高考数学-空间向量与立体几何
2024年高考数学总复习第八章《立体几何与空间向量》空间向量及其运算

2024年高考数学总复习第八章《立体几何与空间向量》§8.5空间向量及其运算最新考纲1.经历向量及其运算由平面向空间推广的过程.2.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.3.掌握空间向量的线性运算及其坐标表示.4.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.1.空间向量的有关概念名称概念表示零向量模为0的向量0单位向量长度(模)为1的向量相等向量方向相同且模相等的向量a =b相反向量方向相反且模相等的向量a 的相反向量为-a共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量a ∥b 共面向量平行于同一个平面的向量2.空间向量中的有关定理(1)共线向量定理空间两个向量a 与b (b ≠0)共线的充要条件是存在实数λ,使得a =λb .(2)共面向量定理共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量.(3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉.(2)空间向量数量积的运算律①(λa )·b =λ(a ·b );②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c .4.空间向量的坐标表示及其应用设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).向量表示坐标表示数量积a·ba 1b 1+a 2b 2+a 3b 3共线a =λb (b ≠0,λ∈R )a 1=λb 1,a 2=λb 2,a 3=λb 3垂直a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模|a |a 21+a 22+a 23夹角〈a ,b 〉(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23概念方法微思考1.共线向量与共面向量相同吗?提示不相同.平行于同一平面的向量就为共面向量.2.零向量能作为基向量吗?提示不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.3.空间向量的坐标运算与坐标原点的位置选取有关吗?提示无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)空间中任意两个非零向量a ,b 共面.(√)(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).(×)(3)对于非零向量b ,由a ·b =b ·c ,则a =c .(×)(4)两向量夹角的范围与两异面直线所成角的范围相同.(×)(5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.(√)(6)若a·b <0,则〈a ,b 〉是钝角.(×)题组二教材改编2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是()A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案A解析BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________.答案2解析|EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)=2,∴|EF →|=2,∴EF 的长为2.题组三易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是()A .垂直B .平行C .异面D .相交但不垂直答案B解析由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线,又AB 与CD 没有公共点,∴AB ∥CD .5.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________.答案26解析∵a ⊥b ,∴a ·b =2×(-4)+3×2+1·x =0,∴x =2,∴|b |=(-4)2+22+22=2 6.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C四点共面,则实数t =______.答案18解析∵P ,A ,B ,C 四点共面,∴34+18+t =1,∴t =18.题型一空间向量的线性运算例1如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)MP →+NC 1→.解(1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点,所以MP →=MA →+AP →=12A 1A →+AP→=-12a +c +12b =12a +12b +c .又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,所以MP →+NC 1→+12b ++12c =32a +12b +32c .思维升华用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1(1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案12AB →+12AD →+AA 1→解析∵OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→.(2)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于()A.12(-a +b +c )B.12(a +b -c )C.12(a -b +c )D.12(-a -b +c )答案B解析NM →=NA →+AM →=(OA →-ON →)+12AB→=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC→=12(a +b -c ).题型二共线定理、共面定理的应用例2如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证:BD ∥平面EFGH .证明(1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH→=EF →+EH →,由共面向量定理的推论知E ,F ,G ,H 四点共面.(2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .思维升华证明三点共线和空间四点共面的方法比较三点(P ,A ,B )共线空间四点(M ,P ,A ,B )共面PA →=λPB →且同过点P MP →=xMA →+yMB→对空间任一点O ,OP →=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x )OB→对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB→跟踪训练2如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面?(2)直线MN 是否与平面ABB 1A 1平行?解(1)∵AM →=kAC 1→,BN →=kBC →,∴MN →=MA →+AB →+BN →=kC 1A →+AB →+kBC →=k (C 1A →+BC →)+AB →=k (C 1A →+B 1C 1→)+AB →=kB 1A →+AB →=AB →-kAB 1→=AB →-k (AA 1→+AB →)=(1-k )AB →-kAA 1→,∴由共面向量定理知向量MN →与向量AB →,AA 1→共面.(2)当k =0时,点M ,A 重合,点N ,B 重合,MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内,又由(1)知MN →与AB →,AA 1→共面,∴MN ∥平面ABB 1A 1.综上,当k =0时,MN 在平面ABB 1A 1内;当0<k ≤1时,MN ∥平面ABB 1A 1.题型三空间向量数量积的应用例3如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求异面直线AN 与CM 所成角的余弦值.(1)证明设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°.MN →=AN →-AM →=12(AC →+AD →)-12AB→=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0.∴MN →⊥AB →,即MN ⊥AB .同理可证MN ⊥CD .(2)解设向量AN →与MC →的夹角为θ.∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r -12p2-12q ·p +r ·q -12r ·2-12a 2cos 60°+a 2cos 60°-12a 2cos2-a 24+a 22-=a 22.又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cosθ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华(1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角.(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练3如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值.解(1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2+12+6,∴|AC 1→|=6,即AC 1的长为6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1,∴cos 〈BD 1→,AC →〉=BD 1,→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于()A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)答案B解析由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).2.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面;③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是()A .0B .1C .2D .3答案A解析a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.3.已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于()A.32B .-2C .0 D.32或-2答案B解析当m =0时,a =(1,3,-1),b =(2,0,0),a 与b 不平行,∴m ≠0,∵a ∥b ,∴2m +12=3m =m -1-m ,解得m =-2.4.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|PA |=|PB |,则P 点坐标为()A .(3,0,0)B .(0,3,0)C .(0,0,3)D .(0,0,-3)答案C 解析设P (0,0,z ),则有(1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2,解得z =3.5.已知a =(1,0,1),b =(x ,1,2),且a·b =3,则向量a 与b 的夹角为()A.5π6 B.2π3 C.π3 D.π6答案D解析∵a·b =x +2=3,∴x =1,∴b =(1,1,2),∴cos 〈a ,b 〉=a·b |a||b |=32×6=32,又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D.6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是()A.3B.2C .1 D.3-2答案D 解析∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2,故|BD→|=3-2.7.已知a=(2,1,-3),b=(-1,2,3),c=(7,6,λ),若a,b,c三向量共面,则λ=________.答案-9解析由题意知c=x a+y b,即(7,6,λ)=x(2,1,-3)+y(-1,2,3),x-y=7,+2y=6,3x+3y=λ,解得λ=-9.8.已知a=(x,4,1),b=(-2,y,-1),c=(3,-2,z),a∥b,b⊥c,则c=________.答案(3,-2,2)解析因为a∥b,所以x-2=4y=1-1,解得x=2,y=-4,此时a=(2,4,1),b=(-2,-4,-1),又因为b⊥c,所以b·c=0,即-6+8-z=0,解得z=2,于是c=(3,-2,2).9.已知V为矩形ABCD所在平面外一点,且VA=VB=VC=VD,VP→=13VC→,VM→=23VB→,VN→=23VD→.则VA与平面PMN的位置关系是________.答案平行解析如图,设VA→=a,VB→=b,VC→=c,则VD→=a+c-b,由题意知PM→=23b-13c,PN→=23VD→-13VC→=23a-23b+13c.因此VA→=32PM→+32PN→,∴VA→,PM→,PN→共面.又VA⊄平面PMN,∴VA∥平面PMN.10.已知ABCD -A 1B 1C 1D 1为正方体,①(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2;②A 1C →·(A 1B 1→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|.其中正确的序号是________.答案①②解析①中,(A 1A →+A 1D 1→+A 1B 1→)2=A 1A →2+A 1D 1→2+A 1B 1→2=3A 1B 1→2,故①正确;②中,A 1B 1→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.11.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面;(2)判断点M 是否在平面ABC 内.解(1)由题意知OA →+OB →+OC →=3OM →,∴OA →-OM →=(OM →-OB →)+(OM →-OC →),即MA →=BM →+CM →=-MB →-MC →,∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M ,∴M ,A ,B ,C 四点共面.∴点M 在平面ABC 内.12.已知a =(1,-3,2),b =(-2,1,1),A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b ?(O 为原点)解(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b |=02+(-5)2+52=5 2.(2)令AE →=tAB →(t ∈R ),所以OE →=OA →+AE →=OA →+tAB→=(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t ,4-2t ),若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95.因此存在点E ,使得OE →⊥b ,此时E -65,-145,13.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.答案56解析连接ON ,设OA →=a ,OB →=b ,OC →=c ,则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a ,OG →=OM →+MG →=12OA →+23MN →=12a+12c -12a =16a +13b +13c .又OG →=xOA →+yOB →+zOC →,所以x =16y =13,z =13,因此x +y +z =16+13+13=56.14.A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 中点,则△AMD 是()A .钝角三角形B .锐角三角形C .直角三角形D .不确定答案C 解析∵M 为BC 中点,∴AM →=12(AB →+AC →),∴AM →·AD →=12(AB →+AC →)·AD →=12AB →·AD →+12AC →·AD →=0.∴AM ⊥AD ,△AMD 为直角三角形.15.已知O (0,0,0),A (1,2,1),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB→取最小值时,点Q 的坐标是________.答案(1,1,2)解析由题意,设OQ →=λOP →,则OQ →=(λ,λ,2λ),即Q (λ,λ,2λ),则QA →=(1-λ,2-λ,1-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(1-2λ)(2-2λ)=6λ2-12λ+6=6(λ-1)2,当λ=1时取最小值,此时Q 点坐标为(1,1,2).16.如图,在直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为棱AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明设CA →=a ,CB →=b ,CC ′→=c ,根据题意得|a |=|b |=|c |,且a ·b =b ·c =c ·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a ,∴CE →·A ′D →=-12c 2+12b 2=0,∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |,AC ′→·CE →=(-a +c +12c =12c 2=12|a |2,∴cos 〈AC ′→,CE →〉=AC ′,→·CE →|AC ′→||CE →|=12|a |22×52|a |2=1010,即异面直线CE 与AC ′所成角的余弦值为1010.。
