的值,由相似三角形的性质即可解决问题.【解析】解:∵S△BDE:S△CDE=1:4,∴BE:EC=1:4,∴BE:BC=1:5,∵DE∥AC,∴△DOE∽△AOC,∴DE:AC=BE:BC=1:5,∴S△DOE:S△AOC=()2=,故选:D.【点睛】本题主要考查了相似三角形的判定及其性质的应用问题;熟练掌握相似三角形的判定与性质,证出BE:BC=1:5是解决问题的关键.4.(2020•上城区一模)如图,△ABC中,D,E两点分别在边AB,BC上,若AD:DB=CE:EB=3:4,记△DBE的面积为S1,△ADC的面积为S2,则S1:S2=16:21.【点拨】过点E、C分别作EF⊥AB于点F,CG⊥AB于点G,根据相似三角形的性质与判定即可求出答案.【解析】解:过点E、C分别作EF⊥AB于点F,CG⊥AB于点G,∴EF∥CG,∴△BEF∽△BCG,∴,∵CE:EB=3:4,∴,∴,∴==,∴S1:S2=16:21,故答案为:16:21.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型.5.(2019秋•江干区期末)如图,已知▱ABCD中,E是BC的三等分点,连结AE与对角线BD交于点F,则S△BEF:S△ABF:S△ADF:S四边形CDFE=1:3:9:11.【点拨】由E是BC的三等分点,得到=,根据平行四边形的性质得到AD∥BC,AD=BC,根据相似三角形的性质得到==设S△BEF=k,S△ABF=3k,S△ADF=9k,求得S△ABF+S△ADF=S四边形ABCD=S△BEF+S四边形CDFE=12k,得到S四边形CDFE=12k﹣k=11k,于是得到结论.【解析】解:∵E是BC的三等分点,∴=,在▱ABCD中,∵AD∥BC,AD=BC,∴△ADF∽△EBF,∴==,∴S△BEF:S△ABF:S△ADF=1:3:9,设S△BEF=k,S△ABF=3k,S△ADF=9k,∴S△ABF+S△ADF=S四边形ABCD=S△BEF+S四边形CDFE=12k,∴四边形CDFE=12k﹣k=11k,∴S△BEF:S△ABF:S△ADF:S四边形CDFE=1:3:9:11,故答案为:1:3:9:11.【点睛】本题考查了平行四边形的性质、相似三角形的判定与性质以及面积的计算方法;熟练掌握平行四边形的性质,证明三角形相似是解决问题的关键.6.(2020•晋安区一模)如图,利用镜子M的反射(入射角等于反射角),来测量旗杆CD的长度,在镜子上作一个标记,观测者AB看着镜子来回移动,直到看到旗杆顶端在镜子中的像与镜子上的标记相重合,若观测者AB的身高为1.6m,量得BM:DM=2:11,则旗杆的高度为8.8m.【点拨】根据题意抽象出相似三角形,然后利用相似三角形的对应边的比相等列式计算即可.【解析】解:根据题意得:△ABM∽△CDM,∴AB:CD=BM:DM,∵AB=1.6m,BM:DM=2:11,∴1.6:CD=2:11,解得:CD=8.8m,故答案为:8.8.【点睛】本题考查了相似三角形的知识,解题的关键是根据实际问题抽象出相似三角形,难度不大.7.(2019秋•竞秀区期末)如图,路灯距地面的高度PO=8米,身高1.6米的小明在点A处测量发现,他的影长AM=2.4米,则AO=9.6米;小明由A处沿AO所在的直线行走8米到点B时,他的影子BN 的长度为0.4米.【点拨】如图,设OA=x,BN=y.利用相似三角形的性质构建方程组即可解决问题.【解析】解:如图,设OA=x,BN=y.∵EB∥OP∥F A,∴△MAF∽△MOP,△NBE∽△NOP,∴=,=,∴=,=,解得x=9.6,y=0.4,故答案为9.6,0.4.【点睛】本题考查相似三角形的应用,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.8.(2019秋•开江县期末)如图,学校操场旁立着一杆路灯(线段OP).小明拿着一根长2m的竹竿去测量路灯的高度,他走到路灯旁的一个地点A竖起竹竿(线段AE),这时他量了一下竹竿的影长AC正好是1m,他沿着影子的方向走了4m到达点B,又竖起竹竿(线段BF),这时竹竿的影长BD正好是2m,请利用上述条件求出路灯的高度.【点拨】根据相似三角形的性质即可得到结论.【解析】解:由于BF=DB=2m,即∠D=45°,∴DP=OP=灯高.在△CEA与△COP中,∵AE⊥CP,OP⊥CP,∴AE∥OP.∴△CEA∽△COP,∴.设AP=xm,OP=hm,则,①,DP=OP=2+4+x=h,②联立①②两式,解得x=4,h=10.∴路灯有10m高.【点睛】本题考查了相似三角形的性质,熟练掌握相似三角形的性质是解题的关键.9.(2019秋•余杭区期末)如图,在△ABC中,点D,E分别在边AC,AB上且AE•AB=AD•AC,连结DE,BD.(1)求证:△ADE∽△ABC.(2)若点E为AB中点,AD:AE=6:5,△ABC的面积为50,求△BCD的面积.【点拨】(1)由已知得出AE:AC=AD:AB,由∠A=∠A,即可得出:△ADE∽△ABC.(2)设AD=6x,则AE=5x,AB=10x,由已知求出AC==x,得出CD=AC﹣AD=x,得出=,由三角形面积关系即可得出答案.【解析】(1)证明:∵AE•AB=AD•AC,∴AE:AC=AD:AB,∵∠A=∠A,∴△ADE∽△ABC.(2)解:∵点E为AB中点,∴AE=BE,∵AD:AE=6:5,∴设AD=6x,则AE=5x,AB=10x,∵AE•AB=AD•AC,∴AC===x,∴CD=AC﹣AD=x,∴=,∵△ABC的面积为50,∴△BCD的面积=×50=14.【点睛】本题考查了相似三角形的判定与性质、三角形面积关系等知识;熟练掌握相似三角形的判定与性质是解题的关键.10.(2018秋•江干区期末)如图,在菱形ABCD中,点E在BC边上(不与点B、C重合),连接AE、BD 交于点G.(1)若AG=BG,AB=4,BD=6,求线段DG的长;(2)设BC=kBE,△BGE的面积为S,△AGD和四边形CDGE的面积分别为S1和S2,把S1和S2分别用k、S的代数式表示;(3)求的最大值.【点拨】(1)证明△BAG∽△BDA,利用相似比可计算出BG=,从而得到DG的长;(2)先证明△ADG∽△EBG,利用相似三角形的性质得=()2=k2,==k,所以S1=k2S,根据三角形面积公式得到S△ABG=,再利用菱形的性质得到S2=S1+﹣S=k2S+kS﹣S=(k2+k﹣1)S;(3)由于==1+﹣,然后根据二次函数的性质解决问题.【解析】解:(1)∵AG=BG,∴∠BAG=∠ABG,∵四边形ABCD为菱形,∴AB=AD,∴∠ABD=∠ADB,∴∠BAG=∠ADB,∴△BAG∽△BDA,∴=,即=,∴BG=,∴DG=BD﹣BG=6﹣=;(2)∵四边形ABCD为菱形,∴BC=AD=kBE,AD∥BC,∵AD∥BE,∴∠DAE=∠BEA,∠ADG=∠BEG∴△ADG∽△EBG,∴=()2=k2,==k,∴S1=k2S,∵==k,∴S△ABG=,∵△ABD的面积=△BDC的面积,∴S2=S1+﹣S=k2S+kS﹣S=(k2+k﹣1)S;(3)∵==1+﹣=﹣(﹣)2+,∴的最大值为.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.注意相似三角形面积的比等于相似比的平方.也考查了菱形的性质.。
相似三角形的性质及判定(1)含答案 非常的全面

一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”.A 'B 'C 'CB A2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”.三、相似三角形的性质1.相似三角形的对应角相等如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,.A 'B 'C 'CB A2.相似三角形的对应边成比例 如图,ABC △与A B C '''△相似,则有AB BC AC kA B B C A C ===''''''(k 为相似比).相似三角形的性质及判定A 'B 'C 'CB A3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AM k A B B C A C A M ====''''''''(k 为相似比).M 'MA 'B 'C 'C BA图1如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AH k A B B C A C A H ====''''''''(k 为相似比).H 'H AB C C 'B 'A '图2如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC AD k A B B C A C A D ====''''''''(k 为相似比).D 'D A 'B 'C B A图34.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,则有AB BC AC k A B B C A C ===''''''(k为相似比).应用比例的等比性质有AB BC AC AB BC AC kA B B C A C A B B C A C ++====''''''''''''++.A 'B 'C 'CB A图45.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AH k A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BCAHkS B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.H 'H AB C C 'B 'A '图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似.3.如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.4.如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似.5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似.五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有“三点定形法”. 1.横向定型法 欲证AB BC BEBF=,横向观察,比例式中的分子的两条线段是AB 和BC ,三个字母A B C ,,恰为ABC △的顶点;分母的两条线段是BE 和BF ,三个字母B E F ,,恰为BEF △的三个顶点.因此只需证ABC EBF△∽△.2.纵向定型法欲证AB D E BCEF=,纵向观察,比例式左边的比AB 和BC 中的三个字母A B C ,,恰为ABC △的顶点;右边的比两条线段是D E 和EF 中的三个字母D E F ,,恰为D E F △的三个顶点.因此只需证ABC D EF△∽△.3.中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。
冲刺2022年上海中考数学压轴题第7讲 相似三角形的存在性 解法分析与经典变式(解析版)

第7讲相似三角形的存在性在很多与相似三角形相关的压轴题中,其中常见的一种题型就是相似三角形的存在性讨论。
对于相似三角形的存在性问题,一般来说,会有一组等角,然后从边或从角的角度进行分类讨论:通常,我们还可以借助基本图形分析法,找到边与角的数量关系,从而完成上述问题的讨论。
例1.(2022金山一模25题).已知:如图 11,AD⊥直线MN,垂足为D,AD=8,点B 是射线DM 上的一个动点,∠BAC=90°,边AC 交射线DN 于点C,∠ABC 的平分线分别与AD、AC 相交于点E、F.(1)求证:△ABE∽△CBF;(2)如果AE=x,FC=y,求y 关于x 的函数关系式;(3)联结DF,如果以点D、E、F 为顶点的三角形与△BCF 相似,求AE 的长.2022金山一模25题的图形背景是母子型+角平分线,解题路径围绕着相似三角形的性质定理、判定定理以及射影定理展开。
题型主要围绕证明三角相似,函数关系的建立以及相似三角形的存在性讨论。
本题的关键是根据三角形的相似或角平分线的性质标出图形中的等角,然后再根据角的等量关系确定线段间的数量关系。
解法分析:本题的第一问是相似三角形的判定。
利用角平分线和平行线得到等角,继而再射影定理模型中的等角关系,利用A.A判定相似即可。
解法分析:本题的第二问是函数关系的确立。
利用第一问中相似三角形对应线段成比例以及等角的三角比相等可以顺利地建立函数关系。
解法分析:本题的第三问是相似三角形的存在性讨论。
由第一问中角的数量关系可得∠BFC=∠DEF ,因此由角进行分类讨论。
在分类讨论的过程中,善于运用斜X 型和射影定理模型即可快速得到结论,对于不存在的情况要能够排除。
解:(1)∵AD ⊥直线MN ,∠BAC =90°,∴∠BAD +∠ABD = 90°, ∠BCF +∠ABD = 90°,∴∠BAD =∠BCF ……………………………………………………………………………(1分)∵BF 平分∠ABC ,∴∠ABE =∠CBF ………………………………………………………(1分) ∴△ABE ∽△CBF . …………………………………………………………………………(1分)(2)作FH ⊥BC 垂足为点H .∵△ABE ∽△CBF ,∴∠AEB =∠CFB ,∵∠AEB+∠AEF =180°,∠CFB+∠CFE =180°∴∠AEF =∠CFE ,∴AE =AF=x ;…………………………………………………………(1分) ∵BF 平分∠ABC ,FH ⊥BC ,∠BAC =90°,∴AF=FH=x .∵FH ⊥BC ,AD ⊥直线MN ,∴FH∥AD ,∴FH FC AD AC=,即8x y y x =+,…………(2分) 解得:28x y x=-(48x <<)……………………………………………………………(2分)(3)设AE=x ,由△ABE ∽△CBF ,如果以点D 、E 、F 为顶点的三角形与△BCF 相似,即以点D 、E 、F 为顶点的三角形与△ABE 相似.∵∠AEB =∠DEF ,如果∠BAE =∠FDE ,得DF∥AB ,∴∠ABE =∠DFE ,∵∠ABE =∠DBE , ∴∠DBE =∠DFE ,∴BD=DF , ………………………………………(1分) 由DF∥AB ,得∠DFC=∠BAC =90°,∴∠DFC=∠ABD =90°,又∠BAD =∠BCF ,∴△ABD ≌△CDF ,…………………………………………………(1分)CF=AD=8,即2=88x x-,解得:4x =-±(舍去负值),∴4AE x ==-+…………………………(1分)如果∠BAE =∠DFE ,得AE BE EF DE=,∵∠ABF =∠BED ,∴△AEF ∽△BED ,∴∠AFE =∠BDE , 因为∠AFE 是锐角,∠BDE 是直角,所以这种情况不成立。
二次函数-相似三角形存在性问题(一)-含答案

似?若存在,求出点 Q 的坐标;若不存在,请说明理由.
