平面波的波动方程
平面波的波动方程

各种平面波都满足下列方程
y y =u t x
2 2 2 2 2
称为平面波的波动方程 平面简谐波波动式是它的解
例2
弦上的横波,设线密度 张力T 不变) 弦上的横波,设线密度,张力T(不变)
T
αT
2
T
α
1
T sinα2 T sinα1 ≈ T(tgα2 tgα1 ) 2 y y y y = T dx = dx 2 =T x x x x 2 2 T y T y u= =
y1 = Acos(ωt kx) y2 = Acos(ωt + kx)
y = y1 + y2 = 2 Acos kx cosωt
y = y1 + y2 = 2 Acos kx cosωt
3. 振幅
kx = ±nπ
腹-腹
n = 012L 波腹 ,,
x =
λ
2
kx = ±( 2n +1)
节-节 腹-节
二、波的干涉 1.相干条件 相干条件 频率相同,振动方向相同, 频率相同,振动方向相同,相位差恒定 两相干波在空间相遇, 两相干波在空间相遇,某些点的振动始终加强另一 些点的振动始终减弱,即出现干涉现象。 些点的振动始终减弱,即出现干涉现象。
设 y1 = A cos(ωt +1 kr ) 1 1
3 λ 2
P
解:
Q
R
= 1 2 k(r1 r2 ) 3 = k λ = 3π 减弱 2
A= 0
三、驻波 当两列振幅相同,频率相同, 当两列振幅相同,频率相同,振动方向相同的 波以相反方向传波时,叠加形成驻波 驻波。 波以相反方向传波时,叠加形成驻波。 1. 演示: Zlcai 演示: 2.表达式 表达式 设
5-2平面简谐波的波动方程详解

u 沿 x 轴正向 u 沿 x 轴负向
第5章 机械波
5–2 平面简谐波的波动方程 平面简谐波波函数的其它形式
大学物理学 (第3版)
t y A cos[2 π( T
y A cos[2 t
y A cos[ 2
2 x
x ) 0 ] λ
0 ]
(ut x) 0 ] A cos[k (ut x) 0 ]
x y A cos (t ) (沿x轴负向传播) u
第5章 机械波
5–2 平面简谐波的波动方程 如果原点的
大学物理学 (第3版)
A
O
y
u
初相位不为零
x
x 0, 0 0 A
点 O 振动方程
y0 A cos(t 0 )
波 函 数
x y A cos[ (t ) 0 ] u x y A cos[ (t ) 0 ] u
2 y G 2 y 2 t x2 2 y E 2 y 2 t x 2
G为切变模量
固体内弹性平面纵波
E为杨氏模量
张紧柔软线绳上传播横波
2 y T 2 y 2 t x 2
T为线绳所受张力,为线密度:单位长度线绳的质量
第5章 机械波
5–2 平面简谐波的波动方程 2、波速 固体中弹性横波 固体中弹性纵波 张紧软绳中横波
x0 x0 2 π u λ
y ( x, t ) y ( x, t T ) (波具有时间的周期性)
第5章 机械波
5–2 平面简谐波的波动方程
大学物理学 (第3版)
波线上各点的简谐运动图
第5章 机械波
5–2 平面简谐波的波动方程
14-2平面简谐波的波动方程

u
振动曲线 图形
A O
波形曲线
t A O t 0 P
t0 P
T
v
v
u x
研究 某质点位移随时间 对象 变化规律
由振动曲线可知
某时刻,波线上各质点 位移随位置变化规律
由波形曲线可知 该时刻各质点位移 波长 , 振幅A 只有t=0时刻波形才能提供初相
物理 周期 T 振幅 A 初相 0 意义
14-2 平面简谐波的波动方程
一、波函数的建立
波函数(wave function): 描述波传播媒质中不同质点的 运动规律,又称波动表达式(或波动方程).
y f x, t
依据:各质点沿波传播方 向相位依次落后. 平面波在传播过程中,波 线上的各质点都作同频率 同振幅的简谐运动—叫做 平面简谐行波(traveling wave). 波面为平面 传播中的波(相对于“驻波”而言)
x y A cos t u
(1)
P为任意点,波动表达式为
u O P( x )
x
方法2 波线上沿传播方向每走一个,相位落后2
P点相位比O落后
y P A cos(t
即
x
2π
x
y A cos(t
2π
P在 t=0 时刻过平衡位置向负向运动 ——波向左移
y(m)
0.2 O 1
t=0 P
2
yP(m) x(m)
0.2 O 0.1 0.2
t (s)
3 yO 0.2 cos(10πt π) 2 x 3 波向-x方向传播 y 0.2 cos[10 π(t ) π] 10 2 π π b) 以 P 为参考点 P yP 0 2cos( 10π t ) 2 2 波向-x方向传播 x 1 π 0 2 cos[10 π(t x ) π ] y 0 2 cos[10 π(t ) ] 10 2 10 2
平面简谐波的波动方程

