管致中《信号与线性系统》(第5版)-名校考研真题(上册)【圣才出品】

合集下载

管致中《信号与线性系统》(第5版)【教材精讲+考研真题解析】-第1~4章【圣才出品】

管致中《信号与线性系统》(第5版)【教材精讲+考研真题解析】-第1~4章【圣才出品】
三、信号的简单处理 对信号的处理,从数学意义来说,就是将信号经过一定的数学运算转变为另一信号。 1.信号的相加与相乘 两个信号的相加(乘)即为两个信号的时间函数相加(乘),反映在波形上则是将相同 时刻对应的函数值相加(乘)。 (1)两个信号相加的一个例子,如图 1-2 所示。
3 / 92
圣才电子书 十万种考研考证电子书、题库视频学习平台
(3)连续时间系统与离散时间系统
①连续时间系统传输和处理连续信号,它的激励和响应在连续时间的一切值上都有确定
的意义。
②离散时间系统的激励和响应信号是不连续的离散序列。
(4)因果系统和非因果系统
对于一个系统,激励是原因,响应是结果,响应出现于施加激励之后的系统即为因果系
统;反之为非因果系统。
8 / 92

图 1-2 两个信号相加的例子 (2)两个信号相乘的一个例子,如图 1-3 所示。
4 / 92
圣才电子书 十万种考研考证电子书、题库视频学习平台

图 1-3 两个信号相乘的例子 2.信号的延时 一个信号延时的例子,如图 1-4 所示。
5 / 92
6 / 92
圣才电子书 十万种考研考证电子书、题库视频学习平台

四、系统的概念 1.概念 一般而言,系统是一个由若干互有关联的单元组成的、具有某种功能、用来达到某些特 定目标的有机整体。一个简单的系统框图,如图 1-6 所示。
图 1-6 单输入单输出系统的方框图 系统的功能和特性就是通过由怎样的激励产生怎样的响应来体现的。 系统功能的描述是通过激励与响应之间关系的建立完成的。 2.分类 (1)线性系统和非线性系统 ①概念 线性系统是同时具有齐次性和叠加性的系统,否则为非线性系统。
9 / 92

管致中《信号与线性系统》(第5版)(章节题库 连续信号的正交分解)

管致中《信号与线性系统》(第5版)(章节题库 连续信号的正交分解)

F(
j)
e2
2e2 2 j

2.频谱函数 F(jω)=g4(ω)cosπω 的傅里叶逆变换 f(t)等于______。
【答案】
f
(t)
1
[Sa2(t
)
Sa2(t
)]
【解析】因为
F(
j)
g4 () cos
1 2
g4 ()(e j
e j
)
,而
F
1[ g 4
()]
2
Sa(2t)
,根据傅里叶变换的时移特性,可得
x(t t0 ) X (w)e jwt0 ,可得 e j4w (t 4) , e j4w (t 4) ,再分别乘
以系数即得 f(t)=
。重点在于傅里叶变换的性质。
1 / 117
圣才电子书

十万种考研考证电子书、题库视频学习平 台
3.信号
的傅里叶变换为( )。
), 2
A2
E
A
2E

已知
,根据卷积定理
F2(
)
F1(
)gF1(
)
E 2
Sa2( 4
)
二、填空题
8 / 117
圣才电子书

1.信号
十万种考研考证电子书、题库视频学习平 台
的傅里叶变换 F(jω)等于______。
【答案】
【解析】
f
(t)
e2 (t)
2e2e2t (t) ,根据傅里叶变换,可得
10.图 3-2(a)所示信号 f(t)的傅里叶变换 3-2(b)所示信号 y(t)的傅里叶变换 Y(jω)为( )。
为已知,则图
5 / 117

信号与线性系统(管致中)

信号与线性系统(管致中)

