(最新整理)MATLAB语音信号采集与处理(DOC)
Matlab实验——语音信号的录制和处理

基于 MATLAB 的语音信号分析与处理的实验设计1.实验目的综合运用数字信号处理的理论知识进行频谱分析和滤波器设计,通过理论推导得出相应结论,再利用 MATLAB 作为编程工具进行计算机实现,从而加深对所学知识的理解,建立概念。
2.实验基本要求①学会 MATLAB 的使用,掌握 MATLAB 的程序设计方法。
②掌握在 Windows 环境下语音信号采集的方法。
③掌握数字信号处理的基本概念、基本理论和基本方法。
④掌握 MATLAB 设计 FIR 和 IIR 数字滤波器的方法。
⑤学会用 MATLAB 对信号进行分析和处理。
3.实验内容录制一段自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;给定滤波器的性能指标,采用窗函数法或双线性变换设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的语音信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化;回放语音信号;最后,用MATLAB 设计一信号处理系统界面。
4、采集系统说明:MATLAB函数;麦克风输入方式MATLAB中提供了强大的数据采集工具箱(DAQ-Data Acquisition Toolbox),可满足控制声卡进行数据采集的要求:%记录声音 wavrecord(n,fs,ch,dtype)%发送向量信号 waveplay(y,fs)%读取wave文件 wavread(file)%写wave文件 wavwrite(file),文件的后缀名为.wav%sound(y,fs) %向扬声器送出音频信号滤波函数说明:采用Kaiser Window FIR:Sampling Frequency: 8192Type:LowpassFc:956.6Beta:5。
如何在MATLAB中进行语音信号处理

如何在MATLAB中进行语音信号处理一、引言语音信号处理是一门充满挑战的学科,它涉及到声音的产生、捕捉、转换和处理等一系列过程。
在现代科技的支持下,MATLAB作为一种强大的工具,被广泛应用于语音信号处理领域。
本文将介绍如何使用MATLAB进行语音信号处理,包括信号预处理、语音分析和语音合成等方面。
二、信号预处理在进行语音信号处理之前,我们通常需要对信号进行预处理。
信号预处理的目标是将原始信号进行降噪、滤波和归一化等处理,以便后续的分析和处理。
在MATLAB中,我们可以使用一系列函数来实现信号预处理的过程。
首先,我们可以使用MATLAB提供的降噪算法对信号进行降噪处理。
常用的降噪算法有加性白噪声降噪算法、小波降噪算法等。
通过对原始信号进行降噪处理,可以有效提取出语音信号的有效信息。
其次,我们可以使用滤波技术对信号进行滤波处理。
滤波的目的是去除信号中的不必要成分,保留感兴趣的频率成分。
在MATLAB中,我们可以使用卷积和滤波函数来实现滤波过程。
最后,我们还可以对信号进行归一化处理。
归一化可以使信号的幅值范围在一个确定的范围内,方便后续的处理和比较。
在MATLAB中,我们可以使用归一化函数对信号进行归一化处理。
三、语音分析语音信号的分析是语音信号处理的关键步骤,它可以帮助我们了解信号的基本特征和结构。
在MATLAB中,我们可以使用一系列函数来实现语音信号的分析。
首先,我们可以使用MATLAB提供的时域分析函数对语音信号进行时域分析。
时域分析可以帮助我们了解信号的振幅、频率和相位等特征。
通过时域分析,我们可以得到语音信号的波形图、能谱图和自相关函数等。
其次,我们还可以使用频域分析函数对语音信号进行频域分析。
频域分析可以帮助我们了解信号的频率成分和频率分布等特征。
通过频域分析,我们可以得到语音信号的频谱图、功率谱密度图和谱线图等。
最后,我们还可以使用梅尔频率倒谱系数( MFCC)来提取语音信号的特征。
MFCC是一种广泛应用于语音识别领域的特征提取方法。
基于matlab的语音信号的采集与处理

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。
目录第1章前言 ................................................................................................... 错误!未定义书签。