m
0.5 10
yc 3102 c os(4 π t 13 π)
m
5
将点 D 坐标:x=9m代入波动方程
y 3102 cos2π( t x )
m
0.5 10
yD 3102 c os(4πo 9 π)
m
5
4)分别求出 BC ,CD 两点间的相位差
y 3102 cos2π( t x ) 0.5 10
幅 A 1.0m ,T 2.0s , 2.0m . 在 t 0 时坐标
原点处的质点位于平衡位置沿 O y 轴正方向运动 . 求
1)波动方程
解 设原点处振动方程为
y Acos(t )
O
y
t 0
y 0, v 0
y cos(t )
π
2
所以波动方程为
2
y Acos[(t x ) ] Acos[2 ( t x ) ]
T
2π
C
u B 2π d dC
TC
思考:t=T/4时, a,b,c各质点运动方向如何?
3 ) 如图简谐波 以余弦函数表示,
t =0
y t =T/4
A+∆t
u
求 O、a、b、c 各
b
点振动初相位(t=0).
Oa
c
(π ~ π )
A
A
O
A
O
y o π
y
a
π 2
A
O
y
O
y
A
t=T/4
m (以A为 坐标原点)
u
10m
8m 5m 9m
C
B oA
Dx
B点落后C点 :B
C
2 π
平面单色波波动方程的深入研究

平面单色波波动方程的深入研究一、引言平面单色波波动方程是物理学中一个基本的方程,广泛应用于波动现象的研究。
本文将深入探讨平面单色波波动方程的数学推导和物理背景,并对其各个方面进行分析和理解。
二、平面单色波波动方程的数学推导平面单色波波动方程可以描述波动现象的传播和传递。
它的数学形式如下所示:∇^2ψ - (1/v^2) * (∂^2ψ/∂t^2) = 0其中,ψ表示波函数,∇^2表示拉普拉斯算子,v表示波速,t表示时间。
我们可以通过对这个方程进行数学推导来深入理解其含义和性质。
将波函数ψ表示为振幅A和相位φ的乘积形式:ψ = A * e^(i(k*x - ωt + φ))其中,k表示波矢量,x表示位置,ω表示角频率。
将上述表示代入平面单色波波动方程,经过一系列的运算和化简,可以得到以下形式:(k^2 * ψ) - (ω^2/v^2 * ψ) = 0进一步整理可得:(k^2 * v^2) - ω^2 = 0从上述推导可以看出,平面单色波波动方程的数学性质与波矢量和角频率之间存在关联。
这个关联在物理学中被称为色散关系,它决定了波动现象的传播特性和频率特性。
三、平面单色波波动方程的物理背景平面单色波波动方程描述的是波动现象在空间和时间中传播的规律。
为了更深入理解这个方程的物理背景,我们可以从波动现象的起源和性质入手。
波动现象是一种能量传递的现象,常见的波动现象包括声波、光波等。
这些波动现象都可以通过平面单色波波动方程进行描述和分析。
在具体的物理系统中,波动的传播速度和频率往往受到介质性质和边界条件的影响。
在声波传播中,介质的密度和弹性系数决定了声波的传播速度;在光波传播中,介质的折射率和反射率决定了光波的传播速度和折射现象。
平面单色波波动方程的物理背景可以通过振动系统的简化模型来理解。
振动系统一般包括弹性体和势能函数,当物体受到外力作用或受到扰动时,会发生振动现象,这些振动可以通过波动方程进行描述。
四、平面单色波波动方程的性质和应用平面单色波波动方程具有一些重要的性质和应用。
平面简谐波的波动方程

y
u
t 时刻
tt时刻
O
xx
x
从t时到t+∆x时 : 波线上各质点的相位均向前传播 ∆x 即:
xu t (行波)
例1 已知波动方程如下,求波长、周期和波速.
y ( 5 c) c m π [ o 2 (s - .) 1 t5 ( 0 .0 0 c- 1 s ) m 1 x ].
t
u
a 2 t2 y 2 A co (t su x )[ ]
严格区分两种速度(波速和振动速度)
波速(相速)
u
T
v y A si (n t x [ ) ]
t
u
二 波动方程的物理意义
y A co ( t x ) s ] [A c2 o π ( t s x ) [ ]
y co ( t x s ) u [ ] c2 o ( t s T x ) [] m
u2
222
2)求t1 .0 s波形图.
y 1 .0 co 2π (st[x)π ] m 2 .02 .0 2
t 1 .0 s
波形方程
y1.0coπsπ (x) m 2
1.0siπ nx)( m
波形图为 y / m
pO
2π
x
p 2 π x 2 π T x u u x ypA co ts (p)
点 P 振动方程
ypAcos(tu x)
如果原点的 初相位不为零
y A
u
x0,0 O A
x
点 O 振动方程 y O A co t s)(
波 yAco(st [x)]u沿x轴正向
动 方
yAco(st [u x)]u沿 x轴负向
u
T
16-2平面简谐波 波动方程

