河北省邢台市育才中学人教版高中物理选修3-5学案第十八章 原子结构 章末总结
河北省邢台市育才中学人教版高中物理选修3-5学案:18.4 玻尔的原子模型 (2)

学案4 玻尔的原子模型[目标定位] 1.知道玻尔原子理论的基本假设的主要内容.2.了解能级、跃迁、能量量子化以及基态、激发态等概念.3.能用玻尔原子理论简单解释氢原子光谱.一、对玻尔理论的理解 [问题设计]按照经典理论,核外电子在库仑引力作用下绕原子核做圆周运动.我们知道,库仑引力和万有引力形式上有相似之处,电子绕原子核的运动与卫星绕地球的运动也一定有某些相似之处,那么若将卫星—地球模型缩小是否就可以变为电子—原子核模型呢?答案 不是.在玻尔理论中,电子的轨道半径只可能是某些分立的值,而卫星的轨道半径可按需要任意取值. [要点提炼]玻尔原子模型的三点假设 1.轨道量子化(1)轨道半径只能够是某些分立的数值.(2)氢原子的电子最小轨道半径r 1=0.053 nm ,其余轨道半径满足r n =n 2r 1,n 为量子数,n =1,2,3,…. 2.能量量子化(1)不同轨道对应不同的状态,在这些状态中,尽管电子做变速运动,却不辐射能量,因此这些状态是稳定的,原子在不同状态有不同的能量,所以原子的能量也是量子化的. (2)基态原子最低的能量状态称为基态,对应的电子在离核最近的轨道上运动,氢原子基态能量E 1=-13.6_eV. (3)激发态较高的能量状态称为激发态,对应的电子在离核较远的轨道上运动. 氢原子各能级的关系为:E n =1n2E 1.(E 1=-13.6 eV ,n =1,2,3,…)3.能级跃迁与光子的发射和吸收原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两种定态的能量差决定,即:高能级E m 发射光子h ν=E m -E n吸收光子h ν=E m -E n 低能级E n .二、玻尔理论对氢光谱的解释[问题设计]根据氢原子的能级图,说明:(1)氢原子从高能级向低能级跃迁时,放出的光子的频率如何计算?(2)如图1所示,是氢原子的能级图,若有一群处于n=4的激发态的氢原子向低能级跃迁,此时能辐射出多少种频率不同的光子?图1答案(1)氢原子辐射光子的能量取决于两个能级的能量差hν=E m-E n(n<m).(2)氢原子能级跃迁图如图所示.从图中可以看出能辐射出6种频率不同的光子,它们分别是n=4→n=3,n=4→n=2,n=4→n=1,n=3→n=2,n=3→n=1,n=2→n=1.[要点提炼]1.原子从一种能量态跃迁到另一种能量态时,吸收(或放出)能量为hν的光子(h是普朗克常量),这个光子的能量由前后两个能级的能量差决定,即hν=E m-E n(m>n).若由m→n,则辐射光子,若由n→m,则吸收光子.2.根据氢原子的能级图可以推知,一群量子数为n的氢原子最后跃迁到基态时,可能发出的不同频率的光子数可用N=C2n=n(n-1)2计算.三、玻尔理论的局限性1.玻尔理论的成功之处在于把量子思想引入了原子结构理论,提出了定态和跃迁的概念,成功地解释了氢原子光谱的实验规律.2.玻尔理论的不足之处在于保留了经典粒子的观念,把电子的运动仍看做经典力学描述下的轨道运动,没有彻底摆脱经典理论的框架.一、对玻尔理论的理解例1玻尔在他提出的原子模型中所作的假设有( )A.原子处在具有一定能量的定态中,虽然电子做加速运动,但不向外辐射能量B.原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子的可能轨道的分布是不连续的C.电子从一个轨道跃迁到另一个轨道时,辐射(或吸收)一定频率的光子D.电子跃迁时辐射的光子的频率等于电子绕核做圆周运动的频率解析A、B、C三项都是玻尔提出来的假设,其核心是原子定态概念的引入与能级跃迁学说的提出,也就是“量子化”的概念.原子的不同能量状态与电子绕核运动时不同的圆轨道相对应,是经典理论与量子化概念的结合.原子辐射的能量与电子在某一可能轨道上绕核的运动无关.答案ABC二、氢原子的跃迁规律分析例2如图2所示,1、2、3、4为玻尔理论中氢原子最低的四个能级.处在n=4能级的一群氢原子向低能级跃迁时,能发出若干种频率不同的光子,在这些光子中,波长最长的是( )图2A.n=4跃迁到n=1时辐射的光子B.n=4跃迁到n=3时辐射的光子C.n=2跃迁到n=1时辐射的光子D.n=3跃迁到n=2时辐射的光子答案 B三、氢原子跃迁中的能量问题例3氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道过程中( )A.原子要吸收光子,电子的动能增大,原子的电势能增大,原子的能量增大B.原子要放出光子,电子的动能减小,原子的电势能减小,原子的能量也减小C.原子要吸收光子,电子的动能增大,原子的电势能减小,原子的能量增大D.原子要吸收光子,电子的动能减小,原子的电势能增大,原子的能量增大解析由库仑力提供向心力,即ke2r2=mv2r,E k=12mv2=ke22r,由此可知电子离核越远,r越大,则电子的动能越小,故A、C错误;因r增大过程中库仑力做负功,故电势能增大,B错误;结合玻尔理论和原子的能级公式可知,D正确.答案 D玻尔的原子模型⎩⎪⎪⎪⎨⎪⎪⎪⎧玻尔原子理论的基本假设⎩⎪⎨⎪⎧定态假设能量假设:h ν=E m-E n(m >n )轨道假设玻尔理论对氢原子光谱的解释⎩⎪⎨⎪⎧氢原子能级公式:E n=E1n2(n =1,2,3…)氢原子能级图玻尔理论的成功与局限性1.(对玻尔理论的理解)根据玻尔理论,以下说法正确的是( ) A .电子绕核运动有加速度,就要向外辐射电磁波B .处于定态的原子,其电子做变速运动,但它并不向外辐射能量C .原子内电子的可能轨道是不连续的D .原子能级跃迁时,辐射或吸收光子的能量取决于两个轨道的能量差 答案 BCD解析 根据玻尔理论,电子绕核运动有加速度,但并不向外辐射能量,也不会向外辐射电磁波,故选项A 错误,B 正确.玻尔理论中的假设轨道,就是电子绕核运动可能的轨道半径是量子化的、不连续的,选项C 正确.原子在发生能级跃迁时,要放出或吸收一定频率的光子,光子的能量取决于两个轨道的能量差,故选项D 正确.2.(氢原子的跃迁规律分析)如图3所示为氢原子的四个能级,其中E 1为基态,若氢原子A 处于激发态E 2,氢原子B 处于激发态E 3,则下列说法正确的是()图3A .原子A 可能辐射出3种频率的光子B .原子B 可能辐射出3种频率的光子C .原子A 能够吸收原子B 发出的光子并跃迁到能级E 4D .原子B 能够吸收原子A 发出的光子并跃迁到能级E 4 答案 B解析 原子A 处于激发态E 2,它只能辐射出1种频率的光子;原子B 处于激发态E 3,它可能由E 3到E 2,由E 2到E 1,或由E 3到E 1,辐射出3种频率的光子;原子由低能级跃迁到高能级时,只能吸收具有能级差的能量的光子,由以上分析可知,只有B 项正确.3.(氢原子跃迁中的能量问题)氦原子被电离出一个核外电子,形成类氢结构的氦离子.已知基态的氦离子能量为E 1=-54.4 eV ,氦离子能级的示意图如图4所示,用一群处于第4能级的氦离子发出的光照射处于基态的氢气.求:图4(1)氦离子发出的光子中,有几种能使氢原子发生光电效应? (2)发生光电效应时,光电子的最大初动能是多少? 答案 (1)3种 (2)37.4 eV解析 一群氦离子跃迁时,一共发出N =n (n -1)2=6种光子由频率条件h ν=E m -E n 知6种光子的能量分别是 由n =4到n =3 h ν1=E 4-E 3=2.6 eV 由n =4到n =2 h ν2=E 4-E 2=10.2 eV 由n =4到n =1 h ν3=E 4-E 1=51.0 eV 由n =3到n =2 h ν4=E 3-E 2=7.6 eV 由n =3到n =1 h ν5=E 3-E 1=48.4 eV 由n =2到n =1 h ν6=E 2-E 1=40.8 eV由发生光电效应的条件知,h ν3、h ν5、h ν6三种光子可使处于基态的氢原子发生光电效应. (2)由光电效应方程E k =h ν-W 0知,能量为51.0 eV 的光子使氢原子逸出的光电子初动能最大,将W 0=13.6 eV 代入E k =h ν-W 0,得E k =37.4 eV.