2010年湖南省邵阳市中考数学试题

合集下载

2010中考数学专题复习——反比例函数试卷

2010中考数学专题复习——反比例函数试卷

中考数学专题复习——反比例函数一、选择题1. (08浙江温州)已知反比例函数k y x=的图象经过点(32)-,,则k 的值是( ) A .6- B .6 C .23D .23-2.(2008山东烟台)在反比例函数12m y x -=的图象上有两点A ()11,x y ,B ()22,x y ,当120x x <<时,有12y y <,则m 的取值范围是( )A 、0m <B 、0m >C 、12m < D 、12m >3.(2008浙江宁波)如图,正方形ABOC 的边长为2,反比例函数k y x=过点A ,则k 的值是( )A .2B .2-C .4D .4-6.(2008年沈阳市)下列各点中,在反比例函数2y x=-图象上的是( )A .(21),B .233⎛⎫ ⎪⎝⎭,C .(21)--,D .(12)-,7.(2008年湖南省邵阳市)若反比例函数k y x=的图象经过点(12)-,,则这个函数的图象一定经过点( )A .(12),B .(21),C .(12)-,D .(12)--,8.(2008湖北黄冈)已知反比例函数2y x=,下列结论中,不正确...的是( ) A .图象必经过点(12), B .y 随x 的增大而减少 C .图象在第一、三象限内D .若1x >,则2y <9.(2008湖南株洲)已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是( )A .1y <-B .1y ≤-C .1y ≤- 或0y >D .1y <-或0y ≥10.(2008黑龙江哈尔滨)已知反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ).(A )k >2 (B ) k ≥2 (C )k ≤2 (D ) k <211.(2008年山东省青岛市)如果点11()A x y ,和点22()B x y ,是直线y kx b =-上的两点,且当12x x <时,12y y <,那么函数k y x=的图象大致是( )-1-1yxO12.(2008年江苏省连云港市)已知某反比例函数的图象经过点()m n ,,则它一定也经过点( )A .()m n -,B .()n m ,C .()m n -,D .()m n ,13.(2008年云南省双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )14.(2008新疆乌鲁木齐市)反比例函数6y x=-的图象位于( )A .第一、三象限B .第二、四象限C .第二、三象限D .第一、二象限15.(2008浙江温州)已知反比例函数k y x=的图象经过点(32)-,,则k 的值是( ) A .6- B .6 C .23D .23-16.(2008宁夏)反比例函数xk y =(k >0)的部分图象如图所示,A 、B 是图象上两点,AC ⊥x轴于点C ,BD ⊥x 轴于点D ,若△AOC 的面积为S 1,△BOD 的面积为S 2,则S 1和S 2 的大小关系为( )A . S 1> S 2B . S 1= S 2C . S 1 <S 2D . 无法确定xxxxA . D .v /(km/h)v/(km/h)v /(km/h)A .B .C ..17.(2008湖南益阳市)物理学知识告诉我们,一个物体所受到的压强P 与所受压力F 及受力面积S 之间的计算公式为SF P=. 当一个物体所受压力为定值时,那么该物体所受压强P 与受力面积S 之间的关系用图象表示大致为( )18.(2008湖南常德市)下面的函数是反比例函数的是 ( )A . 13+=x yB .x x y 22+=C . 2x y = D .xy 2=19.(2008年浙江省嘉兴市)某反比例函数的图象经过点(23)-,,则此函数图象也经过点( )A .(23)-,B .(33)--,C .(23),D .(46)-,20。

2013-2018年湖南省邵阳市中考数学试题汇编(含参考答案与解析)