1 5rad / s
T1 2 5
sin t 的角频率和周期分别为 1 rad / s T1 2 2
T1和T2 的不存在最小公倍数,因此原信号不是周期信号
连续正弦信号一定是周期信号; 两个连续周期信号之和不一定是周期信号 。
例1:判断下列信号是否为周期序列,若是,求其周期。 (1) f (k ) cosk 解:
两个周期序列之和一定是周期序列 。
2 8 N1 3 4 3
f (k ) sin k cos
k
2
信号的分类
能量信号与功率信号
假设信号f(t)在实际应用中是一个电路网络输出的电流或 者电压,将它施加在一个电阻值为1欧的负载电阻上,则在一 定时间间隔(t1,t2)里,负载电阻中消耗的信号能量为:
传输和处理连续时间信号系统的激励和响应在连续时间的一切值上都有确定的意义连续时间系统传输和处理离散时间信号系统的激励和响应都是不连续的离散序列离散时间系统在实际工程中离散时间系统常常与连续时间系统联合运用同时包含有这两者的系统称为混合系统
信号与线性系统
主讲: 俞菲 建雄院 211室 无线谷 5209室
正弦序列不一定是周期序列
例1:判断下列信号是否为周期序列,若是,求其周期。
解: 序列由两个周期序列组成 sin 3k 4 的角频率和周期分别为
3k k (2) f (k ) sin cos 4 2
1 3 4 rad / s
cosk 2的角频率和周期分别为 2 1 2 rad / s N1 4 2 N1和N 2的最小公倍数为8,因此其周期为8。
信号的分类
连续信号与离散信号
离散信号(discrete signal)可以在均匀的时间间隔上给 出函数值,也可以在不均匀的时间间隔上给出函数值,本课 程一般考虑均匀间隔的情况。 离散信号的描述:

管致中《信号与线性系统》(第5版)(课后习题 连续时间系统的复频域分析)

管致中《信号与线性系统》(第5版)(课后习题 连续时间系统的复频域分析)
圣才电子书
十万种考研考证电子书、题库视频学习平


第 5 章 连续时间系统的复频域分析
5.1 标出下列信号对应于 s 平面中的复频率。
(1) e2t ;(2) te-t ;(3)cos2t;(4) e-t sin(-5t)
答:(1) e2t (t)
s
1
2
,所以
s1=2
收敛域:
5.4 用部分分式展开法求下列函数的拉普拉斯反变换。
3 / 43
圣才电子书

答:(1)部分分式展开
十万种考研考证电子书、题库视频学习平 台
拉氏逆变换,有
(2)部分分式展开
拉氏逆变换,有
(3)部分分式展开
取拉氏逆变换,有
(4)部分分式展开
取拉氏逆变换,有
(5)部分分式展开
15 / 43
圣才电子书

十万种考研考证电子书、题库视频学习平 台
所以
(3)因为 令 T=1,则 所以
(1)n (t nT )
(1)设 而
,则
由时间平移特性,可得
图 5-1
(2)
(3)因为 由时间平移特性,可得
(4)设
,因
由复频域微分特性,有
再由时间平移特性,可得
9 / 43
圣才电子书

十万种考研考证电子书、题库视频学习平 台
5.9 用拉普拉斯变换的性质求图 5-2 各波形函数的拉普拉斯变换。
答:(a)由图 5-2(a)可知
图 5-2
而 由拉式变换的时间平移与线性特性,可得
(b)由图 5-2(b)可知
而 所以
(c)由图 5-2(c)可知
10 / 43
圣才电子书

管致中《信号与线性系统》(第5版)(章节题库 绪 论)

管致中《信号与线性系统》(第5版)(章节题库 绪 论)
和系统 s2: 互为可逆系统。( ) 【答案】错误。 【解析】积分系统和微分系统相差一个常数,不能互为可逆系统。
2 / 23
圣才电子书

三、分析计算题
十万种考研考证电子书、题库视频学习平 台
1.已知两信号分别为 f1(t)=2cos(πt)+4sin(3t),f2(t)
2.系统 y(t)=2(t+1)x(t)+cos(t+1)是_____。(说明因果/非因果性、时 变/非时变性、线性/非线性)。
【答案】因果、时变、非线性。 【解析】y(t)=2(t+1)x(t)+cos(t+1),输出仅与现在的输入有关,系统是 因果的;响应随激励加入的时间不同而发生变换,系统是时变的;不满足齐次性和叠加性, 系统是非线性的。
图 1-4 答:(1)移位:f(-2t+1)= f[-2(t-1/2)],f(-2t+1)波形向左平移 1/2 可得 f(-2t); (2)扩展:将 f(-2t)做尺度变换,横坐标放大 2 倍,求得 f(-t); (3)反转:将 f(-t)反转,求得 f(t)波形,如图 1-5 所示。
4 / 23
圣才电子书
圣才电子书