2023年高考之立体几何和空间向量考点解读

3
=
2
1
1
|AB|·|BC|=
×2×
2
2
1
所 以 VP-ABC = S△ABC ·|PM|=
2 2=2 2,
3
1
26
。
×2 2× 3=
3
3
考查,
一是空间线面关系 的 命 题 真 假 的 判 断,
以选填题的形式考查,
属 于 基 础 题;
二是空间
线线、
线面、
面面平行和垂 直 关 系 交 汇 的 综 合
命题,
(
2)若 ∠POF =1
2
0
°,求 三 棱 锥 PABC
|A1A| -|AM| =
2
6
。
2
2
1
2=
2
解 析:(
1)连 接 DE ,
OF ,设 |AF|=
→
→
→
则 B→
t|AC|,
F =BA + AF = (
1-t)
BA +
→
→
所求体积 V =
76
。
=
6
1
6
×(
4+1+ 4×1)
×
3
2
考点解读:空 间 几 何 体 的 结 构 特 征 是 立
则该圆锥的
1
2
0
°,
4
体积为(
胡银伟
33
2
=
2
-
3
2
2
|PC| -|OC|
2
2
=
= 6。所以圆锥的体积 V
1
1
2
2
π×|OA| ×|PO|= π× (3)× 6=
2023年高考数学三轮复习立体几何与空间向量(解析版)

查补易混易错点05立体几何与空间向量1.混淆“点A在直线a上”与“直线a在平面α内”的数学符号关系,应表示为A∈a,a⊂α. 2.易混淆几何体的表面积与侧面积的区别,几何体的表面积是几何体的侧面积与所有底面面.积之和,易漏掉几何体的底面积;求锥体体积时,易漏掉体积公式中的系数133.作几何体的三视图的过程中,可见的边界轮廓线用实线表示,不可见的边界轮廓线用虚线表示.这一点不能忽视,否则易出错.4.不清楚空间线面平行与垂直关系中的判定定理和性质定理,忽视判定定理和性质定理中的条件,导致判断出错.如由α⊥β,α∩β=l,m⊥l,易误得出m⊥β的结论,就是因为忽视面面垂直的性质定理中m⊂α的限制条件.5.注意图形的翻折与展开前后变与不变的量以及位置关系.对照前后图形,弄清楚变与不变的元素后,再立足于不变的元素的位置关系与数量关系去探求变化后的元素在空间中的位置关系与数量关系.6.几种角的范围两条异面直线所成的角:0°<θ≤90°;直线与平面所成的角:0°≤θ≤90°;平面与平面夹角:0°≤θ≤90°.7.用空间向量求角时易忽视向量的夹角与所求角之间的关系,如求直线与平面所成的角时,易把直线的方向向量与平面的法向量所成角的余弦值当成线面角的余弦值,导致出错.1.(2023·黑龙江哈尔滨·哈尔滨三中校考一模)苏轼是北宋著名的文学家、书法家、画家,在诗词文书画等方面都有很深的造诣.《蝶恋花春景》是苏轼一首描写春景的清新婉丽之作,表达了对春光流逝的叹息词的下阙写到:A.秋千绳与墙面始终平行A.6π【答案】D【解析】由三视图可知几何体为圆锥与半球的组合体,半球表面积圆锥母线长23l=所以该几何体表面积为5.(2023·河南·校联考模拟预测)已知空间四条直线a ,b ,m ,n 和两个平面α,β满足,a b α⊂,,m n β⊂,a b P = ,m n Q = ,则下列结论正确的是()A .若a m ,则a β∥B .若a β∥且m α ,则αβ∥C .若a β∥且b β∥,则m αD .若a m ⊥且b n ⊥,则αβ⊥【答案】C【解析】对于A :a 可能在平面β内,所以A 错误;对于B :a 与m 可能平行,从而α与β可能相交,所以B 错误;对于C :a β ∥且b β∥,,a b α⊂,a b P = ,βα∴∥,m β⊂ ,m α∴∥,所以C 正确;对于D :如图,由正方形沿一条对角线折叠形成,其中形成的两个平面设为,αβ,折痕设为b ,在平面α的对角线设为a ,在β内的对角线设为n ,同时作m n ⊥,此时//m b ,易知b a ⊥,则m a ⊥,但此时α与β不垂直,所以D 错误.故选:C.6.(2023·甘肃定西·统考一模)攒尖是中国古代建筑中屋顶的一种结构形式,宋代称为撮尖,清代称攒尖.通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,也有单檐和重檐之分,多见于亭阁式建筑、园林建筑.如图所示的建筑屋顶是圆形攒尖,可近似看作一个圆锥,已知其轴截面(过圆锥旋转轴的截面)是底边长为6m ,腰长为5m 的等腰三角形,则该屋顶的体积约为()A .38πmB .39πmC .310πmD .312πm由题知该圆锥的底面半径为所以该屋顶的体积约为1 3故选:D.7.(2023·北京·统考模拟预测)臑.已知鳖臑ABCD的四个顶点均在表面积为A.23B.4又POD∽PBC可得两边平方得22(416r r R R-=+将①代人②化简整理得则1r=,故选B9.(2023·安徽安庆·统考二模)图),O为底面圆的中心,距离为1,B为截面图形弧上的一点,且A.74B【答案】C【解析】圆柱半径为10.(2023·山东聊城·统考模拟预测)在三棱锥二面角P AB C--的大小为3π4.若三棱锥-P ABC的体积最大时,球O的体积为(A.3π2B.6π【答案】D【解析】设点P在平面ABC内的射影为考虑到二面角P-AB-C的大小为3π因为PH⊥平面ABC,AB⊂平面ABC所以PH AB⊥,又PA AB⊥,PA所以AB⊥平面PAH,AH⊂平面PAH所以PAH∠为二面角P AB C--的平面角的补角,11.(多选题)(2023·江苏南通·统考模拟预测)含边界)上一点,下列说法正确的是(A.存在唯一一点P,使得DP//B.存在唯一一点P,使得AP//面C.存在唯一一点P,使得1A P⊥D .存在唯一一点P ,使得1D P ⊥面11AC D【答案】AD【解析】如图建系,令()1,,1,AD P x z =,则()()()()()()()11111,0,0,1,0,1,0,1,1,0,0,0,1,1,0,0,0,1,1,1,1A A C D B D B ,对于A ,()()1,1,,0,1,1DP x z AB == ,若1//DP AB ,则01x z λλλ=⋅⎧⎪=⎨⎪=⎩,解得:0,1x z ==故()0,1,1P 满足要求,与1C 重合,存在唯一一点P ,使得DP //1AB ,A 对.对于B ,因为()()1111,1,11,1,0110B A C D ⋅=--⋅-=-= ,()()111,1,11,0,1110BD A D ⋅=--⋅--=-= ,因为1111AC A D A ⋂=,111,AC A D ⊂平面11ACD ,所以1BD ⊥ 平面11AC D ,又AP //平面11AC D ,则10AP BD ⋅= ,()()1,1,11,1,110x z x z --⋅-=--+=,解得:x z =,故P 点轨迹为线段1B C ,满足条件的P 有无数个,B 错,对于C ,()()11111,1,1,1,1,1,11110A P x z DB A P DB x z x z =--=⋅=-++-=+-= ,P 在线段1BC 上,满足条件的P 有无数个,C 错.对于D ,由B 选项可知:1BD ⊥ 平面11AC D ,而1D P ⊥ 面11AC D ,又1D P 与1BD共线,故,P B 重合,D 对.故选:AD.12.(多选题)(2023·山东济宁二模)已知长方体1111ABCD A B C D -中,点P ,Q ,M ,N 分别是棱AB ,BC ,1CC ,11B C 的中点,则下列结论不正确的是()B 选项:如图2,连接AC ,因为点所以//AC PQ ,AC ⊄平面1B PQ ,PQ 所以//AC 平面1B PQ ,若//AM 平面1B PQ ,则平面//AMC 平面又平面AMC 平面111BCC B CC =,平面所以11//B Q CC ,显然不正确,故B 不正确;C 选项:如图3,若1D M ⊥平面1B PQ 则11MD B Q ⊥,又易知11C D ⊥平面BCC 则111C D B Q ⊥,又1111C D MD D = ,所以1B Q ⊥平面11C MD ,1CC ⊂平面1C 显然不正确,故C 不正确;D 选项:如图4,连接AC ,CN ,因为点所以//AC PQ ,AC ⊄平面1B PQ ,PQ ⊂平面所以//AC 平面1B PQ ,因为Q ,N 分别是BC ,11B C 的中点,所以所以四边形1B NCQ 是平行四边形,则CN NC ⊄平面1B PQ ,1B Q ⊂平面1B PQ ,所以NC //平面1B PQ ,且AC NC C = ,因此平面//ACN 平面1B PQ ,AN ⊂平面所以//AN 平面1B PQ ,故D 正确.故选:ABC.13.(多选题)(2023·山东泰安·统考模拟预测)如图,若113A B =,4AB =,12AA =则下列说法正确的是(A .11//AB EC B .EC ⊥平面1ADD C .1//AA 平面1CED对于C 选项,设AD 与EC 交于点所以6AM =,即11A D AM =1CED ,1AA ⊄平面1CED ,所以1//AA 平面1CED ,故C 对于D 选项,11//,A N OO OO 1A AN ∠为侧棱与底面所成的角,在所以160A AN ∠= ,故D 正确故选:BCD14.(2023·辽宁·鞍山一中校联考模拟预测)上有两个动点E 、F ,且EFA .AC BE⊥C .三棱锥A BEF -的体积为定值【答案】ABC【解析】对于A 选项,连接因为四边形ABCD 为正方形,则1BB ⊥ 平面ABCD ,AC 11,,BD BB B BD BB = 所以AC ⊥平面11BB D D ,因为BE ⊂平面11BB D D ,因此对于B 选项,因为平面所以//EF 平面ABCD ,对于C 选项,因为△点A 到平面BEF 的距离为定值,故三棱锥对于D 选项,设AC 由A 选项可知,AC ⊥11B D ⊂Q 平面11BB D D ,则因为11//BB DD 且1BB DD =则11//BD B D 且1BD B D =因为M 、O 分别为1B D DD MO故选:ABC.15.(2023·广东·统考一模)在四棱锥若SD AD=,则()A.AC SD⊥B.AC与SB所成角为60︒C.BD与平面SCD所成角为D.BD与平面SAB所成角的正切值为【答案】ACD【解析】选项A,因为SD⊥因为四边形ABCD是正方形,所以面SBD,又SB⊂面SBD,所以AC SB⊥选项B,因为AC⊥平面SBD选项C,因为SD⊥底面ABCD因为四边形ABCD是正方形,所以所以BC⊥平面SCD,所以BD与平面SCD所成角为选项D,如图,取SA中点K故选:ACD16.(2023·广东江门·统考一模)则坐标原点O 到直线l 的距离【答案】3【解析】由题知,直线l 过点所以()1,2,0AO =--,所以点()0,0,0O 到l 的距离为()225AO m d AO m ⎛⎫⋅⎛ ⎪=-=- ⎪⎝⎝⎭17.(2023·广东广州·广州市第二中学校考模拟预测)设某几何体的三视图如下(尺寸的长度单位为m ),则该几何体的体积为【答案】4【解析】由三视图可得该几何体为三棱锥,如图所示,其中棱锥的高为2m ,底面三角形的底边长为则该几何体的体积为114332⨯⨯⨯⨯18.(2023·河北衡水中学预测)冰激凌是以饮用水、牛乳、奶粉、奶油(或植物油脂)等为主要原料,加入适量食品添加剂,经混合、灭菌、均质、老化、凝冻、硬化等工艺制成的体积膨胀的冷冻食品.如图所示的冰激凌的下半部分可以看作一个圆台,上半部分可以近似看作一个圆锥,若圆台的上底面半径、圆台的高与圆锥的高都为3.6cm ,则此圆锥的体积与圆台的体积的比值为【答案】100271【解析】圆锥的体积214π43V ⨯=,根据圆台的体积公式(13V S =+上h 为台体的高),得圆台的体积(224π44 3.63V =+⨯+(1)证明:平面QAD(2)若点P为四棱锥积为43,求BP与平面【解析】(1)取AD因为QA QD=,OA而2AD=,5QA=在正方形ABCD中,因为因为3QC=,故QC因为OC AD O=,且故QO⊥平面ABCD因为QO⊂平面QAD (2)在平面ABCD(1)证明:PB AC⊥;(2)再从条件①、条件到平面BPC的距离.①22AC=;②PO⊥【解析】(1)证明:连接因为AB BC =,所以OB 又因为PO OB O = ,PO 所以AC ⊥平面POB ,因为所以AC PB ⊥.(2)选择①,由题222AB BC AC +=,所以则2OP OB ==,2PO +所以OB ,OC ,OP 两两垂直,建立如图所示坐标系,则(2,0,0)B ,(0,2,0)C 设平面PBC 的一个法向量为则1100PB n PC n ⎧⋅=⎪⎨⋅=⎪⎩,即22x y ⎧-⎪⎨-⎪⎩平面PAC 的一个法向量所以二面角B PC A --的余弦值为(0,2,0)A -,(0,2,PA =-- 所以A 到平面BPC 的距离为选择②由(1)得,PO AC ⊥,PO ⊥则(2,0,0)B ,(0,2,0)C 设平面PBC 的一个法向量为则1100PB n PC n ⎧⋅=⎪⎨⋅=⎪⎩,即22x y ⎧-⎪⎨-⎪⎩平面PAC 的一个法向量所以二面角B PC A --的余弦值为(0,2,0)A -,(0,2,PA =--所以A 到平面BPC 的距离为。
高考数学-向量与立体几何试题及详解

1.1~1.3 习题课1.【多选题】下列命题中,是真命题的是( )A .同平面向量一样,任意两个空间向量都不能比较大小B .两个相等的向量,若起点相同,则终点也相同C .只有零向量的模等于0D .共线的单位向量都相等 答案 ABC解析 对于A ,向量是有向线段,不能比较大小,故A 为真命题;对于B ,两向量相等说明它们的方向相同,模长相等,若起点相同,则终点也相同,故B 为真命题;对于C ,零向量为模长为0的向量,故C 为真命题;对于D ,共线的单位向量是相等向量或相反向量,故D 为假命题.2.若a =e 1+e 2+e 3,b =e 1-e 2-e 3,c =e 1+e 2,d =e 1+2e 2+3e 3({e 1,e 2,e 3}为空间的一个基底)且d =x a +y b +z c ,则x ,y ,z 的值分别为( ) A.52,-12,-1 B.52,12,1 C .-52,12,1 D.52,-12,1答案 A解析 d =x a +y b +z c =(x +y +z )e 1+(x -y +z )e 2+(x -y )e 3.又因为d =e 1+2e 2+3e 3,所以⎩⎪⎨⎪⎧x +y +z =1,x -y +z =2,x -y =3,解得⎩⎨⎧x =52,y =-12,z =-1.3.设x ,y ∈R ,向量a =(x ,1,1),b =(1,y ,1),c =(2,-4,2),且a ⊥b ,b ∥c ,则|a +b |=( ) A .2 2 B.10 C .3 D .4 答案 C解析 因为b ∥c ,所以2y =-4×1,所以y =-2,所以b =(1,-2,1).因为a ⊥b ,所以a ·b =x +1×(-2)+1=0,所以x =1,所以a =(1,1,1),a +b =(2,-1,2).所以|a +b |=22+(-1)2+22=3.4.在四面体ABCD 中,AB ,BC ,BD 两两垂直,且AB =BC =1,点E 是AC 的中点,异面直线AD 与BE 所成角为θ,且cos θ=1010,则该四面体的体积为( )A.13B.23C.43D.83 答案 A5.【多选题】已知向量AB →=(1,1,1),AC →=(1,2,-1),AD →=(3,y ,1),下列结论正确的是( )A .若A ,B ,C ,D 四点共面,则∃λ,μ∈R ,使得AD →=λAB →+μAC →,λ=2B .若A ,B ,C ,D 四点共面,则∃λ,μ∈R ,使得AD →=λAB →+μAC →,μ=2 C .若A ,B ,C ,D 四点共面,则y =4 D .