2013-2018年湖南省邵阳市中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2013—2018年湖南省邵阳市中考数学试题汇编(含参考答案与解析)1、2013年湖南省邵阳市中考数学试题及参考答案与解析 (2)2、2014年湖南省邵阳市中考数学试题及参考答案与解析 (18)3、2015年湖南省邵阳市中考数学试题及参考答案与解析 (37)4、2016年湖南省邵阳市中考数学试题及参考答案与解析 (55)5、2017年湖南省邵阳市中考数学试题及参考答案与解析 (75)6、2018年湖南省邵阳市中考数学试题及参考答案与解析 (96)2013年湖南省邵阳市中考数学试题及参考答案一、选择题(本大题共10个小题,每小题3分,共30分)1.﹣8的相反数是()A.﹣8B.18C.0.8D.82.下列四个图形中,不是轴对称图形的是()A.B.C.D.3.函数y=中,自变量x的取值范围是()A.x>1B.x<1C.15x≥D.15x-≥4.如图是某班学生参加兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是()A.棋类组B.演唱组C.书法组D.美术组5.若⊙O1和⊙O2的半径分别为3cm和4cm,圆心距d=7cm,则这两圆的位置是()A.相交B.内切C.外切D.外离6.据邵阳市住房公积金管理会透露,今年我市新增住房公积金11.2亿元,其中11.2亿元可用科学记数法表示为()A.11.2×108元B.1.12×109元C.11.2×1010元D.11.2×107元7.下列四个点中,在反比例函数6yx=-的图象上的是()A.(3,﹣2)B.(3,2)C.(2,3)D.(﹣2,﹣3)8.如图是我市几个旅游景点的大致位置示意图,如果用(0,0)表示新宁莨山的位置,用(1,5)表示隆回花瑶的位置,那么城市南山的位置可以表示为()A.(2,1)B.(0,1)C.(﹣2,﹣1)D.(﹣2,1)9.在△ABC中,若|sinA 12﹣|+(cosB﹣12)2=0,则∠C的度数是()A.30°B.45°C.60°D.90°10.如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC二、填空题(本大题共8个小题,每小题3分,共24分)11.在计算器上,依次按键2、x2,得到的结果是.12.因式分解:x2﹣9y2=.13.今年五月份,由于H7N9禽流感的影响,我市鸡肉的价格下降了10%,设鸡肉原来的价格为a 元/千克,则五月份的价格为元/千克.14.如图所示,在△ABC中,点D、E分别是AB、AC的中点,连结DE,若DE=5,则BC=.15.计算:323232a ba b a b---=.16.端午节前,妈妈去超市买了大小、质量及包装均相同的粽子8个,其中火腿粽子5个,豆沙粽子3个,若小明从中任取1个,是火腿粽子的概率是.17.如图所示,弦AB、CD相交于点O,连结AD、BC,在不添加辅助线的情况下,请在图中找出一对相等的角,它们是.18.如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件,使四边形ABCD为矩形.三、解答题(本大题共3个小题,每小题8分,共24分)19.(8分)先化简,再求值:(a﹣b)2+a(2b﹣a),其中12a=-,b=3.20.(8分)解方程组:312236x yx y+=⎧⎨-=⎩①②.21.(8分)将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB.(2)求∠DFC的度数.四、应用题(本大题共3个小题,每小题8分,共24分)22.(8分)如图所示,某窗户有矩形和弓形组成,已知弓形的跨度AB=3cm,弓形的高EF=1cm,现计划安装玻璃,请帮工程师求出AB所在圆O的半径r.23.(8分)如图所示,图①表示的是某教育网站一周内连续7天日访问总量的情况,图②表示的是学生日访问量占日访问总量的百分比情况,观察图①、②,解答下列问题:(1)若这7天的日访问总量一共约为10万人次,求星期三的日访问总量;(2)求星期日学生日访问总量;(3)请写出一条从统计图中得到的信息.24.(8分)雅安地震后,政府为安置灾民,从某厂调拨了用于搭建板房的板材5600m2和铝材2210m,计划用这些材料在某安置点搭建甲、乙两种规格的板房共100间,若搭建一间甲型板房或一间乙型板房所需板材和铝材的数量如下表所示:板房规格板材数量(m2)铝材数量(m)甲型40 30乙型60 20请你根据以上信息,设计出甲、乙两种板房的搭建方案.五、综合题(本大题共2个小题,其中25题8分,26题10,共18分)25.(8分)如图所示,已知抛物线y=﹣2x2﹣4x的图象E,将其向右平移两个单位后得到图象F.(1)求图象F所表示的抛物线的解析式:(2)设抛物线F和x轴相交于点O、点B(点B位于点O的右侧),顶点为点C,点A位于y轴负半轴上,且到x轴的距离等于点C到x轴的距离的2倍,求AB所在直线的解析式.26.(10分)如图所示,在Rt△ABC中,AB=BC=4,∠ABC=90°,点P是△ABC的外角∠BCN的角平分线上一个动点,点P′是点P关于直线BC的对称点,连结PP′交BC于点M,BP′交AC于D,连结BP、AP′、CP′.(1)若四边形BPCP′为菱形,求BM的长;(2)若△BMP′∽△ABC,求BM的长;(3)若△ABD为等腰三角形,求△ABD的面积.参考答案与解析一、选择题(本大题有10个小题,每小题3分,在每小题给出的四个选项中只有一项是符合题目的)1.﹣8的相反数是()A.﹣8B.18C.0.8D.8【知识考点】相反数.【思路分析】根据只有符号不同的两个数叫做互为相反数解答.【解答过程】解:﹣8的相反数是8.故选D.【总结归纳】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.下列四个图形中,不是轴对称图形的是()A.B.C.D.【知识考点】轴对称图形【思路分析】根据轴对称图形的概念对各选项判断即可.【解答过程】解:A、是轴对称图形,不符合题意,故本选项错误;B、不是轴对称图形,符合题意,故本选项正确;C、是轴对称图形,不符合题意,故本选项错误;D、是轴对称图形,不符合题意,故本选项错误;故选B.【总结归纳】本题考查了轴对称图形的知识,解答本题的关键是掌握轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3.函数y=中,自变量x的取值范围是()A.x>1B.x<1C.15x≥D.15x≥【知识考点】函数自变量的取值范围.【思路分析】根据二次根式的性质被开方数大于或等于0,可以求出x的范围.【解答过程】解:根据题意得:5x﹣1≥0,解得:15x≥.故选C.【总结归纳】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.如图是某班学生参加兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是()A.棋类组B.演唱组C.书法组D.美术组【知识考点】扇形统计图.【思路分析】根据扇形统计图各部分所占的百分比,则参加人数最多的课外兴趣小组即为所占百分比最大的部分.【解答过程】解:根据扇形统计图,知参加人数最多的课外兴趣小组是所占百分比最大的,即为演唱.故选B.【总结归纳】本题考查了扇形统计图的知识,读懂扇形统计图,扇形统计图反映的是各部分所占总体的百分比.5.若⊙O1和⊙O2的半径分别为3cm和4cm,圆心距d=7cm,则这两圆的位置是()A.相交B.内切C.外切D.外离【知识考点】圆与圆的位置关系.【思路分析】本题直接告诉了两圆的半径及圆心距,根据数量关系与两圆位置关系的对应情况便可直接得出答案.【解答过程】解:∵⊙O1和⊙O2的半径分别为3cm和4cm,圆心距O1O2=7cm,∴O1O2=3+4=7,∴两圆外切.故选C.【总结归纳】本题主要考查圆与圆的位置关系,外离,则P>R+r;外切,则P=R+r;相交,则R﹣r<P<R+r;内切,则P=R﹣r;内含,则P<R﹣r.(P表示圆心距,R,r分别表示两圆的半径).6.据邵阳市住房公积金管理会透露,今年我市新增住房公积金11.2亿元,其中11.2亿元可用科学记数法表示为()A.11.2×108元B.1.12×109元C.11.2×1010元D.11.2×107元【知识考点】科学记数法—表示较大的数【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于11.2亿有10位,所以可以确定n=10﹣1=9.【解答过程】解:11.2亿=1 120 000 000=11.2×109.故选B.【总结归纳】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.7.下列四个点中,在反比例函数6yx=-的图象上的是()A.(3,﹣2)B.(3,2)C.(2,3)D.(﹣2,﹣3)【知识考点】反比例函数图象上点的坐标特征.【思路分析】根据反比例函数中k=xy的特点进行解答即可.【解答过程】解:A、∵3×(﹣2)=﹣6,∴此点在反比例函数的图象上,故本选项正确;B、∵3×2=6≠﹣6,∴此点不在反比例函数的图象上,故本选项错误;C、∵2×3=6≠﹣6,∴此点不在反比例函数的图象上,故本选项错误;D、∵(﹣2)×(﹣3)=6≠﹣6,∴此点不在反比例函数的图象上,故本选项错误.故选A.【总结归纳】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数kyx=中,k=xy为定值是解答此题的关键.8.如图是我市几个旅游景点的大致位置示意图,如果用(0,0)表示新宁莨山的位置,用(1,5)表示隆回花瑶的位置,那么城市南山的位置可以表示为()A.(2,1)B.(0,1)C.(﹣2,﹣1)D.(﹣2,1)【知识考点】坐标确定位置【思路分析】建立平面直角坐标系,然后写城市南山的坐标即可.【解答过程】解:建立平面直角坐标系如图,城市南山的位置为(﹣2,﹣1).故选C.【总结归纳】本题考查了利用坐标确定位置,是基础题,建立平面直角坐标系是解题的关键.9.在△ABC中,若|sinA 12﹣|+(cosB﹣12)2=0,则∠C的度数是()A.30°B.45°C.60°D.90°【知识考点】特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.【思路分析】根据绝对值及完全平方的非负性,可求出sinA、cosB的值,继而得出∠A、∠B的度数,利用三角形的内角和定理,可求出∠C的度数.【解答过程】解:∵|sinA﹣|+(cosB﹣)2=0,∴sinA=,cosB=,∴∠A=30°,∠B=60°,则∠C=180°﹣30°﹣60°=90°.故选D.【总结归纳】本题考查了特殊角的三角函数值,三角形的内角和定理,属于基础题,一些特殊角的三角函数值是需要我们熟练记忆的内容.10.如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC【知识考点】全等三角形的判定;矩形的性质.【思路分析】根据AD=DE,OD=OD,∠ADO=∠EDO=90°,可证明△AOD≌△EOD,OD为△ABE 的中位线,OD=OC,然后根据矩形的性质和全等三角形的性质找出全等三角形即可.【解答过程】解:∵AD=DE,DO∥AB,∴OD为△ABE的中位线,∴OD=OC,∵在Rt△AOD和Rt△EOD中,,∴△AOD≌△EOD(HL);∵在Rt△AOD和Rt△BOC中,,∴△AOD≌△BOC(HL);∵△AOD≌△EOD,∴△BOC≌△EOD;故B、C、D均正确.故选A.【总结归纳】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题(本大题共8个小题,每小题3分,共24分)11.在计算器上,依次按键2、x2,得到的结果是.【知识考点】计算器—有理数.【思路分析】根据题意得出x2=2,求出结果即可.【解答过程】解:根据题意得:x2=2,x=;故答案为:.【总结归纳】本题考查了计算器﹣有理数,关键是考查学生的理解能力,题型较好,但是一道比较容易出错的题目.12.因式分解:x2﹣9y2=.【知识考点】因式分解-运用公式法【思路分析】直接利用平方差公式分解即可.【解答过程】解:x2﹣9y2=(x+3y)(x﹣3y).【总结归纳】本题主要考查利用平方差公式分解因式,熟记公式结构是解题的关键.13.今年五月份,由于H7N9禽流感的影响,我市鸡肉的价格下降了10%,设鸡肉原来的价格为a 元/千克,则五月份的价格为元/千克.【知识考点】列代数式.【思路分析】因为原来鸡肉价格为a元/千克,现在下降了10%,所以现在的价格为(1﹣10%)a,即0.9a元/千克.【解答过程】解:∵原来鸡肉价格为a元/千克,现在下降了10%,∴五月份的价格为a﹣10%a=(1﹣10%)a=0.9a,故答案为:0.9a.【总结归纳】本题考查了列代数式的知识,解决问题的关键是读懂题意,找到所求的量的等量关系.注意价格下降了10%就是指原来的价格减去原来价格的10%.14.如图所示,在△ABC中,点D、E分别是AB、AC的中点,连结DE,若DE=5,则BC=.【知识考点】三角形中位线定理.【思路分析】由在△ABC中,点D、E分别是AB、AC的中点,可得DE是△ABC的中位线,然后由三角形中位线的性质,即可求得答案.【解答过程】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE=12 BC,∵DE=5,∴BC=10.故答案为:10.【总结归纳】此题考查了三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.15.计算:323232a ba b a b---=.【知识考点】分式的加减法.【思路分析】分母不变,直接把分子相减即可.【解答过程】解:原式321 32a ba b-==-,故答案为:1.【总结归纳】本题考查的是分式的加减法,即同分母的分式想加减,分母不变,把分子相加减.16.端午节前,妈妈去超市买了大小、质量及包装均相同的粽子8个,其中火腿粽子5个,豆沙粽子3个,若小明从中任取1个,是火腿粽子的概率是.【知识考点】概率公式.