题组一 对玻尔理论的理解1.关于玻尔的原子模型,下列说法中正确的是( )A.它彻底否定了卢瑟福的核式结构学说B.它发展了卢瑟福的核式结构学说C.它完全抛弃了经典的电磁理论D.它引入了普朗克的量子理论答案BD解析玻尔的原子模型在核式结构模型的前提下提出轨道量子化、能量量子化及能级跃迁,故A错误,B正确,它的成功就在于引入了量子化理论,缺点是被过多引入的经典力学所困,故C错误,D正确.2.原子的能量量子化现象是指( )A.原子的能量是不可以改变的B.原子的能量与电子的轨道无关C.原子的能量状态是不连续的D.原子具有分立的能级答案CD解析根据玻尔理论,原子处于一系列不连续的能量状态中,这些能量值称为能级,原子不同的能量状态对应不同的轨道,故C、D选项正确.3.关于玻尔理论,下列说法正确的是( )A.玻尔理论的成功,说明经典电磁理论不适用于原子系统,也说明了电磁理论不适用于电子运动B.玻尔理论成功地解释了氢原子光谱的规律,为量子力学的建立奠定了基础C.玻尔理论的成功之处是引入了量子观念D.玻尔理论的成功之处是它保留了经典理论中的一些观点,如电子轨道的概念答案BC4.根据玻尔理论,下列关于氢原子的论述正确的是( )A.若氢原子由能量为E n的定态向低能级跃迁,则氢原子要辐射的光子能量为hν=E nB.电子沿某一轨道绕核运动,若圆周运动的频率为ν,则其发光的频率也是νC.一个氢原子中的电子从一个半径为r a的轨道自发地直接跃迁到另一半径为r b的轨道,已知r a>r b,则此过程原子要辐射某一频率的光子D.氢原子吸收光子后,将从高能级向低能级跃迁答案 C解析原子由能量为E n的定态向低能级跃迁时,辐射的光子能量等于能级差,与E n不相等,故A错;电子沿某一轨道绕核运动,处于某一定态,不向外辐射能量,故B错;电子由半径大的轨道跃迁到半径小的轨道,能级降低,因而要辐射某一频率的光子,故C正确;原子吸收光子后能量增加,能级升高,故D错.题组二氢原子的跃迁规律分析5.在氢原子能级图中,横线间的距离越大,代表氢原子能级差越大,下列能级图中,能形象表示氢原子最低的四个能级的是( )答案 C解析由氢原子能级图可知,量子数n越大,能级越密,所以C对.6.一个氢原子从n=3能级跃迁到n=2能级,该氢原子( )A.放出光子,能量增加B.放出光子,能量减少C.吸收光子,能量增加D.吸收光子,能量减少答案 B解析氢原子从高能级向低能级跃迁时,放出光子,能量减少,故选项B正确.7.一群氢原子处于同一较高的激发态,它们向较低激发态或基态跃迁的过程中( ) A.可能吸收一系列频率不同的光子,形成光谱中的若干条暗线B.可能发出一系列频率不同的光子,形成光谱中的若干条亮线C.只吸收频率一定的光子,形成光谱中的一条暗线D.只发出频率一定的光子,形成光谱中的一条亮线答案 B解析当原子由高能级向低能级跃迁时,原子将发出光子,由于不只是两个特定能级之间的跃迁,所以它可以发出一系列频率的光子,形成光谱中的若干条亮线.8.氢原子的能级图如图1所示,欲使一处于基态的氢原子释放出一个电子而变成氢离子,氢原子需要吸收的能量至少是( )图1A .13.6 eVB .10.20 eVC .0.54 eVD .27.20 eV 答案 A解析 要使氢原子变成氢离子,需要吸收的能量大于等于ΔE =E n -E 1=0-(-13.6 eV)=13.6 eV. 9.用频率为ν的光照射大量处于基态的氢原子,在所发射的光谱中仅能观测到频率分别为ν1、ν2、ν3的三条谱线,且ν3>ν2>ν1,则( ) A .ν0<ν1 B .ν3=ν2+ν1 C .ν0=ν1+ν2+ν3 D.1ν1=1ν2+1ν3答案 B解析 大量氢原子跃迁时,只有三种频率的谱线,这说明是从n =3能级向低能级跃迁,根据能量守恒有,h ν3=h ν2+h ν1,解得:ν3=ν2+ν1,选项B 正确.图210.μ子与氢原子核(质子)构成的原子称为μ氢原子,它在原子核物理的研究中有重要作用.图2为μ氢原子的能级示意图,假定光子能量为E 的一束光照射容器中大量处于n =2能级的μ氢原子,μ氢原子吸收光子后,发出频率为ν1、ν2、ν3、ν4、ν5和ν6的光子,且频率依次增大,则E 等于( ) A .h (ν3-ν1) B .h (ν3+ν1) C .h ν3 D .h ν4 答案 C解析 μ氢原子吸收光子后,能发出六种频率的光,说明μ氢原子是从n =4能级向低能级跃迁,则吸收的光子的能量为ΔE =E 4-E 2,E 4-E 2恰好对应着频率为ν3的光子,故光子的能量为hν3.11.氢原子能级如图3所示,当氢原子从n=3跃迁到n=2的能级时,辐射光的波长为656 nm.以下判断正确的是( )图3A.氢原子从n=2跃迁到n=1的能级时,辐射光的波长大于656 nmB.用波长为325 nm的光照射,可使氢原子从n=1跃迁到n=2的能级C.一群处于n=3能级上的氢原子向低能级跃迁时最多产生3种谱线D.用波长为633 nm的光照射,不能使氢原子从n=2跃迁到n=3的能级答案CD解析能级间跃迁辐射的光子能量等于两能级间的能级差,能级差越大,辐射的光子频率越大,波长越小,A错误;由E m-E n=hν可知,B错误,D正确;根据C23=3可知,辐射的光子频率最多3种,C正确.题组三综合应用12.如图4所示为氢原子最低的四个能级,当氢原子在这些能级间跃迁时,图4(1)有可能放出几种能量不同的光子?(2)在哪两个能级间跃迁时,所发出的光子波长最长?波长是多少?答案(1)6 (2)第四能级向第三能级 1.88×10-6 m解析(1)由N=C2n,可得N=C24=6种;(2)氢原子由第四能级向第三能级跃迁时,能级差最小,辐射的光子能量最小,波长最长,根据hν=E4-E3=-0.85-(-1.51) eV=0.66 eV,λ=hcE4-E3=6.63×10-34×3×1080.66×1.6×10-19m≈1.88×10-6 m.13.氢原子在基态时轨道半径r1=0.53×10-10 m,能量E1=-13.6 eV.求氢原子处于基态时,(1)电子的动能;(2)原子的电势能;(3)用波长是多少的光照射可使其电离?(已知电子质量m =9.1×10-31kg)答案 (1)13.6 eV (2)-27.2 eV (3)9.14×10-8m解析 (1)设处于基态的氢原子核外电子速度大小为v 1,则k e 2r 21=mv 21r 1,所以电子动能E k1=12mv 21=ke 22r 1=9×109×(1.6×10-19)22×0.53×10-10×1.6×10-19 eV ≈13.6 eV.(2)因为E 1=E k1+E p1,所以E p1=E 1-E k1=-13.6 eV -13.6 eV =-27.2 eV. (3)设用波长为λ的光照射可使氢原子电离,有hcλ=0-E 1所以λ=-hc E 1=-6.63×10-34×3×108-13.6×1.6×10-19 m≈9.14×10-8m.。
人教版高中物理选修3-5第18章第2节原子的核式结构模型(教案)

人教版高中物理选修3-5第18章第2节原子的核式结构模型【知识与技能】1.了解原子结构模型建立的历史过程及各种模型建立的依据;2.知道α粒子散射实验的实验方法和实验现象,及原子核式结构模型的主要内容。
【过程与方法】1.通过对α粒子散射实验结果的讨论与交流,培养学生对现象的分析中归纳中得出结论的逻辑推理能力;2.通过核式结构模型的建立,体会建立模型研究物理问题的方法,理解物理模型的演化及其在物理学开展过程中的作用;3.了解研究微观现象的方法。
【情感态度与价值观】1.通过对原子模型演变的历史的学习,感受科学家们细致、敏锐的科学态度和不畏权威、尊重事实、尊重科学的科学精神;2.通过对原子结构的认识的不断深入,使学生认识到人类对微观世界的认识是不断扩大和加深的,领悟和感受科学研究方法的正确使用对科学开展的重要意义。