y C
A O
B x
(1)求抛物线的解析式; (2)如图 2,直线 OQ 与线段 BC 相交于点 E,当△OBE 与△ABC 相似时,求点 Q 的坐标.
y
y
A O
B x
C
D
图1
A O
C
B x
E Q
D
图2
第2页,共14页
【分析】
(1)抛物线: y = x2 − 2x − 3;
(2)思路:考虑到△ABC 和△BOE 有一组公共角,公共角必是对应角.
根据线段长度可知∠ABQ 与∠ABC 的两边并不成比例,故(-8,-7)舍掉.
情况二:若∠ABQ=∠BAC,
过点 B 作 AC 平行线,与抛物线交点即为 Q 点.
易得直线 BQ 解析式: y = 3 x − 9 , 42
联立方程:
3 4
x
−
9 2
=
−1 8
x2
+
1 4
x
+
3 ,解得:
x1
=
−10
,
x2
的坐标.
y B
A
C
O
x
第6页,共14页
【分析】 (1) y = 1 x2 − 2x +1 ;
3 (2) tan ABC = 1 ;
2 (3)思路:平行得相等角,构造两边成比例
第二十一讲 相似三角形的性质(含答案)-
第二十一讲 相似三角形的性质两个相似三角形的对应角相等,对应边成比例,对应边之比称为它们的相似比,可以想到这两个相似三角形中其他一些对应元素也与相似比有一定的关系.1.相似三角形对应高的比、对应中线的比,对应角平分线的比都等于相似比; 2.相似三角形周长之比等于相似比;3.相似三角形面积之比等于相似比的平方.以上诸多相似三角形的性质,丰富了与角、面积等相关的知识方法,开阔了研究角、面积等问题的视野.例题求解 【例1】如图,梯形ABCD 中,AD ∥BC(AD<BC),AC 、BD 交于点O ,若S △OAB =256S 梯形ABCD ,则△AOD与△BOC 的周长之比是 .(2001年浙江省绍兴市中考题)思路点拨 只需求BCAD的值,而题设条件与面积相关,应求出BOC AOD S S ∆∆的值,注意图形中隐含的丰富的面积关系.注 相似三角形的性质及比例线段的性质,在生产、生活中有广泛的应用. 人类第一次运用相似原理进行测量,是2000多年前泰勒斯测金字塔的高度,泰勒斯是古希腊著名学者,有“科学之父”的美称.他把逻辑论证引进了数学,确保了数学命题的正确 性.使教学具有不可动摇的说明力.【例2】如图,在平行四边形ABCD 中.E 为CD 上一点,DE :CE=2:3,连结AE 、BE 、BD ,且AE 、BD 交于点F ,则S △DEF :S △EBF :S △ABF =( )A .4:10:25B .4:9:25C .2:3:5D .2:5:25 (2001年黑龙江省中考题)思路点拨 运用与面积相关知识,把面积比转化为线段比. 【例3】如图,有一批形状大小相同的不锈钢片,呈直角三角形,已知∠C=90°,AB=5cm ,BC=3㎝,试设计一种方案,用这批不锈钢片裁出面积达最大的正方形不锈钢片,并求出这种正方形不锈钢片的边长.思路点拨 要在三角形内裁出面积最大的正方形,那么这正方形所有顶点应落在△ABC 的边上,先画出不同方案,把每种方案中的正方形边长求出.注 本例是一道有实际应用背景的开放性题型,通过分析、推理、构思可能的方案,再通过比较、鉴别、筛选出最佳的设计方案,问题虽简单,但基本呈现了现实的生产中产生最佳设计方案的基本思路.【例4】 如图.在△ABC 的内部选取一点P ,过P 点作3条分别与△ABC 的三边平行的直线,这样所得的3个三角形1t 、2t 、3t 的面积分别为4、9和49,求△ABC 的面积.(美国数学邀请赛试题)思路点拔 图中有相似三角形、平行四边形,通过相似三角形性质建立面积关系式,关键是恰当选择相似比,注意等线段的代换.追求形式上的统一.【例5】 如图,△ABC 中.D 、E 分别是边BC 、AB 上的点,且∠l =∠2=∠3,如果△ABC 、△EBD 、△ADC 的周长依次是m 、m 1、m 2,证明:4521≤+m m m . (全国初中数学联赛试题)思路点拨 把周长的比用相应线段比表示,力求统一,得到同—线段比的代数式,通过代数变形证明.注 例4还隐舍着下列重要结论: (1)△FDP ∽△IPE ∽△PHG ∽△ABC ; (2)1=++BCHGAC IE AB DF ; (3) 2=++ACFGAB HI BC DE .学历训练1.如图,已知DE ∥BC ,CD 和BE 相交于O ,若S △DOE :S △COB =9:16,则AD :DB= . 2.如图,把正方形ABCD 沿着对角线AC 的方向移动到正方形A'B'C'D'的位置,它们的重叠部分(图中的阴影部分)的面积是正方形ABCD 面积的一半,若AC=2,则正方形移动的距离AA'是 . (2003年江西省中考题)(第1题) (第2题) (第4题)3.若正方形的4个顶点分别在直角三角形的3条边上,直角三角形的两直角边的长分别为3cm 和4cm ,则此正方形的边长为 . (2000年武汉市中考题) 4.阅读下面的短文,并解答下列问题: 我们把相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同.就把它们叫做相似体.如图,甲、乙是两个不同的正方体,正方体都是相似体,它们的一切对应线段之比都等于相似比:a :b ,设S 甲:S 乙分别表示这两个正方体的表面积,则222)(66b a ba S S ==乙甲,又设V 甲、V 乙分别表示这两个正方体的体积,则333)(b a b a V V ==乙甲. (1)下列几何体中,一定属于相似体的是( )A .两个球体B .两个圆锥体C .两个圆柱体D .两个长方体 (2)请归纳出相似体的3条主要性质:①相似体的一切对应线段(或弧)长的比等于 ;②相似体表面积的比等于 ;③相似体体积的比等于 . (2001年江苏省泰州市中考题)5.如图,一张矩形报纸ABCD 的长AB=acm ,宽BC=b ㎝,E 、F 分别是AB 、CD 的中点,将这张报纸沿着直线EF 对折后,矩形AEFD 的长与宽之比等于矩形ABCD 的长与宽之比,则a :b 于( )A .2:1B .1:2C .3:1D .1:3 (2004年南京市中考题)(第5题) (第6题) (第7题)6.如图,D 为△ABC 的边AC 上的一点,∠DBC=∠A ,已知BC=2,△BCD 与△ABC 的面积的比是2:3,则CD 的长是( ) A.34 B.3 C .232 D .334 7.如图,在正三角形ABC 中,D 、E 分别在AC 、AB 上,且31=AC AD ,AE=BE ,则有( ) A .△AED ∽△BED; B .△AED ∽△CBD;C .△AED ∽△ABD; D .△BAD ∽△BCD. (2001年杭州市中考题) 8.如图,已知△ABC 中,DE ∥FG ∥BC ,且AD :FD :FB=1:2:3,则S △ADE :S 四边形DFGE :S 四边形FBCG 等于( )A .1:9:36B .l :4:9C .1:8:27D .1:8:36(第8题) (第9题) 9.如图,已知梯形ABCD 中,AD ∥BC ,∠ACD=∠B ,求证:ADBCCD AB =22. 10.如图,在平行四边形ABCD 中,过点B 作BE ⊥CD 于E ,连结AE ,F 为AE 上一点,且∠BFE=∠C .(1)求证:△ABF ∽△EAD ;(2)若AB=4,∠BAE=30°,求AE 的长;(3)在(1)、(2)的条件下,若AD=3,求BF 的长. (2003年长沙市中考题)11.如图,在△ABC 中,AB =5,BC=3,AC=4,PQ ∥AB ,P 点在AC 上(与点A 、C 不重合),Q 点在BC 上.(1)当△PQC 的面积与四边形PABQ 的面积相等时,求CP 的长; (2)当△PQC 的周长与四边形PABQ 的周长相等时,求CP 的长;(3)试问:在AB 上是否存在点M ,使得△PQM 为等腰直角三角形?若不存在,请简要说明理由,若存在,请求出PQ 的长. (2002年厦门市中考题)12.如图,在△ABC 中,AB =AC =5,BC=2,在BC 上有100个不同的点P l 、P 2、…P 100,过这100个点分别作△ABC 的内接矩形P 1E 1F 1G 1,P 2E 2F 2G 2…P 100E 100F 100G 100,设每个内接矩形的周长分别为L 1、L 2,…L 100,则L 1+L 2+…+L 100= . (安徽省竞赛题) 13.如图,在△ABC 中,DE ∥FG ∥BC ,GI ∥EF ∥AB ,若△ADE 、△EFG 、△GIC 的面积分别为20cm 2、45cm 2、80cm 2,则△ABC 的面积为 .(第12题) (第13题) (第14题)14.如图,一个边长为3、4、5厘米的直角三角形的一个顶点与正方形的顶点B 重合,另两个顶点分别在正方形的两条边AD 、DC 上,那么这个正方形的面积是 厘米2. (第11届“希望杯”邀请赛试题)15.如图,正方形ABCD 中,AE =EF=FB ,BG=2CG ,DE ,DF 分别交AG 于P 、Q ,以下说法中,不正确的是( )A .AG ⊥FDB .AQ :QG =6,7C .EP :PD=2 : 11D .S 四边形GCDQ :S 四边形BGQF =17:9 (2002年重庆市竞赛题) 16.如图,梯形ABCD 中,AB ∥CD ,且CD=3AB ,EF ∥CD ,EF 将梯形ABCD 分成面积相等的两部分,则AE :ED 等于( )A .2B .23 C .215+ D .215-(第15题) (第16题) (第17题) 17.如图,正方形OPQR 内接于△ABC ,已知△AOR 、△BOP 和△CRQ 的面积分别是S 1=1,S 2=3和S 3=1,那么正方形OPQR 的边长是( ) A .2 B .3 C .2 D .318.在一块锐角三角形的余料上,加工成正方形零件,使正方形的4个顶点都在三角形边上,若三角形的三边长分别为 a 、b 、c ,且a >b >c d ,问正方形的2个顶点放在哪条边上可使加工出来的正方形零件面积最大?19.如图,△PQR 和△P ′Q ′R ′,是两个全等的等边三角形,它们的重叠部分是一个六边形ABCDEF ,设这个六边形的边长为AB= a 1,BC =b 1,CD= a 2,DE= b 2,EF= a 3,FA =b 3 .求证:a 1 +a 2 +a 3= b 1+ b 2 +b 3.20.如图,在△ABC 中,AB=4,D 在AB 边上移动(不与A 、B 重合),DE ∥BC 交AC 于E ,连结CD ,设S △ABC = S ,S △DEC =S 1. (1)当D 为AB 中点时,求SS 1的值; (2)若AD= x ,y SS =1,求y 与x 之间的关系式,并指出x 的取值范围; (3)是否存在点D ,使得S S 411>成立?若存在,求出D 点位置;若不存在,请说明理由. (2002年福州市中考题)21.已知∠AOB=90°,OM 是∠AOB 的平分线,按以下要求解答问题:(1)将三角板的直角顶点P 在射线OM 上移动,两直角边分别与边OA ,OB 交于点C ,D . ①在图甲中,证明:PC=PD ;②在图乙中,点G 是CD 与OP 的交点,且PG=23PD ,求△POD 与△PDG 的面积之比. (2)将三角板的直角顶点P 在射线OM 上移动,一直角边与边OB 交于点D ,OD=1,另一直角边与直线OA ,直线OB 分别交于点C 、E ,使以P 、D 、E 为顶点的三角形与△OCD 相似,在图丙中作出图形,试求OP 的长.(2003年绍兴市中考题)。