【思路分析】共有8个粽子,火腿粽子有5个,根据概率的公式进行计算即可.【解答过程】解:∵共有8个粽子,火腿粽子有5个,∴从中任取1个,是火腿粽子的概率是,故答案为:【总结归纳】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.17.如图所示,弦AB、CD相交于点O,连结AD、BC,在不添加辅助线的情况下,请在图中找出一对相等的角,它们是.【知识考点】圆周角定理.【思路分析】直接根据圆周角定理解答即可.【解答过程】解:∵∠A与∠C是同弧所对的圆周角,∴∠A=∠C(答案不唯一).故答案为:∠A=∠C(答案不唯一).【总结归纳】本题考查的是圆周角定理,此题属开放性题目,答案不唯一.18.如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件,使四边形ABCD为矩形.【知识考点】旋转的性质;矩形的判定.【思路分析】根据旋转的性质得AB=CD,∠BAC=∠DCA,则AB∥CD,得到四边形ABCD为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.【解答过程】解:∵△ABC绕AC的中点O顺时针旋转180°得到△CDA,∴AB=CD,∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD为平行四边形,当∠B=90°时,平行四边形ABCD为矩形,∴添加的条件为∠B=90°.故答案为∠B=90°.【总结归纳】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的判定.三、解答题(本大题共3个小题,每小题8分,共24分)19.(8分)先化简,再求值:(a﹣b)2+a(2b﹣a),其中12a=-,b=3.【知识考点】整式的混合运算—化简求值【思路分析】原式第一项利用完全平方公式展开,第二项利用单项式乘多项式法则计算,去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答过程】解:原式=a2﹣2ab+b2+2ab﹣a2=b2,当b=3时,原式=9.【总结归纳】此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.20.(8分)解方程组:312236x yx y+=⎧⎨-=⎩①②.【知识考点】解二元一次方程组.【思路分析】根据y的系数互为相反数,利用加减消元法其解即可.【解答过程】解:,①+②得,3x=18,解得x=6,把x=6代入①得,6+3y=12,解得y=2,所以,方程组的解是.【总结归纳】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.21.(8分)将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB.(2)求∠DFC的度数.【知识考点】平行线的判定;角平分线的定义;三角形内角和定理.【思路分析】(1)首先根据角平分线的性质可得∠1=45°,再有∠3=45°,再根据内错角相等两直线平行可判定出AB∥CF;(2)利用三角形内角和定理进行计算即可.【解答过程】(1)证明:∵CF平分∠DCE,∴∠1=∠2=12∠DCE,∵∠DCE=90°,∴∠1=45°,∵∠3=45°,∴∠1=∠3,∴AB∥CF;(2)∵∠D=30°,∠1=45°,∴∠DFC=180°﹣30°﹣45°=105°.【总结归纳】此题主要考查了平行线的判定,以及三角形内角和定理,关键是掌握内错角相等,两直线平行.四、应用题(本大题共3个小题,每小题8分,共24分)22.(8分)如图所示,某窗户有矩形和弓形组成,已知弓形的跨度AB=3cm,弓形的高EF=1cm,现计划安装玻璃,请帮工程师求出AB所在圆O的半径r.【知识考点】垂径定理的应用;勾股定理.【思路分析】根据垂径定理可得AF= 12AB,再表示出AO、OF,然后利用勾股定理列式进行计算即可得解.【解答过程】解:∵弓形的跨度AB=3cm,EF为弓形的高,∴OE⊥AB,∴AF=AB=cm,∵所在圆O的半径为r,弓形的高EF=1cm,∴AO=r,OF=r﹣1,在Rt△AOF中,AO2=AF2+OF2,即r2=()2+(r﹣1)2,解得r=cm.答:所在圆O的半径为cm.【总结归纳】本题考查了垂径定理的应用,勾股定理的应用,此类题目通常采用把半弦,弦心距,半径三者放到同一个直角三角形中,利用勾股定理解答.23.(8分)如图所示,图①表示的是某教育网站一周内连续7天日访问总量的情况,图②表示的是学生日访问量占日访问总量的百分比情况,观察图①、②,解答下列问题:(1)若这7天的日访问总量一共约为10万人次,求星期三的日访问总量;(2)求星期日学生日访问总量;(3)请写出一条从统计图中得到的信息.【知识考点】折线统计图;条形统计图【思路分析】(1)由这7天的日访问总量一共约为10万人次,结合条形统计图可得除星期三以外的其它天的日访问总量分别为:0.5万人次,1万人次,1万人次,1.5万人次,2.5万人次,3万人次,继而求得星期三的日访问总量;(2)由星期日的日访问总量为3万人次,结合扇形统计图可得星期日学生日访问总量占日访问总量的百分比为30%,继而求得星期日学生日访问总量;(2)结合图可得某教育网站一周内星期日的日访问总量最大;注意此题答案不唯一,符合题意即可.【解答过程】解:(1)∵这7天的日访问总量一共约为10万人次,除星期三以外的其它天的日访问总量分别为:0.5万人次,1万人次,1万人次,1.5万人次,2.5万人次,3万人次,∴星期三的日访问总量为:10﹣0.5﹣1﹣1﹣1.5﹣2.5﹣3=0.5(万人次);(2)∵星期日的日访问总量为3万人次,星期日学生日访问总量占日访问总量的百分比为30%,∴星期日学生日访问总量为:3×30%=0.9(万人次);(3)某教育网站一周内星期日的日访问总量最大.【总结归纳】本题考查的是条形统计图和扇形统计图的综合运用.注意读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.注意数形结合思想的应用.24.(8分)雅安地震后,政府为安置灾民,从某厂调拨了用于搭建板房的板材5600m2和铝材2210m,计划用这些材料在某安置点搭建甲、乙两种规格的板房共100间,若搭建一间甲型板房或一间乙型板房所需板材和铝材的数量如下表所示:板房规格板材数量(m2)铝材数量(m)甲型40 30乙型60 20请你根据以上信息,设计出甲、乙两种板房的搭建方案.【知识考点】一元一次不等式组的应用【思路分析】设甲种板房搭建x间,则乙种板房搭建(100﹣x)间,根据题意列出不等式组,再根据x只能取整数,求出x的值,即可得出答案.【解答过程】解:设甲种板房搭建x间,则乙种板房搭建(100﹣x)间,根据题意得:,解得:20≤x≤21,x只能取整数,则x=20,21,共有2种搭建方案:方案一:甲种板房搭建20间,乙种板房搭建80间,方案二:甲种板房搭建21间,乙种板房搭建79间.【总结归纳】此题考查了一元一次不等式组的应用,解题的关键是读懂题意,找出之间的数量关系列出不等式组,注意x只能取整数.五、综合题(本大题共2个小题,其中25题8分,26题10,共18分)25.(8分)如图所示,已知抛物线y=﹣2x2﹣4x的图象E,将其向右平移两个单位后得到图象F.(1)求图象F所表示的抛物线的解析式:(2)设抛物线F和x轴相交于点O、点B(点B位于点O的右侧),顶点为点C,点A位于y轴负半轴上,且到x轴的距离等于点C到x轴的距离的2倍,求AB所在直线的解析式.【知识考点】二次函数图象与几何变换;待定系数法求一次函数解析式;二次函数的性质.【思路分析】(1)根据二次函数图象左加右减,上加下减的平移规律进行解答;(2)先根据抛物线F的解析式求出顶点C,和x轴交点B的坐标,再设A点坐标为(0,y),根据点A到x轴的距离等于点C到x轴的距离的2倍,列出关于y的方程,解方程求出y的值,然后利用待定系数法求出AB所在直线的解析式.【解答过程】解:(1)∵抛物线y=﹣2x2﹣4x=﹣2(x+1)2+2的图象E,将其向右平移两个单位后得到图象F,∴图象F所表示的抛物线的解析式为y=﹣2(x+1﹣2)2+2,即y=﹣2(x﹣1)2+2;(2)∵y=﹣2(x﹣1)2+2,∴顶点C的坐标为(1,2).当y=0时,﹣2(x﹣1)2+2=0,解得x=0或2,∴点B的坐标为(2,0).设A点坐标为(0,y),则y<0.∵点A到x轴的距离等于点C到x轴的距离的2倍,∴﹣y=2×2,解得y=﹣4,∴A点坐标为(0,﹣4).设AB所在直线的解析式为y=kx+b,由题意,得,解得,∴AB所在直线的解析式为y=2x﹣4.【总结归纳】本题考查了二次函数图象与几何变换,二次函数的性质,运用待定系数法求函数的解析式,难度适中,求出图象F所表示的抛物线的解析式是解题的关键.26.(10分)如图所示,在Rt△ABC中,AB=BC=4,∠ABC=90°,点P是△ABC的外角∠BCN的角平分线上一个动点,点P′是点P关于直线BC的对称点,连结PP′交BC于点M,BP′交AC于D,连结BP、AP′、CP′.(1)若四边形BPCP′为菱形,求BM的长;(2)若△BMP′∽△ABC,求BM的长;(3)若△ABD为等腰三角形,求△ABD的面积.【知识考点】相似形综合题.【思路分析】(1)由菱形的性质可知,点M为BC的中点,所以BM可求;(2)△ABC为等腰直角三角形,若△BMP′∽△ABC,则△BMP′必为等腰直角三角形.证明△BMP′、△BMP、△BPP′均为等腰直角三角形,则BP=BP′;证明△BCP为等腰三角形,BP=BC,从而BP′=BC=4,进而求出BM的长度;(3)△ABD为等腰三角形,有3种情形,需要分类讨论计算.【解答过程】解:(1)∵四边形BPCP′为菱形,而菱形的对角线互相垂直平分,∴点M为BC的中点,∴BM=BC=×4=2.(2)△ABC为等腰直角三角形,若△BMP′∽△ABC,则△BMP′必为等腰直角三角形,BM=MP′.由对称轴可知,MP=MP′,PP′⊥BC,则△BMP为等腰直角三角形,∴△BPP′为等腰直角三角形,BP′=BP.∵∠CBP=45°,∠BCP=(180°﹣45°)=67.5°,∴∠BPC=180°﹣∠CBP﹣∠BCP=180°﹣45°﹣67.5°=67.5°,∴∠BPC=∠BCP,∴BP=BC=4,∴BP′=4.在等腰直角三角形BMP′中,斜边BP′=4,∴BM=BP′=.(3)△ABD为等腰三角形,有3种情形:①若AD=BD,如题图②所示.此时△ABD为等腰直角三角形,斜边AB=4,∴S△ABD=AD•BD=××=4;②若AD=AB,如下图所示:过点D作DE⊥AB于点E,则△ADE为等腰直角三角形,∴DE=AD=AB=∴S△ABD=AB•DE=×4×=;③若AB=BD,则点D与点C重合,可知此时点P、点P′、点M均与点C重合,∴S△ABD=S△ABC=AB•BC=×4×4=8.【总结归纳】本题是几何综合题,考查了相似三角形的性质、等腰直角三角形、等腰三角形、菱形、勾股定理等知识点,难度不大.第(3)问考查了分类讨论的数学思想,是本题的难点.2014年湖南省邵阳市中考数学试题及参考答案一、选择题(本大题共10小题,每小题3分,共30分)1)A.﹣1和0之间B.0和1之间C.1和2之间D.2和3之间2.下列计算正确的是()A.2x﹣x=x B.a3•a2=a6C.(a﹣b)2=a2﹣b2D.(a+b)(a﹣b)=a2+b23.如图的罐头的俯视图大致是()A.B.C.D.4.如图是小芹6月1日﹣7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是()A.1小时B.1.5小时C.2小时D.3小时5.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°6.不等式组1231xx-⎧⎨-⎩>≤的解集在数轴上表示正确的是()A.B.C.D.7.地球的表面积约为511000000km2,用科学记数法表示正确的是()A.5.11×1010km2B.5.11×108km2C.51.1×107km2D.0.511×109km28.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是()A.30°B.45°C.60°D.40°9.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长10.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.以上都不对二、填空题(本大题共8个小题,每小题3分,共24分)11.已知∠α=13°,则∠α的余角大小是.12.将多项式m2n﹣2mn+n因式分解的结果是.13.若反比例函数kyx的图象经过点(﹣1,2),则k的值是.14.如图,在▱ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形:.15.有一个能自由转动的转盘如图,盘面被分成8个大小与性状都相同的扇形,颜色分为黑白两种,将指针的位置固定,让转盘自由转动,当它停止后,指针指向白色扇形的概率是 .16.如图,在平面直角坐标系xOy 中,已知点A (3,4),将OA 绕坐标原点O 逆时针旋转90°至OA′,则点A′的坐标是 .17.如图,在Rt △ABC 中,∠C=90°,D 为AB 的中点,DE ⊥AC 于点E .∠A=30°,AB=8,则DE 的长度是 .18.如图,A 点的初始位置位于数轴上的原点,现对A 点做如下移动:第1次从原点向右移动1个单位长度至B 点,第2次从B 点向左移动3个单位长度至C 点,第3次从C 点向右移动6个单位长度至D 点,第4次从D 点向左移动9个单位长度至E 点,…,依此类推,这样至少移动 次后该点到原点的距离不小于41.三、解答题(本大题共3小题,每小题8分,共24分)19.(8分)计算:212sin 302-⎛⎫︒ ⎪⎝⎭.20.(8分)先化简,再求值:()11111x x x ⎛⎫-- ⎪-+⎝⎭,其中x=2. 21.(8分)如图,已知点A 、F 、E 、C 在同一直线上,AB ∥CD ,∠ABE=∠CDF ,AF=CE . (1)从图中任找两组全等三角形; (2)从(1)中任选一组进行证明.。