当AD ⊥AC 时,y =1 答案 AC解析 由A ,B ,C ,D 四点共面,得∃λ,μ∈R ,使得AD →=λAB →+μAC →,所以λ(1,1,1)+μ(1,2,-1)=(3,y ,1),所以⎩⎪⎨⎪⎧λ+μ=3,λ+2μ=y ,λ-μ=1,解得⎩⎪⎨⎪⎧λ=2,μ=1,y =4,故A 、C 正确,B 不正确.由AD ⊥AC ,得AD →⊥AC →,所以AD →·AC →=0.所以3+2y -1=0,解得y =-1,D 不正确.6.【多选题】如图,已知空间四边形ABCD 的各边和对角线的长都为a ,点M ,N ,E ,F 分别是AB ,CD ,BC ,AD 的中点,则( )A .MN ⊥AB B .MN ⊥CDC .向量AN →与CM →所成角的余弦值为23D .四边形MENF 为正方形 答案 ABD解析 设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°.MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ),所以MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0.所以MN →⊥AB →,即MN ⊥AB .同理可证MN ⊥CD ,A 、B 正确.设向量AN →与MC →的夹角为θ,因为AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,所以AN →·MC →=12(q +r )·⎝⎛⎭⎫q -12p =12(q 2-12q ·p +r ·q -12r ·p )=12(a 2-12a 2cos 60°+a 2cos 60°-12a 2cos 60°)=12⎝⎛⎭⎫a 2-a 24+a 22-a 24=a 22.又因为|AN →|=|MC →|=32a ,所以AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.所以cos θ=23.从而向量AN →与CM →所成角的余弦值为-23,C 错误.因为ME →=12AC →,FN →=12AC →,所以ME →=FN →.所以四边形MENF 为平行四边形.因为EN →=12BD →=12(AD →-AB →),所以EN →·ME →=12(AD →-AB →)·12AC →=0.所以EN →⊥ME →,|EN →|=|ME →|=12a .所以四边形MENF 为正方形.D 正确.7.从点P (1,2,3)出发,沿着向量v =(-4,-1,8)的方向取点Q ,使|PQ |=18,则Q 点的坐标为( )A .(-1,-2,3)B .(9,4,-13)C .(-7,0,19)D .(1,-2,-3) 答案 C8.【多选题】如图,在三棱锥P -ABC 中,△ABC 为等边三角形,△P AC 为等腰直角三角形,P A =PC =4,平面P AC ⊥平面ABC ,D 为AB 的中点,则( )A .AP ⊥BCB .异面直线AC 与PD 所成角的余弦值为24 C .异面直线PC 与AB 所成角的余弦值为24D .三棱锥P -ABC 的体积为1663答案 BCD解析 取AC 的中点O ,连接OP ,OB .因为P A =PC ,所以AC ⊥OP ,因为平面P AC ⊥平面ABC ,平面P AC ∩平面ABC =AC ,所以OP ⊥平面ABC ,又因为AB =BC ,所以AC ⊥OB .以O 为坐标原点,建立如图所示的空间直角坐标系.因为△P AC 是等腰直角三角形,P A =PC =4,△ABC 为等边三角形,所以A (0,-22,0),B (26,0,0),C (0,22,0),P (0,0,22),D (6,-2,0),所以AP →=(0,22,22),BC →=(-26,22,0),AP →·BC →=8≠0,A 不正确;因为AC →=(0,42,0),PD →=(6,-2,-22),所以cos 〈AC →,PD →〉=AC →·PD →|AC →||PD →|=-842×4=-24,则异面直线AC 与PD 所成角的余弦值为24,B 正确;因为PC →=(0,22,-22),AB →=(26,22,0),所以cos 〈PC →,AB →〉=PC →·AB →|PC →||AB →|=84×42=24,所以异面直线PC 与AB 所成角的余弦值为24,C 正确;三棱锥P -ABC 的体积V P -ABC =13S △ABC ·PO =13×34×(42)2×22=1663,D 正确. 9.在四面体OABC 中,棱OA ,OB ,OC 两两垂直,且OA =1,OB =2,OC =3,G 为△ABC的重心,则OG →·(OA →+OB →+OC →)=________.答案 14310.已知e 1,e 2是空间单位向量,e 1·e 2=12,若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,有|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1,x 0,y 0∈R ,则|b |=________. 答案 2 2解析 问题等价于|b -(x e 1+y e 2)|当且仅当x =x 0,y =y 0时取到最小值1,平方即|b |2+x 2+y 2-2b ·e 1x -2b ·e 2y +2e 1·e 2xy =|b |2+x 2+y 2-4x -5y +xy .已知上式在x =x 0,y =y 0时取到最小值1,x 2+y 2+(y -4)x -5y +|b |2=⎝⎛⎭⎪⎫x +y -422+34(y -2)2-7+|b |2,所以⎩⎨⎧x 0+y 0-42=0,y 0-2=0,-7+|b |2=1.解得⎩⎪⎨⎪⎧x 0=1,y 0=2,|b |=2 2.11.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,M ,E ,F 分别为PQ ,AB ,BC 的中点,则异面直线EM 与AF 所成角的余弦值是________.答案303012.如图,已知棱长为a 的正方体ABCD -A 1B 1C 1D 1中,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,过点B 作BM ⊥AC 1于点M ,则点M 的坐标为________.答案 ⎝⎛⎭⎫2a 3,a 3,a 3解析 由题意,知A (a ,0,0),B (a ,a ,0),C 1(0,a ,a ),设M (x ,y ,z ), 则AC 1→=(-a ,a ,a ),AM →=(x -a ,y ,z ),BM →=(x -a ,y -a ,z ).因为BM →⊥AC 1→,所以BM →·AC 1→=0. 所以-a (x -a )+a (y -a )+az =0,即x -y -z =0.①因为AC 1→∥AM →,所以设AM →=λAC 1→,则x -a =-λa ,y =λa ,z =λa (λ∈R ),即x =a -λa ,y =λa ,z =λa .②由①②,得x =2a 3,y =a 3,z =a3.所以点M 的坐标为⎝⎛⎭⎫2a 3,a 3,a 3. 13.如图,已知ABCD -A 1B 1C 1D 1是四棱柱,底面ABCD 是正方形,AA 1=3,AB =2,且∠C 1CB=∠C 1CD =60°,设CD →=a ,CB →=b ,CC 1→=c .(1)试用a ,b ,c 表示A 1C →;(2)已知O 为对角线A 1C 的中点,求CO 的长.解析 (1)A 1C →=A 1A →+AD →+DC →=-AA 1→+BC →-CD →=-CC 1→-CB →-CD →=-c -b -a =-a -b -c .(2)由题意知|a |=2,|b |=2,|c |=3,a ·b =0,a ·c =2×3×12=3,b ·c =2×3×12=3,∵CO →=12CA 1→=12(a +b +c ),∴|CO →|=14(a +b +c )2=14(a 2+b 2+c 2+2a ·b +2a ·c +2b ·c )=14×(22+22+32+0+2×3+2×3)=294=292.14.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).(1)若点D 在直线AC 上,且BD →⊥AC →,求点D 的坐标; (2)求以BA ,BC 为邻边的平行四边形的面积.解析 (1)由题意知,AC →=(1,-3,2),点D 在直线AC 上, 设AD →=λAC →=λ(1,-3,2)=(λ,-3λ,2λ), ∴D (λ,2-3λ,2λ+3), BD →=(λ,2-3λ,3+2λ)-(-2,1,6) =(λ+2,1-3λ,2λ-3), ∵BD →⊥AC →, ∴AC →·BD →=(1,-3,2)·(λ+2,1-3λ,2λ-3)=λ+2-3+9λ+4λ-6=14λ-7=0,∴λ=12,∴D ⎝⎛⎭⎫12,12,4. (2)∵BA →=(2,1,-3),BC →=(3,-2,-1), ∴|BA →|=22+12+(-3)2=14, |BC →|=32+(-2)2+(-1)2=14, ∴BA →·BC →=2×3+1×(-2)+(-3)×(-1)=7,∴cos B =cos 〈BA →,BC →〉=BA →·BC →|BA →||BC →|=714×14=12,∴sin B =32,∴S =14×14×32=73,∴以BA ,BC 为邻边的平行四边形的面积为7 3.15.正方体ABCD -A 1B 1C 1D 1的棱长为1,以D 为原点,DA →,DC →,DD 1→所在直线为x ,y ,z 轴建立直角坐标系Dxyz ,点M 在线段AB 1上,点N 在线段BC 1上,且MN ⊥AB 1,MN ⊥BC 1.求:(1)〈AB 1→,BC 1→〉; (2)MN →的坐标.解析 (1)由题意可知D (0,0,0),A (1,0,0),B (1,1,0),B 1(1,1,1),C 1(0,1,1),所以AB 1→=(0,1,1),BC 1→=(-1,0,1), AB 1→·BC 1→=0×(-1)+1×0+1×1=1, |AB 1→|=02+12+12=2, |BC 1→|=(-1)2+02+12=2,所以cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=12×2=12.所以〈AB 1→,BC 1→〉=π3.(2)设点M (1,x ,x ),N (y ,1,1-y ), 则MN →=(y -1,1-x ,1-x -y ).因为MN →·AB 1→=0,MN →·BC 1→=0,即⎩⎪⎨⎪⎧(y -1,1-x ,1-x -y )·(0,1,1)=0,(y -1,1-x ,1-x -y )·(-1,0,1)=0,化简得⎩⎪⎨⎪⎧2-2x -y =0,2-x -2y =0,解得⎩⎨⎧x =23,y =23,所以MN →的坐标为⎝⎛⎭⎫-13,13,-13.1.【多选题】已知向量a =(1,1,0),则与a 共线的单位向量e 等于( ) A.⎝⎛⎭⎫-22,-22,0B .(0,1,0) C.⎝⎛⎭⎫22,22,0D .(1,1,1)答案 AC 2.在四面体OABC 中,空间的一点M 满足OM →=14OA →+16OB →+λOC →,若M ,A ,B ,C 四点共面,则λ等于( ) A.712 B.13 C.512 D.12 答案 A3.在正四面体ABCD 中,E 是BC 的中点,那么( ) A.AE →·BC →<AE →·CD → B.AE →·BC →=AE →·CD → C.AE →·BC →>AE →·CD → D.AE →·BC →与AE →·CD →不能比较大小 答案 C解析 因为AE →·BC →=12(AB →+AC →)·(AC →-AB →)=12(|AC →|2-|AB →|2)=0,AE →·CD →=(AB →+BE →)·CD →=AB →·(BD →-BC →)+12BC →·CD →=|AB →|·|BD →|·cos 120°-|AB →|·|BC →|·cos 120°+12|BC →|·|CD →|cos 120°<0.所以AE →·BC →>AE →·CD →.4.已知a =(1,-2,3),b =(-1,1,-4),c =(1,-3,m ),则“m =1”是“{a ,b ,c }构成空间的一个基底”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 A解析 当m =1时,c =(1,-3,1),易得a ,b ,c 不共面,即{a ,b ,c }能构成空间的一个基底,即“m =1”是“{a ,b ,c }构成空间的一个基底”的充分条件;当{a ,b ,c }能构成空间的一个基底时,则a ,b ,c 不共面,设a ,b ,c 共面,即c =x a +y b ,解得⎩⎪⎨⎪⎧x -y =1,y -2x =-3,3x -4y =m ,即⎩⎪⎨⎪⎧x =2,y =1,m =2,即当{a ,b ,c }能构成空间的一个基底时,m ≠2,即当{a ,b ,c }能构成空间的一个基底时,不能推出m =1,即“m =1”是“{a ,b ,c }构成空间的一个基底”的不必要条件.综上所述,“m =1”是“{a ,b ,c }构成空间的一个基底”的充分不必要条件.5.已知P (3cos α,3sin α,1)和Q (2cos β,2sin β,1),则|PQ →|的取值范围是( ) A .[0,5] B .[1,25] C .[1,5] D .(1,5) 答案 C6.在四面体O -ABC 中,G 是底面△ABC 的重心,且OG →=xOA →+yOB →+zOC →,则log 3|xyz |等于________. 答案 -37.已知空间三点A (2,1,0),B (2,2,1),C (0,1,2).(1)求AB →·AC →的值;(2)若(AB →+kAC →)⊥(AB →+AC →),求k 的值.解析 (1)因为A (2,1,0),B (2,2,1),所以AB →=(0,1,1).又C (0,1,2),所以AC →=(-2,0,2),所以AB →·AC →=0×(-2)+1×0+1×2=2.(2)由(1)可知AB →=(0,1,1),AC →=(-2,0,2),所以AB →+kAC →=(-2k ,1,2k +1),AB →+AC →=(-2,1,3).因为(AB →+kAC →)⊥(AB →+AC →),所以4k +1+3(2k +1)=0,解得k =-25.8.如图所示,在四棱锥P -ABCD 中,底面ABCD 为矩形,侧棱P A ⊥底面ABCD ,AB =3,BC =1,P A =2,E 为PD 的中点.(1)求AC 与PB 所成角的余弦值;(2)在侧面P AB 内找一点N ,使NE ⊥平面P AC ,求N 点的坐标. 解析 (1)由题意,建立如图所示的空间直角坐标系,则A (0,0,0),B (3,0,0),C (3,1,0),D (0,1,0),P (0,0,2),E ⎝⎛⎭⎫0,12,1, 从而AC →=(3,1,0),PB →=(3,0,-2). 设AC 与PB 的夹角为θ,则cos θ=|AC →·PB →||AC →|·|PB →|=327=3714.∴AC 与PB 所成角的余弦值为3714.(2)由于N 点在侧面P AB 内,故可设N 点坐标为(x ,0,z ),则NE →=⎝⎛⎭⎫-x ,12,1-z , 由NE ⊥平面P AC 可得,⎩⎪⎨⎪⎧NE →·AP →=0,NE →·AC →=0,即⎩⎨⎧⎝⎛⎭⎫-x ,12,1-z ·(0,0,2)=0,⎝⎛⎭⎫-x ,12,1-z ·(3,1,0)=0,化简得⎩⎪⎨⎪⎧z -1=0,-3x +12=0,∴⎩⎪⎨⎪⎧x =36,z =1,即N 点的坐标为⎝⎛⎭⎫36,0,1时,NE ⊥平面P AC .。
2025年高考数学一轮复习课件第七章立体几何-7.5空间向量与立体几何-第1课时空间向量及基本应用

, = 1 − + 或 = + ,这里 + = 1.对空间四点,,
,,可通过证明下列结论成立来证明四点共面:① = + ;②对空间
任一点, = + + ;③对空间任一点, = + + ,
条件是存在唯一的有序实数对 , ,使 =_________
空间向量基本定理
不共面,
如果三个向量,,__________那么对任意一个空间向量,
, ,
存在唯一的有序实数组________,使得
= + +
返回至目录
2.空间向量及其运算的坐标表示
(1)空间向量运算的坐标表示.
位置关系
向量表示
直线1,2的方向向量分别为
1//2
1//2 ⇒ 1 = 2
1,2
1 ⊥ 2
1 ⊥ 2 ⇔ 1 ⋅ 2 = 0
直线的方向向量为,平面 的
//
⊥ ⇔ ⋅ = 0
法向量为
⊥
// ⇔ =
//
// ⇔ =
1
4
1
4
1
2
1
4
1
4
1
2
1
+
4
1− 2来自A. + −
B. − −
1
C.−
4
3
D.−
4
√
1
−
4
+
1
2
)
解:由已知,得1 = 1 = , = = , = = ,
=
+
1
1
2
+
2025届高考数学一轮复习讲义立体几何与空间向量之 空间向量及空间位置关系

C )
A. (-1,1,1)
3
3
3
3
B. (1,-1,1)
3
3
C. (- ,- ,- )
3
3
3
3
3
3
D. ( , ,- )
3. 在空间直角坐标系中, A (1,1,-2), B (1,2,-3), C (-1,3,0), D ( x ,
y , z )( x , y , z ∈R),若 A , B , C , D 四点共面,则(
2,3)是平面α的法向量.若 l ∥α,则 a 与 b 的关系式为
则a+b=
5 a - b +3=0 ;若 l ⊥α,
6 .