相似三角形及其判定(知识点串讲)(解析版)
专题11 相似三角形及其判定知识网络重难突破知识点相似三角形的判定一、相似三角形的判定方法①定义:各角对应相等,各边对应成比例.②平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.③有两个角对应相等.④两边对应成比例,且夹角相等.⑤三边对应成比例.二、相似三角形基本图形1、8字型有一组隐含的等角(对顶角),此时需从已知条件或图中隐含条件通过证明得另一对角相等(AB、CD不平行,∠A=∠C)(AB∥CD)2.A字型有一个公共角(图①、图②)或角有公共部分(图③,∠DAF+∠BAD=∠DAF+∠EAF),此时需要找另一对角相等或相等角的两边对应成比例3.双垂直型有一个公共角及一个直角 (图①为母子型的特殊形式AC2=AD·AB仍成立,另CD2=AD·BD)4.三垂直型结论推导,如图①,∠D+∠DBA=∠E+∠EBC=∠DBA+∠EBC=90°,∴∠EBC=∠D,∠E=∠DBA,且一组直角相等,用任意两组等角即可证得三角形相似【典例1】(2019秋•保山期末)如图,在△ABC中,点P在边AB上,则在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC与△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③【点拨】根据有两组角对应相等的两个三角形相似可对①②进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对③④进行判断.【解析】解:当∠ACP=∠B,∵∠A=∠A,所以△APC∽△ACB;当∠APC=∠ACB,∵∠A=∠A,所以△APC∽△ACB;当AC2=AP•AB,即AC:AB=AP:AC,∵∠A=∠A所以△APC∽△ACB;当AB•CP=AP•CB,即PC:BC=AP:AB,而∠P AC=∠CAB,所以不能判断△APC和△ACB相似.故选:D.【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.【典例2】如图,BD、CE是△ABC的两条高,AM是∠BAC的平分线,交BC于M,交DE于N,求证:(1)△ABD∽△ACE;(2)=.【点拨】(1)先根据有两组角对应相等的两个三角形相似,判定△ABD∽△ACE;(2)先相似三角形的性质,得出=,再根据∠DAE=∠BAC,判定△ADE∽△ABC,进而得到=,再根据∠CAM=∠EAN,判定△ACM∽△AEN,得到=,最后等量代换即可得到=.【解析】证明:(1)∵BD、CE是△ABC的两条高,∴∠ADB=∠AEC=90°,∵∠DAE=∠BAC,∴△ABD∽△ACE;(2)∵△ABD∽△ACE,∴=,即=,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴=,且∠ACB=∠AED,∵AM是∠BAC的平分线,∴∠CAM=∠EAN,∴△ACM∽△AEN,∴=,∴=.【点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:有两组角对应相等的两个三角形相似,两组对应边的比相等且夹角对应相等的两个三角形相似.【典例3】(2019秋•七里河区期末)如图所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t(s)(0<t<10),解答下列问题:(1)当t为何值时,△BDE的面积为7.5cm2;(2)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.【点拨】(1)根据等腰三角形的性质和相似三角形的判定和性质求三角形BDE边BE的高即可求解;(2)根据等腰三角形和相似三角形的判定和性质分两种情况说明即可.【解析】解:(1)分别过点D、A作DF⊥BC、AG⊥BC,垂足为F、G如图∴DF∥AG,=∵AB=AC=10,BC=16∴BG=8,∴AG=6.∵AD=BE=t,∴BD=10﹣t,∴=解得DF=(10﹣t)∵S△BDE=BE•DF=7.5∴(10﹣t)•t=15解得t=5.答:t为5秒时,△BDE的面积为7.5cm2.(2)存在.理由如下:①当BE=DE时,△BDE∽△BCA,∴=即=,解得t=,②当BD=DE时,△BDE∽△BAC,=即=,解得t=.答:存在时间t为或秒时,使得△BDE与△ABC相似.【点睛】本题考查了相似三角形的判定和性质、等腰三角形的性质,解决本题的关键是动点变化过程中形成不同的等腰三角形.【变式训练】1.(2020•浙江自主招生)如图,在4×4的正方形网格中,画2个相似三角形,在下列各图中,正确的画法有()A.1个B.2个C.3个D.4个【点拨】根据相似三角形的判定定理逐一判断即可得.【解析】解:第1个网格中两个三角形对应边的比例满足==,所以这两个三角形相似;第2个网格中两个三角形对应边的比例==,所以这两个三角形相似;第3个网格中两个三角形对应边的比例满足===,所以这两个三角形相似;第4个网格中两个三角形对应边的比例==,所以这两个三角形相似;故选:D.【点睛】本题考查了相似三角形的判定,熟练掌握三角形相似的判定并根据网格结构判断出三角形的三边的比例是解题的关键2.(2019秋•奉化区期末)如图,P为线段AB上一点,AD与BC交与点E,∠CPD=∠A=∠B,BC交PD与点F,AD交PC于点G,则下列结论中错误的是()A.△CGE∽△CBP B.△APD∽△PGD C.△APG∽△BFP D.△PCF∽△BCP【点拨】由相似三角形的判定依次判断可求解.【解析】解:∵∠CPD=∠A=∠B,且∠APD=∠B+∠PFB=∠APC+∠CPD,∴∠APC=∠BFP,且∠A=∠B,∴△APG∽△BFP,故选项C不合题意,∵∠A=∠CPD,∠D=∠D,∴△APD∽△PGD,故选项B不合题意,∵∠B=∠CPD,∠C=∠C,∴△PCF∽△BCP,故选项D不合题意,由条件无法证明△CGE∽△CBP,故选项A符合题意,故选:A.【点睛】本题考查了相似三角形的判定,牢固掌握相似三角形的判定是本题的关键.3.(2019秋•萧山区期末)如图,∠ACB=∠BDC=90°.要使△ABC∽△BCD,给出下列需要添加的条件:①AB∥CD;②BC2=AC•CD;③,其中正确的是()A.①②B.①③C.②③D.①②③【点拨】利用相似三角形的判定依次判断即可求解.【解析】解:①若AB∥CD,∴∠ABC=∠BCD,且∠ACB=∠BDC=90°,∴△ABC∽△BCD,故①符合题意;②若BC2=AC•CD,∴,且∠ACB=∠BDC=90°,无法判定△ABC∽△BCD,故②不符合题意;③若,且∠ACB=∠BDC=90°,∴△ABC∽△BCD,故③符合题意;故选:B.【点睛】本题考查了相似三角形的判定,灵活掌握相似三角形的判定方法是本题的关键.4.(2019秋•新华区校级月考)如图,四边形ABGH,四边形BCFG,四边形CDEF都是正方形,图中与△HBC相似的三角形为()A.△HBD B.△HCD C.△HAC D.△HAD【点拨】设正方形ABGH的边长为1,先运用勾股定理分别求出HB、HC的长,将其三边按照从大到小的顺序求出比值,再分别求出四个选项中每一个三角形三边的比值,根据三组对应边的比相等的两个三角形相似求解即可.【解析】解:设正方形ABGH的边长为1,运用勾股定理得HB=,HC=,则HC:HB:BC=::1.A、∵HB=,BD=2,HD=,∴HD:BD:HB=:2:=::1,∴HC:HB:BC=HD:BD:HB,∴△HBC∽△DBH,故本选项正确;B、∵HC=,CD=1,HD=,∴HD:HC:CD=::1,∴HC:HB:BC≠HD:HC:CD,∴△HBC与△HCD不相似,故本选项错误;C、∵HA=1,AC=2,HC=,HC:AC:HA=:2:1,∴HC:HB:BC≠HC:AC:HA,∴△HBC与△HAC不相似,故本选项错误;D、∵HA=1,AD=3,HD=,HD:AD:HA=:3:1,∴HC:HB:BC≠HD:AD:HA,∴△HBC与△HAD不相似,故本选项错误.故选:A.【点睛】本题考查了相似三角形的判定,判定两个三角形相似的一般方法有:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.本题还可以利用方法(3)进行判定.5.(2018秋•秀洲区期末)如图,点D在△ABC的边AC上,若要使△ABD与△ACB相似,可添加的一个条件是∠ABD=∠C(答案不唯一)(只需写出一个).【点拨】两组对应角相等,两三角形相似.在本题中,两三角形共用一个角,因此再添一组对应角即可【解析】解:要使△ABC与△ABD相似,还需具备的一个条件是∠ABD=∠C或∠ADB=∠ABC等.故答案为:∠ABD=∠C(答案不唯一).【点睛】此题考查了相似三角形的判定.注意掌握有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似定理的应用.6.(2019秋•崇川区校级月考)如图,∠A=∠B=90°,AB=7,BC=3,AD=2,在边AB上取点P,使得△P AD与△PBC相似,则满足条件的AP长为 2.8或1或6.【点拨】根据相似三角形的性质分两种情况列式计算:①若△APD∽△BPC②若△APD∽△BCP.【解析】解:∵∠A=∠B=90°①若△APD∽△BPC则=∴=解得AP=2.8.②若△APD∽△BCP则=∴=解得AP=1或6.∴则满足条件的AP长为2.8或1或6.故答案为:2.8或1或6.【点睛】本题考查了相似三角形的判定与性质,明确相关判定与性质及分类讨论,是解题的关键.7.(2019秋•临安区期末)如图,点B、D、E在一条直线上,BE交AC于点F,=,且∠BAD=∠CAE.(1)求证:△ABC∽△ADE;(2)求证:△AEF∽△BCF.【点拨】(1)根据相似三角形的判定定理证明;(2)根据相似三角形的性质定理得到∠C=∠E,结合图形,证明即可.