湖南省邵阳市中考数学真题试题

湖南省邵阳市中考数学真题试题

湖南省邵阳市2013年中考数学试卷一、选择题(本大题有10个小题,每小题3分,在每小题给出的四个选项中只有一项是符合题目的)3.(3分)函数中,自变量x的取值范围是()x≥﹣课外兴趣小组是()6.(3分)据邵阳市住房公积金管理会透露,今年我市新增住房公积金11.2亿元,其中11.27.(3分)下列四个点中,在反比例函数的图象上的是()8.(3分)如图是我市几个旅游景点的大致位置示意图,如果用(0,0)表示新宁莨山的位置,用(1,5)表示隆回花瑶的位置,那么城市南山的位置可以表示为()9.(3分)在△ABC中,若|sinA﹣|+(cosB﹣)2=0,则∠C的度数是()10.(3分)如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD 于点O,连结AO,下列结论不正确的是()二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)在计算器上,依次按键2、x2,得到的结果是.12.(3分)因式分解:x2﹣9y2= (x+3y)(x﹣3y).13.(3分)今年五月份,由于H7N9禽流感的影响,我市鸡肉的价格下降了10%,设鸡肉原来的价格为a元/千克,则五月份的价格为0.9a 元/千克.14.(3分)如图所示,在△ABC中,点D、E分别是AB、AC的中点,连结DE,若DE=5,则BC= 10 .15.(3分)计算:= 1 .16.(3分)端午节前,妈妈去超市买了大小、质量及包装均相同的粽子8个,其中火腿粽子5个,豆沙粽子3个,若小明从中任取1个,是火腿粽子的概率是.17.(3分)如图所示,弦AB、CD相交于点O,连结AD、BC,在不添加辅助线的情况下,请在图中找出一对相等的角,它们是∠A与∠C(答案不唯一).18.(3分)如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件∠B=90°,使四边形ABCD为矩形.三、解答题(本大题有3个小题,每小题8分,共24分)19.(8分)先化简,再求值:(a﹣b)2+a(2b﹣a),其中,b=3.20.(8分)解方程组:.21.(8分)将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB.(2)求∠DFC的度数.四、应用题(本大题有3个小题,每小题8分,共24分)22.(8分)如图所示,某窗户有矩形和弓形组成,已知弓形的跨度AB=3cm,弓形的高EF=1cm,现计划安装玻璃,请帮工程师求出所在圆O的半径r.23.(8分)如图所示,图①表示的是某教育网站一周内连续7天日访问总量的情况,图②表示的是学生日访问量占日访问总量的百分比情况,观察图①、②,解答下列问题:(1)若这7天的日访问总量一共约为10万人次,求星期三的日访问总量;(2)求星期日学生日访问总量;(3)请写出一条从统计图中得到的信息.24.(8分)雅安地震后,政府为安置灾民,从某厂调拨了用于搭建板房的板材5600m2和铝材2210m,计划用这些材料在某安置点搭建甲、乙两种规格的板房共100间,若搭建一间甲请你根据以上信息,设计出甲、乙两种板房的搭建方案.五、综合题(本大题有2个小题,其中25题8分,26题10,共18分)25.(8分)如图所示,已知抛物线y=﹣2x2﹣4x的图象E,将其向右平移两个单位后得到图象F.(1)求图象F所表示的抛物线的解析式:(2)设抛物线F和x轴相交于点O、点B(点B位于点O的右侧),顶点为点C,点A位于y 轴负半轴上,且到x轴的距离等于点C到x轴的距离的2倍,求AB所在直线的解析式.26.(10分)如图所示,在Rt△ABC中,AB=BC=4,∠ABC=90°,点P是△ABC的外角∠BCN 的角平分线上一个动点,点P′是点P关于直线BC的对称点,连结PP′交BC于点M,BP′交AC于D,连结BP、AP′、CP′.(1)若四边形BPCP′为菱形,求BM的长;(2)若△BMP′∽△ABC,求BM的长;(3)若△ABD为等腰三角形,求△ABD的面积.一、选择题1-5 DBCBC 6-10 BACDA 二、填空题11、12、(x+3y)(x﹣3y)13、0.9a14、1015、 116、17、∠A与∠C(答案不唯一)18、∠B=90°三、解答题,所以,方程组的解是∴∠1=∠2=∠DCE,AB=cm所在圆(r=所在圆的半径为cm由题意,得,BC=×4=2.(180°﹣45°)=67.5°,BP′=.=D•BD=×AD=AB==AB•DE=×4×=AB•BC=。

湖南省邵阳市中考数学试题(word版)

湖南省邵阳市中考数学试题(word版)

15.(2014·湖南邵阳)有一个能自由转动的转盘如图,盘面被分成 8 个大小与性状都相同 的扇形,颜色分为黑白两种,将指针的位置固定,让转盘自由转动,当它停止后,指针指向
白色扇形的概率是 .
考点: 分析: 解答:
几何概率 求出白色扇形在整个转盘中所占的比例即可解答. 解:∵每个扇形大小相同,因此阴影面积与空白的面积相等,
在数轴上表示不等式的解集;解一元一次不等式组 先求出不等式组中每一个不等式的解集,再求出它们的公共部分, 然后把不等式的解集表示在数轴上即可.
解:
,解得

点评:
故选:B. 把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左 画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示 解集的线的条数与不等式的个数一样,那么这段就是不等式组的解 集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示; “<”,“>”要用空心圆点表示.
性质得∠AOB=∠C+∠OBC,由于∠C=∠OBC,所以∠C=
AOB=30°. 解:连结 OB,如图, ∵AB 与⊙O 相切, ∴OB⊥AB, ∴∠ABO=90°, ∵∠A=30°, ∴∠AOB=60°, ∵∠AOB=∠C+∠OBC, 而∠C=∠OBC,
∴∠C= AOB=30°.
故选 A.
点评:
本题考查了切线的性质:圆的切线垂直于经过切点的半径.
D.(a+b)(a﹣b) =a2+b2
考点: 专题: 分析:
解答:
点评:
完全平方公式;合并同类项;同底数幂的乘法;平方差公式 有
计算题. A、原式合并同类项得到结果,即可作出判断; B、原式利用同底数幂的乘法法则计算得到结果,即可作出判断; C、原式利用完全平方公式展开得到结果,即可作出判断; D、原式利用平方差公式计算得到结果,即可作出判断. 解:A、原式=x,正确; B、原式=x5,错误;