第2章语音信号分析处理的目的和要求 ................................................... 错误!未定义书签。
2.1MATLAB软件功能简介................................................................. 错误!未定义书签。
2.2课程设计意义 .................................................................................. 错误!未定义书签。
第3章语音信号的仿真原理..................................................................... 错误!未定义书签。
第4章语音信号的具体实现..................................................................... 错误!未定义书签。
4.1语音信号的采集................................................................................ 错误!未定义书签。
4.2语音信号加噪与频谱分析................................................................ 错误!未定义书签。
4.3设计巴特沃斯低通滤波器................................................................ 错误!未定义书签。
MATLAB用于语音信号的处理[1]
![MATLAB用于语音信号的处理[1]](https://img.taocdn.com/s3/m/e72bab7e168884868762d63f.png)
MATLAB用于语音信号的处理一.设计目的通过该设计,要求对语音信号的采集、处理、传输、显示、和存储等有一个系统的掌握和理解。
理解信号采样频率的概念,掌握对语音信号进行时域和频域分析方法,了解滤波器的概念及原理。
二.设计内容1.语音信号的采集2.语音信号的频谱分析3.设计数字滤波器4.用滤波器对信号进行滤波5.分析滤波后得到的语音信号的频谱,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化6.回放语音信号三.总体方案设计1.利用Windows下的录音机或其他软件,录制一段语音信号,时间控制在1s左右,然后再MATLAB软件平台下,利用函数wavread对录制的语音信号进行采样,记住采样频率和采样点数。
MATLAB函数:Wavread功能对语音信号进行采样,wavread函数的格式为:[y,fs,bits]=wavread('d:\kugou\2.wav',[n1,n2]),返回文件中语音信号从n1到n2之间的样本。
2.先画出语音信号的时域波形,然后对语音信号进行快速傅里叶变换,得到信号的频谱特性。
MATLAB函数:fft功能是实现快速傅里叶变换,fft函数的格式为:y=fft(y),返回向量x的不连续fourier变换。
3.根据低通滤波器的性能指标设计出滤波器。
MATLAB函数:Ellipord功能是要求低通滤波器的参数,ellipord函数的格式为:[N,Wn]=ellipord(Wp,Ws,Rp,Rs),返回设计滤波器的阶数和截止频率。
Ellip功能是设计IIR滤波器,ellip函数的格式为:[b,a]=ellip(N,Rp,Rs,Wn),返回设计滤波器的低通滤波器的参数。
4.用设计的滤波器对采集的语音信号进行滤波。
MATLAB函数:filter功能对信号进行滤波,filter函数的格式为:y=filter(b,a,x),由给定的滤波器对x进行滤波。
MATLAB处理语音信号

MATLAB处理语⾳信号⼀、实验项⽬名称语⾳信号的处理⼆、实验⽬的综合运⽤数字信号处理课程的理论知识进⾏频谱分析以及滤波器设计,通过理论推导得出相应结论,并进⾏计算机仿真,从⽽复习巩固了课堂所学的理论知识,提⾼了对所学知识的综合应⽤能⼒。
三、实验内容1. 语⾳信号的采集2. 语⾳信号的频谱分析3. 设计数字滤波器和画出频率响应4. ⽤滤波器对信号进⾏滤波5. ⽐较滤波前后语⾳信号的波形及频谱6. 回放语⾳信号四、实验具体⽅案1.语⾳信号采集录制⼀段语⾳信号并保存为⽂件,长度控制在1秒,并对录制的信号进⾏采样;录制时使⽤Windows⾃带的录⾳机。
采样是将⼀个信号(即时间或空间上的连续函数)转换成⼀个数值序列(即时间或空间上的离散函数)。