【教学重难点】★教学重点1.引导学生小组自主思考讨论在于对α粒子散射实验的结果分析从而否认〞枣糕模型〞,得出原子的核式结构;2.在教学中渗透和让学生体会物理学研究方法,渗透物理学研究方法:模型方法,和微观粒子的碰撞方法。
★教学难点引导学生小组自主思考讨论在于对ɑ粒子散射实验的结果分析从而否认“枣糕模型〞,得出原子的核式结构模型。
【教学过程】★重难点一、α粒子散射实验★1909—1911年卢瑟福和他的助手做α粒子轰击金箔的实验,获得了重要的发现.1.实验装置(如以下图)由放射源、金箔、荧光屏等组成注:①整个实验过程在真空中进行.②金箔很薄,α粒子很容易穿过.2.实验现象与结果.绝大多数α粒子穿过金箔后根本上仍沿原来的方向前进,但是有少数α粒子发生了较大角度的偏转.极少数α粒子偏转角超过90°,有的几乎到达180°,沿原路返回.α粒子散射实验令卢瑟福万分惊奇.按照汤姆孙的原子结构模型:带正电的物质均匀分布,带负电的电子质量比α粒子的质量小得多,α粒子碰到电子就像子弹碰到一粒尘埃一样,其运动方向不会发生什么改变.但实验结果出现了像一枚炮弹碰到一层薄薄的卫生纸被反弹回来这一不可思议的现象.卢瑟福通过分析,否认了汤姆孙的原子结构模型,提出了核式结构模型.3.原子的核式结构模型对α粒子散射实验结果的解释〔1〕当α粒子穿过原子时,如果离核较远,受到原子核的斥力很小,α粒子就象穿过“一片空地〞一样,无遮无挡,运动方向改变很小,因为原子核很小,所以绝大多数α粒子不发生偏转。
河北省邢台市育才中学人教版高中物理选修3-5学案:18.2 原子的核式结构模型

2 原子的核式结构模型[目标定位] 1.知道阴极射线是由电子组成的,电子是原子的组成部分,知道电子的电荷量和比荷.2.知道α粒子散射试验的试验方法和试验现象及卢瑟福原子核式结构模型的主要内容.3.能说出原子和原子核大小的数量级.一、阴极射线1.试验:如图18-1、2-1所示,图18-1、2-1真空玻璃管中K是金属板制成的阴极,接感应线圈的负极,A是金属环制成的阳极,在K、A间加近万伏的高电压,可观看到玻璃壁上淡淡的荧光及管中物体在玻璃壁上的影.2.阴极射线:荧光的实质是由于玻璃受到阴极发出的某种射线的撞击而引起的,这种射线被命名为阴极射线.二、电子的发觉1.让阴极射线分别通过电场或磁场,依据偏转状况,证明白它的本质是带负电的粒子流,并求出其比荷.2.密立根通过有名的“油滴试验”精确地测出了电子电荷.电子电荷量一般取e=1.6×10-19__C,电子质量m e=9.1×10-31__kg .想一想电子发觉的重大意义是什么?答案电子是人类发觉的第一个比原子小的粒子.电子的发觉,打破了原子不行再分的传统观念,使人们生疏到原子不是组成物质的最小微粒,原子本身也有内部结构.从今,原子物理学飞速进展,人们对物质结构的生疏进入了一个新时代.三、α粒子散射试验1.α粒子从放射性物质中放射出来的快速运动的粒子,实质是失去两个电子的氦原子核,带有两个单位的正电荷,质量为氢原子质量的4倍、电子质量的7 300倍.2.试验结果绝大多数α粒子穿过金箔后,基本沿原方向前进.少数α粒子发生大角度偏转,偏转角甚至大于90°. 3.卢瑟福的核式结构模型1911年由卢瑟福提出,在原子中心有一个很小的核,叫原子核.它集中了全部的正电荷和几乎全部的质量,电子在核外空间运动.四、原子核的电荷与尺度1.原子内的电荷关系各种元素的原子核的电荷数与原子内含有的电子数相等,格外接近它们的原子序数.2.原子核的组成原子核是由质子和中子组成的,原子核的电荷数就等于原子核中的质子数.3.原子核的大小对于一般的原子核,试验确定的原子核半径R的数量级为10-15m,而整个原子半径的数量级是10-10m.因而原子内部格外“空旷”.一、探究电子发觉的历程1.真空玻璃管两极加上高电压→玻璃管壁上发出荧光2.德国物理学家戈德斯坦将阴极发出的射线命名为阴极射线.3.猜想(1)阴极射线是一种电磁辐射.(2)阴极射线是带电微粒.4.英国物理学家汤姆孙让阴极射线在电场和磁场中偏转.5.密立根通过“油滴试验”精确测定了电子的电荷量和电子的质量.例1汤姆孙对阴极射线的探究,最终发觉了电子,由此被称为“电子之父”,关于电子的说法正确的是( ) A.电子是原子核的组成部分B.电子电荷的精确测定最早是由密立根通过有名的“油滴试验”实现的C.电子电荷量的数值约为1.602×10-19 CD.电子质量与电荷量的比值称为电子的比荷答案BC解析电子是原子的组成部分,电子的发觉说明原子是可以再分的.电子的电荷量与质量的比值称为电子的比荷,也叫荷质比.二、对α粒子散射试验的理解1.装置:放射源、金箔、荧光屏等,如图18-1、2-2所示.图18-1、2-22.现象:(1)绝大多数的α粒子穿过金箔后仍沿原来的方向前进.(2)少数α粒子发生较大的偏转.(3)极少数α粒子偏转角度超过90°,有的几乎达到180°.3.留意事项:(1)整个试验过程在真空中进行.(2)α粒子是氦原子核,体积很小,金箔需要做得很薄,α粒子才能穿过.4.汤姆孙的原子模型不能解释α粒子的大角度散射图18-1、2-3例2如图18-1、2-3为卢瑟福所做的α粒子散射试验装置的示意图,荧光屏和显微镜一起分别放在图中的A、B、C、D四个位置时,下述说法中正确的是( )A.相同时间内在A时观看到屏上的闪光次数最多B.相同时间内在B时观看到屏上的闪光次数比放在A时稍少些C.放在D位置时屏上仍能观看到一些闪光,但次数极少D.放在C、D位置时屏上观看不到闪光答案ABC解析在卢瑟福α粒子散射试验中,α粒子穿过金箔后,绝大多数α粒子仍沿原来的方向前进,故A正确;少数α粒子发生大角度偏转,极少数α粒子偏转角度大于90°,极个别α粒子反弹回来,所以在B位置只能观看到少数的闪光,在C、D两位置能观看到的闪光次数极少,故D错,B、C对.借题发挥解决α粒子散射试验问题的技巧(1)熟记装置及原理.(2)理解建立核式结构模型的要点.①核外电子不会使α粒子的速度发生明显转变.②汤姆孙的原子模型不能解释α粒子的大角度散射.③少数α粒子发生了大角度偏转,甚至反弹回来,表明这些α粒子在原子中的某个地方受到了质量、电量均比它本身大得多的物体的作用.④绝大多数α粒子在穿过厚厚的金原子层时运动方向没有明显变化,说明原子中绝大部分是空的,原子的质量、电量都集中在体积很小的核内.针对训练1 (2021·福建高考)在卢瑟福α粒子散射试验中,金箔中的原子核可以看作静止不动,下列各图画出的是其中两个α粒子经受金箔散射过程的径迹,其中正确的是( )答案 C解析α粒子与原子核相互排斥,A、D错;运动轨迹与原子核越近,力越大,运动方向变化越明显,B错,C 对.三、卢瑟福原子核式结构模型1.内容:在原子中心有一个很小的核,叫原子核.原子的全部正电荷和几乎全部质量都集中在核内,带负电的电子在核外空间绕核旋转.2.对α粒子散射试验结果的解释(1)当α粒子穿过原子时,假如离核较远,受到原子核的斥力很小,运动方向转变很小,由于原子核很小,所以绝大多数α粒子不发生偏转.(2)只有当α粒子格外接近原子核穿过时,才受到很大的库仑力作用,偏转角才很大,而这种机会很少.(3)假如α粒子正对着原子核射来,偏转角几乎达到180°,这种机会极少,如图18-1、2-4所示.图18-1、2-43.数量级:原子的半径数量级为10-10 m,原子核半径的数量级为10-15 m,原子核的半径只相当于原子半径的十万分之一,体积只相当于原子体积的10-15.例3下列对原子结构的生疏中,错误的是( )A.原子中绝大部分是空的,原子核很小B.电子在核外绕核旋转,向心力为库仑力C.原子的全部正电荷都集中在原子核里D.原子核的直径大约为10-10 m答案 D解析卢瑟福α粒子散射试验的结果否定了关于原子结构的汤姆孙模型,卢瑟福提出了关于原子的核式结构学说,并估算出原子核直径的数量级为10-15 m,而原子直径的数量级为10-10 m,是原子核直径的十万倍,所以原子内部是格外“空旷”的,核外带负电的电子由于受到带正电的原子核的库仑引力而绕核旋转,所以本题应选D.针对训练2 在卢瑟福α粒子散射试验中,只有少数α粒子发生了大角度偏转,其缘由是( )A.原子的全部正电荷和几乎全部质量都集中在一个很小的核里B.