【解析】(1)∵∠BAD=∠CAE∴∠BAD+∠CAD=∠CAE+∠CAD即∠BAC=∠DAE在△ABC和△ADE中=,∠BAC=∠DAE,∴△ABC∽△ADE;(2)∵△ABC∽△ADE,∴∠C=∠E、在△AEF和△BFC中,∠C=∠E,∠AFE=∠BFC,∴△AEF∽△BCF.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.8.(2019春•广陵区校级月考)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM∽Rt△MCN;(2)当M点运动到什么位置时Rt△ABM∽Rt△AMN,并请说明理由.【点拨】(1)理由等角的余角相等证明∠MBA=∠NMC,然后根据直角三角形相似的判定方法可判断Rt△ABM∽Rt△MCN;(2)利用勾股定理可得到AM=2,由于Rt△ABM∽Rt△MCN,利用相似比可计算出MN=,接着证明=,从而可判断Rt△ABM∽Rt△AMN.【解析】(1)证明:∵四边形ABCD为正方形,∴∠B=∠C=90°,∵AM⊥MN,∴∠AMN=90°,∴∠AMB+∠NMC=90°,而∠AMB+∠MAB=90°,∴∠MBA=∠NMC,∴Rt△ABM∽Rt△MCN;(2)解:当M点运动到BC为中点位置时,Rt△ABM∽Rt△AMN.理由如下:,∵四边形ABCD为正方形,∴AB=BC=4,BM=MC=2,∴AM=2,∵Rt△ABM∽Rt△MCN,∴==2,∴MN=AM=,∵==,==,∴=,而∠ABM=∠AMN=90°,∴Rt△ABM∽Rt△AMN.【点睛】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.两组对应边的比相等且夹角对应相等的两个三角形相似.也考查了正方形的性质.巩固训练1.(2019•崇明区一模)如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ABC∽△ADE 的是()A.∠B=∠D B.∠C=∠AED C.=D.=【点拨】根据已知及相似三角形的判定方法对各个选项进行分析,从而得到最后答案.【解析】解:∵∠BAD=∠CAE,∴∠DAE=∠BAC,∴A,B,D都可判定△ABC∽△ADE选项C中不是夹这两个角的边,所以不相似,故选:C.【点睛】此题考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.2.(2020•上虞区校级一模)已知△ABC是正三角形,点D是边AC上一动点(不与A、C重合),以BD为边作正△BDE,边DE与边AB交于点F,则图中一定相似的三角形有()对.A.6 B.5 C.4 D.3【点拨】根据相似三角形的判定定理,两个等边三角形的3个角分别相等,可推出△ABC∽△EDB,根据对应角相等推出△BDC∽△BFE∽△DF A.△BDF∽△BAD.【解析】解:图中的相似三角形是△ABC∽△EDB,△BDC∽△BFE,△BFE∽△DF A,△BDC∽△DF A,△BDF∽△BAD.理由:∵△ABC和△BDE是正三角形,∴∠A=∠C=∠ABC=60°,∠E=∠BDE=∠EBD=60°,∴△ABC∽△EDB,可得∠EBF=∠DBC,∠E=∠C,∴△BDC∽△BFE,∴∠BDC=∠BFE=∠AFD,∴△BDC∽△DF A,∴△BFE∽△DF A,∵∠DBF=∠ABD,∠BDF=∠BAD,∴△BDF∽△BAD.故选:B.【点睛】本题主要考查相似三角形的判定定理及有关性质的运用,关键在于根据图中两个等边三角形,找出相关的相等关系,然后结合已知条件,得出结论.3.(2019秋•市中区期末)如图,Rt△ABC中,∠C=90°,∠B=60°,BC=4,D为BC的中点,E为AB 上的动点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<12),连接DE,当△BDE与△ABC相似时,t的值为4或7或9.【点拨】由条件可求得AB=8,可知E点的运动路线为从A到B,再从B到AB的中点,当△BDE为直角三角形时,当∠EDB=90°或∠DEB=90°,得出△BDE和△ABC相似,可求得BE的长,则可求得t的值.【解析】解:在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4,∴AB=2BC=8,∵D为BC中点,∴BD=2,∵0≤t<12,∴E点的运动路线为从A到B,再从B到AB的中点,按运动时间分为0≤t≤8和8<t<12两种情况,①当0≤t≤8时,AE=t,BE=BC﹣AE=8﹣t,当∠EDB=90°时,则有AC∥ED,∴△BDE∽△BCA,∵D为BC中点,∴E为AB中点,此时AE=4,可得t=4;当∠DEB=90°时,∵∠DEB=∠C,∠B=∠B,∴△BED∽△BCA,∴,即,解得t=7;②当8<t<12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;综上可知t的值为4或7或9,故答案为:4或7或9.【点睛】本题主要考查相似三角形的判定和性质,用t表示出线段的长,化动为静,再根据相似三角形的对应边成比例找到关于t的方程是解决这类问题的基本思路.4.(2019秋•海淀区期末)如图,⊙O是△ABC的外接圆,D是的中点,连结AD,BD,其中BD与AC 交于点E.写出图中所有与△ADE相似的三角形:△CBE,△BDA.【点拨】根据两角对应相等的两个三角形相似即可判断.【解析】解:∵=,∴∠ABD=∠DBC,∵∠DAE=∠DBC,∴∠DAE=∠ABD,∵∠ADE=∠ADB,∴△ADE∽△BDA,∵∠DAE=∠EBC,∠AED=∠BEC,∴△AED∽△BEC,故答案为△CBE,△BDA.【点睛】本题考查相似三角形的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(2020•成都模拟)如图,BC是⊙O的弦,A是劣弧BC上一点,AD⊥BC于D,若AB+AC=10,⊙O的半径为6,AD=2,则BD的长为2或4.【点拨】作直径AE,连接CE,证明△ABD∽△AEC,得,设AB=x,则AC=10﹣x,列方程可得AB的长,最后利用勾股定理可解答.【解析】解:作直径AE,连接CE,∴∠ACE=90°,∵AD⊥BC,∴∠ADB=90°,∴∠ADB=∠ACE,∵∠B=∠E,∴△ABD∽△AEC,∴,设AB=x,则AC=10﹣x,∵⊙O的半径为6,AD=2,∴,解得:x1=4,x2=6,当AB=4时,BD===2,当AB=6时,BD===4,∴BD的长是2或4;故答案为:2或4.【点睛】本题考查了圆周角定理,相似三角形的性质和判定,正确作辅助线,构建相似三角形是本题的关键.6.(2020•雨花区校级一模)如图,AB为⊙O的直径,点C、D在⊙O上,AC=3,BC=4,且AC=AD,弦CD交直径AB于点E.(1)求证:△ACE∽△ABC;(2)求弦CD的长.【点拨】(1)由垂径定理可知∠AEC=90°,然后根据相似三角形的判定即可求出答案.(2)根据相似三角形的性质可知AC2=AE•AB,从而可求出AE=,再由勾股定理以及垂径定理即可求出CD的长度.【解析】解:(1)∵AC=AD,AB是⊙O的直径,∴CD⊥AB,∴∠AEC=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE+∠BAC=∠BAC+∠B=90°,∴∠ACE=∠B,∴△ACE∽△ABC.(2)由(1)可知:,∴AC2=AE•AB,∵AC=3,BC=4,∴由勾股定理可知:AB=5,∴AE=,∴由勾股定理可知:CE=,∴由垂径定理可知:CD=2CE=.【点睛】本题考查相似三角形,解题的关键是熟练运用勾股定理,相似三角形的性质与判定,圆周角定理,本题属于中等题型.7.(2018秋•姜堰区校级月考)如图,点B、D、E在一条直线上,BE与AC相交于点F,==.(1)求证:∠BAD=∠CAE;(2)若∠BAD=21°,求∠EBC的度数:(3)若连接EC,求证:△ABD∽△ACE.【点拨】(1)根据相似三角形的性质定理得到∠BAC=∠DAE,结合图形,证明即可;(2)根据相似三角形的性质即可得到结论;(3)根据相似三角形的判定和性质即可得到结论.【解析】(1)证明:∵==.∴△ABC~△ADE;∴∠BAC=∠DAE,∴∠BAC﹣∠DAF=∠DAE﹣∠DAF,即∠BAD=∠CAE;(2)解:∵△ABC~△ADE,∴∠ABC=∠ADE,∵∠ABC=∠ABE+∠EBC,∠ADE=∠ABE+∠BAD,∴∠EBC=∠BAD=21°;(3)证明:连接CE,∵△ABC~△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAF=∠DAE﹣∠DAF,即∠BAD=∠CAE,∵=.∴△ABD∽△ACE.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.8.(2019秋•江阴市期中)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)试探究t为何值时,△BPQ的面积是cm2;(3)直接写出t为何值时,△BPQ是等腰三角形;(4)连接AQ,CP,若AQ⊥CP,直接写出t的值.【点拨】(1)由勾股定理可求AB的长,分两种情况讨论,由相似三角形的性质可求解;(2)过点P作PE⊥BC于E,由平行线分线段成比例可得PE=3t,由三角形的面积公式列出方程可求解;(3)分三种情况讨论,由等腰三角形的性质可求解;(4)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,根据△ACQ∽△CMP,得出AC:CM=CQ:MP,代入计算即可.【解析】解:(1)∵∠ACB=90°,AC=6cm,BC=8cm,∴AB===10cm,∵△BPQ与△ABC相似,且∠B=∠B,∴或,当时,∴,∴t=1,当,∴,∴t=;(2)如图1,过点P作PE⊥BC于E,∴PE∥AC,∴,∴PE==3t,∴S△BPQ=×(8﹣4t)×3t=,∴t1=或t2=;(3)①当PB=PQ时,如图1,过P作PE⊥BQ,则BE=BQ=4﹣2t,PB=5t,由(2)可知PE=3t,∴BE===4t,∴4t=4﹣2t,∴t=②当PB=BQ时,即5t=8﹣4t,解得:t=,③当BQ=PQ时,如图2,过Q作QG⊥AB于G,则BG=PB=t,BQ=8﹣4t,∵△BGQ∽△ACB,∴,∴解得:t=.综上所述:当t=或或时,△BPQ是等腰三角形;(3)过P作PM⊥BC于点M,AQ,CP交于点N,如图3所示:则PB=5t,∵AC⊥BC∴△PMB∽△ACB,∴=∴BM=4t,PM=3t,且BQ=8﹣4t,BC=8,∴MC=8﹣4t,CQ=4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM,∵∠ACQ=∠PMC,∴△ACQ∽△CMP,∴,∴∴t=【点睛】此题是相似形综合题,主要考查了相似三角形的判定与性质,勾股定理,直角三角形的性质,等腰三角形的性质,由三角形相似得出对应边成比例是解题的关键.。