[解析] 由题意可知,若 l ∥α,则 u ·n =0,即3+2( a + b )+3( a - b )=0,
;
a 1=λ b 1, a 2=λ b 2, a 3=λ b 3(λ∈R)
(4) a ∥ b ⇔ a =λ b ( b ≠0)⇔⑥
(5) a ⊥ b ⇔ a ·b =0⇔⑦ a 1 b 1+ a 2 b 2+ a 3 b 3=0
;
(6)| a |= · = 12 +22 +32 ;
(7) cos < a , b >=
4. 空间位置关系的向量表示
位置关系
向量表示
直线l1,l2的方向向量分别为
l1∥l2
n1∥n2⇔n1=λn2(λ∈R,λ≠0)
n1,n2.
l1⊥l2
n1⊥n2⇔n1·n2=0
直线l的方向向量为n,平面α
l∥α
的法向量为m.
l⊥α
n∥m⇔n=λm(λ∈R,λ≠0)
平面α,β的法向量分别为
2024年高考数学总复习第八章《立体几何与空间向量》8
2024年高考数学总复习第八章《立体几何与空间向量》§8.2空间点、直线、平面之间的位置关系最新考纲 1.借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.2.直线与直线的位置关系(1)位置关系的分类异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).,π2.3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况.4.平面与平面的位置关系有平行、相交两种情况.5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.概念方法微思考1.分别在两个不同平面内的两条直线为异面直线吗?提示不一定.因为异面直线不同在任何一个平面内.分别在两个不同平面内的两条直线可能平行或相交.2.空间中如果两个角的两边分别对应平行,那么这两个角一定相等吗?提示不一定.如果这两个角开口方向一致,则它们相等,若反向则互补.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.(√)(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.(×)(3)如果两个平面有三个公共点,则这两个平面重合.(×)(4)经过两条相交直线,有且只有一个平面.(√)(5)没有公共点的两条直线是异面直线.(×)(6)若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线.(×)题组二教材改编2.如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为()A.30°B.45°C.60°D.90°答案C解析连接B1D1,D1C,则B1D1∥EF,故∠D1B1C即为所求的角.又B1D1=B1C=D1C,∴△B1D1C为等边三角形,∴∠D1B1C=60°.3.如图,在三棱锥A—BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形;(2)当AC,BD满足条件________时,四边形EFGH为正方形.答案(1)AC=BD(2)AC=BD且AC⊥BD解析(1)∵四边形EFGH为菱形,∴EF=EH,∴AC=BD.(2)∵四边形EFGH为正方形,∴EF=EH且EF⊥EH,∵EF∥AC,EH∥BD,且EF=12AC,EH=12BD,∴AC=BD且AC⊥BD.题组三易错自纠4.α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是()A.垂直B.相交C.异面D.平行答案D解析依题意,m∩α=A,n⊂α,∴m与n可能异面、相交(垂直是相交的特例),一定不平行.5.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过()A.点AB.点BC.点C但不过点MD.点C和点M答案D解析∵AB⊂γ,M∈AB,∴M∈γ.又α∩β=l,M∈l,∴M∈β.根据公理3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面的对数为______.答案3解析平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH 相交,CD与EF平行.故互为异面的直线有且只有3对.题型一平面基本性质的应用例1如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.思维升华共面、共线、共点问题的证明(1)证明共面的方法:①先确定一个平面,然后再证其余的线(或点)在这个平面内;②证两平面重合.(2)证明共线的方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.跟踪训练1如图,在空间四边形ABCD 中,E ,F 分别是AB ,AD 的中点,G ,H 分别在BC ,CD 上,且BG ∶GC =DH ∶HC =1∶2.(1)求证:E ,F ,G ,H 四点共面;(2)设EG 与FH 交于点P ,求证:P ,A ,C 三点共线.证明(1)∵E ,F 分别为AB ,AD 的中点,∴EF ∥BD .∵在△BCD 中,BG GC =DH HC =12,∴GH ∥BD ,∴EF ∥GH .∴E ,F ,G ,H 四点共面.(2)∵EG ∩FH =P ,P ∈EG ,EG ⊂平面ABC ,∴P ∈平面ABC .同理P ∈平面ADC .∴P 为平面ABC 与平面ADC 的公共点.又平面ABC ∩平面ADC =AC ,∴P ∈AC ,∴P ,A ,C 三点共线.题型二判断空间两直线的位置关系例2(1)若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是()A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交答案D 解析由直线l 1和l 2是异面直线可知l 1与l 2不平行,故l 1,l 2中至少有一条与l 相交.故选D.(2)如图,在正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在A 1D ,AC 上,且A 1E =2ED ,CF =2FA ,则EF 与BD 1的位置关系是()A.相交但不垂直B.相交且垂直C.异面D.平行答案D解析连接D1E并延长,与AD交于点M,由A1E=2ED,可得M为AD的中点,连接BF并延长,交AD于点N,因为CF=2FA,可得N为AD的中点,所以M,N重合,所以EF和BD1共面,且MEED1=12,MFBF=12,所以MEED1=MFBF,所以EF∥BD1.思维升华空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.异面直线可采用直接法或反证法;平行直线可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;垂直关系往往利用线面垂直或面面垂直的性质来解决.跟踪训练2(1)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b可能平行或异面或相交,故选A.(2)如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM 与CC 1是相交直线;②直线AM 与BN 是平行直线;③直线BN 与MB 1是异面直线;④直线AM 与DD 1是异面直线.其中正确的结论为________.(注:把你认为正确的结论序号都填上)答案③④解析因为点A 在平面CDD 1C 1外,点M 在平面CDD 1C 1内,直线CC 1在平面CDD 1C 1内,CC 1不过点M ,所以AM 与CC 1是异面直线,故①错;取DD 1中点E ,连接AE ,则BN ∥AE ,但AE 与AM 相交,故②错;因为B 1与BN 都在平面BCC 1B 1内,M 在平面BCC 1B 1外,BN 不过点B 1,所以BN 与MB 1是异面直线,故③正确;同理④正确,故填③④.题型三求两条异面直线所成的角例3(2019·青岛模拟)如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为()A.15B.25C.35D.45答案D 解析连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,由AB =1,AA 1=2,易得A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=A 1B 2+BC 21-A 1C 212×A 1B ×BC 1=45,即异面直线A 1B 与AD 1所成角的余弦值为45.引申探究将上例条件“AA 1=2AB =2”改为“AB =1,若异面直线A 1B 与AD 1所成角的余弦值为910”,试求AA 1AB 的值.解设AA 1AB=t (t >0),则AA 1=tAB .∵AB =1,∴AA 1=t .∵A 1C 1=2,A 1B =t 2+1=BC 1,∴cos ∠A 1BC 1=A 1B 2+BC 21-A 1C 212×A 1B ×BC 1=t 2+1+t 2+1-22×t 2+1×t 2+1=910.∴t =3,即AA 1AB =3.思维升华用平移法求异面直线所成的角的三个步骤(1)一作:根据定义作平行线,作出异面直线所成的角;(2)二证:证明作出的角是异面直线所成的角;(3)三求:解三角形,求出所作的角.跟踪训练3(2018·全国Ⅱ)在正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为()A.22 B.32 C.52 D.72答案C 解析如图,因为AB ∥CD ,所以AE 与CD 所成角为∠EAB .在Rt △ABE 中,设AB =2,则BE =5,则tan ∠EAB =BE AB =52,所以异面直线AE 与CD 所成角的正切值为52.立体几何中的线面位置关系直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用空间形式特别是图形,理解和解决数学问题.例如图所示,四边形ABEF 和ABCD 都是梯形,BC ∥AD 且BC =12AD ,BE ∥FA 且BE =12FA ,G ,H 分别为FA ,FD 的中点.(1)证明:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?(1)证明由已知FG =GA ,FH =HD ,可得GH ∥AD 且GH =12AD .又BC ∥AD 且BC =12AD ,∴GH ∥BC 且GH =BC ,∴四边形BCHG 为平行四边形.(2)解∵BE ∥AF 且BE =12AF ,G 为FA 的中点,∴BE ∥FG 且BE =FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG .由(1)知BG ∥CH .∴EF ∥CH ,∴EF 与CH 共面.又D ∈FH ,∴C ,D ,F ,E 四点共面.素养提升平面几何和立体几何在点线面的位置关系中有很多的不同,借助确定的几何模型,利用直观想象讨论点线面关系在平面和空间中的差异.1.四条线段顺次首尾相连,它们最多可确定的平面个数为()A .4B .3C .2D .1答案A 解析首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定四个平面.2.a ,b ,c 是两两不同的三条直线,下面四个命题中,真命题是()A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥c答案C解析若直线a,b异面,b,c异面,则a,c相交、平行或异面;若a,b相交,b,c相交,则a,c相交、平行或异面;若a⊥b,b⊥c,则a,c相交、平行或异面;由异面直线所成的角的定义知C正确.故选C.3.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是()A.直线ACB.直线ABC.直线CDD.直线BC答案C解析由题意知,D∈l,l⊂β,所以D∈β,又因为D∈AB,所以D∈平面ABC,所以点D在平面ABC与平面β的交线上.又因为C∈平面ABC,C∈β,所以点C在平面β与平面ABC的交线上,所以平面ABC∩平面β=CD.4.如图所示,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确是()A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面答案A 解析连接A 1C 1,AC ,则A 1C 1∥AC ,∴A 1,C 1,A ,C 四点共面,∴A 1C ⊂平面ACC 1A 1,∵M ∈A 1C ,∴M ∈平面ACC 1A 1,又M ∈平面AB 1D 1,∴M 在平面ACC 1A 1与平面AB 1D 1的交线上,同理A ,O 在平面ACC 1A 1与平面AB 1D 1的交线上.∴A ,M ,O 三点共线.5.(2017·全国Ⅱ)已知直三棱柱ABCA 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为()A.32 B.155 C.105 D.33答案C解析方法一将直三棱柱ABC -A 1B 1C 1补形为直四棱柱ABCD -A 1B 1C 1D 1,如图①所示,连接AD 1,B 1D 1,BD .图①由题意知∠ABC =120°,AB =2,BC =CC 1=1,所以AD 1=BC 1=2,AB 1=5,∠DAB =60°.在△ABD 中,由余弦定理知BD 2=AB 2+AD 2-2×AB ×AD ×cos ∠DAB =22+12-2×2×1×cos 60°=3,所以BD =3,所以B 1D 1=3.又AB 1与AD 1所成的角即为AB 1与BC 1所成的角θ,所以cos θ=AB 21+AD 21-B 1D 212×AB 1×AD 1=5+2-32×5×2=105.故选C.方法二以B 1为坐标原点,B 1C 1所在的直线为x 轴,垂直于B 1C 1的直线为y 轴,BB 1所在的直线为z 轴建立空间直角坐标系,如图②所示.图②由已知条件知B 1(0,0,0),B (0,0,1),C 1(1,0,0),A (-1,3,1),则BC 1→=(1,0,-1),AB 1→=(1,-3,-1).所以cos 〈AB 1→,BC 1→〉=AB 1,→·BC 1→|AB 1→||BC 1→|=25×2=105.所以异面直线AB 1与BC 1所成角的余弦值为105.故选C.6.正方体AC 1中,与面ABCD 的对角线AC 异面的棱有________条.答案6解析如图,在正方体AC 1中,与面ABCD 的对角线AC 异面的棱有BB 1,DD 1,A 1B 1,A 1D 1,D 1C 1,B 1C 1,共6条.7.(2019·东北三省三校模拟)若直线l ⊥平面β,平面α⊥平面β,则直线l 与平面α的位置关系为________.答案l ∥α或l ⊂α解析∵直线l ⊥平面β,平面α⊥平面β,∴直线l ∥平面α,或者直线l ⊂平面α.8.在三棱锥S -ABC 中,G 1,G 2分别是△SAB 和△SAC 的重心,则直线G 1G 2与BC 的位置关系是________.答案平行解析如图所示,连接SG 1并延长交AB 于M ,连接SG 2并延长交AC 于N ,连接MN .由题意知SM为△SAB的中线,且SG1=23SM,SN为△SAC的中线,且SG2=23SN,∴在△SMN中,SG1SM=SG2SN,∴G1G2∥MN,易知MN是△ABC的中位线,∴MN∥BC,∴G1G2∥BC.9.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.答案2解析取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成的角即为异面直线AC1与BC所成的角,因为C1是圆柱上底面弧A1B1的中点,所以C1D垂直于圆柱下底面,所以C1D⊥AD.因为圆柱的轴截面ABB1A1是正方形,所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为2.10.如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.答案②③④解析还原成正四面体A -DEF ,其中H 与N 重合,A ,B ,C 三点重合.易知GH 与EF 异面,BD 与MN 异面.连接GM ,∵△GMH 为等边三角形,∴GH 与MN 成60°角,易证DE ⊥AF ,又MN ∥AF ,∴MN ⊥DE .因此正确命题的序号是②③④.11.如图所示,A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点.(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.(1)证明假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A ,B ,C ,D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)解取CD 的中点G ,连接EG ,FG ,则AC ∥FG ,EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.又因为AC ⊥BD ,则FG ⊥EG .在Rt △EGF 中,由EG =FG=12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.12.如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,PA =2.求:(1)三棱锥P -ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.解(1)S △ABC =12×2×23=23,三棱锥P -ABC 的体积为V =13S △ABC ·PA =13×23×2=433.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =AD 2+DE 2-AE 22×AD ×DE =22+22-22×2×2=34.故异面直线BC 与AD 所成角的余弦值为34.13.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为()A.32 B.22 C.33 D.13答案A解析如图所示,设平面CB 1D 1∩平面ABCD =m 1,∵α∥平面CB 1D 1,则m 1∥m ,又∵平面ABCD ∥平面A 1B 1C 1D 1,平面CB 1D 1∩平面A 1B 1C 1D 1=B 1D 1,∴B 1D 1∥m 1,∴B 1D 1∥m ,同理可得CD 1∥n .故m ,n 所成角的大小与B 1D 1,CD 1所成角的大小相等,即∠CD 1B 1的大小.又∵B 1C =B 1D 1=CD 1(均为面对角线),∴∠CD 1B 1=π3,得sin ∠CD 1B 1=32,故选A.14.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ⊥EF ;②AB 与CM 所成的角为60°;③EF 与MN 是异面直线;④MN ∥CD .以上四个命题中,正确命题的序号是________.答案①③解析如图,①AB ⊥EF ,正确;②显然AB ∥CM ,所以不正确;③EF 与MN 是异面直线,所以正确;④MN 与CD 异面,并且垂直,所以不正确,则正确的是①③.15.如图,正方形ACDE 与等腰直角三角形ACB 所在的平面互相垂直,且AC =BC =4,∠ACB =90°,F ,G 分别是线段AE ,BC 的中点,则AD 与GF 所成的角的余弦值为________.答案36解析取DE 的中点H ,连接HF ,GH .由题设,HF ∥AD 且HF =12AD ,∴∠GFH 为异面直线AD 与GF 所成的角(或其补角).在△GHF 中,可求HF =22,GF =GH =26,∴cos ∠GFH =HF 2+GF 2-GH 22×HF ×GF =(22)2+(26)2-(26)22×22×26=36.16.如图所示,三棱柱ABC -A 1B 1C 1的底面是边长为2的正三角形,侧棱A 1A ⊥底面ABC ,点E ,F 分别是棱CC 1,BB 1上的点,点M 是线段AC 上的动点,EC =2FB =2.(1)当点M 在何位置时,BM ∥平面AEF?(2)若BM ∥平面AEF ,判断BM 与EF 的位置关系,说明理由;并求BM 与EF 所成的角的余弦值.解(1)方法一如图所示,取AE 的中点O ,连接OF ,过点O 作OM ⊥AC 于点M .因为EC ⊥AC ,OM ,EC ⊂平面ACC 1A 1,所以OM ∥EC .又因为EC =2FB =2,EC ∥FB ,所以OM ∥FB 且OM =12EC =FB ,所以四边形OMBF 为矩形,BM ∥OF .因为OF ⊂平面AEF ,BM ⊄平面AEF ,故BM ∥平面AEF ,此时点M 为AC 的中点.方法二如图所示,取EC 的中点P ,AC 的中点Q ,连接PQ ,PB ,BQ .因为EC =2FB =2,所以PE ∥BF 且PE =BF ,所以PB ∥EF ,PQ ∥AE ,又AE ,EF ⊂平面AEF ,PQ ,PB ⊄平面AEF ,所以PQ ∥平面AFE ,PB ∥平面AEF ,因为PB ∩PQ =P ,PB ,PQ ⊂平面PBQ ,所以平面PBQ ∥平面AEF .又因为BQ ⊂平面PBQ ,所以BQ ∥平面AEF .故点Q 即为所求的点M ,此时点M 为AC 的中点.(2)由(1)知,BM 与EF 异面,∠OFE (或∠MBP )就是异面直线BM 与EF 所成的角或其补角.易求AF =EF =5,MB =OF =3,OF ⊥AE ,所以cos ∠OFE =OF EF =35=155,所以BM 与EF 所成的角的余弦值为155.。
2025届高考数学一轮复习讲义立体几何与空间向量之 空间角和空间距离
形,则在正四棱柱 ABCD - A 1 B 1 C 1 D 1中,异面直线 AK 和 LM 所成的角的大小为
(
D )
A. 30°
B. 45°
C. 60°
D. 90°
[解析] 根据题意还原正四棱柱的直观图,如图所示,取 AA 1的中点 G ,连接 KG ,
则有 KG ∥ LM ,所以∠ AKG 或其补角为异面直线 AK 和 LM 所成的角.由题知 AG =
A 1 C 1=5, BC 1=4 2 ,所以 cos
52 +52 −(4 2)2
9
1
∠ BA 1 C 1=
= < ,所以60°<
2×5×5
25
2
∠ BA 1 C 1<90°,则过点 D 1作直线 l ,与直线 A 1 B , AC 所成的角均为60°,即过一
点作直线,使之与同一平面上夹角大于60°的锐角的两边所在直线所成的角均成
2 z -1=0的交线,试写出直线 l 的一个方向向量 (2,2,1)
的余弦值为
65
9
.