十万种考研考证电子书、题库视频学习平 台
图 1-2 答:翻转:先将 f(t)的图形翻转,成为 f(-t); 移位:再将图形向右平移 2,成为 f(-t+2);
扩展:然后波形扩展为原来的 3 倍,成为
,如图 1-3 所示。
图 1-3 4.已知 f(-2t+1)波形如图 1-4 所示,试画出 f(t)的波形。
圣才电子书

十万种考研考证电子书、题库视频学习平 台
第 1 章 绪 论
一、填空题 1.系统的输入为 x(r),输出为 y(r)=tx(t),判断系统是否是线性的( )。 【答案】线性的

《信号与线性系统》(管致中)ch5-3

《信号与线性系统》(管致中)ch5-3

四、拉普拉斯反变换由,常为s 的有理函数)()(t f s F 求)(s F 一般形式:1110111)(a s a s a s b s b s b s b s F n n n m m m m ++++++++=---- (为实数,m 、n 为整数)k k b a 、如nm ≥)()()()(s D s N s R s F +=R(s)的拉氏变换为冲激函数及其各阶导数——理想情况一般情况下:nm <求拉氏反变换有三种方法:查表、部分分式展开法和围线积分法(留数法)(一)部分分式展开法1110111)()()(a s a s a s b s b s b s b s D s N s F n n nm m mm ++++++++=---- =()n m <要点:将分解,逐个求反变换,再叠加)(s F 基本形式:0,1≥↔-t e s s ts kk 1.的根无重根[的极点为单阶] 0)(=s D )(s F )1()())(()()()()(21 n s s s s s s s N s D s N s F ---==极零点)(s F 极点:使=∞的s 根值,)(s F 如为的极点),,1(n k s k =)(s F 零点:使的s 根值,0)(=s F 如,)()()()(1m k z s z s z s s N ---= 为的零点),,1(m k z k =)(s F )2()(2211 nn k k s s k s s k s s k s s k s F -++-++-+-=ts n t s k t s t s n k ek e k e k e k t f +++++= 2121)(求系数的两种方法k k [方法一] (2)式两边乘以():k s s -nnk k k k k s s k s s k s s k s s s s k s s s F s s --++++--+--=-)()()()()(2211 令ks s =则ks s k k s F s s k =-=)]()[([方法二]用微分求])()()([lim s D s N s s k k s s k k -=→(形式)0)()]()[(lim s D ds ds N s s ds dk s s k -=→——罗彼塔法则k s s s D s N ='=])()([())()()(])()[(s N s N s s s N s s k k +'-='-例1 求的反变换)2)(1(4)(+++=s s s s s F )(t f [为真分式,极点为实数])(s F 解:21)(321++++=s k s k s k s F 1)求:k s 2,1,0321-=-==s s s 2)求:k k 【方法一】,2])2)(1(4[01=+++==s s s s k ,3])2(4[12-=++=-=s s s s k 1])1(4[32=++=-=s s s s k 【方法二】用微分求,23)2)(1()(23s s s s s s s D ++=+=+263)(2++='s s s D 2634)()(2+++='s s s s D s N ,2]2634[021=+++==s s s s k ,3]2634[122-=+++=-=s s s s k 1]2634[223=+++=-=s s s s k3)求:)(t f 21132)(++++=s s s s F -)()32()(2t eet f ttε--+-=例2)2)(1(795)(23+++++=s s s s s s F [为假分式,极点为实数] )(s F 解:)2)(1(32)(+++++=s s s s s F )(21s F s ++=令求的反变换:)(1s F 2112)2)(1(3)(1+-+++++=s s s s s s F =)()2()(21t ee tf tt ε---=求的反变换:)(s F )()2()(2)()()(2)()(21t e e t t t f t t t f t t εδδδδ---++'=++'=例3 求的反变换52)(2++=s s s s F [为真分式,极点为共轭复数] )(s F 解:【方法一】2211)(ss k s s k s F -+-=2令21j s --=*=s2)求:k k 1)]()[(11s s s F s s k =-=)2(41j +=2)]()[(22s s s F s s k =-=)2(41j -=*=1k 3)求:)(t f t s t s e k e k t f 2121)(+=tj t j e j ej )21()21()2(41)2(41--+--++=)](2)[(212222t j t j tj t j t e e j e e e ----++=)222(21t Sin t Cos e t -=-,2212t Sin e t Cos e t t---=0≥t ),,,()(2121k k s s f t f =tj tj ejc c ejc c t f )(21)(21)()()(βαβα-+-++=)(221t Sin c t Cos c e tββα-=)(,,,21t f c c 求→βα【方法二】为二次多项式)(s D 52)(2++=s s s D 4)1(2++=s ])[(22βα+-=s 4)1()(2++=s s s F ]2)1(2[212)1(12222++-+++=s s s tCos e s s t022)(ωωααα↔+--t Sin e s t02020)(ωωαωα↔+-1--t t2.当=0有重根的情况[有多重极点])(s D )(s F 设=0共有n 个根,其中一个根s 1为p 重根,其余为单根(异根))(s D 即)())(()()(211n p p ps s s s s s s s s D ----=++ )1(][])()()([)()()(11111211211)1(111 n n p p p p p p s s k s s k s s k s s k s s k s s k s D s N s F -++-+-+-++-+-==++--令异根项][11nn p p s s k s s k -++-++ )()(00s D s N =其系数的求法如上所述重根项的求取111,,k k p (1)求:p k 1)2()()(])()()([)(00111211211)1(111 s D s N s s k s s k s s k s s k s F p p p p+-+-++-+-=--式(2)乘以,ps s )(1-)()()()()()()()(00111111221)1(1111s D s N s s k s s k s s k s s k s F s s pp p p p p-+-+-++-+=---- 再令s s =p(2)求(系数)11)1(1,k k p -引入)()()(11s F s s s F p-=)(4)()()()()()(100111121)2(11)1(11 p p p p p s s s D s N s s k s s k s s k k -+-++-+-+=---将式(4)对s 取导一次:)(5])()()([)()1()(2)(10021111)2(1)1(11 pp p p s s s D s N ds d s s k p s s k k ds s dF -+--++-+=---1])([1)1(1s s p dss dF k =-=将式(5)对s 取导一次,再令得1s s =1])([21212)2(1s s p dss F d k =-=一般情况:1,,1,,])([)!(1111 -=-==--p p k dss F d k p k s s kp kp k 总结:)()(])()()([)(001111)1(12112111s D s N s s k s s k s s k s s k s F pp p p +-+-++-+-=-- ∑-+++++=n t s t s p p ts t s t s q ek e t k e t k te k e k t f 112131111)(例求的反变换22)5)(3(52)(++++=s s s s s F 解:0)5)(3()(2=++=s s s D ⎩⎨⎧-=-=523121s s 重根个单根)1()5(53)(222211 +++++=s k s k s k s F 1)求系数22211,,k k k 单根项2)]()3[(31=+=-=s s F s k 重根项5221)]()5([-=+=s s F s dsd k 52]}352[{-=+++=s s s s ds d 1-=求式代入的另法:把)1(,22121k k k 5)5(1032)(212+++-+=s k s s s F 551032535)0(2122k F +-=⨯=121-=k 2) 求:)(t f )()102()(553t teeet f tttε-----=10)]()5[(5222-=+=-=s s F s k(二)围线积分法(留数法)拉氏反变换:⎰∞+∞-=j j stdse s F j tf σσπ)(21)(留数定理:∑⎰==ni icstsds e s F j 1Re )(21π上式左边的积分是在s 平面内沿一不通过被积函数极点的封闭曲线C 进行的,右边则是在此围线C 中被积函数各极点上留数之和。