正电荷在原子内是均匀分布的C.原子中存在着带负电的电子D.原子的质量在原子核内是均匀分布的答案 A解析本题考查了同学对α粒子散射试验结果与原子的核式结构关系的理解.原子的核式结构正是建立在α粒子散射试验结果基础上的,C、D的说法没有错,但与题意不符.电子的发觉及对电子的生疏1.关于阴极射线的性质,推断正确的是( )A.阴极射线带负电B.阴极射线带正电C.阴极射线的比荷比氢原子比荷大D.阴极射线的比荷比氢原子比荷小答案AC 解析通过让阴极射线在电场、磁场中的偏转的争辩发觉阴极射线带负电,其比荷比氢原子的比荷大得多,故A、C正确.2.阴极射线从阴极射线管中的阴极发出,在其间的高电压下加速飞向阳极,如图18-1、2-5所示.若要使射线向上偏转,所加磁场的方向应为( )图18-1、2-5A.平行于纸面对左 B.平行于纸面对上C.垂直于纸面对外 D.垂直于纸面对里答案 C解析由于阴极射线的本质是电子流,阴极射线方向向右传播,说明电子的运动方向向右,相当于存在向左的电流,利用左手定则,使电子所受洛伦兹力方向平行于纸面对上,由此可知磁场方向应为垂直于纸面对外,故选项C正确.α粒子散射试验的理解3.在α粒子的散射试验中,使少数α粒子发生大角度偏转的作用力是原子核对α粒子的( )A.万有引力 B.库仑力C.磁场力 D.核力答案 B原子的核式结构模型4.卢瑟福原子核式结构理论的主要内容有( )A.原子的中心有个核,叫原子核B.原子的正电荷均匀分布在整个原子中C.原子的全部正电荷和几乎全部质量都集中在原子核内D.带负电的电子在核外围着核旋转答案ACD解析卢瑟福原子核式结构理论的主要内容是:在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部质量都集中在原子核内,带负电的电子在核外空间围着核旋转,由此可见,B选项错误,A、C、D选项正确.5.卢瑟福对α粒子散射试验的解释是( )A.使α粒子产生偏转的主要缘由是原子中电子对α粒子的作用力B.使α粒子产生偏转的力是库仑力C.原子核很小,α粒子接近它的机会很小,所以绝大多数的α粒子仍沿原来的方向前进D.能发生大角度偏转的α粒子是穿过原子时离原子核近的α粒子答案BCD解析原子核带正电,与α粒子间存在库仑力,当α粒子靠近原子核时受库仑力而偏转,电子对它的影响可忽视,故A错、B对;由于原子核格外小,绝大多数粒子经过时离核较远因而运动方向几乎不变,只有离核很近的α粒子受到的库仑力较大,方向转变较多,故C、D对.题组一电子的发觉及对电子的生疏1.关于阴极射线的本质,下列说法正确的是( )A.阴极射线本质是氢原子B.阴极射线本质是电磁波C.阴极射线本质是电子D.阴极射线本质是X射线答案 C解析阴极射线是原子受激放射出的电子,关于阴极射线是电磁波、X射线都是在争辩阴极射线过程中的一些假设,是错误的.2.关于阴极射线,下列说法正确的是( )A.阴极射线就是淡薄气体导电的辉光放电现象B.阴极射线是在真空管内由阴极发出的电子流C.阴极射线是组成物体的原子D.阴极射线沿直线传播,但可被电场、磁场偏转答案BD解析阴极射线是在真空管中由阴极发出的电子流,B正确,A错误;电子是原子的组成部分,C错误;电子可被电场、磁场偏转,D正确.3.关于电荷的电荷量下列说法错误的是( ) A.电子的电量是由密立根油滴试验测得的B.物体所带电荷量可以是任意值C.物体所带电荷量最小值为1.6×10-19 CD.物体所带的电荷量都是元电荷的整数倍答案 B解析密立根的油滴试验测出了电子的电量为1.6×10-19C,并提出了电荷量子化的观点,因而A对,B错,C 对;任何物体的电荷量都是e的整数倍,故D对.因此选B.4.如图18-1、2-6是阴极射线管示意图.接通电源后,阴极射线由阴极沿x轴正方向射出,在荧光屏上会看到一条亮线.要使荧光屏上的亮线向下(z轴负方向)偏转,在下列措施中可接受的是( )图18-1、2-6A.加一磁场,磁场方向沿z轴负方向B.加一磁场,磁场方向沿y轴正方向C.加一电场,电场方向沿z轴负方向D.加一电场,电场方向沿y轴正方向答案 B解析若加磁场,由左手定则可知,所加磁场方向沿y轴正方向,B正确;若加电场,因电子向下偏转,则电场方向沿z轴正方向.题组二对α粒子散射试验的理解5.卢瑟福提出原子的核式结构模型的依据是用α粒子轰击金箔,试验中发觉α粒子( )A.全部穿过或发生很小偏转B.绝大多数穿过,只有少数发生较大偏转,有的甚至被弹回C.绝大多数发生很大偏转,甚至被弹回,只有少数穿过D.全部发生很大偏转答案 B解析卢瑟福的α粒子散射试验结果是绝大多数α粒子穿过金箔后仍沿原来的方向前进,故选项A错误.α粒子被散射时只有少数发生了较大角度偏转,并且有极少数α粒子偏转角超过了90°,有的甚至被弹回,偏转角几乎达到180°,故选项B正确,选项C、D错误.6.如图所示,X表示金原子核,α粒子射向金核被散射,若它们入射时的动能相同,其偏转轨道可能是图中的( )答案 D解析α粒子离金核越远,其所受斥力越小,轨道弯曲的就越小,故D对.7.当α粒子穿过金箔发生大角度偏转的过程中,下列说法正确的是( )A.α粒子先受到原子核的斥力作用,后受原子核的引力的作用B.α粒子始终受到原子核的斥力作用C.α粒子先受到原子核的引力作用,后受到原子核的斥力作用D.α粒子始终受到库仑斥力,速度始终减小答案 B解析α粒子与金原子核带同种电荷,两者相互排斥,故A、C错误,B正确;α粒子在靠近金原子核时斥力做负功,速度减小,远离时斥力做正功,速度增大,故D错误.题组三卢瑟福的核式结构模型8.卢瑟福的α粒子散射试验的结果显示了下列哪些状况( )A.原子内存在电子B.原子的大小为10-10 mC.原子的正电荷均匀分布在它的全部体积上D.原子的全部正电荷和几乎全部质量都集中在原子核内答案 D解析依据α粒子散射试验现象,绝大多数α粒子穿过金箔后沿原来方向前进,少数发生较大的偏转,极少数偏转角超过90°,可知C错,A与题意不符;而试验结果不能判定原子的大小为10-10 m,B错,故选D. 9.关于卢瑟福的原子核式结构学说的内容,下列叙述正确的是( )A.原子是一个质量分布均匀的球体B.原子的质量几乎全部集中在原子核内C.原子的正电荷和负电荷全部集中在一个很小的核内D.原子半径的数量级是10-10 m,原子核半径的数量级是10-15 m 答案BD解析依据卢瑟福的原子核式结构学说,可知选项B、D正确.10.α粒子散射试验中,当α粒子最接近原子核时,α粒子符合下列哪种状况( )A.动能最小B.势能最小C.α粒子与金原子组成的系统的能量小D.所受原子核的斥力最大答案AD解析该题考查了原子的核式结构、动能、电势能、库仑定律及能量守恒等学问点.α粒子在接近金原子核的过程中,要克服库仑斥力做功,动能削减,电势能增加,两者相距最近时,动能最小,电势能最大,总能量守恒.依据库仑定律,距离最近时,斥力最大.11.已知金的原子序数为79,α粒子离金原子核的最近距离为10-13m,则α粒子离金核最近时受到的库仑力多大?对α粒子产生的加速度多大?已知α粒子的电荷量qα=2e,质量mα=6.64×10-27kg.答案 3.64 N 5.48×1026 m/s2解析分别依据库仑定律和牛顿其次定律可算出:α粒子离核最近时受到的库仑力F=kq1q2r2=k79e×2er2=9×109×(79×1.6×10-19)×(2×1.6×10-19)(10-13)2N=3.64 N.库仑斥力对α粒子产生的加速度大小a=Fmα=3.646.64×10-27m/s2=5.48×1026 m/s2.12.已知电子质量为9.1×10-31kg,带电荷量为-1.6×10-19 C,若氢原子核外电子绕核旋转时的轨道半径为0.53×10-10m,求电子绕核运动的线速度大小、动能、周期和形成的等效电流.答案 2.19×106 m/s 2.18×10-18 J 1.53×10-16 s 1.05×10-3 A解析由卢瑟福的原子模型可知:电子绕核做圆周运动所需的向心力由核对电子的库仑引力来供应.依据mv2r=ke2r2,得v=ekrm=1.6×10-19×9×1090.53×10-10×9.1×10-31m/s=2.19×106 m/s;其动能E k =12mv 2=12×9.1×10-31×(2.19×106)2J=2.18×10-18J ;运动周期T =2πr v =2×3.14×0.53×10-102.17×106s=1.53×10-16s ;电子绕核运动形成的等效电流I =q t =e T =1.6×10-191.53×10-16A =1.05×10-3A.。