,直线 l 与平面α所成角
[解析] 由平面α的方程为 x +2 y -2 z +1=0,可得平面α的一个法向量为 n =(1,
⑫ [0, ] ,二面角的
2
n1,n2>|.
范围是⑬
[0,π] .
易错警示
1. 线面角θ与向量夹角< a , n >的关系
π
2
π
2
如图1(1),θ=< a , n >- ;如图1(2),θ= -< a , n >.
图1
2. 二面角θ与两平面法向量夹角< n 1, n 2>的关系
图2(2)(4)中θ=π-< n 1, n 2>;图2(1)(3)中θ=< n 1, n 2>.
高考数学 空间向量与立体几何常用公式 理科
《空间向量与立体几何》知识点一:利用向量求空间角(1)求异面直线所成的角已知a,b为两异面直线,A,C与B,D分别是a,b上的任意两点,a,b所成的角为,则。
注意:两异面直线所成的角的范围为(00,900]。
(2)求直线和平面所成的角设直线的方向向量为,平面的法向量为,直线与平面所成的角为,与的角为,则有。
(3)求二面角如图,若于A,于B,平面PAB交于E,则∠AEB为二面角的平面角,∠AEB+∠APB=180°。
若分别为面,的法向量,则二面角的平面角或,即二面角等于它的两个面的法向量的夹角或夹角的补角。
知识点二:利用向量求空间距离(1)空间两点间距离公式:设点,,则(2)两异面直线距离的求法如图,设,是两条异面直线,是与的公垂线段AB的方向向量,又C,D分别是,上任意两点,则与的距离是。
(3)点面距离的求法:如图,BO⊥平面,垂足为O,则点B到平面的距离就是线段BO的长度。
若AB是平面的任一条斜线段,则在Rt△BOA中,。
设平面的法向为,则点B到平面的距离为。
注意:线面距、面面距均可转化为点面距离,用求点面距的方法进行求解。
知识点三:用向量语言表述线与面之间的位置关系设两不同直线,的方向向量分别为,,两不同平面,的法向量分别为,,则①线线平行:,;②线线垂直:;③线面平行:在平面外,;④线面垂直:,;⑤面面平行:,;⑥面面垂直:。
关键:用向量知识来探讨空间的垂直与平行问题,关键是找出或求出问题中涉及的直线的方向向量和平面的法向量,通过讨论向量的共线或垂直,确定线面之间的位置关系。
2024年高考数学总复习第八章《立体几何与空间向量》8
2024年高考数学总复习第八章《立体几何与空间向量》§8.7立体几何中的向量方法(二)——求空间角和距离最新考纲1.能用向量方法解决线线、线面、面面的夹角的计算问题.2.体会向量方法在研究几何问题中的作用.1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则2.直线与平面所成角的求法设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a ·n ||a ||n |.3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).概念方法微思考1.利用空间向量如何求线段长度?提示利用|AB →|2=AB →·AB →可以求空间中有向线段的长度.2.如何求空间点面之间的距离?提示点面距离的求法:已知AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离为|BO →|=|AB →||cos 〈AB →,n 〉|.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.(×)(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.(×)(3)两个平面的法向量所成的角是这两个平面所成的角.(×)(4)两异面直线夹角的范围是0,π2,直线与平面所成角的范围是0,π2,二面角的范围是[0,π].(√)(5)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a -β的大小是π-θ.(×)题组二教材改编2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为()A .45°B .135°C .45°或135°D .90°答案C解析cos 〈m ,n 〉=m·n |m||n |=11·2=22,即〈m ,n 〉=45°.∴两平面所成二面角为45°或180°-45°=135°.3.如图,正三棱柱(底面是正三角形的直棱柱)ABC -A 1B 1C 1的底面边长为2,侧棱长为22,则AC 1与侧面ABB 1A 1所成的角为______.答案π6解析如图,以A 为原点,以AB →,AE →(AE ⊥AB ),AA 1→所在直线分别为x 轴、y 轴、z 轴(如图)建立空间直角坐标系,设D 为A 1B 1的中点,则A (0,0,0),C 1(1,3,22),D (1,0,22),∴AC 1→=(1,3,22),AD →=(1,0,22).∠C 1AD 为AC 1与平面ABB 1A 1所成的角,cos ∠C 1AD =AC 1,→·AD→|AC 1→||AD →|=(1,3,22)·(1,0,22)12×9=32,又∵∠C 1AD ∈0,π2,∴∠C 1AD =π6.题组三易错自纠4.在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为()A.110B.25C.3010D.22答案C 解析以点C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.设BC =CA =CC 1=2,则可得A (2,0,0),B (0,2,0),M (1,1,2),N (1,0,2),∴BM →=(1,-1,2),AN →=(-1,0,2).∴cos 〈BM →,AN →〉=BM ,→·AN →|BM →||AN →|=1×(-1)+(-1)×0+2×212+(-1)2+22×(-1)2+02+22=36×5=3010.5.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l与α所成的角为________.答案30°解析设l 与α所成角为θ,∵cos 〈m ,n 〉=-12,∴sin θ=|cos 〈m ,n 〉|=12,∵0°≤θ≤90°,∴θ=30°.题型一求异面直线所成的角例1如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.(1)证明如图所示,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF .在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC =2,可知AE =EC .又AE ⊥EC ,所以EG =3,且EG ⊥AC .在Rt △EBG 中,可得BE =2,故DF =22.在Rt △FDG 中,可得FG =62.在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322,从而EG 2+FG 2=EF 2,所以EG ⊥FG .又AC ∩FG =G ,AC ,FG ⊂平面AFC ,所以EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)解如图,以G 为坐标原点,分别以GB ,GC 所在直线为x 轴、y 轴,|GB →|为单位长度,建立空间直角坐标系Gxyz ,由(1)可得A (0,-3,0),E (1,0,2),1,0C (0,3,0),所以AE →=(1,3,2),CF →1,-3故cos 〈AE →,CF →〉=AE ,→·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33.思维升华用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.跟踪训练1三棱柱ABC -A 1B 1C 1中,△ABC 为等边三角形,AA 1⊥平面ABC ,AA 1=AB ,N ,M 分别是A 1B 1,A 1C 1的中点,则AM 与BN 所成角的余弦值为()A.110B.35C.710D.45答案C解析如图所示,取AC 的中点D ,以D 为原点,BD ,DC ,DM 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,不妨设AC =2,则A (0,-1,0),M (0,0,2),B (-3,0,0),-32,-12,所以AM →=(0,1,2),BN →=32,-12,2所以cos 〈AM →,BN →〉=AM ,→·BN →|AM →|·|BN →|=725×5=710,故选C.题型二求直线与平面所成的角例2(2018·全国Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.(1)证明由已知可得BF ⊥PF ,BF ⊥EF ,PF ∩EF =F ,PF ,EF ⊂平面PEF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)解如图,作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系Hxyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,所以PE ⊥PF .所以PH =32,EH =32.则H (0,0,0),,01,-32,DP →,32,HP →,0又HP →为平面ABFD 的法向量,设DP 与平面ABFD 所成的角为θ,则sin θ=|cos 〈HP →,DP →〉|=|HP ,→·DP →||HP →||DP →|=343=34.所以DP 与平面ABFD 所成角的正弦值为34.思维升华若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2,故有sin θ=|cos β|=|l ·n ||l ||n |.跟踪训练2(2018·全国Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求PC 与平面PAM 所成角的正弦值.(1)证明因为PA =PC =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.如图,连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,所以OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .因为OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,OB ,AC ⊂平面ABC ,所以PO ⊥平面ABC .(2)解由(1)知OP ,OB ,OC 两两垂直,则以O 为坐标原点,分别以OB ,OC ,OP 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系Oxyz ,如图所示.由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP →=(0,2,23).由(1)知平面PAC 的一个法向量为OB →=(2,0,0).设M (a ,2-a ,0)(0≤a ≤2),则AM →=(a ,4-a ,0).设平面PAM 的法向量为n =(x ,y ,z ).由AP →·n =0,AM →·n =0,得y +23z =0,+(4-a )y =0,可取y =3a ,得平面PAM 的一个法向量为n =(3(a -4),3a ,-a ),所以cos 〈OB →,n 〉=OB ,→·n |OB ,→||n |=23(a -4)23(a -4)2+3a 2+a 2.由已知可得|cos 〈OB →,n 〉|=cos 30°=32,所以23|a -4|23(a -4)2+3a 2+a 2=32,解得a =-4(舍去)或a =43.所以n -833,433,-又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34.题型三求二面角例3(2018·济南模拟)如图1,在高为6的等腰梯形ABCD 中,AB ∥CD ,且CD =6,AB =12,将它沿对称轴OO 1折起,使平面ADO 1O ⊥平面BCO 1O .如图2,点P 为BC 中点,点E 在线段AB 上(不同于A ,B 两点),连接OE 并延长至点Q ,使AQ ∥OB .(1)证明:OD ⊥平面PAQ ;(2)若BE =2AE ,求二面角C —BQ —A 的余弦值.(1)证明由题设知OA ,OB ,OO 1两两垂直,所以以O 为坐标原点,OA ,OB ,OO 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设AQ 的长度为m ,则相关各点的坐标为O (0,0,0),A (6,0,0),B (0,6,0),C (0,3,6),D (3,0,6),Q (6,m ,0).∵点P 为BC 中点,∴,92,∴OD →=(3,0,6),AQ →=(0,m ,0),PQ →,m -92,-∵OD →·AQ →=0,OD →·PQ →=0,∴OD →⊥AQ →,OD →⊥PQ →,且AQ →与PQ →不共线,∴OD ⊥平面PAQ .(2)解∵BE =2AE ,AQ ∥OB ,∴AQ =12OB =3,则Q (6,3,0),∴QB →=(-6,3,0),BC →=(0,-3,6).设平面CBQ 的法向量为n 1=(x ,y ,z ),1·QB ,→=0,1·BC ,→=06x +3y =0,3y +6z =0,令z =1,则y =2,x =1,则n 1=(1,2,1),易知平面ABQ 的一个法向量为n 2=(0,0,1),设二面角C —BQ —A 的平面角为θ,由图可知,θ为锐角,则cos θ=|n 1·n 2|n 1|·|n 2||=66.思维升华利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:①求平面的垂线的方向向量;②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解.跟踪训练3(2018·全国Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD 所在平面垂直,M 是 CD上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M -ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值.(1)证明由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD ,故BC ⊥DM .因为M 为 CD上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC ∩CM =C ,BC ,CM ⊂平面BMC ,所以DM ⊥平面BMC .又DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)解以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系Dxyz .当三棱锥M -ABC 体积最大时,M 为 CD的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0),设n =(x ,y ,z )是平面MAB 的法向量,则·AM ,→=0,·AB ,→=0,2x +y +z =0,y =0.可取n =(1,0,2),DA →是平面MCD 的一个法向量,因此cos 〈n ,DA →〉=n ·DA ,→|n ||DA ,→|=55,sin 〈n ,DA →〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.利用空间向量求空间角例(12分)如图,四棱锥S -ABCD 中,△ABD 为正三角形,∠BCD =120°,CB =CD =CS =2,∠BSD =90°.(1)求证:AC ⊥平面SBD ;(2)若SC ⊥BD ,求二面角A -SB -C 的余弦值.(1)证明设AC ∩BD =O ,连接SO ,如图①,因为AB =AD ,CB =CD ,所以AC 是BD 的垂直平分线,即O 为BD 的中点,且AC ⊥BD .