(完整版)信号与线性系统管致中第1章信号与系统


N
x(n) 2

x(n) 2
在无限区间内的平均功率可定义为:
x(t) P
lim 1 T 2T
T T
2
dt
1 N
P

lim
N
2N
1
N
x(n) 2
三类重要信号: 1. 能量信号——信号具有有限的总能量,
即: E , P 0
2. 功率信号——信号有无限的总能量,但平均功率 有限。即:
1.2 自变量变换
如果有 x(t) x(t) 则称该信号为奇信号
x(n) x(n)
(镜像奇对称)
对复信号而言:
x(t) x(t) 如果有 x(n) x(n) 则称该信号为共轭偶信号。
x(t) x(t)
如果有
则称为共轭奇信号。
x(n) x(n)
1.2 自变量变换

x (n)]
例1:
x(t)
2 1
-2 -1 0

t
12
-2
xe (t)
1

t
02
xo (t)
1
-1
t
1 -1
例2. 信号的奇偶分解:
1.3 指数信号与正弦信号
(Exponential and Sinusoidal Signals ) 1.3.1. 连续时间复指数信号与正弦信号
x(t) Ceat 其中 C, a 为复数
确定的定义。
x(n) c 可以视为周期信号,其基波周期 N0 。1
1.2 自变量变换
非周期信号
周期信号
1.2.3. 奇信号与偶信号: odd Signals and even Signals 对实信号而言:

管致中信号与线性系统第5版知识点课后答案

4.因果系统和非因果系统
一切物理现象,都要满足先有原因然后产生结果这样一个显而易见的因果关系,结果不能早于原因而出现。对于一个系统,激励是原因,响应是结果,响应不可能出现于施加激励之前。符合因果律的系统称为因果系统(causal system),不符合因果律的系统称为非因果系统(non Causal system)。例如


系统若具有上式表示的性质则为非时变系统,不具有上述性质则为时变系统。
3.连续时间系统与离散时间系统
连续时间系统(continuous-time system)和离散时间系统(discrete-time system)是根据它们所传输和处理的信号的性质而定的。前者传输和处理连续信号,它的激励和响应在连续时间的一切值上都有确定的意义;与后者有关的激励和响应信号则是不连续的离散序列。


系统的叠加性是指当有几个激励同时作用于系统上时,系统的总响应等于各个激励分别作用于系统所产生的分量响应之和。用符号表示为
若 ,
则 + +
合并起来,就可得到线性系统应当具有的特性为
若 ,
则+ +
或者说,具有这种特性的系统,称为线性系统。非线性系统不具有上述特性。
2.非时变系统和时变系统
系统又可根据其中是否包含有随时间变化参数的元件而分为非时变系统(time.Invariant system) 和时变系统(time varying system)。
如复合信号中某两个分量频率的比值为无理数,则无法找到合适的;,该信号常称为概周期信号。概周期信号是非周期信号,但如选用某一有理数频率来近似表示无理数频率,则该信号可视为周期信号。所选的近似值改变,则该信号的周期也随之变化。例如 的信号,如令1.41,则可求得=100,=141,该信号的周期为 =200。如令1.414,则该信号的周期变为2000。

(NEW)管致中《信号与线性系统》(第5版)笔记和课后习题(含考研真题)详解


4.能量信号与功率信号 信号的能量,功率公式为:
如果信号总能量为非零的有限值,则称其为能量信号;如果信号平 均功率为非零的有限值,则称其为功率信号(power signal)。
二、信号的简单处理
1.信号的相加与相乘 两个信号的相加(乘)即为两个信号的时间函数相加(乘),反映 在波形上则是将相同时刻对应的函数值相加(乘)。图1-1所示就是两 个信号相加的一个例子。
形状不变的同时,沿时间轴右移 的距离;如 为负值则向左移动。图
1-2为信号延时的示例。
图1-2
3.信号的尺度变换与反褶
信号 经尺度变换后的信号可以表示为 显然在 为某值 时的值 ,在
,其中 为一常数。
的波形中将出现在 = / 的位置。因此,如 为正数,当 >1 时,信号波形被压缩(scale—down);而 <1时,信号波形被展宽 (scale up)。如 =-1,则 的波形为 ,波形对称于纵坐标轴的 反褶(reflection)。