人教版高中物理选修3-5学案:第十八章 学案4 波尔的原子模型

人教版高中物理选修3-5学案:第十八章学案4 波尔的原子模型[学习目标] 1.知道玻尔原子理论的基本假设的主要内容.2.了解能级、跃迁、能量量子化以及基态、激发态等概念,会计算原子跃迁时吸收或辐射光子的能量.3.能用玻尔原子理论简单解释氢原子光谱.一、玻尔原子理论的基本假设[导学探究] (1)按照经典理论,核外电子在库仑引力作用下绕原子核做圆周运动.我们知道,库仑引力和万有引力形式上有相似之处,电子绕原子核的运动与卫星绕地球的运动也一定有某些相似之处,那么若将卫星—地球模型缩小是否就可以变为电子—原子核模型呢?答案不可以.在玻尔理论中,电子的轨道半径只可能是某些分立的值,而卫星的轨道半径可按需要任意取值.(2)氢原子吸收或辐射光子的频率条件是什么?它和氢原子核外的电子的跃迁有什么关系?答案电子从能量较高的定态轨道(其能量记为Em)跃迁到能量较低的定态轨道(其能量记为En)时,会放出能量为hν的光子(h是普朗克常量),这个光子的能量由前后两个能级的能量差决定,即hν=Em-En(m>n).这个式子称为频率条件,又称辐射条件.当电子从较低的能量态跃迁到较高的能量态,吸收的光子的能量同样由频率条件决定.[知识梳理] 玻尔原子模型的三点假设(1)轨道量子化①轨道半径只能够是某些分立的数值.②氢原子的电子最小轨道半径r1=0.053 nm,其余轨道半径满足rn =n2r1,n为量子数,n=1,2,3,….(2)能量量子化①不同轨道对应不同的状态,在这些状态中,尽管电子做变速运动,却不辐射能量,因此这些状态是稳定的,原子在不同状态有不同的能量,所以原子的能量也是量子化的.②基态原子最低的能量状态称为基态,对应的电子在离核最近的轨道上运动,氢原子基态能量E1=-13.6_eV.③激发态较高的能量状态称为激发态,对应的电子在离核较远的轨道上运动.氢原子各能级的关系为:En=E1.(E1=-13.6 eV,n=1,2,3,…)(3)能级跃迁与光子的发射和吸收原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两种定态的能量差决定,即:高能级\s\up7(发射光子hν=Em-En),\s\do5(吸收光子hν=Em-En))低能级En.[即学即用] (多选)按照玻尔原子理论,下列表述正确的是( ) A.核外电子运动轨道半径可取任意值B.氢原子中的电子离原子核越远,氢原子的能量越大C.电子跃迁时,辐射或吸收光子的能量由能级的能量差决定,即hν=|Em-En|D.氢原子从激发态向基态跃迁的过程,可能辐射能量,也可能吸收能量答案BC解析根据玻尔理论,核外电子运动的轨道半径是确定的值,而不是任意值,A错误;氢原子中的电子离原子核越远,能级越高,能量越大,B正确;由跃迁规律可知C正确;氢原子从激发态向基态跃迁的过程中,只辐射能量,D错误.二、玻尔理论对氢光谱的解释[导学探究] 根据氢原子的能级图,说明:(1)氢原子从高能级向低能级跃迁时,放出的光子的能量如何计算?(2)如图1所示是氢原子的能级图,一群处于n=4的激发态的氢原子向低能级跃迁时能辐射出多少种频率不同的光子?图1答案(1)氢原子辐射光子的能量取决于两个能级的能量差hν=Em-En(n<m).(2)氢原子能级跃迁图如图所示.从图中可以看出能辐射出6种频率不同的光子,它们分别是n=4→n=3,n=4→n=2,n=4→n=1,n=3→n=2,n=3→n=1,n=2→n=1. [知识梳理] (1)原子从一种能量态跃迁到另一种能量态时,吸收(或放出)能量为hν的光子(h是普朗克常量),这个光子的能量由前后两个能级的能量差决定,即hν=Em-En(m>n).若m→n,则辐射光子,若n→m,则吸收光子.(2)根据氢原子的能级图可以推知,一群量子数为n的氢原子最后跃迁到基态时,可能发出的不同频率的光子数可用N=C=n-1,2)计算.一、对玻尔理论的理解例1 (多选)玻尔在他提出的原子模型中所作的假设有( ) A.原子处在具有一定能量的定态中,虽然电子做加速运动,但不向外辐射能量B.原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,而电子的可能轨道的分布是不连续的C.电子从一个轨道跃迁到另一个轨道时,辐射(或吸收)一定频率的光子D.电子跃迁时辐射的光子的频率等于电子绕核做圆周运动的频率解析A、B、C三项都是玻尔提出来的假设,其核心是原子定态概念的引入与能级跃迁学说的提出,也就是“量子化”的概念.原子的不同能量状态与电子绕核运动时不同的圆轨道相对应,是经典理论与量子化概念的结合.原子辐射的能量与电子在某一可能轨道上绕核的运动无关.答案ABC归纳总结解答本类问题应掌握玻尔理论的三点假设:(1)轨道量子化假设.(2)能量量子化假设.(3)跃迁理论.针对训练按照玻尔理论,当氢原子中电子由半径为ra的圆轨道跃迁到半径为rb的圆轨道上时,若rb<ra,则在跃迁过程中( )A.氢原子要吸收一系列频率的光子B.氢原子要辐射一系列频率的光子C.氢原子要吸收一定频率的光子D.氢原子要辐射一定频率的光子答案D 解析因为是从高能级向低能级跃迁,所以应放出光子,因此可排。
高中物理 第十八章 原子结构章末分层突破学案 新人教版选修3-5(2021年最新整理)

高中物理第十八章原子结构章末分层突破学案新人教版选修3-5 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中物理第十八章原子结构章末分层突破学案新人教版选修3-5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中物理第十八章原子结构章末分层突破学案新人教版选修3-5的全部内容。
第十八章原子结构[自我校对]①高速电子流②枣糕模型③绝大多数④偏转⑤极少数⑥几乎全部质量⑦高速旋转⑧1λ=R错误!(n=3,4,5…)⑨hν=E m-E n⑩r n=n2r1⑪E n=错误!两个重要的物理思想方法1。
模型法人们对原子结构的认识经历了几个不同的阶段,其中有汤姆孙模型、卢瑟福模型、玻尔模型、电子云模型.图18。
12.假设法假设法是学习物理规律常用的方法,前边我们学过的安培分子电流假说,现在大家知道从物质微观结构来看是正确的,它就是核外电子绕核旋转所形成的电流.在当时的实验条件下是“假说”。
玻尔的假说是为解决核式结构模型的困惑而提出的,他的成功在于引入量子理论,局限性在于保留了轨道的概念,没有彻底脱离经典物理学框架.卢瑟福的α粒子散射实验说明了下列哪种情况( )A.原子内的正电荷全部集中在原子核里B.原子内的正电荷均匀分布在它的全部体积上C.原子内的正负电荷是一对一整齐排列的D.原子的几乎全部质量都集中在原子核里E.原子内部是十分“空旷”的【解析】卢瑟福的α粒子散射实验中,少数α粒子发生大角度偏转,这是原子中带正电部分作用的结果,由于大角度偏转的α粒子数极少,说明原子中绝大部分是空的,带正电部分的体积很小,带负电的电子绕核运动的向心力即是原子核对它的引力,而电子质量极小,故原子核集中了原子全部正电荷和几乎全部质量,选项A、D、E正确.【答案】ADE玻尔理论1.(1)量子化观点:电子的可能轨道半径、原子的能量、原子跃迁辐射或吸收光子的频率都只能是分立的、不连续的值.(2)对应关系:电子处于某一可能轨道对应原子的一种能量状态.(3)定态观点:电子在某一可能轨道上运动时,原子是不向外辐射电磁波的,轨道与能量是稳定的.(4)跃迁观点:能级跃迁时辐射或吸收光子的能量,hν=E m-E n(m>n).(5)①原子吸收光子能量是有条件的,只有等于某两个能级差时才被吸收发生跃迁.②如果入射光的能量E≥13.6 eV,原子也能吸收光子,则原子电离.③用粒子碰撞的方法使原子能级跃迁时,粒子能量大于能级差即可.2.跃迁与光谱线原子处于基态时,原子是稳定的,但原子在吸收能量跃迁到激发态后,就不稳定了,这时就会向低能级定态跃迁,而跃迁到基态,有时是经多次跃迁再到基态.一群氢原子处于量子数为n的激发态时,可能辐射出的光谱线条数为:N=C错误!=错误!.将氢原子电离,就是从外部给电子能量,使其从基态或激发态脱离原子核的束缚而成为自由电子.(1)若要使n=2激发态的氢原子电离,至少要用多大频率的电磁波照射该氢原子?(2)若用波长为200 nm的紫外线照射氢原子,则电子飞到离核无穷远处时的速度为多大?(电子电荷量e=1.6×10-19C,普朗克常量h=6。