【邵阳中考数学试题及答案】.docx

【邵阳中考数学试题及答案】.docx

二00七年邵阳市初中毕业学业考试试题卷数学温馨提示:(1)本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,试卷满分为120分.(2)请你将姓名、准考证号等相关信息按要求填涂在答题卡上.(3)请你在管廓卡上作答,答在本试题卷上无效.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中只有一项是符合题目要求的.认真思考,相信你一定能选准)1.—1 — 3 等于()A. 2B. -2C. 4D. -42.下列“QQ表情”中属于轴对称图形的是()驾函嬲与3.下列计算正确的是()■弟站10,086,826,854 TP 946■网用空何10,093,173,145 T节9.413A. B. C.D.4.图(一)是一台计算机D盘属性图的一部分, 从中可以看出该硬盘容量的大小,请用科学记数法将该硬盘容量表示为字节.(保留3位有效数字)图(一)A. 2.01X10'°B. 2.O2X1O10C. 2.02X109D. 2.018x10'°之比为(A. 1:4B. 1:3C. 1:2D. 1:V27. 将五张分别印有北京2008年奥运吉祥物“贝贝、晶晶、 欢欢、迎迎、妮妮”的卡片(卡片的形状、大小一样,质地 相同)放入盒中,从中随机地抽取一张卡片印有“欢欢”的 概率为(8. 若抛物线y = f —2x + c 与y 轴的交点为(0, —3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x = lC.当x = l 时,y 的最大值为—4D.抛物线与X 轴的交点为(—1,0),(3,0)二、填空题(本大题共有8小题,每小题3分,共24分.多动脑筋,相信你一定能填对)9. (1 + x ) () — x~ — 1 .工+工= __________________ .x-y y-xX N 1不等式组 _的解集是 __________________ .X + 1W2如图(四),点4(1,2)在函数y =-的图象上,贝狄= x13,为了解某校九年级学生每天的睡眠时间情况,随机调查了该校九年级20名学生,将所得数据整理并制成下表:14,如图(五),梯形ABCD 中,AD// BC , AB = CD = AD = 2 cm, ZB = 60°,则梯形 ABCD 的周长为15. 如图(六)是一张电脑光盘的表面,两个圆的圆心都是点大圆的弦A3所在直线是小圆的切线,切点为C.已知大圆的半 径为5cm,小圆的半径为1cm,则弦AB 的长度为cm.睡眠时间(小时)6 7 8 9 学生人数(个) 8 6 4 2据此估计该校九年级学生每天的平均睡眠时间大约是]_ A. B2j_C. D410.11.12.cm. ) j_ 3 5图(六)16.请你写出一个有一根为0的一兀二次方程:三、解答题(本大题共有3小题,每小题6分,共18分,弄清算理,相信你一定能解答正确)D做解答题,别忘了写出必要的过程噢!17.已知X是有理数,y是无理数,请先化简下面的式子,再在相应的圆圈内选择你喜欢的数代入求值:(x-y)2 + y(2x-y).18.如图(七),AAB C中,ZACB = 90°,将△A3C沿着一条直线折叠后,使点A与点C重合(图②).(1)在图①中画出折痕所在的直线/.设直线/与A3, AC分别相交于点O, E ,连结CZ).(画图工具不限,不要求写画法)(2)请你找出完成问题(1)后所得到的图形中的等腰二角形.(不要求证明)19.如图(八),在ABCD 点E, F分别在A3, CD±,连结AF, CE .请添加一个你认为合适的条件,使△ ADF竺-CBE ,并给予证明.四、应用题(本大题共有4小题,每小题8分,共32分.注意建模,你一定能学以致用)20.2007年上半年,全国猪肉价格持续上涨.针对这种现象,我市某校数学课外兴趣小组的同学对当地上半年猪肉价格和小明一家对肉类食品的消费情况进行了调查,并将收集的数图(九)(1) 试求2007年1〜6月份猪肉价格的极差;(2) 若小明一家每月对肉类食品的消费金额为200元,则小明一家一月份、二月份、五月 份的猪肉消费金额分别为多少元;(3) 根据所求数据,并结合统计图表,你能获得什么信息.21.2007年4月,我市开通了 “邵阳一一上海”的直通列车,为我市居民外出旅游和商业 运输提供了便利.据了解,直通列车开通以后,我市旅游公司将“邵阳一上海”线路的旅 游报价(单位:元/人)降为直通列车开通以前的9.直通列车开通以前3人到上海旅游的6旅游费用添加400元,相当于直通列车开通后4人到上海旅游的旅游费用.试求直通列车开 通前、后我市旅游公司对“邵阳一一上海”线路的旅游报价.22, 为了增强农民抵御大病风险的能力,政府积极推行农村医疗保险制度.我市某县根据本 地的实际情况,制定了纳入医疗保险的农民住院医疗费用的报销规定:享受医保的农民可在 定点医院住院治疗,山患者先垫付医疗费用,住院治疗结束后凭发票到县医保中心报销.住小明一家2007年一月份 对肉类食品消费扇形统计图小明一家2007年二月份 对肉类食品消费扇形统计图小明一家2007年五月份 对肉类食品消费扇形统计图邵阳市某地2007年上半年猪肉价格折线统计图据进行分析整理,1x2 1 --- F 2x3 1 ------ + ••• +3x41 2006x2007 费用范围 100元以下(含100元)100元以上的部分报销比例标准不予报销60%(1) 设某位享受医保的农民在一次住院治疗中的医疗费用为X 元(x>100),按规定报销 的医疗费用为y 元,试写出y 与x 的函数关系式;(2) 若该农民在这次住院治疗中的医疗费用为1000元,则他在这次住院治疗中报销的医疗 费用和自付的医疗费用各为多少元.23. “村村通路工程”加快了邵阳市建设社会主义新农村的步伐.如图(十),C 村村民们 欲修建一条水泥公路将C 村与县级公路相连.在公路A 处测得C 村在北偏东60°方向,前 进500米,在3处测得C 村在北偏东30°方向.(1) 为节约资源,要求所修公路长度最短.试求符合条件的公路长度•(结果保留整数)(2) 经预算,修建1000米这样的水泥公路约需人民币20万元.按国家的相关政策,政府 对修建该条水泥公路拨款人民币5万元,其余部分由村民自发筹集.试求修建该条水泥公路 村民需自筹资金多少万元.五、规律探究题(本大题10分.大胆实践,你一定能探索成功)24, 观察下列等式1 1 111 1 _1 1话T —5'反T 厂5'(1)猜想并写出: --------〃(〃 +1)(2)直接写出下列各式的计算结果:将以上三个等式两边分别相加得:1 ----- + 1x2 1 1 -------- 1 ------- 2x3 3x4,11111,13 =] -------- 1 --------- 1 ------- =] -------- =——2 23 34 4 41 1 1 1② ------- 1 -------- 1 -------- 1 ----- 1 ----------- 1x2 2x3 3x4 〃 (〃 +1) (3)探究并计算:六、综合题(本大题12分.反复尝试,你一定能有所收获)25. 如图(十一),直线y=一亨x + 2与x 轴,y 轴分别相交于点A, B.将△AOB 绕点。

2011年湖南省邵阳市中考数学试题(含答案)

2011年湖南省邵阳市中考数学试题(含答案)

邵阳市2011年初中毕业水平考试试题卷数 学一、选择题(本大题有8个小题,每小题3分,共24分,在每小题给出的四个选项中只有一项是符合题目要求的) 1.-(-2)= A .-2 B .2 C .±2 D .4【解题思路】:运用相反数定义 【答案】:B 【点评】:这里考察了相反数的定义,首先要明确是求哪个数的相反数,一个数前面有负号表示什么意思。

难度较小2.如果□×3ab =3a 2b ,则□内应填的代数式是 A .ab B .3ab C .a D .3a【解题思路】:运用因数因数积之间的关系变形abba 332约分即可。

【答案】:C 【点评】:本题考察了约分(同底数幂的性质);思路2:把四个选项分别代入运用同底数幂的乘法运算验证。

难度较小 3.下列图形不是轴对称...图形的是A B C D【解题思路】:轴对称图形是把图形沿某直线折叠,易于中心对称图形相混淆,只注重了对称。

【答案】:C 【点评】:本题考察了轴对称图形和中心对称图形的区别。

难度较小4.图(一)是某农户2010年收入情况的扇形统计图,已知他2010年的总收入为5万元,则他的打工收入是 A .0.75万元 B .1.25万元 C .1.75万元 D .2万元【解题思路】:该项收入所占的百分比总收入=⨯ 【答案】:B【点评】:该项收入所占的百分比总收入=⨯,难度较小5.已知点(1,1)在反比例函数y =kx (k 为常数,k ≠0)的图象上,则这个反比例函数的大致图象是AB C D【解题思路】:点(1,1)在反比例函数y =k x (k 为常数,k ≠0)的图象上,把点(1,1)代入y =kx可以求出k=1,所以双曲线在一、三象限。

【答案】:C【点评】:本题考察了点在图像上,点的坐标与解析式之间的关系;以及反比例函数的性质。

难度较小6.地球上水的总储量为1.39×1018m 3,但目前能被人们生产、生活利用的水只占总储量的0.77%,即约为0.0107×1018m 3,因此我们要节约用水.请将0.0107×16218181007.1101007.1100107.0⨯=⨯⨯=⨯-1018m 3用科学记数法表示是A .1.07×1016m 3B .0.107×1017m 3C .10.7×1015m 3D .1.07×1017m 3【解题思路】:解题时注意是哪个数据,16218181007.1101007.1100107.0⨯=⨯⨯=⨯-【答案】:A .粮食作物收入40% 经济作 物收入 35%打工收入 25%图(一)【点评】:用ma 10⨯表示的数称为科学计数法,这里100<<a .如果所给的数据小于1,10的指数是负数,如果所给的数据大于10,10的指数是正数;然后结合幂的性质计算即可。

湖南省邵阳市中考数学试卷(含答案)

∴星期日学 日访问总 为:3×30 =0.9( 万人 )
(3) 某教 网站一 内星期日 日访问总 大. 24、
: :设甲种板房搭 x 间 则乙种板房搭 (100 x)间
据 意得:
得:20□x□21x 能取整数
则 x=20 21 有 2种搭 方案:
方案一 :甲种板房搭 方案二 :甲种板房搭
20 间 乙种板房搭 21 间 乙种板房搭
元可用科学记数法表示为( )
A. 11.2×108 元
B. 1.12×109 元
年我 新增住房公 金 1.2 元 其中 11.2
C. 11.2×1010 元
D. 11.2×107 元
1
7.(3 )下列 个点中 在反比例函数
A.(3 2)
B.(3 2)
上 是( C.(2 3)
) D.( 2 3)
8.(3 ) 是我 几个旅游景 用(1 5)点表示隆回 瑶
(2) ∵∠D=30° ∠1=45° ∴∠DFC=180° 30° 45°=105°.
7
、用 22、
: :∵弓形 ∴OE⊥AB
跨度 AB=3cm
EF 为弓 形 高
∴AF= AB= cm
∵ 所在 O 半 为 弓形 高 EF=1cm
∴AO= OF= 1 在 t△AOF 中 AO2=AF2+OF2 即 2=( )2+( 1) 2
结 DE 若
2
15.(3 )计算:
=1.
16.(3 )端午节前 妈妈 超 买 大小、质 包装 相同
8 个 其中 腿
5个 豆
3 个 若小明 中任取 1 个 是 腿
概率是 .
17.(3
所示 AB、CD 相交 点 O 结 AD、BC 在不添加辅助线

2010年湖南省邵阳市中考数学试卷及答案(word整理版)