系统若具有上式表示的性质则为非时变系统,不具有上述性质则为 时变系统。
3.连续时间系统与离散时间系统
连续时间系统(continuous-time system)和离散时间系统(discretetime system)是根据它们所传输和处理的信号的性质而定的。前者传输 和处理连续信号,它的激励和响应在连续时间的一切值上都有确定的意 义;与后者有关的激励和响应信号则是不连续的离散序列。
(4)错误。例如

(门函数)却是能量信号。
均为功率信号,但两者之和
(5)错误。例如
与 均为功率信号,但两者之积
(门函数)却是能量信号。
(6)错误。例如 为功率信号, 为能量信号,但两者之积 却不是能量信号。

信号与线性系统(管致中)


dt
dt
2、相消计算:
一般情况下,系统微分和积分的运算次序不能 任意颠倒,两种运算也不一定能抵消。
p 1 1 p
p 1 d
t
x(t)d x(t)
p dt
1 p=1 ? p
1 p t dx(t) x(t) x()
p
dt
当且仅当x() 0时等号成立
dx(t) dy(t) dt dt
x(t) y(t) C
px py
C x() y()
推论:当f(t)=g(t),则pf(t)=pg(t); 当1/pf(t)=1/pg(t),则f(t)=g(t)
x y
例题
如图(见黑板)所示的双耦合电路,激励函数为电压e(t), 响应函数为电流i2(t),求激励函数与响应函数之间的关系。
即: if (t) (B0 t)e2t
i(t) in (t) if (t) (C1 B0 )e2t C2e3t tet
其中待定常数C1+B0,C2由初始条件确定:
i(0) C1 B0 C2 1 1, i'(0) 2(C1 B0 ) 3C2 1 0 C1 B0 2, C2 1
L d 2i(t) R di(t) 1 i(t) de(t)
dt
dt C
dt
L 1, R 5,
(1). 当e'(t) 2et ,t 0,i(0) 2,i'(0) 1时的全解
C1 6
(2). 当e'(t) e2t ,t 0,i(0) 1,i'(0) 0时的全解
1 t d
p dt
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圣才电子书 十万种考研考证电子书、题库视频学习平台

第 2 章 连续时间系统的时域分析
一、判断题 任何系统的全响应必为零状态响应与零输入响应之和。( )[北京邮电大学 2012 研] 【答案】× 【解析】零输入响应为仅由起始状态所产生的响应。零状态响应是系统的初始状态为零 时,仅由输入信号引起的响应。由此可知仅当系统满足线性时,其全响应必为零状态响应与 零输入响应之和。
y(t) (1 et )u(t) (1 e(t2) )u(t 2)
3.求 x1(t) cos(t)[u(t) u(t )] 和 x2 (t) u(t) 2u(t ) u(t 2 ) 的卷积。[中
不变性。
2.计算 e2t (t 2)dt =( 0
A.
)。[电子科技大学 2012 研]
B.
C.0
2 / 37
圣才电子书

D.1
十万种考研考证电子书、题库视频学习平台
【答案】C
【解析】
三、计算题
1.粗略画出函数式
的波形图。[中山大学 2011 研]
解:函数式的波形图如图 1-1 所示。
圣才电子书

十万种考研考证电子书、题库视频学习平台
第一部分 名校考研真题
第1章 绪 论
一、判断题 1.两个线性时不变系统相级联的先后顺序不影响总的输入输出关系。( )[中山大 学 2010 研] 【答案】√ 【解析】线性时不变系统级联,总的系统函数相当于各个系统函数相卷积,根据卷积的 性质,卷积的次序是可以交换的。
2.两个周期信号之和一定为周期信号。( )[北京邮电大学 2012 研]
【答案】×
【解析】两个周期信号之和不一定是周期信号,例如 f1 n cos 2n ,周期 N1 ,
f2
n
cos n, 周期 N2
2,
N1 N2
=
2
为无理数,所以
f
n
f1 n
f2 n 不是周期
函数。
3.若 h(t)是一个线性时不变系统的单位冲激响应,并且 h(t)是周期的且非零, 则系统是不稳定的。( )[北京邮电大学 2012 研]