采样定理指出,如果信号是带限的,并且采样频率⾼于信号带宽的两倍,那么,原来的连续信号可以从采样样本中完全重建出来。
如果信号带宽不到采样频率的⼀半(即奈奎斯特频率),那么此时这些离散的采样点能够完全表⽰原信号。
⾼于或处于奈奎斯特频率的频率分量会导致混叠现象。
⼤多数应⽤都要求避免混叠,混叠问题的严重程度与这些混叠频率分量的相对强度有关。
⽤Windows⾃带录⾳机录⼊⼀段⾳乐,2秒钟,⽤audioread读取⾳频内容,这⾥不使⽤waveread是因为他要求⾳频⽂件格式为.wav ,并且我进⾏了尝试但没有成功,画出⾳频信号的时域波形图[y1,fs]=audioread('F:\MATLAB\ren.m4a');figure(1);plot( y1 );title('Ô原语⾳信号时域波形图');xlabel('单位');ylabel('幅度');2.语⾳信号频谱分析⾸先画出语⾳信号的时域波形,然后对语⾳信号进⾏频谱分析。
在matlab中利⽤fft对信号进⾏快速傅⾥叶变换,得到信号的频谱特性。
Matlab的信号处理⼯具箱中的函数FFT可⽤于对序列的快速傅⾥叶变换分析,其调⽤格式是y=fft(x,N),其中,x是序列,y是序列的FFT变换结果,N为整数,代表做N点的FFT,若x为向量且长度⼩于N,则函数将x补零⾄长度N;若向量x长度⼤于N,则截断x使之长度为N。
MATLAB语音信号采集与处理

MATLAB课程设计报告课题:语音信号采集与处理目录一、实践目的 (3)二、实践原理: (3)三、课题要求: (3)四、MATLAB仿真 (4)1、频谱分析: (4)2、调制与解调: (5)3、信号变化: (8)快放: (8)慢放: (8)倒放: (8)回声: (8)男女变声: (9)4、信号加噪 (10)5、用窗函数法设计FIR滤波器 (11)FIR低通滤波器: (12)FIR高通滤波器: (13)FIR带通滤波: (14)一、实践目的本次课程设计的课题为《基于MATLAB的语音信号采集与处理》,学会运用MATLAB的信号处理功能,采集语音信号,并对语音信号进行滤波及变换处理,观察其时域和频域特性,加深对信号处理理论的理解,并为今后熟练使用MATLAB进行系统的分析仿真和设计奠定基础。
此次实习课程主要是为了进一步熟悉对matlab软件的使用,以及学会利用matlab对声音信号这种实际问题进行处理,将理论应用于实际,加深对它的理解。
二、实践原理:利用MATLAB对语音信号进行分析和处理,采集语音信号后,利用MATLAB软件平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。
语音信号的“短时谱”对于非平稳信号, 它是非周期的, 频谱随时间连续变化, 因此由傅里叶变换得到的频谱无法获知其在各个时刻的频谱特性。
如果利用加窗的方法从语音流中取出其中一个短断, 再进行傅里叶变换, 就可以得到该语音的短时谱。
三、课题要求:○1利用windows 自带的录音机或者其它录音软件,录制几段语音信号(要有几种不同的声音,要有男声、女声)。
○2对录制的语音信号进行频谱分析,确定该段语音的主要频率范围,由此频率范围判断该段语音信号的特点(低沉or 尖锐)。
○3利用采样定理,对该段语音信号进行采样,观察不同采样频率(过采样、欠采样、临界采样)对信号的影响。
如何使用MATLAB进行语音信号处理与识别

如何使用MATLAB进行语音信号处理与识别引言:语音信号处理与识别是一项应用广泛的领域,它在语音通信、语音识别、音频压缩等方面发挥着重要作用。
在本文中,我们将介绍如何使用MATLAB进行语音信号处理与识别。
首先,我们将讨论语音信号的特征提取,然后介绍常用的语音信号处理方法,最后简要概述语音信号的识别技术。
一、语音信号的特征提取语音信号的特征提取是语音信号处理与识别的重要一环。
在MATLAB中,我们可以通过计算音频信号的频谱特征、时域特征以及声学特征等方式来进行特征提取。
其中,最常见的特征提取方法是基于傅里叶变换的频谱分析方法,比如短时傅里叶变换(STFT)和梅尔频谱倒谱系数(MFCC)。
1. 频谱特征:频谱特征主要包括功率谱密度(PSD)、频谱包络、谱熵等。
在MATLAB中,我们可以使用fft函数来计算信号的频谱,使用pwelch函数来计算功率谱密度,使用spectrogram函数来绘制语谱图等。
2. 时域特征:时域特征主要包括幅度特征、能量特征、过零率等。
在MATLAB中,我们可以使用abs函数来计算信号的幅度谱,使用energy函数来计算信号的能量,使用zcr函数来计算信号的过零率等。
3. 声学特征:声学特征主要包括基频、共振频率等。