沪教版九年级上学期-相似三角形讲义(含解析) (1)
一、比和比例一般来说,两个数或两个同类的量a与b相除,叫做a与b的比,记作:a b(或表示为ab );如果::a b c d=(或a cb d=),那么就说a、b、c、d成比例.二、比例的性质(1)基本性质:如果a cb d=,那么ad bc=;相似三角形知识结构模块一:比例线段知识精讲2 / 34如果a cb d =,那么b d ac =,a b cd =,c d a b=. (2) 合比性质: 如果a cb d =,那么a bc db d++=; 如果a cb d =,那么a bc db d--=. (3) 等比性质: 如果a c kb d ==,那么ac a c k bd b d+===+.三、比例线段的概念对于四条线段a 、b 、c 、d ,如果::a b c d =(或表示为a cb d=),那么a 、b 、c 、d 叫做成比例线段,简称比例线段. 四、黄金分割如果点P 把线段AB 分割成AP 和PB (AP PB >)两段(如下图),其中AP 是AB 和PB 的比例中项,那么称这种分割为黄金分割,点P 称为线段AB 的黄金分割点.其中,510.6182AP AB -=≈,称为黄金分割数,简称黄金数.五、三角形一边的平行线性质定理平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例. 如图,已知ABC ∆,直线l // BC ,且与AB 、AC 所在直线交于点D 和点E ,那么AD AEDB EC=.APBlAB CDEAB C DEAB CDE ll六、三角形一边的平行线性质定理推论平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例.如图,点D 、E 分别在ABC ∆的边AB 、AC 上, 如果DE // BC ,那么DE AD AE BC AB AC==. 七、三角形的重心定义:三角形三条中线交于一点,三条中线交点叫三角形的重心.性质:三角形重心到一个顶点的距离,等于它到这个顶点对边中点的距离的两倍. 八、三角形一边的平行线判定定理如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.九、三角形一边的平行线判定定理推论如果一条直线截三角形的两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.如图,在ABC ∆中,直线l 与AB 、AC 所在直线交于点D 和点E ,如果ADAEDB EC=,那么l //BC .ABCD EA BCDEAB CDEABCD E4 / 34十、平行线分线段成比例定理两条直线被三条平行的直线所截,截得的对应线段成比例. 如图,直线1l //2l //3l ,直线m 与直线n 被直线1l 、2l 、3l所截,那么DF EGFB GC=.十一、平行线等分线段定理两条直线被三条平行的直线所截,如果一条直线上截得的线段相等,那么另一条直线上 截得的线段也相等.【例1】 如图,点D 、E 分别在ABC ∆的边AB 和BC 上.下列所给的四个条件中,不一定能得到DE // AC 的条件是( ) A .BE BCBD BA =B .CE ADBE BD =C .BD DEBA AC=D .BC CEAB AD=【难度】★ 【答案】C .例题解析A BCDEF BC D E F G【解析】如图,作DF DE =,则DF DE AC AC =,∴BD DEBA AC=不能判定DE // AC ,故选C . 【总结】本题考查了平行线分线段成比例定理,找准对应关系,避免错选.【例2】 在比例尺为1 : 40000的一张地图上,量得A 、B 两地的距离是37 cm ,那么A 、B两地的实际距离是______km .【难度】★ 【答案】14.8.【解析】设A 、B 两地的实际距离是x km ,则51371040000x -⨯=,解得:14.8x =. 【总结】本题考查了比例尺的有关计算,注意单位的换算.【例3】 如图,已知1l //2l //3l ,DE = 4,DF = 6,那么下列结论正确的是( )A .BC : EF = 1 : 1B .BC : AB = 1 : 2 C .AD : EF = 2 : 3 D .BE : CF = 2 : 3 【难度】★ 【答案】B .【解析】::1:2BC AB EF DE ==,故B 正确. 【总结】本题考查了平行线分线段成比例定理的运用.【例4】 如果线段a = 4 cm ,b = 9 cm ,那么它们的比例中项是______cm . 【难度】★ 【答案】6.【解析】设它们的比例中项是x cm ,则由题意得249x =⨯,解得:6x =. 【总结】本题考查了比例中项的概念及计算.6 / 34BC DE FGA【例5】 四边形ABCD 是平行四边形,点E 在边BA 的延长线上,CE 交边AD 于点F ,交对角线BD 于点G .求证:CG 是EG 与FG 的比例中项. 【难度】★ 【答案】详见解析.【解析】∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,∴CG BG FG GD =,EG BGCG GD=, ∴CG EGFG CG=, ∴CG 是EG 与FG 的比例中项. 【总结】本题考查了平行线分线段成比例定理的运用.【例6】 已知线段AB = 10,P 是线段AB 的黄金分割点(AP > PB ),则AP =______. 【难度】★ 【答案】555.【解析】由题意得51AP AB -=555AP =. 【总结】本题考查了黄金分割的有关计算.【例7】 已知23a c eb d f ===,18ac e =--,0bd f ++≠,求b d f ++的值. 【难度】★★ 【答案】27.【解析】∵23a c eb d f ===,0b d f ++≠,∴23a c e b d f ++=++, ∵18a c e =--,∴18a c e ++=,∴27b d f ++=.【总结】本题考查了等比性质的应用.【例8】 如果直角三角形的斜边长为18,那么这个三角形的重心到直角顶点的距离为______.【难度】★★ 【答案】6.【解析】如图,易得192CD AB ==,∴263CG CD ==. 【总结】本题考查了重心的性质及直角三角形斜边上的中线等于斜边的一半.【例9】 如图,已知AD // EF // BC ,AE = 3BE ,AD = 2,EF = 5,那么BC =______.【难度】★★ 【答案】6.【解析】作AN ∥DC 分别交EF 、BC 于点M 、N ,由题意得2NC MF AD ===,EM AEBN AB=, 即334BN =,∴4BN =,∴6AB =. 【总结】本题考查了平行线分线段成比例定理的运用.【例10】 如图,点E 、F 分别在正方形ABCD 的边AB 、BC 上,EF 与对角线BD 交于点G ,如果BE = 5,BF = 3,那么FG : EF 的比值是_______.【难度】★★A BCDEF M NA BCDEFGH【答案】38.【解析】作GH AB⊥于点H,易得GH BH=,∵GH EHBF EB=,535GH GH-=,解得:158GH=,∴38 FG BHEF BE==.【总结】本题考查了平行线分线段成比例定理的运用,注意比和比值的区别.【例11】如图,BD是ABC∆的角平分线,点E、F分别在BC、AB上,且DE // AB,DEF A∠=∠.(1)求证:BE = AF;(2)设BD与EF交于点M,联结AE,交BD于点N,求证:BN MD BD ND=.【难度】★★【答案】详见解析.【解析】(1)∵DE // AB,DEF A∠=∠,∴AD∥EF,∴四边形AFED是平行四边形,∴AF DE=,ABD EDB∠=∠,∵BD是ABC∆的角平分线,∴ABD EBD∠=∠,∴EDB EBD∠=∠,∴BE DE=,∴BE AF=;(2)∵DE // AB,∴BN AB ND ED=,∵AD∥EF,∴BD ABMD AF=,MAFB E CDN8/ 34ABCDEFM∵ED AF =,∴BD AB MD ED =,∴BN BDND MD=, ∴BN MD BD ND ⋅=⋅.【总结】本题考查了平行四边形的判定及平行线分线段成比例定理.【例12】 如图,在直角梯形ABCD 中,AD // BC ,90DAB ABC ∠=∠=︒,E 为CD 的中点,联结AE 并延长交BC 的延长线于F ; (1)联结BE ,求证:BE = EF .(2)联结BD 交AE 于M ,当AD = 1,AB =2,AM = EM 时,求CD 的长. 【难度】★★【答案】(1)详见解析;(2)5CD =.【解析】(1)∵AD // BC ,DE EC =,易得ADE ∆≌FCE ∆, ∴E 为AF 的中点,∵90DAB ABC ∠=∠=︒, ∴BE EF =;(2)∵AM EM =,∴13AM MF =,∴13AD BF =, ∵1AD CF ==,∴3BF =,2BC =,∵2AB =,∴()225DC BC AD AB -+.【总结】本题考查了直角三角形的性质、平行线分线段成比例定理及勾股定理等.10 / 34一、 相似三角形的定义如果一个三角形的三个角与另一个三角形的三个角对应相等,且它们各有的三边对应成比例,那么这两个三角形叫做相似三角形.如图,DE 是ABC ∆的中位线,那么在ADE ∆与ABC ∆中, A A ∠=∠, ADE B ∠=∠,AED C ∠=∠;12AD DE AE AB BC AC ===.由相似三角形的定义,可知这两个三角形相似.用符号来表示,记作ADE ∆∽ABC ∆,其中点A 与点A 、点D 与点B 、点E 与点C 分别是对应顶点;符号“∽”读作“相似于”.用符号表示两个相似三角形时,通常把对应顶点的字母分别写在三角形记号“∆”后相应的位置上.根据相似三角形的定义,可以得出:(1)相似三角形的对应角相等,对应边成比例;两个相似三角形的对应边的比,叫做这两个三角形的相似比(或相似系数).(2)如果两个三角形分别与同一个三角形相似,那么这两个三角形也相似. 二、 相似三角形的预备定理平行于三角形一边的直线截其他两边所在的直线,截得的三角形与原三角形相似.