O 1ABC D MNEFA D C BE O A B D C2010年湖南邵阳市中考数学试卷一、选择题(本大题共8小题,每小题3分,满分24分) 1.―|―3|=( )A .―3B .― 1 3C . 13 D .―3 2.(―a )2·a 3=( )A .―a 5B .a 5C .―a 6D .a 6 3.下列长度的三条线段能组成三角形的是( )A .1,2,3B .2,2,4C .3,4,5D .3,4,8 4.如图,数轴上表示的关于x 的一元一次不等式的解集为( ) A .x ≤1 B .x ≥1 C .x <1 D .x >15.某几何体的三视图如图所示,则这个几何体是( )6.如图是某商场一天的运动鞋销售情况统计图.这些运动鞋的尺码组成的一组数据,众数和 中位数分别是( )A .25,25B .25,24.5C .24.5,25D .24.5,24.57.如图,在边长为1的小正方形组成的网格中,半径为2的⊙O 1的圆心O 1在格点上,将一个与⊙O 1重合的等圆,向右平移2个单位,再向上平移2个单位得到⊙O 2,则⊙O 2与⊙O 1的位置关系是( ) A .内切 B .外切 C .相交 D .外离8.某天,小明走路去学校,开始他以较慢的速度匀速前进,然后他越走越快,走了一段时间,最后他以较快的速度匀速前进到达学校.小明走路的速度v (m/min )是时间t (min )的函数,能正确反映这一函数关系的大致图象是( )二、填空题(本大题共8小题,每小题3分,满分24分)9.若二次根式1+x 在实数范围内有意义,则x 的取值范围是 .10.如图,已知直线AB ∥CD ,直线MN 分别与AB 、CD 交于点E 、F .若∠BEM =65°,则∠CFN = .11.如图是小明家今年1月份至5月份的每月用电量的统计图,据此推断他家这五个月的月平均用电量是 度.12.化简:x 2 x 2-y 2 -y 2x 2-y 2= .13.我国曙光公司研制的“星云”号大型计算机每秒能完成12 700 000亿次运算.用科学记数法将该计算机的运算速度表示为 次/秒.14.如图,直线y =k 1x +b 与双曲线y = k 2x 相交于点P 、Q .若点P 的坐标为(1,2),则点Q 的坐标为 . 15.如图,在等边△ABC 中,以AB 边为直径的⊙O 与BC 交于点D ,连接AD ,则∠CAD 的度数是 . 16.如图,在等腰梯形ABCD 中,AB ∥CD ,AD =BC =CD ,点E 在AB 上,连接CE .请添加一个适当的条件: ,使四边形AECD 为菱形. 三、解答题(本大题共3小题,每小题6分,满分18分)17.计算:31851531+⨯-⎪⎭⎫⎝⎛-.18.给出3个整式:x 2、2x +1、x 2-2x .(1)从上面3个整式中,选择你喜欢的两个整式进行加法运算,若结果能因式分解,请将其因式分解;(2)从上面3个整式中,任意选择两个整式进行加法运算,其结果能因式分解的概率是多少?))))A B C D19.如图,将矩形纸片ABCD 沿EF 折叠,使A 点与C 点重合,点D 落在点G 处,EF 为折痕.(1)求证:△FGC ≌△EBC ;(2)若AB =8,AD =4,求四边形ECGF (阴影部分)的面积.四、应用题(本大题共4小题,每小题8分,满分32分)20.某市为了解九年级学生身体素质测试情况,随机抽取了本市九年级部分学生的身体素质测试成绩为样本,按A (优秀)、B (良好)、C (合格)、D (不合格)四个等级进行统计,并将统计结果绘制成如下统计图表.请你结合图表中所给信息解答下列问题:(1)请将上面表格中缺少的数据补充完整;(2)扇形统计图中“A ”部分所对应的圆心角的度数是 ;(3)该市九年级共有80 000名学生参加了身体素质测试,试估计测试成绩合格以上(含合格)的人数.21.为了增强居民的节约用水意识,某市制定了新的水费收费标准:每户每月不超过5吨的部分,自来水公司按每吨2元收费;超过5吨部分,按每吨2.6元收费.设某用户月用水量为x 吨,自来水公司应收水费y 元.(1)试写出y (元)与x (吨)之间的函数关系式;(2)该用户今年5月份的用水量为8吨,自来水公司应收水费多少元?A B C D 40%28% 12%22.如图,在上海世博会会场馆通道的建设中,建设工人将坡长10m(AB=10m)、坡角为20.5°(∠BAC =20.5°)的斜坡通道改造成坡角为12.5°(∠BDC=12.5°)斜坡通道,使坡的起点从点A向左平移至点D处,求改造后的斜坡通道BD的长(结果精确到0.1m,参考数据:sin12.5°≈0.21,sin20.5°≈0.35,sin69.5°≈0.94).23.小明去离家2.4km的体育馆看球赛,进场时发现门票还放在家中,此时离比赛开始还有45min,于是他立即步行(匀速)回家取票.在家取票用时2min,取到票后,他马上骑自行车(匀速)赶往体育馆.已知小明骑自行车从家赶往体育馆比从体育馆步行回家所用时间少20min,骑自行车的速度是步行速度的3倍.(1)小明步行的速度(单位:m/min)是多少?(2)小明能否在球赛开始前赶到体育馆吗?五、探究题(本大题10分)24.阅读下列材料,然后解答问题.经过正四边形(即正方形)各顶点的圆叫做这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫做这个圆的内接正四边形.如图,正方形ABCD内接于⊙O,⊙O的面积为S1,正方形ABCD的面积为S2.以圆心O为顶点作∠MON,使∠MON=90°.将∠MON绕点O旋转,OM、ON分别与⊙O交于点E、F,分别与正方形ABCD的边交于点G、H.设由OE、OF、EF⌒及正方形ABCD的边围成的图形(阴影部分)的面积为S.(1)当OM经过点A时(如图①),则S、S1、S2之间的关系为:(用含S1、S2的代数式表示);(2)当OM⊥AB于G时(如图②),则(1)中的结论仍然成立吗?请说明理由;(3)当∠MON旋转到任意位置时(如图③),则(1)中的结论仍然成立吗?请说明理由.六、综合题(本大题12分)25.如图,抛物线y=-14x2+x+3与x轴交于点A、B,与y轴交于点C,顶点为点D,对称轴l与直线BC交于点E,与x轴交于点F.(1)求直线BC的解析式.(2)设点P为该抛物线上的一个动点,以点P为圆心、r为半径作⊙P.①当点P运动到点D时,若⊙P与直线BC相交,求r的取值范围;②若r=455,是否存在点P使⊙P与直线BC相切?若存在,请求出点P的坐标;若不存在,请说明理由.NN 图①图②图③2010年湖南邵阳市中考数学试卷答案1~8.ABCDBBCA9.1x -≥ 10.65° 11.144 12.x y + 13.151.2710⨯ 14.(12)--, 15.30° 16.答案不唯一,例如AE DC =17.解:111535-⎛⎫-⨯+ ⎪⎝⎭=312-+ ······································································································································ 5分=4. ············································································································································· 6分 18.解:(1)2(21)x x ++=221x x ++ ································································································································· 1分=2(1)x +. ··································································································································· 3分 19.(1)证明: 四边形ABCD 是矩形,90A B BCD D AD BC ∴∠=∠=∠=∠==°,. ································································· 1分将矩形纸片ABCD 沿EF 折叠,点A 与点C 重合,点D 落在点G 处, 90G D ∴∠=∠=°,90ECG A CG AD ∠=∠==°,, ···················································· 2分 9090G B CG BC ECG BCD ∴∠=∠==∠=∠=°,,°, 90GCF BCE FCE ∴∠=∠=∠°-, ····················································································· 3分 FGC EBC ∴△≌△. ··············································································································· 4分 (2)解:由(1)得FGC EBC △≌△,EBCF ECGF AEFD S S S ∴==四边形四边形四边形, 2ABCD ECGF AEFD EBCF S S S S ∴=+=矩形四边形四边形四边形,11841222ABCD ECGF S S ∴==⨯⨯=矩形四边形. ········································································· 6分 20.解:(1)120. ····················································································································· 3分(2)72°. ································································································································· 5分 (3)80000(112%)70400⨯-=. ························································································· 8分21.解:(1)当5x ≤时,2y x =; ······················································································ 3分当5x >时,52 2.6(5) 2.63y x x =⨯+⨯-=-. ································································· 6分(2)当8x =时, 2.63 2.68317.8y x =-=⨯-=(元).答:(略) ····································································································································· 8分 22.解:在Rt ABC △中,90C ∠=°,2030BAC '∠=°,10AB =米,sin 203010BC BCAB '==°,10sin 2030 3.5BC '∴=⨯°≈(米). ······································· 4分 在Rt BDC △中,90C ∠=°,1230 3.5D BC '∠==°,米, 3.5sin1230BC BD BD '==°, 3.5 3.516.7sin12300.21BD ∴='≈≈°(米). 答:(略) ····································································································································· 8分23.解:(1)设小明步行的速度是x 米/分钟,则小明骑自行车的速度是3x 米/分钟.根据题意,列方程得:24002400203x x-=, ········································································· 4分 解方程,得80x =,经检验,80x =是原方程的解.答:(略) ····································································································································· 6分(2)小明从体育馆步行回家的时间为24003080=分钟, 小明骑自行车从家赶往体育馆的时间为2400380⨯=10分钟,小明在家取票用的时间为2分钟,301024245++=< ,∴小明能在球赛开始前赶到体育馆. ········································· 8分24.解:(1)121()4S S S =-. ······························································································· 2分(2)(1)中的结论仍然成立.11904OEF EOF S S ∠=∴=扇形°,, 9090OGB EOF ABC OHB ∠=∠=∠=∠= °,°,1122BG AB BC BH ∴===,∴四边形OGBH 为正方形,2221124GOHBS BG AB S ⎛⎫∴=== ⎪⎝⎭四边形,121()4OEF GOHB S S S S S ∴=-=-扇形四边形. ············································································ 6分 (3)(1)中的结论仍然成立.11904OEF EOF S S ∠=∴=扇形°,. 过点O 作1OG AB ⊥于1G ,过点O 作1OH BC ⊥于1H , 由(2)可知四边形11OG BH 为正方形,11OG OH ∴=.1190G OH ∠= °,90MON ∠=°,11190G OG H OH GOH ∴∠=∠=∠°-.又1190OH H OG G ∠=∠=°,11OH H OG G ∴△≌△, ·········································································································· 8分1111OH H OG G OG BH OGBH S S S S ∴=∴=△△正方形四边形,.由(2)可知,11214OG BH S S =正方形,214OGBH S S ∴=四边形, 121()4OEF GOHBS S S S S ∴=-=-扇形四边形. ·········································································· 10分。

历年湖南省邵阳市中考数学试卷(含答案)