高中物理,选修3---5,第十八章,《原子结构》,全章导学案,(附同步强化训练,与详细参考答案)汇总

高中物理选修3—5第十八章《原子结构》全章导学案汇总一.§§18.1《电子的发现》(附课后同步强化训练与详细参考答案)二.§§18.2 《原子的核式结构模型》(附课后同步强化训练与详细参考答案)三.§§18.3 《氢原子光谱》(附课后同步强化训练与详细参考答案)四.§§18.4 《波尔的原子模型》(附课后同步强化训练与详细参考答案)§§18.1 《电子的发现》导学案【教学目标】1.知道阴极射线的概念,了解电子的发现过程。
2.知道电子是原子的组成部分。
3.知道电子的电荷量及其他电荷与电子电荷量的关系。
重点:电子的电荷量及其他电荷与电子电荷量的关系。
难点:阴极射线【自主预习】1.1897年,汤姆孙根据阴极射线在电场和磁场中的偏转情况断定,它的本质是带________的粒子流并求出了这种粒子的________,后来汤姆孙直接测到了阴极射线粒子的________,它的电荷量的大小与氢离子大致相同。
2.组成阴极射线的粒子被称为________。
电子是________的组成部分,是比原子更基本的物质单元。
3.电子电荷的精确测定是在1910年前后由________通过著名的________做出的。
电子电荷的值一般取做e=________ C。
4.密立根实验更重要的发现是:电荷是________的,即任何带电体的电荷只能是e 的________。
5.质子质量与电子质量的比值为 m p/m e=________。
6.阴极射线的产生1). 阴极射线由阴极射线管产生2).阴极射线 :在两极间加有高压时,阴极会发生一种射线,这种射线称为阴极射线。
3).阴极射线的特点:阴极射线能够使荧光物质发光。
4).对阴极射线的本质的认识:19世纪后期的两种观点:(1)认为是电磁辐射,类似X射线;(2)是带电粒子。
7. 2.密立根的“油滴实验”1910年密立根通过“油滴实验”精确测定了电子电荷现代值为e=1.602 177 33(49)×10-19 C,有关计算中一般使用e=1.6×10-19 C。
人教版高中物理选修3-5导学案:18.2
第十八章原子结构选修3-518.2原子的核式结构模型【教学目标】1.知道α粒子散射实验。
2.知道原子的核式结构模型的主要内容,理解模型提出的主要思想。
3.知道原子的组成,了解原子核和原子大小的数量级。
重点:α粒子散射实验难点:α粒子散射实验【自主预习】1.汤姆孙原子模型:原子是一个球体,正电荷弥漫性地________分布在整个球体内,电子________其中,有人形象地把汤姆孙模型称为“西瓜模型”或“________模型”。
说明:汤姆孙的原子结构模型虽然能解释一些实验事实,但这一模型很快被新的实验事实——α粒子散射实验所否定。
2.α粒子散射实验现象:绝大多数α粒子穿过金箔后,基本上________方向前进,但有少数α粒子(约占八千分之一)发生了________偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞了回来”3.卢瑟福原子结构模型:原子中带正电部分的体积很小,但几乎占有________质量,电子在正电体的________运动。
正电体的尺度是很小的,被称为________。
所以卢瑟福的电子结构模型因而被称为________结构模型。
4.原子由带电荷________的核与核外Z个电子组成。
原子序数Z等于________与电子电荷大小的比值。
原子核由________和________组成的,原子核的电荷数就是核中的________数。
5.α粒子散射实验1909~1911年卢瑟福和他的助手做了用α粒子轰击金箔的实验,获得了重要的发现。
(1)实验装置(如图18-2-1所示)说明:①整个实验过程在真空中进行。
②金箔很薄,α粒子( 42He核)很容易穿过。
(2)实验结果:绝大多数α粒子穿过金箔后,基本上仍沿原来的方向前进,但是有少数α粒子发生了大角度的偏转,偏转角度甚至大于90°,也就是说它们几乎被“撞了回来”。
(3)实验分析按照汤姆孙的“枣糕”原子模型,α粒子如果从原子之间或原子的中心线穿过时,它受到周围的正负电荷作用的库仑力是平衡的,α粒子不产生偏转;如果α粒子偏离原子的中心轴线穿过,两侧电荷作用的库仑力相当于一部分被抵消,α粒子偏转很小;如果α粒子正对着电子射来,质量远小于α粒子的电子不可能使α粒子发生明显偏转,更不可能使它反弹。
全国通用高中物理第十八章原子结构章末小结学案新人教版选修3-5(2021年整理)
(全国通用版)2018-2019高中物理第十八章原子结构章末小结学案新人教版选修3-5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2018-2019高中物理第十八章原子结构章末小结学案新人教版选修3-5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2018-2019高中物理第十八章原子结构章末小结学案新人教版选修3-5的全部内容。
第十八章原子结构章末小结一、原子核式结构模型1.α粒子散射实验(1)实验装置:如下图所示。
(2)实验条件:金属箔是由重金属原子组成,很薄,厚度接近单原子的直径,全部设备装在真空环境中,因为α粒子很容易使气体电离,在空气中只能前进几厘米。
显微镜可在底盘上旋转,可在360°的范围内进行观察。
(3)实验结果:α粒子穿过金箔后,绝大多数沿原方向前进,少数发生较大角度偏转,极少数偏转角度大于90°,甚至被弹回。
α粒子的大角度散射现象无法用汤姆孙的原子模型解释,α粒子散射实验的结果揭示了:①原子内部绝大部分是空的;②原子内部有一个很小的“核”。
2.核式结构模型对α粒子散射实验的解释(1)因为原子核很小,原子的大部分空间是空的,大部分α粒子穿过金箔时离核很远,受到的库仑力很小,运动几乎不受影响,因而大部分α粒子穿过金箔后,运动方向几乎不改变。
(2)只有少数α粒子从原子核附近飞过,受到原子核的库仑力较大,才发生较大角度的偏转.3.核式结构学说(1)核式结构学说:在原子的中心有一个很小的原子核,原子的全部正电荷和几乎全部的质量都集中在原子核内,电子绕核运转。
(2)电子由离核近的轨道跃迁到离核远的轨道,能量增加,电势能增加,动能减少,受到的库仑力变小。
新人教版高中物理选修3-5第十八章原子结构章末总结学案