在MATLAB中,我们可以通过自相关函数和Cepstral分析等方法来计算声学特征。
二、语音信号处理方法语音信号处理方法主要包括降噪、去除回声、语音增强等。
在MATLAB中,我们可以通过滤波器设计、自适应噪声抑制和频谱减法等方法来实现这些功能。
1. 降噪:降噪通常包括噪声估计和降噪滤波两个步骤。
在MATLAB中,我们可以使用统计模型来估计噪声,然后使用Wiener滤波器或者小波阈值法来降噪。
2. 去除回声:回声是语音通信中的常见问题,我们可以使用自适应滤波器来抑制回声。
在MATLAB中,我们可以使用LMS算法或者NLMS算法来实现自适应滤波。
3. 语音增强:语音增强通常包括增加语音信号的声音清晰度和提高语音的信噪比。
语音信号处理实验一采集和预处理.doc

实验一 语音信号的采集及预处理一、实验目的在理论学习的基础上,进一步地理解和掌握语音信号预处理及短时加窗的意义及基于matlab 的实现方法。
二、实验原理1. 语音信号的录音、读入、放音等:练习matlab 中几个音频处理函数,利用函数wavread 对语音信号进行采样,记住采样频率和采样点数,给出以下语音的波形图(2.wav )。
利用wavplay 或soundview 放音。
也可以利用wavrecord 自己录制一段语音,并进行以上操作(需要话筒)。
2. 语音信号的分帧:对语音信号进行分帧,可以利用voicebox 工具箱中的函数enframe 。
voicebox 工具箱是基于GNU 协议的自由软件,其中包含了很多语音信号相关的函数。
3. 语音信号的加窗:本步要求利用window 函数设计窗口长度为256(N=256)的矩形窗(rectwin)、汉明窗(hamming)及汉宁窗(hann)),利用wvtool 函数观察其时域波形图及频谱特性,比较得出结论。
观察整个信号加矩形窗及汉明窗后的波形,利用subplot 与reshape 函数将分帧后波形、加矩形窗波形及加汉明窗波形画在一张图上比较。
取出其中一帧,利用subplot 与reshape 函数将一帧语音的波形、加矩形窗波形及加汉明窗波形画在一张图上比较将得出结论。
4. 预加重:即语音信号通过一个一阶高通滤波器19375.01--z 。
三、实验步骤、实验程序、图形及结论1.语音信号的录音、读入、放音等程序:[x,fs,nbit]=wavread('D:\2.wav'); %fs=10000,nbit=16y=soundview('D:\2.wav')2.语音信号的分帧程序:[x,fs,nbit]=wavread('D:\2.wav');len=256;inc=128;y=enframe(x,len,inc);figure;subplot(2,1,1),plot(x)subplot(2,1,2),plot(y)3.语音信号加窗:程序:N=120;w = window('rectangle',N);w1 = window('hamming',N);w2 = window('hanning',N); wvtool(w,w1,w2)4.预加重程序:[x,fs,nbit]=wavread('D:\2.wav'); len=256;inc=128;y=enframe(x,len,inc);z=filter([1-0.9375],1,y)figure(2)subplot(2,1,1),plot(y)subplot(2,1,2),plot(z)四、思考题1.语音信号包括哪些预处理,作用分别是什么?2.不同窗口的优缺点,窗口长度如何选取?答:1. 预处理通常包括:放大与自动增益控制、反混叠滤波、模数变换等内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(完整)MATLAB语音信号采集与处理(DOC)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)MATLAB语音信号采集与处理(DOC))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)MATLAB语音信号采集与处理(DOC)的全部内容。