[1分]在△BCD 中,因为CB =CD =2,∠BCD =120°,所以BD =23,CO =1.在Rt △SBD 中,因为∠BSD =90°,O 为BD 的中点,所以SO =12BD =3.在△SOC 中,因为CO =1,SO =3,CS =2,所以SO 2+CO 2=CS 2,所以SO ⊥AC .[4分]因为BD ∩SO =O ,BD ,SO ⊂平面SBD ,所以AC ⊥平面SBD .[5分](2)解方法一过点O 作OK ⊥SB 于点K ,连接AK ,CK ,如图②,由(1)知AC ⊥平面SBD ,所以AO ⊥SB .因为OK ∩AO =O ,OK ,AO ⊂平面AOK ,所以SB ⊥平面AOK .[6分]因为AK ⊂平面AOK ,所以AK ⊥SB .同理可证CK ⊥SB .[7分]所以∠AKC 是二面角A -SB -C 的平面角.因为SC ⊥BD ,由(1)知AC ⊥BD ,且AC ∩SC =C ,AC ,SC ⊂平面SAC ,所以BD ⊥平面SAC .而SO ⊂平面SAC ,所以SO ⊥BD .在Rt △SOB 中,OK =SO ·OB SB =62.在Rt △AOK 中,AK =AO 2+OK 2=422,同理可求CK =102.[10分]在△AKC 中,cos ∠AKC =AK 2+CK 2-AC 22AK ·CK =-10535.所以二面角A -SB -C 的余弦值为-10535.[12分]方法二因为SC ⊥BD ,由(1)知,AC ⊥BD ,且AC ∩SC =C ,AC ,SC ⊂平面SAC ,所以BD ⊥平面SAC .而SO ⊂平面SAC ,所以SO ⊥BD .[6分]由(1)知,AC ⊥平面SBD ,SO ⊂平面SBD ,所以SO ⊥AC .因为AC ∩BD =O ,AC ,BD ⊂平面ABCD ,所以SO ⊥平面ABCD .[7分]以O 为原点,OA →,OB →,OS →的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图③,则A (3,0,0),B (0,3,0),C (-1,0,0),S (0,0,3).所以AB →=(-3,3,0),CB →=(1,3,0),SB →=(0,3,-3).[8分]设平面SAB 的法向量n =(x 1,y 1,z 1),AB ,→·n =-3x 1+3y 1=0,SB ,→·n =3y 1-3z 1=0,令y 1=3,得平面SAB 的一个法向量为n =(1,3,3).同理可得平面SCB 的一个法向量为m =(-3,1,1).[10分]所以cos 〈n ,m 〉=n ·m |n ||m |=-3+3+37×5=10535.因为二面角A -SB -C 是钝角,所以二面角A -SB -C 的余弦值为-10535.[12分]利用向量求空间角的步骤第一步:建立空间直角坐标系,确定点的坐标;第二步:求向量(直线的方向向量、平面的法向量)坐标;第三步:计算向量的夹角(或函数值),并转化为所求角.1.已知两平面的法向量分别为m =(1,-1,0),n =(0,1,-1),则两平面所成的二面角为()A .60°B .120°C .60°或120°D .90°答案C解析cos 〈m ,n 〉=m·n |m||n |=-12·2=-12,即〈m ,n 〉=120°.∴两平面所成二面角为120°或180°-120°=60°.2.如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1所成角的余弦值为()A.55B.53C.56D.54答案A解析设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1),可得向量AB 1→=(-2,2,1),BC 1→=(0,2,-1),由向量的夹角公式得cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=0+4-14+4+1×0+4+1=15=55,故选A.3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为()A.12B.23C.33D.22答案B解析以A 为原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),,0D (0,1,0),∴A 1D →=(0,1,-1),A 1E →,0设平面A 1ED 的一个法向量为n 1=(1,y ,z ),1D ,→·n 1=0,1E ,→·n 1=0,-z =0,-12z =0,=2,=2,∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23,即所成的锐二面角的余弦值为23.4.在正方体ABCD —A 1B 1C 1D 1中,AC 与B 1D 所成角的大小为()A.π6B.π4C.π3D.π2答案D解析以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设正方体的边长为1,则A (0,0,0),C (1,1,0),B 1(1,0,1),D (0,1,0).∴AC →=(1,1,0),B 1D →=(-1,1,-1),∵AC →·B 1D →=1×(-1)+1×1+0×(-1)=0,∴AC →⊥B 1D →,∴AC 与B 1D 所成的角为π2.5.(2018·上饶模拟)已知正三棱柱ABC -A 1B 1C 1,AB =AA 1=2,则异面直线AB 1与CA 1所成角的余弦值为()A .0B .-14C.14D.12答案C解析以A 为原点,在平面ABC 内过A 作AC 的垂线为x 轴,以AC 所在直线为y 轴,以AA 1所在直线为z 轴,建立空间直角坐标系,则A (0,0,0),B 1(3,1,2),A 1(0,0,2),C (0,2,0),AB 1→=(3,1,2),A 1C →=(0,2,-2),设异面直线AB 1和A 1C 所成的角为θ,则cos θ=|AB 1→·A 1C →||AB 1→|·|A 1C →|=|-2|8·8=14.∴异面直线AB 1和A 1C 所成的角的余弦值为14.6.(2018·上海松江、闵行区模拟)如图,点A ,B ,C 分别在空间直角坐标系O -xyz 的三条坐标轴上,OC →=(0,0,2),平面ABC 的法向量为n =(2,1,2),设二面角C -AB -O 的大小为θ,则cos θ等于()A.43B.53C.23D .-23答案C解析由题意可知,平面ABO 的一个法向量为OC →=(0,0,2),由图可知,二面角C -AB -O 为锐角,由空间向量的结论可知,cos θ=|OC ,→·n ||OC ,→||n |=|4|2×3=23.7.在三棱锥P -ABC 中,PA ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,PA =2,则直线PA 与平面DEF 所成角的正弦值为________.答案55解析以A 为原点,AB ,AC ,AP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,由AB =AC =1,PA =2,得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),0,,12,,12,∴PA →=(0,0,-2),DE →,12,DF →-12,12,设平面DEF 的法向量为n =(x ,y ,z ),·DE ,→=0,·DF ,→=0,=0,x +y +2z =0.取z =1,则n =(2,0,1),设直线PA 与平面DEF 所成的角为θ,则sin θ=|cos 〈n ,PA →〉|=|PA ,→·n ||PA ,→||n |=55,∴直线PA 与平面DEF 所成角的正弦值为55.8.如图,在正方形ABCD 中,EF ∥AB ,若沿EF 将正方形折成一个二面角后,AE ∶ED ∶AD =1∶1∶2,则AF 与CE 所成角的余弦值为________.答案45解析∵AE ∶ED ∶AD =1∶1∶2,∴AE ⊥ED ,即AE ,DE ,EF 两两垂直,所以建立如图所示的空间直角坐标系,设AB =EF =CD =2,则E (0,0,0),A (1,0,0),F (0,2,0),C (0,2,1),∴AF →=(-1,2,0),EC →=(0,2,1),∴cos 〈AF →,EC →〉=AF ,→·EC →|AF →||EC →|=45,∴AF 与CE 所成角的余弦值为45.9.如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是__________.答案60°解析以B 点为坐标原点,以BC 所在直线为x 轴,BA 所在直线为y 轴,BB 1所在直线为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1),则EF →=(0,-1,1),BC 1→=(2,0,2),∴EF →·BC 1→=2,∴cos 〈EF →,BC 1→〉=EF ,→·BC 1→|EF →||BC 1→|=22×22=12,∵异面直线所成角的范围是(0°,90°],∴EF 和BC 1所成的角为60°.10.(2018·福州质检)已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的锐二面角的正切值为________.答案23解析方法一延长FE ,CB 相交于点G ,连接AG ,如图所示.设正方体的棱长为3,则GB =BC =3,作BH ⊥AG 于点H ,连接EH ,则∠EHB 为所求锐二面角的平面角.∵BH =322,EB =1,∴tan ∠EHB =EB BH =23.方法二如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x轴、y 轴、z 轴,建立空间直角坐标系Dxyz ,设DA =1,由已知条件得A (1,0,0),,1,1AE →,1AF →1,1设平面AEF 的法向量为n =(x ,y ,z ),·AE ,→=0,·AF ,→=0,+13z =0,x +y +23z =0.令y =1,z =-3,x =-1,则n =(-1,1,-3),取平面ABC 的法向量为m =(0,0,-1),设平面AEF 与平面ABC 所成的锐二面角为θ,则cos θ=|cos 〈n ,m 〉|=31111,tan θ=23.11.(2018·皖江八校联考)如图,在几何体ABC -A 1B 1C 1中,平面A 1ACC 1⊥底面ABC ,四边形A 1ACC 1是正方形,B 1C 1∥BC ,Q 是A 1B 的中点,且AC =BC =2B 1C 1,∠ACB =2π3.(1)证明:B 1Q ⊥A 1C ;(2)求直线AC 与平面A 1BB 1所成角的正弦值.(1)证明如图所示,连接AC 1与A 1C 交于M 点,连接MQ .∵四边形A 1ACC 1是正方形,∴M 是AC 1的中点,又Q 是A 1B 的中点,∴MQ ∥BC ,MQ =12BC ,又∵B 1C 1∥BC 且BC =2B 1C 1,∴MQ ∥B 1C 1,MQ =B 1C 1,∴四边形B 1C 1MQ 是平行四边形,∴B 1Q ∥C 1M ,∵C 1M ⊥A 1C ,∴B 1Q ⊥A 1C .(2)解∵平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,CC 1⊥AC ,CC 1⊂平面A 1ACC 1,∴CC 1⊥平面ABC .如图所示,以C 为原点,CB ,CC 1所在直线分别为y 轴和z 轴建立空间直角坐标系,令AC =BC =2B 1C 1=2,则C (0,0,0),A (3,-1,0),A 1(3,-1,2),B (0,2,0),B 1(0,1,2),∴CA →=(3,-1,0),B 1A 1→=(3,-2,0),B 1B →=(0,1,-2),设平面A 1BB 1的法向量为n =(x ,y ,z ),则由n ⊥B 1A 1→,n ⊥B 1B →,-2y =0,2z =0,可令y =23,则x =4,z =3,∴平面A 1BB 1的一个法向量n =(4,23,3),设直线AC 与平面A 1BB 1所成的角为α,则sin α=|n ·CA ,→||n |·|CA ,→|=23231=9331.12.(2018·赣州模拟)如图,在四棱锥P -ABCD 中,侧面PAD ⊥底面ABCD ,底面ABCD 为直角梯形,其中AB ∥CD ,∠CDA =90°,CD =2AB =2,AD =3,PA =5,PD =22,点E 在棱AD 上且AE =1,点F 为棱PD 的中点.(1)证明:平面BEF ⊥平面PEC ;(2)求二面角A -BF -C 的余弦值.(1)证明在Rt △ABE 中,由AB =AE =1,得∠AEB =45°,同理在Rt △CDE 中,由CD =DE =2,得∠DEC =45°,所以∠BEC =90°,即BE ⊥EC .在△PAD 中,cos ∠PAD =PA 2+AD 2-PD 22PA ·AD =5+9-82×3×5=55,在△PAE 中,PE 2=PA 2+AE 2-2PA ·AE ·cos ∠PAE =5+1-2×5×1×55=4,所以PE 2+AE 2=PA 2,即PE ⊥AD .又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PE ⊂平面PAD ,所以PE ⊥平面ABCD ,所以PE ⊥BE .又因为CE ∩PE =E ,CE ,PE ⊂平面PEC ,所以BE ⊥平面PEC ,所以平面BEF ⊥平面PEC .(2)解由(1)知EB ,EC ,EP 两两垂直,故以E 为坐标原点,以射线EB ,EC ,EP 分别为x 轴、y 轴、z 轴的正半轴建立如图所示的空间直角坐标系,则B (2,0,0),C (0,22,0),P (0,0,2),,-22,D (-2,2,0),-22,22,AB →,22,BF →-322,22,BC →=(-2,22,0),设平面ABF 的法向量为m =(x 1,y 1,z 1),·AB ,→=22x 1+22y 1=0,·BF →=-322x 1+22y 1+z 1=0,不妨设x 1=1,则m =(1,-1,22),设平面BFC 的法向量为n =(x 2,y 2,z 2),·BC ,→=-2x 2+22y 2=0,·BF ,→=-322x 2+22y 2+z 2=0,不妨设y 2=2,则n =(4,2,52),记二面角A -BF -C 为θ(由图知应为钝角),则cos θ=-|m ·n ||m |·|n |=-|4-2+20|10·70=-11735,故二面角A -BF -C 的余弦值为-11735.13.如图,在四棱锥S -ABCD 中,SA ⊥平面ABCD ,底面ABCD 为直角梯形,AD ∥BC ,∠BAD =90°,且AB =4,SA =3.E ,F 分别为线段BC ,SB 上的一点(端点除外),满足SF BF =CE BE=λ,当实数λ的值为________时,∠AFE 为直角.答案916解析因为SA ⊥平面ABCD ,∠BAD =90°,以A 为坐标原点,AD ,AB ,AS 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Axyz .∵AB =4,SA =3,∴B (0,4,0),S (0,0,3).设BC =m ,则C (m ,4,0),∵SF BF =CE BE=λ,∴SF →=λFB →.∴AF →-AS →=λ(AB →-AF →).∴AF →=11+λ(AS →+λAB →)=11+λ(0,4λ,3),∴F0,4λ1+λ,31+λ同理可得m 1+λ,4,0,∴FE →m 1+λ,41+λ,-31+λ∵FA →0,-4λ1+λ,-31+λ∠AFE 为直角,即FA →·FE →=0,则0·m 1+λ+-4λ1+λ·41+λ+-31+λ·-31+λ=0,∴16λ=9,解得λ=916.14.(2018·海南五校模拟)如图,已知直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =1,AB ⊥AC ,M ,N ,Q 分别是CC 1,BC ,AC 的中点,点P 在直线A 1B 1上运动,且A 1P →=λA 1B 1→(λ∈[0,1]).(1)证明:无论λ取何值,总有AM ⊥平面PNQ ;(2)是否存在点P ,使得平面PMN 与平面ABC 的夹角为60°?若存在,试确定点P 的位置,若不存在,请说明理由.