2017年湖南省邵阳市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)25的算术平方根是()A.5 B.±5 C.﹣5 D.252.(3分)如图所示,已知AB∥CD,下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠43.(3分)3﹣π的绝对值是()A.3﹣πB.π﹣3 C.3 D.π4.(3分)下列立体图形中,主视图是圆的是()A.B.C. D.5.(3分)函数y=中,自变量x的取值范围在数轴上表示正确的是()A.B.C.D.6.(3分)如图所示,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为()A.120°B.100°C.80°D.60°7.(3分)如图所示,边长为a的正方形中阴影部分的面积为()A.a2﹣π()2B.a2﹣πa2C.a2﹣πa D.a2﹣2πa8.(3分)“救死扶伤”是我国的传统美德,某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图,根据统计图判断下列说法,其中错误的一项是()A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%D.认为该扶的占92%9.(3分)如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家,其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A.1.1千米 B.2千米C.15千米D.37千米10.(3分)如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(﹣1,1),(﹣3,1),(﹣1,﹣1),30秒后,飞机P飞到P′(4,3)位置,则飞机Q,R的位置Q′,R′分别为()A.Q′(2,3),R′(4,1)B.Q′(2,3),R′(2,1)C.Q′(2,2),R′(4,1) D.Q′(3,3),R′(3,1)二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)将多项式mn2+2mn+m因式分解的结果是.12.(3分)2016年,我国又有1240万人告别贫困,为世界脱贫工作作出了卓越贡献,将1240万用科学记数法表示为a×10n的形式,则a的值为.13.(3分)若抛物线y=ax2+bx+c的开口向下,则a的值可能是.(写一个即可)14.(3分)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=,现已知△ABC的三边长分别为1,2,,则△ABC的面积为.15.(3分)如图所示的正六边形ABCDEF,连结FD,则∠FDC的大小为.16.(3分)如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.则∠AOC的大小为.17.(3分)掷一枚硬币两次,可能出现的结果有四种,我们可以利用如图所示的树状图来分析所有可能出现的结果,那么掷一枚硬币两次,至少有一次出现正面的概率是.18.(3分)如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40km,仰角是30°,n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是km.三、解答题(本大题共8小题,第19-25题每小题8分,第26题10分,共66分,解答应写出必要的文字说明、演算步骤或证明过程)19.(8分)计算:4sin60°﹣()﹣1﹣.20.(8分)如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.21.(8分)先化简,再在﹣3,﹣1,0,,2中选择一个合适的x值代入求值.•.22.(8分)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.23.(8分)某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.24.(8分)如图所示,直线DP和圆O相切于点C,交直径AE的延长线于点P,过点C作AE的垂线,交AE于点F,交圆O于点B,作平行四边形ABCD,连接BE,DO,CO.(1)求证:DA=DC;(2)求∠P及∠AEB的大小.25.(8分)如图1所示,在△ABC中,点O是AC上一点,过点O的直线与AB,BC的延长线分别相交于点M,N.【问题引入】(1)若点O是AC的中点,=,求的值;温馨提示:过点A作MN的平行线交BN的延长线于点G.【探索研究】(2)若点O是AC上任意一点(不与A,C重合),求证:••=1;【拓展应用】(3)如图2所示,点P是△ABC内任意一点,射线AP,BP,CP分别交BC,AC,AB于点D,E,F,若=,=,求的值.26.(10分)如图所示,顶点为(,﹣)的抛物线y=ax2+bx+c过点M(2,0).(1)求抛物线的解析式;(2)点A是抛物线与x轴的交点(不与点M重合),点B是抛物线与y轴的交点,点C是直线y=x+1上一点(处于x轴下方),点D是反比例函数y=(k>0)图象上一点,若以点A,B,C,D为顶点的四边形是菱形,求k的值.2017年湖南省邵阳市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)(2017•邵阳)25的算术平方根是()A.5 B.±5 C.﹣5 D.25【分析】依据算术平方根的定义求解即可.【解答】解:∵52=25,∴25的算术平方根是5.故选:A.【点评】本题主要考查的是算术平方根的定义,熟练掌握算术平方根的定义是解题的关键.2.(3分)(2017•邵阳)如图所示,已知AB∥CD,下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠4【分析】根据平行线的性质即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠4,故选C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.3.(3分)(2017•邵阳)3﹣π的绝对值是()A.3﹣πB.π﹣3 C.3 D.π【分析】直接利用绝对值的定义分析得出答案.【解答】解:∵3﹣π<0,∴|3﹣π|=π﹣3.故选B.【点评】此题主要考查了绝对值,正确把握定义是解题关键.4.(3分)(2017•邵阳)下列立体图形中,主视图是圆的是()A.B.C. D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:A、的主视图是圆,故A符合题意;B、的主视图是矩形,故B不符合题意;C、的主视图是三角形,故C不符合题意;D、的主视图是正方形,故D不符合题意;故选:A.【点评】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.5.(3分)(2017•邵阳)函数y=中,自变量x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据被开方数大于等于0列式计算即可得解,然后在数轴上表示即可.【解答】解:由题意得,x﹣5≥0,解得x≥5.在数轴上表示如下:故选B.【点评】本题考查了函数自变量的范围及在数轴上表示不等式的解集,解题的关键是从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)(2017•邵阳)如图所示,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为()A.120°B.100°C.80°D.60°【分析】根据两直线平行,同旁内角互补解答.【解答】解:∵铺设的是平行管道,∴另一侧的角度为180°﹣120°=60°(两直线平行,同旁内角互补).故选D.【点评】本题考查了两直线平行,同旁内角互补的性质,熟记性质是解题的关键.7.(3分)(2017•邵阳)如图所示,边长为a的正方形中阴影部分的面积为()A.a2﹣π()2B.a2﹣πa2C.a2﹣πa D.a2﹣2πa【分析】根据图形可知阴影部分的面积是正方形的面积减去直径为a的圆的面积,本题得以解决.【解答】解:由图可得,阴影部分的面积为:a2﹣,故选A.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.8.(3分)(2017•邵阳)“救死扶伤”是我国的传统美德,某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图,根据统计图判断下列说法,其中错误的一项是()A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%D.认为该扶的占92%【分析】根据百分比和圆心角的计算方法计算即可.【解答】解:认为依情况而定的占27%,故A正确;认为该扶的在统计图中所对应的圆心角是65%×360°=234°,故B正确;认为不该扶的占1﹣27%﹣65%=8%,故C正确;认为该扶的占65%,故D错误;故选D.【点评】本题考查了扇形统计图,掌握百分比和圆心角的计算方法是解题的关键.9.(3分)(2017•邵阳)如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家,其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A.1.1千米 B.2千米C.15千米D.37千米【分析】小徐第一个到达的地方应是菜地,也应是第一次路程不再增加的开始,所对应的时间为15分,路程为1.1千米.【解答】解:由图象可以看出菜地离小徐家1.1千米,故选:A.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义是解题关键.10.(3分)(2017•邵阳)如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(﹣1,1),(﹣3,1),(﹣1,﹣1),30秒后,飞机P 飞到P′(4,3)位置,则飞机Q,R的位置Q′,R′分别为()A.Q′(2,3),R′(4,1)B.Q′(2,3),R′(2,1)C.Q′(2,2),R′(4,1) D.Q′(3,3),R′(3,1)【分析】由点P(﹣1,1)到P′(4,3)知,编队需向右平移5个单位、向上平移2个单位,据此可得.【解答】解:由点P(﹣1,1)到P′(4,3)知,编队需向右平移5个单位、向上平移2个单位,∴点Q(﹣3,1)的对应点Q′坐标为(2,3),点R(﹣1,﹣1)的对应点R′(4,1),故选:A.【点评】本题考查了坐标确定位置,熟练掌握在平面直角坐标系确定点的坐标是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2017•邵阳)将多项式mn2+2mn+m因式分解的结果是m(n+1)2.【分析】根据提公因式法、公式法,可得答案.【解答】解:原式=m(n2+2n+1)=m(n+1)2,故答案为:m(n+1)2.【点评】本题考查了因式分解,利用提公因式、完全平方公式是解题关键.12.(3分)(2017•邵阳)2016年,我国又有1240万人告别贫困,为世界脱贫工作作出了卓越贡献,将1240万用科学记数法表示为a×10n的形式,则a的值为1.24.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1240万有8位,所以可以确定n=8﹣1=7.【解答】解:1240万=1.24×107,故a=1.24.故答案为:1.24.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.13.(3分)(2017•邵阳)若抛物线y=ax2+bx+c的开口向下,则a的值可能是﹣1.(写一个即可)【分析】根据二次项系数小于0,二次函数图象开口向下解答.【解答】解:∵抛物线y=ax2+bx+c的开口向下,∴a<0,∴a的值可能是﹣1,故答案为:﹣1.【点评】本题考查了二次函数的性质,是基础题,需熟记.14.(3分)(2017•邵阳)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=,现已知△ABC的三边长分别为1,2,,则△ABC的面积为1.【分析】根据题目中的面积公式可以求得△ABC的三边长分别为1,2,的面积,从而可以解答本题.【解答】解:∵S=,∴△ABC的三边长分别为1,2,,则△ABC的面积为:S==1,故答案为:1.【点评】本题考查二次根式的应用,解答本题的关键是明确题意,利用题目中的面积公式解答.15.(3分)(2017•邵阳)如图所示的正六边形ABCDEF,连结FD,则∠FDC的大小为90°.【分析】首先求得正六边形的内角的度数,根据等腰三角形的性质即可得到结论.【解答】解:∵在正六边形ABCDEF中,∠E=∠EDC=120°,∵EF=DE,∴∠EDF=∠EFD=30°,∴∠FDC=90°,故答案为:90°【点评】此题考查了正多边形和圆.等腰三角形的性质,此题难度不大,注意数形结合思想的应用.16.(3分)(2017•邵阳)如图所示,已知∠AOB=40°,现按照以下步骤作图:①在OA,OB上分别截取线段OD,OE,使OD=OE;②分别以D,E为圆心,以大于DE的长为半径画弧,在∠AOB内两弧交于点C;③作射线OC.则∠AOC的大小为20°.【分析】直接根据角平分线的作法即可得出结论.【解答】解:∵由作法可知,OC是∠AOB的平分线,∴∠AOC=∠AOB=20°.故答案为:20°.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.17.(3分)(2017•邵阳)掷一枚硬币两次,可能出现的结果有四种,我们可以利用如图所示的树状图来分析所有可能出现的结果,那么掷一枚硬币两次,至少有一次出现正面的概率是.【分析】画树状图展示所有4种等可能的结果数,再找出掷一枚硬币两次,至少有一次出现正面的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有4种等可能的结果数,其中掷一枚硬币两次,至少有一次出现正面的结果数为3,所以掷一枚硬币两次,至少有一次出现正面的概率=.故答案为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.18.(3分)(2017•邵阳)如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40km,仰角是30°,n 秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是(20﹣20)km.【分析】分别在Rt△ALR,Rt△BLR中,求出AL、BL即可解决问题.【解答】解:在Rt△ARL中,∵LR=AR•cos30°=40×=20(km),AL=AR•sin30°=20(km),在Rt△BLR中,∵∠BRL=45°,∴RL=LB=20,∴AB=LB﹣AL=(20﹣20)km,故答案为(20﹣20)km.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的概念解决问题.三、解答题(本大题共8小题,第19-25题每小题8分,第26题10分,共66分,解答应写出必要的文字说明、演算步骤或证明过程)19.(8分)(2017•邵阳)计算:4sin60°﹣()﹣1﹣.【分析】依据特殊锐角三角函数值、负整数指数幂的性质、二次根式的性质进行解答即可.【解答】解:原式=4×﹣2﹣2=2﹣2﹣2=﹣2.【点评】本题主要考查的是实数的运算,熟练掌握特殊锐角三角函数值、负整数指数幂的性质、二次根式的性质是解题的关键.20.(8分)(2017•邵阳)如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.【分析】(1)根据平行四边形对角线互相平分可得OA=OC,OB=OD,根据等角对等边可得OB=OC,然后求出AC=BD,再根据对角线相等的平行四边形是矩形证明;(2)根据正方形的判定方法添加即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴平行四边形ABCD是矩形;(2)解:AB=AD(或AC⊥BD答案不唯一).理由:∵四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形.或:∵四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形.【点评】本题考查了正方形的判断,平行四边形的性质,矩形的判定,熟练掌握特殊四边形的判定方法与性质是解题的关键.21.(8分)(2017•邵阳)先化简,再在﹣3,﹣1,0,,2中选择一个合适的x值代入求值.•.【分析】根据分式的乘法和加法可以化简题目中的式子,然后在﹣3,﹣1,0,,2中选择一个使得原分式有意义的x的值代入即可解答本题.【解答】解:•=====x,当x=﹣1时,原式=﹣1.【点评】本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的方法.22.(8分)(2017•邵阳)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.【分析】(1)根据平均数和中位数的定义求解可得;(2)用洗衣服的水量除以第3天的用水总量即可得;(3)根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所.【解答】解:(1)这7天内小申家每天用水量的平均数为=800(升),将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,∴用水量的中位数为800升;(2)×100%=12.5%,答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水100×30=3000升.【点评】此题主要考查了统计图、平均数、中位数,关键是看懂统计表,从统计表中获取必要的信息,熟练掌握平均数,中位数与众数的计算方法.23.(8分)(2017•邵阳)某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.【分析】(1)根据题意结合每辆大客车的乘客座位数比小客车多17个以及师生共300人参加一次大型公益活动,分别得出等式求出答案;(2)根据(1)中所求,进而利用总人数为300+30,进而得出不等式求出答案.【解答】解:(1)设每辆小客车的乘客座位数是x个,大客车的乘客座位数是y 个,根据题意可得:,解得:,答:每辆小客车的乘客座位数是18个,大客车的乘客座位数是35个;(2)设租用a辆小客车才能将所有参加活动的师生装载完成,则18a+35(11﹣a)≥300+30,解得:a≤3,符合条件的a最大整数为3,答:租用小客车数量的最大值为3.【点评】此题主要考查了一元一次不等式的应用以及二元一次方程组的应用,正确得出不等关系是解题关键.24.(8分)(2017•邵阳)如图所示,直线DP和圆O相切于点C,交直径AE的延长线于点P,过点C作AE的垂线,交AE于点F,交圆O于点B,作平行四边形ABCD,连接BE,DO,CO.(1)求证:DA=DC;(2)求∠P及∠AEB的大小.【分析】(1)欲证明DA=DC,只要证明Rt△DAO≌△Rt△DCO即可;(2)想办法证明∠P=30°即可解决问题;【解答】(1)证明:在平行四边形ABCD中,AD∥BC,∵CB⊥AE,∴AD⊥AE,∴∠DAO=90°,∵DP与⊙O相切于点C,∴DC⊥OC,∴∠DCO=90°,在Rt△DAO和Rt△DCO中,,∴Rt△DAO≌△Rt△DCO,∴DA=DC.(2)∵CB⊥AE,AE是直径,∴CF=FB=BC,∵四边形ABCD是平行四边形,∴AD=BC,∴CF=AD,∵CF∥DA,∴△PCF∽△PDA,∴==,∴PC=PD,DC=PD,∵DA=DC,∴DA=PD,在Rt△DAP中,∠P=30°,∵DP∥AB,∴∠FAB=∠P=30°,∵AE是⊙O的直径,∴∠ABE=90°,∴∠AEB=60°.【点评】本题考查切线的性质、平行四边形的性质、相似三角形的判定和性质、直角三角形中30度角的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考常考题型.25.(8分)(2017•邵阳)如图1所示,在△ABC中,点O是AC上一点,过点O 的直线与AB,BC的延长线分别相交于点M,N.【问题引入】(1)若点O是AC的中点,=,求的值;温馨提示:过点A作MN的平行线交BN的延长线于点G.【探索研究】(2)若点O是AC上任意一点(不与A,C重合),求证:••=1;【拓展应用】(3)如图2所示,点P是△ABC内任意一点,射线AP,BP,CP分别交BC,AC,AB于点D,E,F,若=,=,求的值.【分析】(1)作AG∥MN交BN延长线于点G,证△ABG∽△MBN得=,即=,同理由△ACG∽△OCN得=,结合AO=CO得NG=CN,从而由==可得答案;(2)由=、=知••=••=1;(3)由(2)知,在△ABD中有••=1、在△ACD中有••=1,从而••=••,据此知=••=•=.【解答】解:(1)过点A作AG∥MN交BN延长线于点G,∴∠G=∠BNM,又∠B=∠B,∴△ABG∽△MBN,∴=,∴﹣1=﹣1,∴=,即=,同理,在△ACG和△OCN中,=,∴=,∵O为AC中点,∴AO=CO,∴NG=CN,∴===;(2)由(1)知,=、=,∴••=••=1;(3)在△ABD中,点P是AD上的一点,过点P的直线与AC、BD的延长线相交于点C,由(2)得••=1,在△ACD中,点P是AD上一点,过点P是AD上一点,过点P的直线与AC、AD 的延长线分别相交于点E、B,由(2)得••=1,∴••=••,∴=••=•=×=.【点评】本题主要考查相似三角形的综合问题,熟练掌握相似三角形的判定与性质及比例式的基本性质是解题的关键.26.(10分)(2017•邵阳)如图所示,顶点为(,﹣)的抛物线y=ax2+bx+c 过点M(2,0).(1)求抛物线的解析式;(2)点A是抛物线与x轴的交点(不与点M重合),点B是抛物线与y轴的交点,点C是直线y=x+1上一点(处于x轴下方),点D是反比例函数y=(k>0)图象上一点,若以点A,B,C,D为顶点的四边形是菱形,求k的值.【分析】(1)设抛物线方程为顶点式y=a(x﹣)2﹣,将点M的坐标代入求a的值即可;(2)设直线y=x+1与y轴交于点G,易求G(0,1).则直角△AOG是等腰直角三角形∠AGO=45°.点C是直线y=x+1上一点(处于x轴下方),而k>0,所以反比例函数y=(k>0)图象位于点一、三象限.故点D只能在第一、三象限,因此符合条件的菱形只能有如下2种情况:①此菱形以AB为边且AC也为边,②此菱形以AB为对角线,利用点的坐标与图形的性质,勾股定理,菱形的性质和反比例函数图象上点的坐标特征求得k的值即可.【解答】解:(1)依题意可设抛物线方程为顶点式y=a(x﹣)2﹣(a≠0),将点M(2,0)代入可得:a(2﹣)2﹣=0,解得a=1.故抛物线的解析式为:y=(x﹣)2﹣;(2)由(1)知,抛物线的解析式为:y=(x﹣)2﹣.则对称轴为x=,∴点A与点M(2,0)关于直线x=对称,∴A(1,0).令x=0,则y=﹣2,∴B(0,﹣2).在直角△OAB中,OA=1,OB=2,则AB=.设直线y=x+1与y轴交于点G,易求G(0,1).∴直角△AOG是等腰直角三角形,∴∠AGO=45°.∵点C是直线y=x+1上一点(处于x轴下方),而k>0,所以反比例函数y=(k >0)图象位于点一、三象限.故点D只能在第一、三象限,因此符合条件的菱形只能有如下2种情况:①此菱形以AB为边且AC也为边,如图1所示,过点D作DN⊥y轴于点N,在直角△BDN中,∵∠DBN=∠AGO=45°,∴DN=BN==,∴D(﹣,﹣﹣2),∵点D在反比例函数y=(k>0)图象上,∴k=﹣×(﹣﹣2)=+;②此菱形以AB为对角线,如图2,作AB的垂直平分线CD交直线y=x+1于点C,交反比例函数y=(k>0)的图象于点D.再分别过点D、B作DE⊥x轴于点F,BE⊥y轴,DE与BE相较于点E.在直角△BDE中,同①可证∠AGO=∠DBO=∠BDE=45°,∴BE=DE.可设点D的坐标为(x,x﹣2).∵BE2+DE2=BD2,∴BD=BE=x.∵四边形ABCD是菱形,∴AD=BD=x.∴在直角△ADF中,AD2=AF2+DF2,即(x)=(x+1)2+(x﹣2)2,解得x=,∴点D的坐标是(,).∵点D在反比例函数y=(k>0)图象上,∴k=×=,综上所述,k的值是+或.【点评】本题考查了二次函数综合题,需要掌握待定系数法求二次函数解析式,勾股定理,菱形的性质,反比例函数图象上点的坐标特征等知识点.解答(2)题时要分类讨论,以防漏解.。