MATLAB课程设计报告课题:语音信号采集与处理目录一、实践目的 (4)二、实践原理: (4)三、课题要求: (4)四、MATLAB仿真 (5)1、频谱分析: (5)2、调制与解调: (7)3、信号变化: (11)快放: (11)慢放: (11)倒放: (11)回声: (11)男女变声: (12)4、信号加噪 (15)5、用窗函数法设计FIR滤波器 (16)FIR低通滤波器: (17)FIR高通滤波器: (19)FIR带通滤波: (21)一、实践目的本次课程设计的课题为《基于MATLAB的语音信号采集与处理》,学会运用MATLAB的信号处理功能,采集语音信号,并对语音信号进行滤波及变换处理,观察其时域和频域特性,加深对信号处理理论的理解,并为今后熟练使用MATLAB进行系统的分析仿真和设计奠定基础.此次实习课程主要是为了进一步熟悉对matlab软件的使用,以及学会利用matlab对声音信号这种实际问题进行处理,将理论应用于实际,加深对它的理解。
二、实践原理:利用MATLAB对语音信号进行分析和处理,采集语音信号后,利用MATLAB软件平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。
语音信号的“短时谱”对于非平稳信号,它是非周期的, 频谱随时间连续变化,因此由傅里叶变换得到的频谱无法获知其在各个时刻的频谱特性.如果利用加窗的方法从语音流中取出其中一个短断, 再进行傅里叶变换, 就可以得到该语音的短时谱。
三、课题要求:错误!利用windows 自带的录音机或者其它录音软件,录制几段语音信号(要有几种不同的声音,要有男声、女声)。
错误!对录制的语音信号进行频谱分析,确定该段语音的主要频率范围,由此频率范围判断该段语音信号的特点(低沉or 尖锐)。
错误!利用采样定理,对该段语音信号进行采样,观察不同采样频率(过采样、欠采样、临界采样)对信号的影响。
○4对采集到的语音信号进行调制与解调,观测调制与解调前后信号的变化。
错误!实现语音信号的快放、慢放、倒放、回声、男女变声。
○,6对语音信号加噪,然后进行滤波,分析不同的滤波方式对信号的影响.错误!利用MATLAB GUI 制作语音信号采集与分析演示系统.四、MATLAB仿真1、频谱分析:用WINDOWS下的录音机,用单声道录制一段音乐或声音,时间在5S内.然后MATLAB软件平台下,利用函数WAVREAD对语音信号进行采样,记住采样频率和采样点数.对语音信号进行快速傅立叶变换,在一个窗口同时画出信号的时域波形图和频谱图,分析语音信号的频谱特点程序:fs =22050;Nbits =16;[x,fs,Nbits] =wavread('D:\matlab\22hexian.wav') ;%读声音文件n=length(x);t=0:1/fs:(length(x)-1)/fs; %求出语音信号的长度y1=fft(x,n) ; %傅里叶变换y2=fftshift(y1); %对频谱图进行平移f=0:fs/n:fs*(n-1)/n; %得出频点subplot(2,1,1);plot(t/2,x) %做原始语音信号的时域图形title(’原始信号时域波形图’);subplot(2,1,2);plot(f,abs(y2));title('原始信号频谱图’)仿真波形:错误!门铃:○2和弦:错误!男女声:2、调制与解调:首先画出语音信号的时域波形,然后对语音信号进行频谱分析。
在Matlab 中可以利用函数fft 对信号行快速傅里叶变换,得到信号的频谱特性,从而加深对频谱特性的理解.程序:clear;dt=1/44100;fs=44100;[f1,fs,nbits]=wavread(’D:\1huan.wav');figure(1);subplot(1,1,1);N=length(f1);t=0:1/fs:(N—1)/fs;plot(t,f1);title(’信息信号的时域波形’);fy1=fft(f1);w1=0:fs/(N-1):fs;figure(2);subplot(1,1,1);plot(w1,abs(fy1));title(’信息信号的频谱’);f2=cos(22000*pi*t);figure(3);subplot(1,1,1);fy2 = fft(f2);N2=length(f2);w2=fs/N*[0:N-1];plot(w2,abs(abs(fy2)));title('载波信号的频谱’); f1=f1(:,1);f3=f1’.*f2;figure(4);subplot(1,1,1);fy3 = fft(f3);plot(w1,abs(abs(fy3)));title('已调信号的频谱’);sound(f3,fs,nbits);f4=f3。
*f2;figure(5);subplot(1,1,1);fy4=fft(f4);plot(w1,abs(abs(fy4)));title('解调信号的频谱’);sound(f4,fs,nbits);fp1=0;fs1=5000;As1=100;wp1=2*pi*fp1/fs;ws1=2*pi*fs1/fs;BF1=ws1-wp1;wc1=(wp1+ws1)/2;M1=ceil((As1—7。