章末总结原子结构电子的发现阴极射线汤姆孙的原子“枣糕模型”原子的核式结构模型α粒子散射实验卢瑟福的原子核式结构模型氢原子光谱光谱发射光谱连续谱线状谱吸收光谱―→光谱分析氢原子光谱的实验规律经典理论的困难玻尔的原子模型玻尔的三个基本假设轨道量子化能量量子化能级跃迁:hν=E m-E n m>n 玻尔理论对氢原子光谱的解释玻尔理论的局限性一、对α粒子散射实验及核式结构模型的理解1.实验结果:α粒子穿过金箔后,绝大多数α粒子仍沿原来的方向前进;少数α粒子有较大的偏转;极少数α粒子的偏转角度超过90°,有的甚至被弹回,偏转角度达到180°.2.核式结构学说:在原子的中心有一个很小的原子核,原子的全部正电荷和几乎全部质量都集中在原子核内,电子绕核旋转.3.原子核的组成与尺度(1)原子核的组成:由质子和中子组成,原子核的电荷数等于原子核中的质子数.(2)原子核的大小:实验确定的原子核半径的数量级为10-15 m,而原子的半径的数量级是10-10m.因而原子内部十分“空旷”.例1(多选)关于α粒子散射实验现象的分析,下列说法正确的是()A.绝大多数α粒子沿原方向运动,说明正电荷在原子内均匀分布,使α粒子受力平衡的结果B.绝大多数α粒子沿原方向运动,说明这些α粒子未受到明显的力的作用,说明原子内大部分空间是空的C.极少数α粒子发生大角度偏转,说明原子内质量和电荷量比α粒子大得多的粒子在原子内分布空间很小D.极少数α粒子发生大角度偏转,说明原子内的电子对α粒子的吸引力很大答案BC解析在α粒子散射实验中,绝大多数α粒子沿原方向运动,说明这些α粒子未受到原子核明显的力的作用,也说明原子核相对原子来讲很小,原子内大部分空间是空的,故A错,B 对;极少数α粒子发生大角度偏转,说明会受到原子核明显的力的作用的空间在原子内很小,α粒子偏转而原子核未动,说明原子核的质量和电荷量远大于α粒子的质量和电荷量,电子的质量远小于α粒子的质量,α粒子打在电子上,不会有明显偏转,故C对,D错.二、玻尔氢原子模型及跃迁规律的应用1.氢原子的半径公式r n=n2r1(n=1,2,3,…),其中r1为基态半径,又称玻尔半径,r1=0.53×10-10 m.2.氢原子的能级公式E n=1n2E1(n=1,2,3,…),其中E1为基态能量,E1=-13.6 eV.3.氢原子的能级图(如图1所示)图1(1)能级图中的横线表示氢原子可能的能量状态——定态.(2)横线左端的数字“1,2,3,…”表示量子数,右端的数字“-13.6,-3.4,…”表示氢原子的能级.(3)相邻横线间的距离,表示相邻的能级差,量子数越大,相邻的能级差越小.(4)带箭头的竖线表示原子由较高能级向较低能级跃迁,原子跃迁条件为hν=E m-E n. 4.自发跃迁与受激跃迁的比较(1)自发跃迁:①由高能级到低能级,由远轨道到近轨道.②释放能量,放出光子(发光):hν=E初-E末.③大量处于激发态为n能级的原子可能的光谱线条数:n n-12.(2)受激跃迁:①由低能级到高能级,由近轨道到远轨道.②吸收能量a.光照射b.实物粒子例2(多选)氢原子的部分能级示意图如图2所示,已知可见光的光子能量在 1.62 eV到3.11 eV之间.由此可推知,氢原子()图2A.从高能级向n=1能级跃迁时发出的光的波长比可见光的短B.从高能级向n=2能级跃迁时发出的光均为可见光C.从高能级向n=3能级跃迁时发出的光的频率比可见光的高D.从n=3能级向n=2能级跃迁时发出的光为可见光答案AD解析从高能级向n=1的能级跃迁的过程中,辐射出的光子最小能量为10.20 eV,A对;已知可见光的光子能量在 1.62 eV到3.11 eV之间,从高能级向n=2能级跃迁时释放的光子的能量最大为 3.40 eV,B错;从高能级向n=3能级跃迁时释放的光子的能量最大为 1.51 eV,频率低于可见光,C错;从n=3能级向n=2能级跃迁的过程中释放的光子的能量等于 1.89 eV,介于 1.62 eV到3.11 eV之间,所以是可见光,D对.例3(多选)如图3所示是氢原子能级示意图的一部分,则下列说法正确的是()图3A.用波长为600 nm的X射线照射,可以使稳定的氢原子电离B.用能量是10.2 eV的光子可以激发处于基态的氢原子C.用能量是 2.5 eV的光子入射,可以使基态的氢原子激发D.用能量是11.0 eV 的外来电子,可以使处于基态的氢原子激发答案BD解析“稳定的氢原子”指处于基态的氢原子,要使其电离,光子的能量必须大于或等于13.6eV,而波长为600 nm的X射线的能量为E=h cλ=6.63×10-34×3×108600×10-9×1.6×10-19eV≈2.07 eV<13.6 eV,A错误.因ΔE=E2-E1=(-3.4 eV)-(-13.6 eV)=10.2 eV,故10.2 eV 的光子可以使氢原子从基态跃迁到n=2的激发态,B正确;2.5 eV的光子能量不等于任何其他能级与基态的能级差,因此不能使氢原子发生跃迁,C错误;外来电子可以将10.2 eV的能量传递给氢原子,使它激发,外来电子还剩余11.0 eV-10.2 eV=0.8 eV的能量,D正确.。
人教版高中物理选修3-5第十八章 原子结构全章导学案(含答案)
人教版高中物理选修3-5第十八章原子结构全章导学案第一节电子的发现前置诊断:本节主要介绍汤姆孙(J.J.Thomson)发现电子的科学思想和实验方法。
1.1897年,汤姆生根据在电场和磁场中的断定,其本质是带电的,并求出了这种粒子的比荷。
2.电子电荷的精确测定是由的实验测出的,其值为。
3.电子发现的重大意义表明了原子是能够的。
专家说课:19世纪初,人们从化学实验中知道原子是组成物质的微粒。
一百多年来,人们一直认为原子是不能再分的,直到19世纪末,汤姆生发现了电子,摧毁了原子不可再分的信念,揭开了探索原子内部结构的畜牧,从此原子物理学飞速发展。
电子的发现,改变了原子是组成物质的最小微粒的看法,认识到原子是由更小的微粒构成的。
电子比荷和电荷量的测定,对认识电子的性质起重要作用。
一.教材中考虑到学生对阴极射线的知识了解得比较少,因此在叙述汤姆孙研究电子的方法之前予以介绍。
学生在前面的模块中已经熟悉带电粒子在电磁场中运动的规律,因此课本没有平铺直叙,而是用两个“思考与讨论”引导学生。
(1)汤姆孙可能用什么方法判断组成阴极射线的粒子的电性;(2)让学生根据提示,自己推导出电子比荷的表达式,从而对汤姆孙研究电子的方法有更深刻的认识。
二.本节课标及解读。
通过对阴极射线的发现和争论,了解人类发现电子的历程,感受科学精神和科学方法的精髓。
三.本节开始通过问题引出关于阴极射线的发现和争论,是一段很好的物理史料,可以在学生自学讨论的基础上激发探讨科学的兴趣,有利于对学生进行情感、态度和价值观的培养。
通过对教材中“思考和讨论”的理论探究,利于学生科学方法的培养。
四.本节的重点是电子发现过程及方法的介绍,如何判断阴极射线的电性,电子电荷的数值。
学习的难点是如何推导阴极射线的比荷。
电子发现的本身是一个很好的培养学生分析问题和解决问题的内容。
突出电子发现的重大意义,弄清电子的发现方法和过程,是教学中应当重视的问题。
课堂探究:一、教材第47页中的研究阴极射线的实验,可引导学生积极讨论如何判断射线的电性,有条件的学校可以让学生亲自操作,感受探究阴极射线带电性质的实验过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学案5章末总结一、对α粒子散射实验及核式结构模型的理解1.实验结果:α粒子穿过金箔后,绝大多数α粒子仍沿原来的方向前进;少数α粒子有较大的偏转;极少数α粒子的偏转角度超过90°,有的甚至被弹回,偏转角达到180°.2.核式结构学说:在原子的中心有一个很小的原子核,原子的全部正电荷和几乎全部质量都集中在原子核内,电子绕核运转.3.原子核的组成与尺度(1)原子核的组成:由质子和中子组成,原子核的电荷数等于原子核中的质子数.(2)原子核的大小:实验确定的原子核半径的数量级为10-15 m,而原子的半径的数量级是10-10 m.因而原子内部十分“空旷”.例1关于α粒子散射实验现象的分析,下列说法正确的是()A.绝大多数α粒子沿原方向运动,说明正电荷在原子内均匀分布,使α粒子受力平衡的结果B.绝大多数α粒子沿原方向运动,说明这些α粒子未受到明显的力的作用,说明原子内大部分空间是空的C.极少数α粒子发生大角度偏转,说明原子内质量和电荷量比α粒子大得多的粒子在原子内分布空间很小D.极少数α粒子发生大角度偏转,说明原子内的电子对α粒子的吸引力很大解析 在α粒子散射实验中,绝大多数α粒子沿原方向运动,说明这些α粒子未受到原子核明显的力的作用,也说明原子核相对原子来讲很小,原子内大部分空间是空的,故A 错,B 对;极少数α粒子发生大角度偏转,说明会受到原子核明显的力的作用的空间在原子内很小,α粒子偏转而原子核未动,说明原子核的质量和电荷量远大于α粒子的质量和电荷量,电子的质量远小于α粒子的质量,α粒子打在电子上,不会有明显偏转,故C 对,D 错. 