模块二:相似三角形DABCE知识精讲AB C A 1B 1C 1如图,已知直线l 与ABC ∆的两边AB、AC 所在直线分别交于点D 和点E , 则ADE ∆∽ABC ∆.三、 相似三角形判定定理1如果一个三角形的两角与另一个三角形的两角对应相等,那么这两个三角形相似. 可简述为:两角对应相等,两个三角形相似.如图,在ABC ∆与111A B C ∆中,如果1A A ∠=∠、1B B ∠=∠,那么ABC ∆∽111A B C ∆.常见模型如下:ABCDEAB C DEAB CDE12 / 34AB C AB CABC A 1B 1C 1四、 相似三角形判定定理2如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.可简述为:两边对应成比例且夹角相等,两个三角形相似. 如图,在ABC ∆与111A B C ∆中,1A A ∠=∠,1111AB ACA B AC =,那么ABC ∆∽111A B C ∆.五、 相似三角形判定定理3如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似. 可简述为:三边对应成比例,两个三角形相似.如图,在ABC ∆与111A B C ∆中,如果111111AB BC CAA B B C C A ==,那么ABC ∆∽111A B C ∆.六、 直角三角形相似的判定定理如果一个直角三角形的斜边及一条直角边与另一个直角三角形的斜边及一条直角边对应成比例,那么这两个直角三角形相似.可简述为:斜边和直角边对应成比例,两个直角三角形相似. 如图,在Rt ABC ∆和111Rt A B C ∆中,如果190C C ∠=∠=︒,1111AB BCA B B C =, 那么ABC ∆∽111A B C ∆.七、 相似三角形性质定理相似三角形性质定理1:相似三角形对应高的比、对应中线的比和对应角平分线的比都 等于相似比.相似三角形性质定理2:相似三角形周长的比等于相似比. 相似三角形性质定理3:相似三角形的面积的比等于相似比的平方.例题解析ABCA 1B 1C 114/ 34AB CDEF【例13】在下列44⨯的正方形网格图中,每个小正方形的边长都是1,三角形的顶点都在格点上,那么与图1中ABC∆相似的三角形所在的网格图是()A.B.C.D.【难度】★【答案】B.【解析】由图易得ABC∆为直角三角形,且:1:2BC AB=,故选B.【总结】本题考查了相似三角形的判定.【例14】已知ABC∆∽DEF∆,且相似比为3 : 4,2ABCS∆=cm2,则DEFS∆=______ cm2.【难度】★【答案】329.【解析】由题意得234ABCDEFSS∆∆⎛⎫= ⎪⎝⎭,∴329DEFS∆=cm2.【总结】本题考查了相似三角形的性质.【例15】如图,已知点D是ABC∆中的边BC上的一点,BAD C∠=∠,ABC∠的平分线交边AC于点E,交AD于F,那么下列结论中错误的是()A.BAC∆∽BDA∆B.BFA∆∽BEC∆图1ABCDABCD EF C .BDF ∆∽BEC ∆ D .BDF ∆∽BAE ∆【难度】★ 【答案】C .【解析】∵BAD C ∠=∠,ABD CBA ∠=∠,∴BAC ∆∽BDA ∆; ∵BAD C ∠=∠,ABF CBF ∠=∠,∴BFA ∆∽BEC ∆;∵BAE BDF ∠=∠,ABF CBF ∠=∠,∴BDF ∆∽BAE ∆;故C 错误.【总结】本题考查了相似三角形的判定.【例16】 如图,已知点D 在ABC ∆的边AB 上,且ACD B ∠=∠,:1:3ACD DBC S S ∆∆=.求AC AB的值. 【难度】★【答案】12.【解析】∵ACD B ∠=∠,CAD BAC ∠=∠,∴CAD BAC ∆∆,∴22::CAD BAC S S AC AB ∆∆=,∵:1:3ACD DBC S S ∆∆=,∴:1:4CAD BAC S S ∆∆=,∴12AC AB =. 【总结】本题考查了相似三角形的判定及性质.【例17】 如图,已知点E 、F 分别在矩形ABCD 的边BC 和CD 上,EF AE ⊥,BE = 3 cm ,AB = 6 cm ,矩形ABCD 的周长为28 cm ,求CF 的长.【难度】★16 / 34ABCDEAMG【答案】52CF =cm . 【解析】∵AB = 6 cm ,矩形ABCD 的周长为28 cm , ∴8BC =cm ,∴5EC =cm ,∵EF AE ⊥, 易证ABE ∆∽ECF ∆,∴AB BE EC CF =,即635CF =,解得:52CF =cm . 【总结】本题考查了一线三等角基本模型的运用.【例18】 如图,已知点D 、E 分别在ABC ∆边AB 、AC 上,DE // BC ,BD = 2AD ,那么:DEB EBC S S ∆∆等于( )A .1 : 2B .1 : 3C .1 : 4D .2 : 3【难度】★★ 【答案】B .【解析】∵BD = 2AD ,∴2BDE ADE S S ∆=,∵DE // BC ,∴9ABC ADE S S ∆∆=,∴6EBC ADE S S ∆∆=,∴:DEB EBC S S ∆∆1:3=.【总结】本题考查了相似三角形的性质及同底等高模型的综合运用.【例19】 如图,ABC ∆中,如果AB = AC ,AD ⊥BC 于点D ,M 为AC 中点,AD 与BM 交于点G ,那么:GDM GAB S S ∆∆的值为_______.【难度】★★ABCDEF【答案】14. 【解析】∵AB = AC ,AD ⊥BC , ∴BAD CAD ∠=∠,BD DC =, ∵M 为AC 中点,∴DM AM =,∴BAD MDA ∠=∠, ∴GDM ∆∽GAB ∆,∵点G 为ABC ∆的重心,∴214GDM GAB S GD S GA ∆∆⎛⎫== ⎪⎝⎭. 【总结】本题考查了相似三角形的判定及性质,同时考查了重心的性质.【例20】 如图,已知ABC ∆中,AB = AC ,CD 是边AB 上的高,且CD = 2,AD = 1,四边形BDEF 是正方形.CEF ∆和BDC ∆相似吗?试证明你的结论.【难度】★★【答案】相似,详见解析.【解析】由题意,可得:5AC AB =∴51BD DE EF ===,∴35CE =∴51BD DC -=355151CE EF --==-,∴BD CEDC EF=,∵BDC CEF∠=∠,∴CEF∆∽BDC∆.【总结】本题考查了相似三角形的判定.【例21】已知:如图,点E是四边形ABCD的对角线BD上一点,且BAC BDC DAE∠=∠=∠.(1)求证:ABE∆∽ACD∆;(2)求证:BC AD DE AC=.【难度】★★【答案】详见解析.【解析】(1)∵BAC BDC DAE∠=∠=∠,∴BAE CAD∠=∠,∵BEA EDA DAE∠=∠+∠,CDA EDA BDC∠=∠+∠,∴BEA CDA∠=∠,∴ABE∆∽ACD∆;(2)由(1)知AB AEAC AD=,∴AB ACAE AD=,又∵BAC EAD∠=∠,∴ABC∆∽AED∆,∴BC ACED AD=,∴BC AD DE AC=.【总结】本题考查了相似三角形的判定及性质的综合运用.EDCBA18/ 34ABCD EFGHA BCD EF 【例22】 如图,已知:四边形ABCD 是平行四边形,点E 在边BA 的延长线上,CE 交AD于点F ,ECA D ∠=∠. (1)求证:ECA ∆∽ECB ∆; (2)若DF = AF ,求AC : BC 的值. 【难度】★★【答案】(1)详见解析;(22. 【解析】(1)∵四边形ABCD 是平行四边形, ∴B D ∠=∠,∵ECA D ∠=∠,∴ECA B ∠=∠, 又∵E E ∠=∠, ∴ECA ∆∽ECB ∆; (2)∵DF AF =,易证DC AE AB ==,∴2EB EA =,由(1)得AC EC EA BC EB EC ==,即2EC EAEA EC=,∴2EC EA =, ∴22AC EA BC EC ==. 【总结】本题考查了相似三角形的判定及性质的应用.【例23】 如图,BD 是平行四边形ABCD 的对角线,若45DBC ∠=︒,DE BC ⊥于E ,BF CD ⊥于F ,DE 与BF 相交于H ,BF 与AD 的延长线相交于G .求证:(1)CD = BH ; (2)AB 是AG 和HE 的比例中项. 【难度】★★ 【答案】详见解析.【解析】(1)∵45DBC ∠=︒,DE BC ⊥, ∴ED EB =,∵BF CD ⊥,∴EBH CDE ∠=∠,∴EDC ∆≌EBH ∆,20 / 34∴CD BH =;(2)∵四边形ABCD 是平行四边形,∴C A ∠=∠,∴BHE A ∠=∠,∵EBH BGA ∠=∠,∴EBH ∆∽BGA ∆,∴AG ABHB HE=, ∵HB CD AB ==,∴AG ABAB HE=,∴AB 是AG 和HE 的比例中项. 【总结】本题考查了全等及相似三角形的判定.【例24】 如图,已知等腰ABC ∆中,AB = AC ,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E .(1)求证:CAD ECB ∠=∠;(2)点F 是AC 的中点,联结DF ,求证:2BD FC BE =.【难度】★★ 【答案】详见解析.【解析】(1)∵AD ⊥BC ,CE ⊥AB , ∴BAD ECB ∠=∠, ∵AB = AC ,∴BAD CAD ∠=∠, ∴CAD ECB ∠=∠; (2)由题意得12ED BC BD ==,∴DBE DEB ∠=∠, ∵点F 是AC 的中点,∴12DF AC FC ==,∴DCF FDC ∠=∠, ∵DBE DCF ∠=∠,∴CDF ∆∽BED ∆, ∴CD FC BE BD =,∵CD BD =,∴BD FCBE BD=, ∴2BD FC BE =.CBADEFABC D E F G【总结】本题考查了直角三角形的性质及相似三角形的判定.【例25】 如图,已知在梯形ABCD 中,AD // BC ,90A ∠=︒,AB = AD .点E 在边AB 上,且DE CD ⊥,DF 平分EDC ∠,交BC 于点F ,联结CE 、EF . (1)求证:DE = DC ;(2)如果2BE BF BC =,求证:BEF CEF ∠=∠. 【难度】★★ 【答案】详见解析.【解析】(1)作CH AD ⊥的延长线于点H , ∵AD // BC ,90A ∠=︒,AB = AD ,∴CH AD =,∵DE CD ⊥,∴ADE HCD ∠=∠, ∴ADE ∆≌HCD ∆,∴DE DC =;(2)∵2BE BF BC =,B B ∠=∠,∴BEF ∆∽BCE ∆,∴BEF BCE ∠=∠, ∵DF 平分EDC ∠,DE DC =,∴DEF ∆≌DCF ∆,∴DEF DCF ∠=∠,∵DEC DCE ∠=∠,∴CEF BCE ∠=∠,∴BEF CEF ∠=∠.