95)/(2.286*BF1))+1; N1=M1+1;beta1=0。
1102*(As1-8.7);Window=(kaiser(N1,beta1));b1=fir1(M1,wc1/pi,Window);figure(6);subplot(1,1,1);freqz(b1,1,512);title('FIR低通滤波器的频率响应’);f4_low = filter(b1,1, f4);plot(t,f4_low);title('滤波后的解调信号时域波形'); sound(f4_low,fs,nbits);f5=fft(f4_low);figure(7);subplot(1,1,1);plot(w1,abs(f5));title('滤波后的解调信号频谱’);仿真波形:3、信号变化:快放:[x,fs,nbits]=wavread('D:\1huan.wav’)w=2;M=w*fs;wavplay(x,M);慢放:[x,fs,nbits]=wavread('D:\1huan。
wav')w=0。
8M=w*fs;wavplay(x,M);倒放:[x,fs,Nbits]=wavread('D:\1huan.wav’);y0=flipud(x);sound(y0,fs);回声:程序:[x,fs,bits]=wavread('D:\3yang。
wav’,[1 40000]);%读取语音信号n1=0:2000;b=x(:,1); %产生单声道信号N=3;yy2=filter(1,[1,zeros(1,80000/(N+1)),0。
7],[b’,zeros(1,40000)]);figure(3)subplot(2,1,1);plot(yy2); %三次回声滤波器时域波形title(’三次回声滤波器时域波形’);YY2=fft(yy2);%对三次回声信号做FFT变换subplot(2,1,2);plot(n1(1:1000),YY2(1:1000)); %三次回声滤波器频谱图title('三次回声滤波器频谱图');figure(4)subplot(2,1,1);plot(abs(YY2)); %经傅里叶变换之后的信号的幅值title('幅值’);subplot(2,1,2);plot(angle(YY2)); %经傅里叶变换之后的信号的相位title('相位’);sound(2*yy2,fs,bits);%经三次回声滤波器后的语音信号,乘以2是为了加强信号仿真波形:男女变声:Voice调用函数:function Y=voice(x,f) %更改采样率使基频改变 f〉1降低;f〈1升高f=round(f*1000);d=resample(x,f,1000); %时长整合使语音文件恢复原来时长W=400;Wov=W/2;Kmax=W*2;Wsim=Wov;xdecim=8;kdecim=2;X=d’;F=f/1000;Ss =W—Wov;xpts = size(X,2);ypts = round(xpts / F);Y = zeros(1, ypts);xfwin = (1:Wov)/(Wov+1);ovix = (1-Wov):0; newix = 1:(W-Wov);simix = (1:xdecim:Wsim)— Wsim;padX = [zeros(1, Wsim), X, zeros(1,Kmax+W—Wov)];Y(1:Wsim) = X(1:Wsim); lastxpos = 0; km = 0;for ypos = Wsim:Ss:(ypts-W)xpos = round(F * ypos);kmpred = km + (xpos — lastxpos);lastxpos = xpos;if (kmpred <= Kmax)km = kmpred;elseysim = Y(ypos + simix);rxy = zeros(1, Kmax+1);rxx = zeros(1, Kmax+1);Kmin = 0;for k = Kmin:kdecim:Kmaxxsim = padX(Wsim + xpos + k + simix);rxx(k+1) = norm(xsim);rxy(k+1) = (ysim * xsim');endRxy = (rxx ~= 0)。
*rxy。
/(rxx+(rxx==0));km = min(find(Rxy == max(Rxy))—1);endxabs = xpos+km;Y(ypos+ovix) = ((1-xfwin)。