(1)证明连接A1Q.∵AA1=AC=1,M,Q分别是CC1,AC的中点,∴Rt△AA1Q≌Rt△CAM,∴∠MAC=∠QA1A,∴∠MAC+∠AQA1=∠QA1A+∠AQA1=90°,∴AM⊥A1Q.∵N,Q分别是BC,AC的中点,∴NQ∥AB.又AB⊥AC,∴NQ⊥AC.在直三棱柱ABC-A1B1C1中,AA1⊥底面ABC,∴NQ⊥AA1.又AC∩AA1=A,AC,AA1⊂平面ACC1A1,∴NQ⊥平面ACC1A1,∴NQ⊥AM.由NQ∥AB和AB∥A1B1可得NQ∥A1B1,∴N,Q,A1,P四点共面,∴A1Q⊂平面PNQ.∵NQ∩A1Q=Q,NQ,A1Q⊂平面PNQ,∴AM⊥平面PNQ,∴无论λ取何值,总有AM⊥平面PNQ.(2)解如图,以A为坐标原点,AB,AC,AA1所在的直线分别为x轴、y轴、z轴建立空间直角坐标系,则A1(0,0,1),B1(1,0,1),,1,12,,12,NM →-12,12A 1B 1→=(1,0,0).由A 1P →=λA 1B 1→=λ(1,0,0)=(λ,0,0),可得点P (λ,0,1),∴PN→λ,12,-设n =(x ,y ,z )是平面PMN 的法向量,·NM ,→=0,·PN ,→=0,+12y +12z =0,+12y -z =0,=1+2λ3x ,=2-2λ3x ,令x =3,得y =1+2λ,z =2-2λ,∴n =(3,1+2λ,2-2λ)是平面PMN 的一个法向量.取平面ABC 的一个法向量为m =(0,0,1).假设存在符合条件的点P ,则|cos 〈m ,n 〉|=|2-2λ|9+(1+2λ)2+(2-2λ)2=12,化简得4λ2-14λ+1=0,解得λ=7-354或λ=7+354(舍去).综上,存在点P ,且当A 1P =7-354时,满足平面PMN 与平面ABC 的夹角为60°.15.在四棱锥P -ABCD 中,AB →=(4,-2,3),AD →=(-4,1,0),AP →=(-6,2,-8),则这个四棱锥的高h 等于()A .1B .2C .13D .26答案B 解析设平面ABCD 的法向量为n =(x ,y ,z ),⊥AB →,⊥AD →,x -2y +3z =0,4x +y =0,令y =4,则n ,4则cos 〈n ,AP →〉=n ·AP →|n ||AP →|=-6+8-323133×226=-2626,∴h =2626×226=2.16.如图所示,在梯形ABCD 中,AB ∥CD ,∠BCD =120°,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD =CD =BC =CF .(1)求证:EF ⊥平面BCF ;(2)点M 在线段EF 上运动,当点M 在什么位置时,平面MAB 与平面FCB 所成的锐二面角最大,并求此时二面角的余弦值.(1)证明设AD =CD =BC =1,∵AB ∥CD ,∠BCD =120°,∴AB =2,∴AC 2=AB 2+BC 2-2AB ·BC ·cos 60°=3,∴AB 2=AC 2+BC 2,则BC ⊥AC .∵CF ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC ⊥CF ,而CF ∩BC =C ,CF ,BC ⊂平面BCF ,∴AC ⊥平面BCF .∵EF ∥AC ,∴EF ⊥平面BCF .(2)解以C 为坐标原点,分别以直线CA ,CB ,CF 为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,设FM =λ(0≤λ≤3),则C (0,0,0),A (3,0,0),B (0,1,0),M (λ,0,1),∴AB →=(-3,1,0),BM →=(λ,-1,1).设n =(x ,y ,z )为平面MAB 的法向量,·AB ,→=0,·BM ,→=0,-3x +y =0,-y +z =0,取x =1,则n =(1,3,3-λ).易知m =(1,0,0)是平面FCB 的一个法向量,∴cos 〈n ,m 〉=n ·m |n ||m |=11+3+(3-λ)2×1=1(λ-3)2+4.∵0≤λ≤3,∴当λ=0时,cos 〈n ,m 〉取得最小值77,∴当点M 与点F 重合时,平面MAB 与平面FCB 所成的锐二面角最大,此时二面角的余弦值为77.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学-空间向量及其运算【知识梳理】一、空间向量及其加减运算 1. 空间向量的概念及其表示(1)概念:在空间中,我们把具有大小和方向的量叫做空间向量,如空间中的位移、速度、力等。
(2)表示方法:和平面向量一样,向量的表示有三种形式:a ,,有向线段。
(3)零向量:长度为零的向量是零向量,也即模等于零的向量,记作0。
注意:零向量的方向是无法确定的。
但我们规定:零向量的方向与任一向量平行,与任意向量共线,与任意向量垂直。
零向量的方向不确定,但模的大小确定。
零向量与任意向量的数量积为0。
2. 单位向量:单位向量是指模等于1的向量。
由于是非零向量,单位向量具有确定的方向。
一个非零向量除以它的模,可得所需单位向量。
3. 相等向量和相反向量:长度相等且方向相同的两个向量叫做相等的向量。
即:若a 与b 相等,则记作b a =。
长度相等且方向相反的向量叫做相反向量,若a 与b 相反,则记作b a -=。
4. 空间向量的加减运算(1)空间向量的加法与减法是平面向量运算的推广.(2)加法交换律:a b b a +=+r r r r;加法结合律:()()a b c a b c ++=++r r r r r r二、空间向量的数乘运算 1.空间向量的数乘运算(1)定义:实数λ与空间向量a 的乘积 λa 仍然是一个向量,称为向量的数乘运算. (2)向量a 与λa 的关系:(3)设λ,μ是实数,则有①分配律:λ(a +b )=λa +λb .②结合律:λ(μ a )=(λμ)a .共线(平行)向量共面向量定义表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量平行于同一个平面的向量叫做共面向量充要条件对于空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ使a=λb.若两个向量a,b不共线,则向量p与a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.推论如果l为经过点A平行于已知非零向量a的直线,那么对于空间任一点O,点P在直线l上的充要条件是存在实数t,使OPu u u r=OAu u r+ta,①其中a叫做直线l的方向向量,如图所示. 若在l上取ABu u u r=a,则①式可化为OPu u u r=OAu u r+t ABu u u r.如图,空间一点P位于平面MAB内的充要条件是存在有序实数对(x,y),使MPu u u r=x MAu u u r+yMBu u u r,或对空间任意一点O来说,有OPu u u r=OMu u u r+x MAu u u r+y MBu u u r.三、空间向量的数量积运算1.空间向量的夹角四、空间向量的正交分解及其坐标表示 1.空间向量基本定理(1)定理:如果三个向量a ,b ,c ,那么对空间任一向量p ,存在有序实数组 ,使得 . (2)基底:空间中任一组 的三个向量a ,b ,c 都可以组成空间的一个基底,即 . (3)基向量:空间的一个基底{a ,b ,c }中的三个向量 叫做基向量. 2.空间向量的正交分解及其坐标表示 (1)单位正交基底:三个有公共起点O 的 的单位向量e 1,e 2,e 3称为 . (2)空间直角坐标系:以e 1,e 2,e 3的公共起点O 为原点,分别以e 1,e 2,e 3的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系Oxyz .(3)空间向量的坐标表示:①对于空间任意一个向量p ,一定可以把它 ,使它的起点与原点O 重合,得到向量OP →=p ,由空间向量基本定理可知,存在有序实数组{x ,y ,z },使得p = .把 称作向量p 在单位正交基底e 1,e 2,e 3下的坐标,记作 ,即点P 的坐标为 .①在空间直角坐标系中,设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则AB →=(a 2-a 1,b 2-b 1,c 2-c 1). 五、空间向量运算的坐标表示 1.空间向量的加减和数乘的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). (1)a +b =(a 1+b 1,a 2+b 2,a 3+b 3); (2)a -b =(a 1-b 1,a 2-b 2,a 3-b 3); (3)λa =(λa 1,λa 2,λa 3)(λ∈R);(4)若b ≠0,则a ∥b ⇔a =λb (λ∈R)⇔a 1=λb 1,a 2=λb 2,a 3=λb 3. 2.空间向量数量积的坐标表示及夹角公式若a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则 (1)a ·b =a 1b 1+a 2b 2+a 3b 3;(2)|a |=a ·a =a 21+a 22+a 23; (3)cos 〈a ,b 〉=a ·b|a |·|b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23 b 21+b 22+b 23; (4)a ⊥b ⇔a 1b 1+a 2b 2+a 3b 3=0. 3.空间中向量的坐标及两点间的距离公式在空间直角坐标系中,设A (a 1,b 1,c 1),B (a 2,b 2,c 2).(1) AB uu u r=(a 2-a 1,b 2-b 1,c 2-c 1);(2)d AB =|AB uu u r|=(a 2-a 1)2+(b 2-b 1)2+(c 2-c 1)2.【经典例题】考点一 空间向量及其加减运算 题型一 空间向量概念的应用 例题1. 给出下列命题:①将空间中所有的单位向量移到同一个点为起点,则它们的终点构成一个圆; ②若空间向量a 、b 满足|a |=|b |,则a =b ; ③在正方体ABCD -A 1B 1C 1D 1中,必有AC =; ④若空间向量m 、n 、p 满足m =n ,n =p ,则m =p ; ⑤空间中任意两个单位向量必相等. 其中假命题的个数是( ) A .1 B .2C .3D .4题型二 空间向量的运算例题1. 化简:( ) ( )练习1.在四面体ABCD 中,M 为BC 的中点,Q 为△BCD 的重心,设AB=b AC=c AD=d ,试用 b ,c ,d 表示向量,、,,和。
考点二 空间向量的数乘运算 题型一 空间向量的线性运算例题1.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点.若11A B u u u u r =a ,11A D u u u u r =b ,1A A u u u r=c ,则下列向量中与1B M u u u u r相等的向量是( )A .-12a +12b +cB. 12a +12b +cC. 12a -12b +cD .-12a -12b +c11C A AB -CD -AC -BD BD BC CD BM DM AQ练习1. 已知P 是正方形ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形ABCD 的中心O ,Q 是CD 的中点,求下列各式中x ,y 的值:(1) OQ u u u r =PQ u u u r +x PC u u u r+y PA u u r ;(2) PA u u r =x PO u u u r+y PQ u u u r +PD u u u r .题型二 空间向量的共线问题例题1. 如图所示,已知四边形ABCD ,ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,判断CE u u u r 与MN u u u r是否共线.练习1.已知空间向量a ,b ,且AB u u u r =a +2b ,BC u u u r =-5a +6b ,CD u u u r=7a -2b ,则一定共线的三点是( )A .A ,B ,D B .A ,B ,C C .B ,C ,DD .A ,C ,D练习2. 已知四边形ABCD 是空间四边形,E ,H 分别是边AB ,AD 的中点,F ,G 分别是边CB ,CD 上的点,且CF u u u r =23CB u u r ,CG u u u r =23CD u u u r .求证:四边形EFGH 是梯形.题型三 空间向量的共面问题例题1. 对于任意空间四边形ABCD ,E ,F 分别是AB ,CD 的中点.试证:EF u u u r 与BC u u u r ,AD u u ur 共面.练习1. 在下列条件中,使M 与A ,B ,C 一定共面的是( )A .OM u u u r =3OA u u r -2OB u u u r -OC u u u rB .OM u u u r +OA u u r +OB u u u r +OC u u u r =0C .MA u u u r +MB u u u r +MC u u u r =0D .OM u u u r =14OB u u u r -OA u u r +12OC u u u r练习2. 已知e 1,e 2为两个不共线的非零向量,且AB u u u r =e 1+e 2,AC u u u r=2e 1+8e 2,AD u u u r =3e 1-3e 2 ,求证:A ,B ,C ,D 四点共面.考点三 空间向量的数量积运算 题型一 数量积的运算例题. 如图所示,已知正四面体OABC 的棱长为1,点E ,F 分别是OA ,OC 的中点.求下列向量的数量积:(1) OA u u r ·OB u u u r ;(2) EF u u u r ·BC u u u r ;(3)( OA u u r +OB u u u r )·(CA u u r +CB u u r).题型二 用数量积求夹角例题.如图,在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,AB =BC =1,AA 1=2,求异面直线BA 1与AC 所成角的余弦值.题型三 利用数量积求两点间的距离例题.如图所示,平行六面体ABCD -A 1B 1C 1D 1中,从同一顶点出发的三条棱的长都等于1,且彼此的夹角都是60°,求对角线AC 1和BD 1的长.题型四 利用数量积证明垂直问题例题.已知空间四边形ABCD 中,AB ⊥CD ,AC ⊥BD ,求证:AD ⊥BC .考点四 空间向量正交分解及其坐标表示 题型一 基底的判定例题. 已知向量c b a ,,是空间的一个基底,从向量c b a ,,中选哪一个向量,一定可以与向量b a p +=b a q -=构成空间的另一个基底吗?练习 1. 已知O,A,B,C 为空间四点,且向量,,OA OB OC u u u r u u u r u u u r不构成空间的一个基底,那么点O,A,B,C 是否共面?____________练习2. 以下四个命题中正确的是( )A .空间的任何一个向量都可用其它三个向量表示B .若{a ,b ,c }为空间向量的一组基底,则a ,b ,c 全不是零向量C .△ABC 为直角三角形的充要条件是AB u u u r ·AC →=0D .任何三个不共线的向量都可构成空间向量的一个基底题型二基底的判定空间向量基本定理的使用例题. M,N 分别是四面体O ABC 的边OA,BC 的中点,P ,Q 是MN 的三等分点,用,,OA OB OC u u u r u u u r u u u r表示OP u u u r 和OQ u u u r .练习1. 已知平行六面体''''ABCD A B C D -,点G 是侧面''BB C C 的中心,且a DA =,c b ==',,试用向量c b a ,,表示下列向量: ⑴',','CA BA DB ⑵ DG .练习2. 空间四边形OABC 中,G,H 分别是△ABC ,△OBC 的重心,设c OC b OB a OA ===,,,试用a 、b 、c 表示GH OG ,.题型三求向量的坐标例题. 空间直角坐标系D -ABP 中,四边形ABCD 是正方形面,M 、N 分别是AB ,PC 的三等分点且PN =2NC ,AM =2MB ,P A =AB =1,求 MN u u u u r的坐标.