【总结】本题考查了一线三直角模型及相似和全等三角形的综合应用.【例26】 已知:如图,在ABC ∆中,AB = AC ,点D 、E 分别是边AC 、AB 的中点,DF ⊥AC ,DF 与CE 相交于点F ,AF 的延长线与BD 相交于点G .(1)求证:2AD DG BD =;(2)联结CG ,求证:ECB DCG ∠=∠. 【难度】★★ 【答案】详见解析.【解析】(1)∵AB = AC ,点D 、E 分别是边AC 、AB 的中点,A BCDEFH∴ACE∆≌ABD∆,∴ABD ACE∠=∠,∵DF⊥AC,∴FAD FCD∠=∠,∴ABD FAD∠=∠,∴DAG∆∽DBA∆,∴AD DG BD AD=,∴2AD DG BD=;(2)∵AD DC=,∴DC DG BD DC=,∵CDG BDC∠=∠,∴CDG∆∽BDC∆,∴DBC DCG∠=∠,∵ABC ACB∠=∠,∴ABD GCB∠=∠,∴ACE GCB∠=∠,∴ECB DCG∠=∠.【总结】本题考查了相似三角形的判定及性质.ABCD EFG【例27】 如图,直角梯形ABCD 中,90B ∠=︒,AD // BC ,BC = 2AD ,点E 为边BC 的中点.(1)求证:四边形AECD 为平行四边形;(2)在CD 边上取一点F ,联结AF 、AC 、EF ,设AC 与EF 交于点G ,且EAF CAD ∠=∠.求证:AEC ∆∽ADF ∆;(3)在(2)的条件下,当45ECA ∠=︒时,求:FG : EG 的比值. 【难度】★★【答案】(1)详见解析;(2)详见解析;(3)45.【解析】(1)∵BC = 2AD ,点E 为边BC 的中点, ∴AD EC =,∵AD // BC ,∴四边形AECD 为平行四边形;(2)∵EAF CAD ∠=∠,∴EAC DAF ∠=∠, ∵四边形AECD 为平行四边形,∴AEC D ∠=∠, ∴AEC ∆∽ADF ∆;(3)∵45ECA ∠=︒,∴AB BC =,设1AD =,则1BE EC ==,2AB =,∴5AE =∵AEC ∆∽ADF ∆,∴AD DFAE EC=,解得5DF =,∴45FC , ∴45FG FC EG AE ==.24 / 34【总结】本题考查了平行四边形的判定、勾股定理、相似三角形的判定及性质的综合运用,综合性较强,解题时注意进行分析.【例28】 如图,已知在ABC ∆中,P 是边BC 上的一个动点,PQ // AC ,PQ 与边AB 相交于点Q ,AB = AC = 10,BC = 16,BP = x ,APQ ∆的面积为y . (1)求y 关于x 的函数解析式;(2)试探索:APQ ∆与ABP ∆能否相似?如果能相似,请求出x 的值,如果不能相似,请说明理由.【难度】★★★【答案】(1)()23301616y x x x =-<<;(2)能相似,394x =. 【解析】(1)作AH BC ⊥于点H ,ABCPQ H∵AB = AC = 10,BC = 16,∴6AH =,∴1482ABC S BC AH ∆=⋅⋅=,132ABP S BP AH x ∆=⋅⋅=, ∵PQ // AC ,∴BPQ ∆∽BCA ∆,∴22256BPQ BCAS BP x S BC ∆∆⎛⎫== ⎪⎝⎭,∴2316BPQ x S ∆=,∴23316APQ ABP BPQ S S S x x ∆∆∆=-=-,即()23301616y x x x =-<<; (2)能相似,此时394x =,详解如下: ∵BPQ ∆∽BCA ∆,∴BQ BP BA BC =,∴58BQ x =,∵AQP B ∠>∠,∴AQP APB ∠=∠,∴APQ ∆∽ABP ∆,∴AP PQ AB BP =,即5810xAP x =,解得:254AP =,∵AQ PQ AP BP =,即551088254x xx -=,解得:394x =, 综上,APQ ∆与ABP ∆能相似,此时394x =. 【总结】本题考查了相似三角形的性质及相似三角形的存在性问题.26 / 34ABCMN【习题1】 如果两个相似三角形的面积的比为4 : 9,那么它们对应的角平分线的比是______. 【难度】★ 【答案】2:3.【解析】相似三角形面积比等于相似比的平方. 【总结】本题考查了相似三角形的性质.【习题2】 如图,ABC ∆和AMN ∆都是等边三角形,点M 是ABC ∆的重心,那么AMNABCS S ∆∆的值为( ) A .23B .13C .14D .49【难度】★★ 【答案】B .【解析】∵点M 是ABC ∆的重心,设2AM =,则可得23AB =,∴AMN ABC S S ∆∆213AM AB ⎛⎫== ⎪⎝⎭,故选B . 【总结】本题考查了相似三角形及重心的性质的综合运用.【习题3】 如图,AB // DC ,DE = 2AE ,CF = 2BF ,且DC = 5,AB = 8,则EF =______. 【难度】★★随堂检测CDMABCDEF O P【答案】7.【解析】延长AD 、BC 交于点M ,∵AB // DC ,∴MD MCDA CB=, ∵DE = 2AE ,CF = 2BF ,∴MD MCDE CF=,∴EF // DC , 过点D 作DH ∥CB ,易求7EF =.【总结】本题考查了本题考查了平行线分线段成比例定理的运用.【习题4】 已知,如图,D 、E 、F 分别是ABC ∆的边BC 、AB 、AC 的中点,AD 与EF 相交于点O ,线段CO 的延长线交AB 于点P ,求证:AB = 3AP .【难度】★★【答案】详见解析.【解析】∵D 、E 、F 分别是ABC ∆的边BC 、AB 、AC 的中点, ∴EF ∥BC ,22BD CD OE OF ===,设PE k =,则14PE OE PB BC ==,∴4PB k =,3BE k =,∴3AE k =, ∴2AP k =,6AB k =,∴3AB AP =.【总结】本题考查了三角形一边平行线的性质定理及中位线性质定理的运用.【习题5】 如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F .(1)求证:CD DF BC BE =;(2)若M 、N 分别是AB 、AD 中点,且60B ∠=︒,求证:EM // FN .ABCDEFMNG28 / 34ABCDEF【难度】★★ 【答案】详见解析.【解析】(1)∵四边形ABCD 是平行四边形, ∴B D ∠=∠, ∵AE ⊥BC ,AF ⊥CD ,∴ABE ∆∽ADF ∆,∴AB BEAD DF=,∵AB CD =,AD BC =, ∴CD DF BC BE =;(2)延长EM 、DA 交于点G ,∵M 、N 分别是AB 、AD 中点,AE ⊥BC ,AF ⊥CD ,∴EM BM =,FN ND =, ∵60B ∠=︒,∴BME ∆、DFN ∆为等边三角形, ∴60BEM DNF ∠=∠=︒,∵G BEM ∠=∠,∴G DNF ∠=∠,∴EM // FN .【总结】本题考查了相似三角形的判定及直角三角形的有关性质.【习题6】 如图,Rt ABC ∆中,90ACB ∠=︒,D 是边BC 上一点,点E 、F 分别是线段AB 、AD 中点,联结CE 、CF 、EF . (1)求证:CEF ∆≌AEF ∆;(2)联结DE ,当BD = 2CD 时,求证:DE = AF .【难度】★★【答案】详见解析.【解析】(1)∵90ACB∠=︒,点E、F分别是线段AB、AD中点,∴12CF AD AF==,12CE AB AE==,∵EF EF=,∴CEF∆≌AEF∆;(2)∵点E、F分别是线段AB、AD中点,∴EF∥BD,12EF BD=,∵BD = 2CD,∴EF CD=,∴四边形CFED是平行四边形,∴DE CF=,∵CF AF=,∴DE AF=.【总结】本题考查了直角三角形的性质、三角形全等及平行四边形的判定和性质的综合运用.【习题7】已知正方形ABCD的对角线相交于点O,CAB∠的平分线分别交BD、BC于点E、F,作BH AF⊥,垂足为H ,BH的延长线分别交AC、CD于点G、P.(1)求证:AE = BG;(2)求证:GO AG CG AO=.【难度】★★【答案】详见解析.【解析】(1)∵ABCD为正方形,∴OA OB=,AC BD⊥,∵BH AF⊥,∴BGO BEH∠=∠,∵AEO BEH∠=∠,∴BGO AEO∠=∠,∴AEO∆≌BGO∆,∴AE BG=;(2)∵AF为CAB∠的平分线,∴OAE BAF∠=∠,∵CBP BAF∠=∠,∴OAE∆∽CBP∆,∴OE PCAO BC=,∵AB BC=,GO OE=,∴GO PCAO AB=,A BCD PGOFHE30 / 34ABCDE F∵PC ∥AB ,∴CG PCAG AB=, ∴GO CGAO AG=,∴GO AG CG AO =. 【总结】本题考查了正方形的性质及相似三角形的判定.【作业1】 若ABC ∆∽111A B C ∆(其中点A 和1A 、B 和1B 、C 和1C 分别对应),且AB = 4,11A B= 6,则ABC ∆的周长和111A B C ∆的周长之比是( )A .9 : 4B .4 : 9C .2 : 3D .3 : 2【难度】★ 【答案】C .【解析】相似三角形的周长比等于相似比. 【总结】本题考查了相似三角形的性质.【作业2】 已知,如图,在Rt ABC ∆中,90ACB ∠=︒,点D 为AB 的中点,BE CD ⊥,垂足为点F ,BE 交AC 于点E ,CE = 1cm ,AE = 3 cm . 求证:(1)ECB ∆∽BCA ∆;(2)求斜边AB 的长.课后作业【难度】★【答案】详见解析.【解析】(1)∵BE CD⊥,90ACB∠=︒,∴ACD CBE∠=∠,∵点D为AB的中点,∴CD AD=,∴ACD DAC∠=∠,∴CBE A∠=∠,∴ECB∆∽BCA∆;(2)由(1)得CB CECA CB=,解得:2CB =cm,∴2225AB AC BC=+=cm.【总结】本题考查了相似三角形的判定及性质,注意观察母子形.【作业3】已知:如图,线段AB // CD,AC CD⊥,AC、BD相交于点P,E、F分别是线段BP和DP的中点.(1)求证:AE // CF;(2)如果AE和DC的延长线相交于点Q,M、N分别是线段AP和DQ的中点,求证:MN = CE.【难度】★★【答案】详见解析.【解析】(1)∵AB // CD,∴AP BP PC PD=,∵E、F分别是线段BP和DP的中点,A BCDEFPQNM32 / 34∴22AP PE PEPC PF PF==, ∴AE // CF ;(2)∵AC CD ⊥,E 、F 分别是线段BP 和DP 的中点,∴AE EP EB ==,∵EA EBEQ ED=,∴ED EQ =, ∵M 、N 分别是线段AP 和DQ 的中点,∴EM AC ⊥,EN DQ ⊥,∴四边形MNCE 是矩形,∴MN CE =.