2π x1 即 y = Acosω t λ 上式代表x1 处质点在其平衡位置附近以角频率ω 上式代表 作简谐运动。 作简谐运动。 y
A
O
t
t 一定。令t=t1,则质点位移y 仅是 的函数。 一定。 仅是x 的函数。
平面简谐波的波动表式
2π x 即 y = Acosω t1 λ
y /cm
0.5 0.4 0.2 0 0.2 0.4 0.5
M1
M2
a
10 20
b
30 40 50 60 70
x /cm
t=0
波动方程的推导
y /cm
由波形曲线图可看出: 解 由波形曲线图可看出: 0.5 0.4 (1) A=0.5cm; (2) λ=40cm; (3)由波速公式计算出 (3)由波速公式计算出
3 3
波动方程的推导
可见此点的振动相位比原点落后, 可见此点的振动相位比原点落后,相位差为 π 2,或 落后 T 4,即2×10-5s。 。 (4)该两点间的距离 (4)该两点间的距离 x = 10 cm = 0.10 m = λ 4 ,相应 的相位差为
25 × 103π t π m y = 0.1 × 10 cos 2
解
棒中的波速
u=
Y
1.9 × 1011 N m 2 = = 5.0 × 103 m/s 3 3 ρ 7.6 × 10 kg m
u 5.0 × 103 m s 1 波长 λ = = = 0.40 m 3 1 v 12.5 × 10 s
波动方程的推导
周期 T = 1 v = 8 × 10 s (1)原点处质点的振动表式 (1)原点处质点的振动表式 y0=Acosω t=0.1×10-3cos(2π×12.5×103t)m =0.1×10-3cos25×103πt m (2)波动表式
7-2平面简谐波的波动方程

时间推 点O 的振动状态
迟方法 yO A cost
t-x/u时刻点O 的运动状态
t x
点P
u
t 时刻点 P 的运动状态
点P 振动方程
yP
A cos (t
x) u
➢ 波动方程
A y u
y Acos (t x)
u
相位落后法
Ox
P
*
x 点 O 振动方程
设x 0 , 0 0
A
yo A cost
各质点都作简谐运动时,在介质中所形成的波.
➢ 平面简谐波:波面为平面的简谐波. 其特点
是在均匀的、无吸收的介质中各质点振幅相同
任何复杂的波都可以看成若干个简谐波叠加而成。
波动方程的推导
设有一以速度u 沿 x 轴正向传播的平面 简谐波 . 令原点O 的初相为零,其振
动方程
设x 0, 0 0
yO Acost
12
1 2
2π
x2 x1
2π
x21
波程差 x21 x2 x1
波程差与位相差
2π x
3 若 x, t 均变化,波动方程表示波形沿传播
方向的运动情况.
yu
t 时刻 t t 时刻
O
xx
x
从t时到t+∆x时 : 波线上各质点的相位均向前传播 ∆x 即:
x ut (行波)
例1 已知波动方程如下,求波长、周期和波速.
点 P 比点 O 落后的相位
p
O
2π x
p
2π
x
2π x Tu
x u
yp Acos(t p )
点 P 振动方程
yp
A cos (t
x) u
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探究平面波的波动方程
平面波是物理学中一种基本的波动形式,它在自然界中有着广泛的应用。
其中平面波的波动方程是研究平面波特性的重要基础。
本文将详细讲解平面波的波动方程,并深入探讨其物理意义。
平面波是指波的振动方向垂直于波传播方向的波动形式。
在数学上,平面波可以用以下公式表示:
A = A0sin(kx - ωt + φ)
其中A是波的振幅,k是波数,x是波的传播方向,t是时间,ω是角频率,φ是初相位。
根据波的定义,平面波的波动方程可以表示为:
∂2A/∂x2 = (1/v2)∂2A/∂t2
其中v是波的速度。
将平面波的表达式代入波动方程中,可得:
-k2A0sin(kx - ωt + φ) = (1/v2)(ω2A0sin(kx - ωt + φ)/∂t2)
整理后可得到平面波的波动方程:
∂2A/∂x2 + k2A = (ω2/v2)A
通过对波动方程的分析,我们可以得到以下结论:
1. 平面波的波动方程是二阶偏微分方程。
2. 平面波的波数k与角频率ω满足波速公式v = ω/k。
3. 平面波的波动方程可以描述出平面波的传播和振动状态。
通过以上的分析,我们可以进一步探讨平面波的物理意义。
首先,平面波的波动方程告诉我们,平面波的传播速度与波长和频率有关。
其次,平面波的波动方程将平面波的传播和振动状态联系在了一起,
揭示了平面波的本质特性。
总之,平面波的波动方程是研究平面波特性的重要基础。
通过对
波动方程的分析,我们可以深入探讨平面波的物理意义,并为平面波
的应用提供理论基础。