解:由卷积积分的性质可得:
y(t) dx(t) * t h( )d dt
又因为,
x(t) u(t) u(t 2) dx(t) t )d t etu(t)d 1 et u t
由此可以得出:
【答案】× 【解析】系统也可以是稳定的。稳定系统即有界输入,有界输出。
1 / 37
圣才电子书 十万种考研考证电子书、题库视频学习平台

例如 h t cos t ,当输入信号为 x t cos t ,输出为 y t cos2 t ,可见有界输入有
界输出。
二、选择题
【答案】 h t t 3e3tu t
【解析】 两边拉氏变换可得 两式相减可得
y1(t) 3e3tu(t) y0 u t * h t y2 (t) e3tu(t) y0 u t * h t
s
3
3
Y0
s
H
s
s
s
1
3
Y0
s
H
s
s
5 / 37
圣才电子书 十万种考研考证电子书、题库视频学习平台

H s s
s3
h t t 3e3tu t
三、计算题 1.信号 x(t),h(t)波形如图 2-1 所示,画出卷积 y(t)=x(t)*h(t)结果的波形。[北京邮电 大学 2012 研]
图 2-1
解: ht 2 t 2 t 2 yt xt* ht 2xt 2 xt 2
二、填空题
已知一个 LTI 系统,在某起始状态 y(0) y0 0 下,当输入 x1(t) u(t) 时,全响应 y1(t) 3e3tu(t) ,当输入 x2 (t) u(t) 时,全响应 y2 (t) e3tu(t) 。试求该系统的冲激响 应 h(t) =_____。[华南理工大学 2012 研]
1.方程
dr 2 dt
(t)
2
2r(t
)
dr(t) dt
3r
(t)
e(t)
描述的系统是(
)。[北京航空航天大学
2007 研]
A.线性时不变
B.非线性时不变
C.线性时变
D.非线性时变
E.都不对
【答案】B
【 解 析 】 设 e1(t) r1(t) , e2 (t) r2 (t) , 则 c1e1(t) c2e2 (t) r (t) 。 因 为 c1r1(t) c2r2 (t) r (t) ,所以系统不满足线性。又 e(t t0 ) r(t t0 ) ,所以系统满足时
图 1-1
2.信号
x(t)如图
1-2
所示,画出信号
y(t
)
2x
1 3
t
2 3
的图形。[北京邮电大学
2012 研]
图 1-2
解:
yt
2
x
1 3
t
2
如图
1-3(d)所示。
3 / 37
圣才电子书 十万种考研考证电子书、题库视频学习平台

图 1-3(a)
图 1-3(b)
图 1-3(c)
故在 x [ , 9 ] 区间内,sin(x)=0 的两个根为 π 和 2π 44
(sin x) (x ) (x 2 ) (x ) (x 2 ) cos cos 2
9
5
9

4 1
(sin x)dx
4
(x )dx
4 5
(x
2
)dx
2

4
4
4
4 / 37
图 1-3(d)
9
3.求
4
(sin
x)dx
的值。[北京航空航天大学
2006
研]
4
解:设 f (t) 0 有 n 个互不相等的实根 t1,t2 ,...,tn ,根据 (t) 的复合函数 [ f (t)] 的性
质有
n
[ f (t)]
i 1
f
1 (ti
)
(t
ti
)
其中, f (ti ) 表示 f (t) 在 t ti 处的导数,且 f ' (ti ) 0(i 1, 2..., n) 。
如图 2-2 所示
图 2-2
2.某连续时间 LTI 系统的输入为 x(t) u(t) u(t 2) ,单位冲激响应为 h(t) etu(t) , 试利用卷积积分的性质求解系统的输出 y(t) x(t) * h(t) 。[北京邮电大学 2012 研]
6 / 37
圣才电子书 十万种考研考证电子书、题库视频学习平台
相关文档
最新文档