【总结】本题考查了平行线分线段成比例定理和矩形的判定及性质.【作业4】 如图,已知在四边形ABCD 中,AD // BC ,对角线AC 、BD 相交于点O ,BD 平分ABC ∠,过点D 作DF // AB ,分别交AC 、BC 于点E 、F . (1)求证:四边形ABFD 是菱形;(2)设AC AB ⊥,求证:AC OE AB EF =. 【难度】★★ 【答案】详见解析.【解析】(1)∵AD // BC ,DF // AB ,∴四边形ABFD 是平行四边形, ∵BD 平分ABC ∠,∴ABD DBC ∠=∠,∵ADB DBC ∠=∠, ∴ABD ADB ∠=∠,∴AB AD =,∴四边形ABFD 是菱形; (2)连接OF ,易证AOB ∆≌FOB ∆,∵AC AB ⊥,∴OF BC ⊥,∵DF // AB ,∴EF OC ⊥,∴CEF ∆∽FEO ∆,∴EF CEEO EF=, ∵CE EF AC AB =,即CE AC EF AB =,∴EF ACEO AB=,∴AC OE AB EF =. 【总结】本题考查了菱形的判定及相似三角形的判定及性质的综合运用.ABC DEFO【作业5】 已知:如图,四边形ABCD 是菱形,点E 在边CD 上,点F 在BC 的延长线上,CF = DE ,AE 的延长线与DF 相交于点G . (1)求证:CDF DAE ∠=∠;(2)如果DE = CE ,求证:AE = 3EG .【难度】★★ 【答案】详见解析.【解析】(1)∵四边形ABCD 是菱形,∴AD DC =,ADE DCF ∠=∠,∵CF = DE ,∴ADE ∆≌DCF ∆,∴CDF DAE ∠=∠;(2)延长AG 、BF 交于点M , ∵DE = CE ,易证ADE ∆≌MCE ∆,∴AE EM =,AD CM =, 设1DE =,则2AD DC CM ===,1CF FM ==,∴12MG MF AG AD ==,设MG k =,则2AG k =,1322AE AM k ==,∴12EG k =,∴3AE EG =.【总结】本题考查了全等三角形的判定及相似三角形的性质.【作业6】 已知:如图,在正方形ABCD 中,点E 是边AD 的中点,联结BE ,过点A 作AF BE ⊥,分别交BE 、CD 于点H 、F ,联结BF . (1)求证:BE = BF ;(2)联结BD ,交AF 于点O ,联结OE .求证:AEB DEO ∠=∠. 【难度】★★ 【答案】详见解析.EDCG FABMAB CDEFHO【解析】(1)∵四边形ABCD 是正方形,AF BE ⊥, ∴AB AD =,DAF ABE ∠=∠,∴DAF ∆≌ABE ∆,∴AE DF =,∴点F 为DC 中点,∴CBF ∆≌ABE ∆,∴BE BF =;(2)∵DE DF =,EDO FDO ∠=∠,DO DO =, ∴EDO ∆≌FDO ∆,∴DEO DFO ∠=∠,由(1)得AEB DFO ∠=∠,∴AEB DEO ∠=∠.【总结】本题考查了全等三角形的判定及正方形的性质的综合运用.。
相似三角形存在性问题(含解析)
相像存在性问题1.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c 与 x 轴交于 A、 D 两点,与 y 轴交于点B,四边形OBCD是矩形,点 A 的坐标为( 1,0),点 B 的坐标为( 0,4),已知点 E( m, 0)是线段 DO上的动点,过点 E 作 PE⊥ x 轴交抛物线于点 P,交 BC于点 G,交 BD于点 H.( 1)求该抛物线的分析式;( 2)当点 P 在直线 BC上方时,请用含 m的代数式表示 PG的长度;( 3)在( 2)的条件下,能否存在这样的点 P,使得以 P、B、G为极点的三角形与△ DEH相像?若存在,求出此时 m的值;若不存在,请说明原因.2.如图,在平面直角坐标系xoy中,抛物线25C xy ax x c过点A(,)和(,),(,)是轴正0 48 0 P t0690°得线段 PB.过点 B作x轴的垂线、过点半轴上的一个动点, M是线段 AP 的中点,将线段MP绕点 P 顺时针旋转A 作y轴的垂线,两直线订交于点D.( 1)求此抛物线的对称轴;( 2)当t为什么值时,点 D落在抛物线上?( 3)能否存在t,使得以 A、B、D 为极点的三角形与△PEB相像?若存在,求此时t 的值;若不存在,请说明原因.333.如图,过点 A ( 0, 3)的直线 l 1 与 x 轴交于点 B , tan ∠ ABO=4.过点 A 的另向来线 l 2: y =-4 tx + b (t >0)与 x 轴交于点 Q ,点 P 是射线 AB 上的一个动点, 过 P 作 PH ⊥ x 轴于点 H ,设 PB = 5t .( 1)求直线 l 1 的函数分析式;( 2)当点 P 在线段 AB 上运动时,设△ PHQ 的面积为 S ( S ≠ 0),求 S 与 t 之间的函数关系式(要求写出自变量t 的取值范围);(3)当点 P 在射线 AB上运动时,能否存在这样的 t 值,使以 P, H,Q为极点的三角形与△ AOQ相像?若存在,直接写出全部知足条件的 t 值所对应的 P 点坐标;若不存在,请说明原因.4.如图,点 A 是x 轴正半轴上的动点,点 B 的坐标为(0, 4),将线段AB 的中点绕点 A 按顺时针方向旋转90°得点 C,过点 C 作 x 轴的垂线,垂足为F,过点 B 作 y 点,连结AC、 BC、 CD,设点 A 的横坐标为t .轴的垂线与直线CF 订交于点E,点D是点A 对于直线CF的对称( 1)线段AB与AC的数目关系是,地点关系是.(2)当 t=2 时,求 CF 的长;(3)当 t 为什么值时,点 C 落在线段 BD上?求出此时点 C的坐标;(4)设△ BCE的面积为 S,求 S与 t 之间的函数关系式.5.如图,抛物线y=-1x2+3x- 2 交 x 轴于 A, B 两点(点 A 在点 B 的左边),交 y 轴于点 C,分别过点B, C 作 y 42轴, x轴的平行线,两平行线交于点D,将△BDC绕点C 逆时针旋转,使点D旋转到y 轴上获得△FEC,连结BF.(1)求点 B, C所在直线的函数分析式;( 2)求△ BCF的面积;(3)在线段 BC上能否存在点 P,使得以点 P,A, B 为极点的三角形与△ BOC相像?若存在,求出点 P 的坐标;若不存在,请说明原因.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形的存在性(讲义)
课前预习
1.将三角形纸片ABC按如图所示的方式折叠,使点B落在AC
边上的点B′处,折痕为EF.已知AB=AC=3,BC=4,若以B′,F,C为顶点的三角形与△ABC相似,则BF的长是________.
提示:“∽”与“相似”不同,主要在于能否确定两个三角形间的对应关系.
当两个三角形用“相似”连接时,往往会对两个三角形间的对应关系分类讨论.往往先从确定的角、边进行分析.
2.回顾相似三角形的判定
①两角对应______的两个三角形相似;
②两边__________且夹角_______的两个三角形相似;
③_______成比例的两个三角形相似;
④平行于三角形一边的直线和其他两边(的延长线)相交,
所构成的三角形与原三角形相似.
知识点睛
相似三角形存在性的处理思路
1.分析特征:分析背景图形中的定点、定线及不变特征,结合图形形成因素(判定等)考虑分类.
注:相似三角形存在性问题主要结合对应关系及不变特征考虑分类.
2.画图求解:
往往先从对应关系入手,再结合背景中的不变特征分析,综合考虑对应关系和不变特征后列方程求解.
注:相似三角形列方程往往借助对应边成比例;3.结果验证:回归点的运动范围,画图或推理,验证结果.
精讲精练1.如图,抛物线2110833
y x x =-+-经过A ,B ,C 三点,BC ⊥OB ,AB =BC ,过点C 作CD ⊥x 轴于点D .点M 是直线AB 上方的抛物线上一动点,作MN ⊥x 轴于点N ,若△AMN 与△ACD 相似,则点M 的坐标为_____________________________.
2.如图,已知抛物线234
y x bx c =++与坐标轴交于A ,B ,C 三点,点A 的坐标为(-1,0),过点C 的直线334y x t
=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且0<t <1.
(1)点C 的坐标是____________,b =_______,c =______.(2)求线段QH 的长(用含t 的代数式表示).
(3)依点P 的变化,是否存在t 的值,使以P ,H ,Q 为顶点的三角形与△COQ 相似?若存在,求出所有符合条件的t 值;若不存在,说明理由.
3.如图,抛物线213222
y x x =-++与x 轴交于A ,B 两点,与y 轴交于点C ,点D (1,m )在抛物线上,直线y =-x -1与抛物线交于A ,E 两点,点P 在x 轴上,且位于点B 的左侧,若以P ,B ,D 为顶点的三角形与△ABE 相似,则点P 的坐标为__________________________________.
4.如图,已知抛物线过点A (0,6),B (2,0),C (7,
52
).(1)求抛物线的解析式.(2)若D 是抛物线的顶点,E 是抛物线的对称轴与直线AC 的交点,F 与E 关于D 对称.求证:∠CFE =∠AFE .
(3)在y 轴上是否存在这样的点P ,使△AFP 与△FDC 相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.
5.如图,抛物线y=ax2+bx经过两点A(-1,1),B(2,2).过点B
作BC∥x轴,交抛物线于点C,交y轴于点D.连接OA,OB,OC,AC,点N在坐标平面内,且△AOC与△OBN相似(边OA与边OB对应),则点N的坐标为_______________ ______________________.
【参考答案】
课前预习1.
127或22.①相等;②对应成比例,相等;③三边对应
精讲精练1.1257111()()2424
M M -,,,2.(1)(0,-3),94
-,-3;(2)148 0218 4 12
t t QH t t ⎧-<<⎪⎪=⎨⎪-<<⎪⎩()();(3)存在,732或2532或21-.3.121322(0)(0)75
P P -,,,4.
(1)21462
y x x =-+;(2)证明略;(3)1241(0)(02)2
P P --,,,.5.N 1(3,4),N 2(4,3),N 3(-2,-1),N 4(-1,-2)。