2012年湖南省邵阳市中考数学试卷

2012年湖南省邵阳市中考数学试卷一.选择题(本大题共8个小题,每小题3分,共24分.在每个小题给出的四个选项中只有一项是符合题目要求的).2.(3分)(2012•邵阳)如图所示,已知点O是直线AB上一点,∠1=70°,则∠2的度数是()3.(3分)(2012•邵阳)分式方程的解是()25.(3分)(2012•邵阳)在实验操作技能检测中,学生通过随机抽取卡片的方式确定检测题目,现将分别印有题号“①、②、③、④”的4张卡片(卡片的形状、大小一样,质地相同)放入盒中,小明同学从中随机抽取一张卡片,题号是“①”.C D.6.(3分)(2012•邵阳)如图所示,圆柱体的俯视图是().C D.7.(3分)(2012•邵阳)2011年,某县通过推广超级稻“种三产四”丰产工程,粮食产量平均每亩增产167.1公斤,8.(3分)(2012•邵阳)如图所示,在△ABC中,AB=AC,∠A<90°,边BC、CA、AB的中点分别是D、E、F,则四边形AFDE是()二.填空题(本大题共8个小题,每小题3分,共24分)9.(3分)(2011•铜仁地区)|﹣3|=_________.10.(3分)(2012•邵阳)3月12日某班50名学生到郊外植树,平均每人植树a棵,则该班一共植树_________棵.11.(3分)(2012•邵阳)某地5月1日至7日的每日最高气温如图所示,这组数据的极差是_________.12.(3分)(2012•邵阳)已知点(1,﹣2)在反比例函数y=(k常数,k≠0)的图象上,则k的值是_________.13.(3分)(2012•邵阳)不等式4﹣2x>0的解集是_________.14.(3分)(2012•邵阳)如图所示,直线AB是⊙O的切线,切点为A,OB=5,AB=4,则OA的长是_________.15.(3分)(2012•邵阳)如图所示,在正方形网格中(网格中每个小正方形的边长均为1),将△OAB绕点O按逆时针方向旋转,得到△OCD,则∠AOC的度数是_________.16.(3分)(2012•邵阳)如图所示,在Rt△ABC中,∠ACB=90°,∠B=30°,ED是BC的垂直平分线,请写出图中两条相等的线段是_________.三.解答题(本大题共3个小题,每小题8分,共24分)17.(8分)(2012•邵阳)计算:.18.(8分)(2012•邵阳)先化简,再求值:x(x+1)﹣(x+1)(x﹣1),其中x=2012.19.(8分)(2012•邵阳)如图所示,AC、BD相交于点O,且OA=OC,OB=OD.求证:AD∥BC.四、应用题(本大题共3个小题,第20、21题每小题8分,第22题10分,共26分)20.(8分)(2012•邵阳)为配合全市“倡导低碳绿色生活,推进城镇节水减排”的宣传活动,某校数学课外活动小组把用水习惯分为“很注意解决用水(A)”、“较注意解决用水(B)”、“不注意解决用水(C)”三类情况,设计了调查问卷在中学生中开展调查,并将调查结果分析整理后,制成如图所示的两个统计图.请根据以上信息解答下列问题:(1)这次调查问卷调查共调查了多少名学生?(2)在扇形统计图中,“B”所对应的扇形的圆心角度数是多少?(3)如果设该校共有学生3000人,试估计“不注意解决用水”的学生人数.21.(8分)(2012•邵阳)2012年,某地开始实施农村义务教育学校营养计划﹣﹣“蛋奶工程”.该地农村小学每份营养餐的标准是质量为300克,蛋白质含量为8%,包括一盒牛奶、一包饼干和一个鸡蛋.已知牛奶的蛋白质含量为5%,饼干的蛋白质含量为12.5%,鸡蛋的蛋白质含量为15%,一个鸡蛋的质量为60克.(1)一个鸡蛋中含蛋白质的质量为多少克?(2)每份营养餐中牛奶和饼干的质量分别为多少克?22.(10分)(2012•邵阳)某村为方便村民夜间出行,计划在村内公路旁安装如图所示的路灯,已知路灯灯臂AB 的长为1.2m,灯臂AB与灯柱BC所成的角(∠ABC)的大小为105°,要使路灯A与路面的距离AD为7m,试确定灯柱BC的高度.(结果保留两位有效数字)五、探究题(本大题10分)23.(10分)如图所示,已知抛物线C0的解析式为y=x2﹣2x(1)求抛物线C0的顶点坐标;(2)将抛物线C0每次向右平移2个单位,平移n次,依次得到抛物线C1、C2、C3、…、C n(n为正整数)①求抛物线C1与x轴的交点A1、A2的坐标;②试确定抛物线C n的解析式.(直接写出答案,不需要解题过程)六、综合题(本大题12分)24.(12分)(2012•邵阳)如图所示,直线y=与x轴相交于点A(4,0),与y轴相交于点B,将△AOB沿着y轴折叠,使点A落在x轴上,点A的对应点为点C.(1)求点C的坐标;(2)设点P为线段CA上的一个动点,点P与点A、C不重合,连接PB,以点P为端点作射线PM交AB于点M,使∠BPM=∠BAC①求证:△PBC∽△MPA;②是否存在点P使△PBM为直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.2012年湖南省邵阳市中考数学试卷参考答案与试题解析一.选择题(本大题共8个小题,每小题3分,共24分.在每个小题给出的四个选项中只有一项是符合题目要求的).解:由数轴上各数的位置可知2.(3分)(2012•邵阳)如图所示,已知点O是直线AB上一点,∠1=70°,则∠2的度数是()3.(3分)(2012•邵阳)分式方程的解是()25.(3分)(2012•邵阳)在实验操作技能检测中,学生通过随机抽取卡片的方式确定检测题目,现将分别印有题号“①、②、③、④”的4张卡片(卡片的形状、大小一样,质地相同)放入盒中,小明同学从中随机抽取一张卡片,题号是“①”.C D.的概率是=6.(3分)(2012•邵阳)如图所示,圆柱体的俯视图是().C D.7.(3分)(2012•邵阳)2011年,某县通过推广超级稻“种三产四”丰产工程,粮食产量平均每亩增产167.1公斤,为全县农户新增纯收入8063.6万元,其中8063.6万元可以用科学记数法表示为()8.(3分)(2012•邵阳)如图所示,在△ABC中,AB=AC,∠A<90°,边BC、CA、AB的中点分别是D、E、F,则四边形AFDE是()DE=AC二.填空题(本大题共8个小题,每小题3分,共24分)9.(3分)(2011•铜仁地区)|﹣3|=3.10.(3分)(2012•邵阳)3月12日某班50名学生到郊外植树,平均每人植树a棵,则该班一共植树50a棵.11.(3分)(2012•邵阳)某地5月1日至7日的每日最高气温如图所示,这组数据的极差是4℃.12.(3分)(2012•邵阳)已知点(1,﹣2)在反比例函数y=(k常数,k≠0)的图象上,则k的值是﹣2.(y=13.(3分)(2012•邵阳)不等式4﹣2x>0的解集是x<2.14.(3分)(2012•邵阳)如图所示,直线AB是⊙O的切线,切点为A,OB=5,AB=4,则OA的长是3.OA==15.(3分)(2012•邵阳)如图所示,在正方形网格中(网格中每个小正方形的边长均为1),将△OAB绕点O按逆时针方向旋转,得到△OCD,则∠AOC的度数是90°.OC=OA=2OC=OA=216.(3分)(2012•邵阳)如图所示,在Rt△ABC中,∠ACB=90°,∠B=30°,ED是BC的垂直平分线,请写出图中两条相等的线段是BD=CD(答案不唯一).三.解答题(本大题共3个小题,每小题8分,共24分)17.(8分)(2012•邵阳)计算:.×18.(8分)(2012•邵阳)先化简,再求值:x(x+1)﹣(x+1)(x﹣1),其中x=2012.19.(8分)(2012•邵阳)如图所示,AC、BD相交于点O,且OA=OC,OB=OD.求证:AD∥BC.∵四、应用题(本大题共3个小题,第20、21题每小题8分,第22题10分,共26分)20.(8分)(2012•邵阳)为配合全市“倡导低碳绿色生活,推进城镇节水减排”的宣传活动,某校数学课外活动小组把用水习惯分为“很注意解决用水(A)”、“较注意解决用水(B)”、“不注意解决用水(C)”三类情况,设计了调查问卷在中学生中开展调查,并将调查结果分析整理后,制成如图所示的两个统计图.请根据以上信息解答下列问题:(1)这次调查问卷调查共调查了多少名学生?(2)在扇形统计图中,“B”所对应的扇形的圆心角度数是多少?(3)如果设该校共有学生3000人,试估计“不注意解决用水”的学生人数.21.(8分)(2012•邵阳)2012年,某地开始实施农村义务教育学校营养计划﹣﹣“蛋奶工程”.该地农村小学每份营养餐的标准是质量为300克,蛋白质含量为8%,包括一盒牛奶、一包饼干和一个鸡蛋.已知牛奶的蛋白质含量为5%,饼干的蛋白质含量为12.5%,鸡蛋的蛋白质含量为15%,一个鸡蛋的质量为60克.(1)一个鸡蛋中含蛋白质的质量为多少克?(2)每份营养餐中牛奶和饼干的质量分别为多少克?22.(10分)(2012•邵阳)某村为方便村民夜间出行,计划在村内公路旁安装如图所示的路灯,已知路灯灯臂AB 的长为1.2m,灯臂AB与灯柱BC所成的角(∠ABC)的大小为105°,要使路灯A与路面的距离AD为7m,试确定灯柱BC的高度.(结果保留两位有效数字)=,五、探究题(本大题10分)23.(10分)如图所示,已知抛物线C0的解析式为y=x2﹣2x(1)求抛物线C0的顶点坐标;(2)将抛物线C0每次向右平移2个单位,平移n次,依次得到抛物线C1、C2、C3、…、C n(n为正整数)①求抛物线C1与x轴的交点A1、A2的坐标;②试确定抛物线C n的解析式.(直接写出答案,不需要解题过程)六、综合题(本大题12分)24.(12分)(2012•邵阳)如图所示,直线y=与x轴相交于点A(4,0),与y轴相交于点B,将△AOB沿着y轴折叠,使点A落在x轴上,点A的对应点为点C.(1)求点C的坐标;(2)设点P为线段CA上的一个动点,点P与点A、C不重合,连接PB,以点P为端点作射线PM交AB于点M,使∠BPM=∠BAC①求证:△PBC∽△MPA;②是否存在点P使△PBM为直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.x+b﹣﹣∴,即.∴PO=,(﹣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O 1
A
B
C D
M N
E
F 2010年邵阳市初中毕业学业水平考试
数学试题
一、选择题(本大题共8小题,每小题3分,满分24分)
1.―|―3|=( ) A .―3 B .―
1 3 C . 1
3
D .―3 2.(―a )2·a 3=( )
A .―a 5
B .a 5
C .―a 6
D .a 6 3.下列长度的三条线段能组成三角形的是( )
A .1,2,3
B .2,2,4
C .3,4,5
D .3,4,8 4.如图,数轴上表示的关于x 的一元一次不等式的解集为( )
A .x ≤1
B .x ≥1
C .x <1
D .x >1 5.某几何体的三视图如图所示,则这个几何体是( )
6.如图是某商场一天的运动鞋销售情况统计图.
这些运动鞋的尺码组成的一组数据,众数和
中位数分别是( )
A .25,25
B .25,24.5
C .24.5,25
D .24.5,24.5
7.如图,在边长为1的小正方形组成的网格中,半径为2的⊙O 1的圆心 O 1在格点上,将一个与⊙O 1重合的等圆,向右平移2个单位,再向上
平移2个单位得到⊙O 2,则⊙O 2与⊙O 1的位置关系是( )
A .内切
B .外切
C .相交
D .外离
8.某天,小明走路去学校,开始他以较慢的速度匀速前进,然后他越走越快,走了一段时间,最后他以较快的速度匀速前进到达学校.小明走路的速度v (m/min )是时间t (min )的函数,能正确反映这一函数关系的大致图象是( )
二、填空题(本大题共8小题,每小题3分,满分24分)
9.若二次根式1 x 在实数范围内有意义,则x 的取值范围是 . 10.如图,已知直线AB ∥CD ,直线MN 分别与AB 、CD 交于点E 、F .
若∠BEM =65°,则∠CFN = .
11.如图是小明家今年1月份至5月份的每月用电量的统计图,
据此推断他家这五个月的月
A B C
D
)
)
)
)
A D C B
E O A
B D C
平均用电量是 度.
12.化简:x 2 x 2-y 2 -y 2
x 2-y 2
= .
13.我国曙光公司研制的“星云”号大型计算机每秒能完 成12 700 000亿次运算.用科学记数法将该计算机的 运算速度表示为 次/秒. 14.如图,直线y =k 1x +b 与双曲线y =
k 2
x
相交于点P 、Q .若点P 的 坐标为(1,2),则点Q 的坐标为 .
15.如图,在等边△ABC 中,以AB 边为直径的⊙O 与BC 交于点D ,连接AD ,则∠CAD
的度数是 .
16.如图,在等腰梯形ABCD 中,AB ∥CD ,AD =BC =CD ,点E 在AB 上,连接CE .请
添加一个适当的条件: ,使四边形AECD 为菱形.
三、解答题(本大题共3小题,每小题6分,满分18分)
17.计算:31
851531+⨯-⎪⎭

⎝⎛-.
18.给出3个整式:x 2、2x +1、x 2-2x .
(1)从上面3个整式中,选择你喜欢的两个整式进行加法运算,若结果能因式分解,请将其因式分解;
(2)从上面3个整式中,任意选择两个整式进行加法运算,其结果能因式分解的概率是多少?
19.如图,将矩形纸片ABCD 沿EF 折叠,使A 点与C 点重合,
点D 落在点G 处,EF 为折痕. (1)求证:△FGC ≌△EBC ;
(2)若AB =8,AD =4,求四边形ECGF (阴影部分)的面积.
四、应用题(本大题共4小题,每小题8分,满分32分)
20.某市为了解九年级学生身体素质测试情况,随机抽取了本市九年级部分学生的身体素质
测试成绩为样本,按A (优秀)、B (良好)、C (合格)、D (不合格)四个等级进行统计,并将统计结果绘制成如下统计图表.请你结合图表中所给信息解答下列问题:
(1)请将上面表格中缺少的数据补充完整;
(2)扇形统计图中“A ”部分所对应的圆心角的度数是 ;
(3)该市九年级共有80 000名学生参加了身体素质测试,试估计测试成绩合格以上(含合格)的人数.
A B C D 40%
28% 12%
21.为了增强居民的节约用水意识,某市制定了新的水费收费标准:每户每月不超过5吨的部分,自来水公司按每吨2元收费;超过5吨部分,按每吨2.6元收费.设某用户月用水量为x吨,自来水公司应收水费y元.
(1)试写出y(元)与x(吨)之间的函数关系式;
(2)该用户今年5月份的用水量为8吨,自来水公司应收水费多少元?
22.如图,在上海世博会会场馆通道的建设中,建设工人将坡长10m(AB=10m)、坡角为
20.5°(∠BAC=20.5°)的斜坡通道改造成坡角为12.5°(∠BDC=12.5°)斜坡通道,使坡
的起点从点A向左平移至点D处,求改造后的斜坡通道BD的长(结果精确到0.1m,参考数据:sin12.5°≈0.21,sin20.5°≈0.35,sin69.
23.小明去离家2.4km的体育馆看球赛,进场时发现门票还放在家中,此时离比赛开始还有45min,于是他立即步行(匀速)回家取票.在家取票用时2min,取到票后,他马上骑自行车(匀速)赶往体育馆.已知小明骑自行车从家赶往体育馆比从体育馆步行回家所用时间少20min,骑自行车的速度是步行速度的3倍.
(1)小明步行的速度(单位:m/min)是多少?
(2)小明能否在球赛开始前赶到体育馆吗?
五、探究题(本大题10分)
24.阅读下列材料,然后解答问题.
经过正四边形(即正方形)各顶点的圆叫做这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫做这个圆的内接正四边形.
如图,正方形ABCD内接于⊙O,⊙O的面积为S1,正方形ABCD的面积为S2.以圆心O为顶点作∠MON,使∠MON=90°.将∠MON绕点O旋转,OM、ON分别与⊙O
⌒及正方形ABCD 交于点E、F,分别与正方形ABCD的边交于点G、H.设由OE、OF、EF
的边围成的图形(阴影部分)的面积为S.
(1)当OM经过点A时(如图①),则S、S1、S2之间的关系为:(用含S1、
S2的代数式表示);
(2)当OM⊥AB于G时(如图②),则(1)中的结论仍然成立吗?请说明理由;
(3)当∠MON旋转到任意位置时(如图③),则(1)中的结论仍然成立吗?请说明理由.
N
N
图①图②图③
六、综合题(本大题12分)
25.如图,抛物线y =- 1
4
x 2+x +3与x 轴交于点A 、B ,与y 轴交于点C ,顶点为点D ,对
称轴l 与直线BC 交于点E ,与x 轴交于点F . (1)求直线BC 的解析式.
(2)设点P 为该抛物线上的一个动点,以点P 为圆心、r 为半径作⊙P . ①当点P 运动到点D 时,若⊙P 与直线BC 相交,求r 的取值范围;
②若r =45
5,是否存在点P 使⊙P 与直线BC 相切?若存在,请求出点P 的坐标;
若不存在,请说明理由.。

相关文档
最新文档