练习1. 设23a i j k =-+r r r r ,则向量a r的坐标为 .练习2. 已知,,a b c r r r 是空间的一个正交基底,向量,,a b a b c +-r r r r r 是另一组基底,若p u r 在,,a b c r r r的坐标是()1,2,3,求p u r 在,,a b a b c +-r r r r r的坐标.考点五空间向量运算的坐标表示 题型一空间向量的坐标运算例题. 已知空间四点A ,B ,C ,D 的坐标分别是(-1,2,1),(1,3,4),(0,-1,4),(2,-1,-2),设p =AB uu u r,q =CD uuu r.求:(1)p +2q ;(2)3p -q ;(3)(p -q )·(p +q );练习1.已知a =(1,-2,4),b =(1,0,3),c =(0,0,2).求:(1)a ·(b +c );(2)4a -b +2c .练习2.已知O 为坐标原点,A ,B ,C 三点的坐标分别是(2,-1,2),(4,5,-1),(-2,2,3).求点P 的坐标,使:(1) OP uuu r =12(AB uu u r -AC uuu r );(2) AP uu u r =12(AB uu u r -AC uuu r).题型二坐标形式下平行与垂直的应用 例题. 设a =(1,5,-1),b =(-2,3,5). (1) 若(ka +b )∥(a -3b ),求k ; (2)若(ka +b )⊥(a -3b ),求k .练习1.已知a =(λ+1,0,2λ),b =(6,2μ-1,2),a ∥b ,则λ与μ的值分别为( )A.15,12 B .5,2 C .-25,-12D .-5,-2练习2.已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB uu u r ,b =AC uuu r.若向量ka +b 与ka -2b 互相垂直,求k 的值.题型三利用坐标运算解决夹角、距离问题例题. 如图,在直三棱柱(侧棱垂直于底面的棱柱)ABC -A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,N 为A 1A 的中点.(1)求BN 的长;(2)求A 1B 与B 1C 所成角的余弦值.练习1.若A (3cos α,3sin α,1),B (2cos θ,2sin θ,1),则|AB ―→|的取值范围是( )A .[0,5]B .[1,5]C .(1,5)D .[1,25]练习2.已知a =(5,3,1),b =(-2,t ,-25),若a 与b 的夹角为钝角,求实数t 的取值范围.【过关练习】一、空间向量及其加减运算1.在平行六面体ABCD—A′B′C′D′中,与向量B A ''的模相等的向量有( )A.7个B.3个C.5个D.6个2. 两个向量(非零向量)的模相等,是两个向量相等的 ( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.已知空间向量a r 和b r ,若命题P :b r =b r 则命题Q :a r =b r,则P 是Q 的__________条件( )A.充分而不必要B.必要而不充分C.充要D.既不充分又不必要4.空间任意四个点A 、B 、C 、D ,则BA CB CD +-u u u r u u u r u u u r等于( )A .DB u u u r B .AD u u u rC .DA u u u rD .AC u u u r5.如图所示,已知四面体ABCD ,E 、F 、G 、H 分别为AB 、BC 、CD 、AC 的中点,则12(++)化简的结果为( )A .B .C .D .6.如果向量AB 、AC 、BC 满足||||||BC AC AB +=,则 ( ) A.BC AC AB += B.BC AC AB --= C.AC 与BC 同向 D.AC 与CB 同向7.若A 、B 、C 、D 为空间四个不同的点,则下列各式为零向量的是( )①22AB BC CD DC +++u u u r u u u r u u u r u u u r ②2233AB BC CD DA AC ++++u u u r u u u r u u u r u u u r u u u r③AB CA BD ++u u u r u u u r u u u r ④AB CB CD AD -+-u u u r u u u r u u u r u u u rA .①②B .②③C .②④D .①④8.在空间四边形ABCD 中,若AB a =u u u r r ,BD b =u u u r r ,AC c =u u u r r ,则CD uuu r等于 ( )A .()a b c --r r rB .()c b a --r r rC .a b c --r r rD .()b c a --r r rAB u u ur BC u u u r CD u u u r BF u u u r EH u u u rHG u u u r FG u u u r9.在三棱柱111ABC A B C -中,设M 、N 分别为1,BB AC 的中点,则MN u u u u r等于 ( )A .11()2AC AB BB ++u u u r u u u r u u u r B .111111()2B A BC C C ++u u u ur u u u u r u u u u rC .11()2AC CB BB ++u u u r u u u r u u u rD .11()2BB BA BC --u u u r u uu r u u u r10.四棱柱1111ABCD A B C D -中,AC 与BD 的交点为点M ,设11111,,A B a A D b AA c ===u u u u r r u u u u r r u u u r r ,则下列与1B M u u u u r相等的向量是( )A .1122a b c -+-r r rB . 1122a b c ++r r rC .1122a b c -+r r rD .1122a b c --+r r r11. 已知长方体1111ABCD A B C D -,化简向量表达式1CB AC AD AA +++=u u u r u u u r u u u r u u u r_____________;12. 四棱锥P -ABCD 的底面ABCD 为平行四边形,,,AB a AD b AP c ===u u u r r u u u r r u u u r r ,E 为PC 中点,则向量CE =u u u r_______________________;13.在平行六面体ABCD—A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB =a r,AD = b r ,1AA = c r ,则AM =______ __(用a r , b r , c r表示)14.已知平行六面体ABCD—A′B′C′D′,化简下列表达式:(1)BC D D A D B B AB -'+''-'+; (2)A A AD AC C A '-+-'.15.在平行六面体1111ABCD A B C D -中,点,M N 分别在1,AC A D 上,11,22AM MC A N ND ==u u u u r u u u u r u u u u r u u u r,设1,,AB a AD b AA c ===u u u r r u u u r r u u u r r ,试用,,a b c r r r 表示MN u u u u r.16.在空间四边形ABCD 中,连结AC 、BD ,△BCD 的重心为G ,BC z BD y BA x AG ++=,求x 、y 、z.二、空间向量的数乘运算1.下列命题中正确的个数是( )①若a 与b 共线,b 与c 共线,则a 与c 共线. ②向量a ,b ,c 共面,即它们所在的直线共面. ③若a ∥b ,则存在唯一的实数λ,使a =λb . A .0 B .1 C .2D .32.在四面体O -ABC 中,OA u u r =a ,OB u u u r =b ,OC u u u r =c ,D 为BC 的中点,E 为AD 的中点,则OE u u u r=( )A. 12a -14b +14cB. a -12b +12cC. 12a +14b +14cD. 14a +12b +14c 3.已知两非零向量e 1,e 2不共线,设a =λe 1+μe 2(λ,μ∈R 且λ,μ≠0),则( )A .a ∥e 1B .a ∥e 2C .a 与e 1,e 2共面D .以上三种情况均有可能4.A ,B ,C 不共线,对空间任意一点O ,若OP u u u r =34OA u u r +18OB u u u r +18OC u u u r,则P ,A ,B ,C 四点( )A .不共面B .共面C .不一定共面D .无法判断是否共面5.在三棱锥A -BCD 中,若△BCD 是正三角形,E 为其中心,则AB u u u r +12BC u u u r -32BE u uu r -AD u u u r 化简的结果为________.6.设e 1,e 2是平面内不共线的向量,已知AB u u u r =2e 1+ke 2,CB ―→=e 1+3e 2,CD u u u r=2e 1-e 2,若A ,B ,D 三点共线,则k =________.7.如图所示,平行六面体ABCD -A 1B 1C 1D 1中,E ,F 分别在B 1B 和D 1D 上,且BE =13BB 1,DF =23DD 1.证明:A ,E ,C 1,F 四点共面.8.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且1A E u u u r =21ED u u u r,F 在对角线A 1C 上,且1A F u u u r =23FC u u u r.求证:E ,F ,B 三点共线.三、空间向量的数量积运算1.已知向量a 和b 的夹角为120°,且|a |=2,|b |=5,则(2a -b )·a =( )A .12B .8+13C .4D .132.已知|a |=1,|b |=2,且a -b 与a 垂直,则a 与b 的夹角为( )A .60°B .30°C .135°D .45°3.已知a ,b 是异面直线,a ⊥b ,1e ,2e 分别为取自直线a ,b 上的单位向量,且a =21e +32e ,b =k 1e -42e ,a ⊥b ,则实数k 的值为( ) A .-6B .6C .3D .-34.设A ,B ,C ,D 是空间不共面的四点,且满足AB u u u r ·AC u u u r =0,AC u u u r ·AD u u ur =0,AB u u u r ·AD u u u r =0,则△BCD 是( ) A .钝角三角形 B .锐角三角形C .直角三角形D .不确定5.已知|a |=13,|b |=19,|a +b |=24,则|a -b |=________.6.如图,在平行六面体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=5,∠BAD =90°,∠BAA 1=∠DAA 1=60°,则对角线AC 1的长度等于________.7.如图,正三棱柱ABC —A 1B 1C 1中,底面边长为 2.(1)设侧棱长为1,求证:AB 1⊥BC 1; (2)设AB 1与BC 1的夹角为π3,求侧棱的长.四、空间向量的正交分解及其坐标表示1. 若{}a,,b c u r u r r为空间向量的一组基底,则下列各项中,能构成基底的是 )A.,,a a b a b +-r r r r rB. ,,b a b a b +-r r r r rC. ,,c a b a b +-r r r r rD. 2,,a b a b a b ++-r r r r r r2. 设x =a +b ,y =b +c ,z =c +a ,且{a ,b ,c }是空间的一组基底,给出下列向量组: ①{a ,b ,x }②{x ,y ,z },③{b ,c ,z },④{x ,y ,a +b +c },其中可以作为空间一组基底的向量 组有 ( ) A .1个B .2个C .3个D .4个3.已知平行六面体OABC -O′A′B′C′,OA →=a ,OC →=c ,OO ′→=b ,D 是四边形OABC 的对角线交点,则( )A.D O '=-a +b +cB.D O '=-b -12a -12cC.D O '=12a -b -12cD.D O '= 12a -b +12c4.已知点A 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则点A 在基底{i ,j ,k }下的坐标是 ( )A .(12,14,10)B .(10,12,14)C .(14,12,10)D .(4,3,2)5. 设i 、j 、k 为空间直角坐标系A -xyz 中x 轴、y 轴、z 轴正方向的单位向量,且AB i j k =-+-u u u r r r r,则点B 的坐标是 ,向量a =3i +2j -k ,b =-2i +4j +2k 的坐标分别是________,6.已知点G 是△ABC 的重心,O 是空间任一点,若OG OC OB OA λ=++,则λ的值是________.6. 已知()()3,5,7,2,4,3A B =-=-,求=AB , BA = ,7. 已知正方体ABCD -A 1B 1C 1D 1中,点O 为AC 1与BD 1的交点,AO u u u r =xAB →+yBC →+zCC 1→,则x +y +z =________.8.如图所示,已知点P 为边长为4的正方形ABCD 所在平面外一点,且P A ⊥平面ABCD ,M 、N 分别是AB 、PC 的中点,且P A =AD ,建如图示空间直角坐标系,则向量MN 的坐标为____________.9.在直三棱柱ABC-A1B1C1中,∠ACB=90°,CA=CB=1,CC1=2,M为A1B1的中点.以C为坐标原点,分别以CA,CB,CC1所在的直线为x轴,y轴,z轴,建立空间直角坐标系(如图所示),则1AB的坐标为________,MB的坐标为___________.10.四棱锥P—OABC的底面为一矩形,设cOCbOBaOA===,,的中点,用ar,br,cr表示BF、BE、AE、EF.11.在平行六面体ABCD A B C D''''-中,M是平行四边形A B C D''''的对角线的交点,N是棱BC的中点,如果AB a=u u u r r,AD b=u u u r r,AA c'=u u u r r,用ar、br、cr表示MNu u u u r五、空间向量运算的坐标表示1.已知a=(1,1,0),b=(0,1,1),c=(1,0,1),p=a-b,q=a+2b-c,则p·q=()A.-1B.1C.0 D.-22.已知点A (1,-2,11),B (4,2,3),C (6,-1,4),则△ABC 的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形3.已知a =(2,0,3),b =(4,-2,1),c =(-2,x,2),若(a -b )⊥c ,则x 等于( )A .4B .-4C .2D .-24.已知A (1,0,0),B (0,-1,1),O (0,0,0),OA u u u r +λOB uuu r 与OB uuu r的夹角为120°,则λ的值为( )A .±66 B.66C .-66D .±65.已知向量a =(0,-1,1),b =(4,1,0),|λa +b |=29,且λ>0,则λ=________.6. 已知3a -2b =(-2,0,4),c =(-2,1,2),a ·c =2,|b |=4,则cos 〈b ,c 〉=________.7.已知a =(x,4,1),b =(-2,y ,-1),c =(3,-2,z ),a ∥b ,b ⊥c ,求:(1)a ,b ,c ;(2)a +c 与b +c 所成角的余弦值.8.已知A (1,2,3),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动(O 为坐标原点).当QA uu u r ·QB uuu r取最小值时,求点Q 的坐标.立体几何中的向量方法【知识梳理】一、直线的方向向量与平面的法向量1、直线的方向向量:l 是空间中的任一直线,B A ,是l 上的任意两点,则为直线l 的方向向量。