答案 BC二、对玻尔原子模型及原子能级跃迁的理解 1.玻尔原子模型(1)原子只能处于一系列能量不连续的状态中,具有确定能量的稳定状态叫做定态,能量最低的状态叫基态,其他的状态叫做激发态. (2)频率条件当电子从能量较高的定态轨道(E m )跃迁到能量较低的定态轨道(E n )时会放出能量为hν的光子,则:hν=E m -E n .反之,当电子吸收光子时会从较低的能量态跃迁到较高的能量态,吸收的光子能量同样由频率条件决定.(3)原子的不同能量状态对应电子的不同运行轨道. 2.氢原子能级跃迁 (1)氢原子的能级原子各能级的关系为:E n =E 1n 2(n 为量子数,n =1,2,3,…)对于氢原子而言,基态能级:E 1=-13.6 eV . (2)氢原子的能级图氢原子的能级图如图1所示.图1例2 已知氢原子基态的电子轨道半径为r 1=0.528×10-10m ,量子数为n 的能级为E n =-13.6n 2eV .(1)求电子在基态轨道上运动的动能;(2)有一群氢原子处于量子数n =3的激发态,画一张能级图,在图上用箭头标明这些氢原子能发出的光谱线.(3)计算这几种光谱线中最短的波长.(静电力常量k =9×109 N·m 2/C 2,电子电荷量e =1.6×10-19 C ,普朗克常量h =6.63×10-34J·s ,真空中光速c =3×108 m/s)解析 (1)核外电子绕核做匀速圆周运动,库仑引力提供向心力,则ke 2r 21=m v 2r 1,又知E k =12m v 2,故电子在基态轨道上运动的动能为:E k =ke 22r 1=9×109×(1.6×10-19)22×0.528×10-10J ≈2.18×10-18 J ≈13.6 eV . (2)当n =1时,能级为E 1=-13.612eV =-13.6 eV . 当n =2时,能级为E 2=-13.622 eV =-3.4 eV .当n =3时,能级为E 3=-13.632 eV ≈-1.51 eV .能发出的光谱线分别为3→2、2→1、3→1共3种,能级图如图所示(3)由E 3向E 1跃迁时发出的光子频率最大,波长最短. hν=E 3-E 1,又知ν=cλ,则有λ=hc E 3-E 1= 6.63×10-34×3×108[-1.51-(-13.6)]×1.6×10-19 m ≈1.03×10-7m. 答案 见解析三、原子的能级跃迁与电离1.能级跃迁包括辐射跃迁和吸收跃迁,可表示如下: 高能级E m 辐射光子hν=E m -E n吸收光子hν=Em -E n低能级E n .2.当光子能量大于或等于13.6 eV 时,也可以被处于基态的氢原子吸收,使氢原子电离;当处于基态的氢原子吸收的光子能量大于13.6 eV 时,氢原子电离后,电子具有一定的初动能.3.原子还可吸收外来实物粒子(例如自由电子)的能量而被激发.由于实物粒子的动能可全部或部分被原子吸收,所以只要入射粒子的能量大于或等于两能级的能量差(E =E m -E n ),均可使原子发生能级跃迁.例3 如图2所示,A 、B 、C 分别表示三种不同能级跃迁时放出的光子.由图可以判定( )图2A .用波长为600 nm 的X 射线照射,可以使稳定的氢原子电离B .用能量是10.2 eV 的光子可以激发处于基态的氢原子C .用能量是2.5 eV 的光子入射,可以使基态的氢原子激发D 用能量是11.0 eV的外来电子,可以使处于基态的氢原子激发解析 “稳定的氢原子”指处于基态的氢原子,要使其电离,光子的能量必须大于或等于13.6 eV ,而波长为600 nm 的X 射线的能量为E =h c λ=6.63×10-34×3×1086 000×10-10×1.6×10-19eV ≈2.07 eV<13.6 eV ,A 错误. 因ΔE =E 2-E 1=(-3.4) eV -(-13.6) eV =10.2 eV ,故10.2 eV 的光子可以使氢原子从基态跃迁到n =2的激发态,B 正确;2.5 eV 的光子能量不等于任何其他能级与基态的能级差,因此不能使氢原子发生跃迁,C 错误;外来的电子可以将10.2 eV 的能量传递给氢原子,使它激发,外来电子还剩余11.0 eV -10.2 eV =0.8 eV 的能量,D 正确. 答案 BD针对训练 一个氢原子处于基态,用光子能量为15 eV 的电磁波去照射该原子,问能否使氢原子电离?若能使之电离,则电子被电离后所具有的动能是多大? 答案 能 1.4 eV解析 氢原子从基态n =1被完全电离至少需要吸收13.6 eV 的能量.所以15 eV 的光子能使之电离,由能量守恒可知,完全电离后还剩余动能E k =15 eV -13.6 eV =1.4 eV.1.(对核式结构模型的理解)在α粒子散射实验中,当α粒子最接近金原子核时,下列说法正确的是( ) A .动能最小 B .电势能最小C .α粒子和金原子核组成的系统的能量最小D .加速度最小 答案 A解析 在α粒子散射实验中,当α粒子接近金原子核时,金原子核对α粒子的作用力是斥力,对α粒子做负功,电势能增加,动能减小,当α粒子离金原子核最近时,它们之间的库仑力最大,α粒子的动能最小.由于受到的金原子核外电子的作用相对较小,与金原子核对α粒子的库仑力相比,可以忽略,因此只有库仑力做功,所以机械能和电势能整体上是守恒的,故系统的能量可以认为不变.综上所述,正确选项应为A.2.(对氢原子能级跃迁的理解)如图3所示是玻尔理论中氢原子的能级图,现让一束单色光照射一群处于基态的氢原子,受激发的氢原子能自发地辐射出三种不同频率的光,则照射氢原子的单色光的光子能量为()图3A.13.6 eV B.12.09 eVC.10.2 eV D.3.4 eV答案 B解析受激发的氢原子能自发地辐射出三种不同频率的光,说明激发的氢原子处于第3能级,则照射氢原子的单色光的光子能量为E=E3-E1=12.09 eV,故B正确.3.(原子的能级跃迁和电离问题)氢原子能级的示意图如图4所示,大量氢原子从n=4的能级向n =2 的能级跃迁时辐射出可见光a,从n=3的能级向n=2的能级跃迁时辐射出可见光b,则()图4A.可见光光子能量范围在1.62 eV到2.11 eV之间B.氢原子从n=4的能级向n=3的能级跃迁时会辐射出紫外线C.a光的频率大于b光的频率D.氢原子在n=2的能级可吸收任意频率的光而发生电离答案 C解析由能级跃迁公式ΔE=E m-E n得:ΔE1=E4-E2=-0.85 eV-(-3.4 eV)=2.55 eVΔE2=E3-E2=-1.51 eV-(-3.4 eV)=1.89 eV故A 错;据ΔE =hcλ=hν知,C 对;ΔE 3=E 4-E 3=-0.85 eV -(-1.51 eV)=0.66 eV ,所以氢原子从n =4的能级向n =3的能级跃迁时能量差对应的光子处于红外线波段,B 错;氢原子在n =2的能级时能量为-3.4 eV ,所以只有吸收光子能量大于等于3.4 eV 时才能电离,D 错.4.(氢原子的能级跃迁)如图5所示为氢原子能级的示意图.现有大量的氢原子处于n =4的激发态.当向低能级跃迁时将辐射出若干不同频率的光.关于这些光,下列说法正确的是( )图5A .最容易表现出衍射现象的光是由n =4能级跃迁到n =1能级产生的B .频率最小的光是由n =2能级跃迁到n =1能级产生的C .这些氢原子总共可辐射出3种不同频率的光D .用n =2能级跃迁到n =1能级辐射出的光照射逸出功为6.34 eV 的金属箔能发生光电效应 答案 D解析 在该题中,从n =4的激发态跃迁到基态的能级差最大,即发出的光子能量最大,频率最大,对应波长最小,是最不容易发生衍射的,A 错误;从n =4的激发态跃迁到n =3的激发态的能级差最小,发出光子的频率最小,B 错误;可辐射出的光子频率的种类数为C 24=6种,C 错误;从n =2的激发态跃迁到基态时,辐射出光子的能量ΔE =E 2-E 1>6.34 eV ,因而可以使逸出功为6.34 eV 的金属箔发生光电效应,D 正确.。