【真题】2010年浙江省高考数学试卷及答案(理科)

合集下载

2010年普通高等学校招生全国统一考试(浙江卷)数学试题 (理科)(解析版)(word版)

2010年普通高等学校招生全国统一考试(浙江卷)数学试题 (理科)(解析版)(word版)

绝密★考试结束前2010年普通高等学校招生全国统一考试(浙江卷)数 学(理科)本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至2页,非选择题部分3至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用像皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

参考公式:如果事件A 、B 互斥,那么 柱体的体积公式 P (A +B )=P (A )+P (B ) Sh V =如果事件A 、B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高P (A ·B )=P (A )·P (B ) 锥体的体积公式如果事件A 在一次试验中发生的概率是P ,那么n Sh V 31=次独立重复试验中恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高k n k kn n P P C k P --=)1()(),,2,1,0(n k = 球的表面积公式台体的体积公式 24R S π= )(312211S S S S h V ++= 球的体积公式其中S 1,S 2分别表示台体的上、下底面积 334R V π=h 表示台体的高 其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设P={x ︱x <4},Q={x ︱2x <4},则( )(A )p Q ⊆ (B )Q P ⊆(C )Rp Q C ⊆(D )RQ P C ⊆解析:{}22<<x x Q -=,可知B 正确,本题主要考察了集合的基本运算,属容易题(2)某程序框图如图所示,若输出的S=57,则判断框内位( ) (A ) k >4? (B )k >5? (C ) k >6? (D )k >7?解析:选A ,本题主要考察了程序框图的结构,以及与数列有关的简 单运算,属容易题(3)设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S =( ) (A )11 (B )5 (C )8- (D )11-解析:解析:通过2580a a +=,设公比为q ,将该式转化为08322=+q a a ,解得q =-2,带入所求式可知答案选D ,本题主要考察了本题主要考察了等比数列的通项公式与前n 项和公式,属中档题(4)设02x π<<,则“2sin 1x x <”是“sin 1x x <”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件 解析:因为0<x <2π,所以sinx <1,故x sin 2x <x sinx ,结合x sin 2x 与x sinx 的取值范围相同,可知答案选B ,本题主要考察了必要条件、充分条件与充要条件的意义,以及转化思想和处理不等关系的能力,属中档题(5)对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( ) (A )2z z y -= (B )222z x y =+ (C )2z z x -≥ (D )z x y ≤+解析:可对选项逐个检查,A 项,y z z 2≥-,故A 错,B 项,xyi y x z 2222+-=,故B 错,C 项,y z z 2≥-,故C 错,D 项正确。

高考理科数学试卷及答案完整版

高考理科数学试卷及答案完整版

高考理科数学试卷及答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】2010年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分。

第Ⅰ卷1至2页、第Ⅱ卷3至5页,共150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效,考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1) 集合2{03},{9}P x Z x M x Z x =∈≤<=∈≤,则PM =(A ){}1,2 (B ){}0,1,2 (C ){}|03x x ≤< (D ) {}|03x x ≤≤ (2)在等比数列{}n a 中,11a =,公比1q ≠.若12345m a a a a a a =,则m= (A )9 (B )10 (C )11 (D )12 (3)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为 (4)8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为(A )8289A A (B )8289A C (C ) 8287A A (D )8287A C (5)极坐标方程(1)()0(0)ρθπρ--=≥表示的图形是(A )两个圆 (B )两条直线(C )一个圆和一条射线 (D )一条直线和一条射线 (6)a b 、为非零向量.“a b ⊥”是“函数()()()f x xa b xb a =+-为一次函数”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(7)设不等式组1103305390x y x y x y +-≥⎧⎪-+≥⎨⎪-+≤⎩表示的平面区域为D ,若指数函数x y a =的图像上存在区域D 上的点,则a 的取值范围是(A )(1,3] (B )[2,3] (C ) (1,2] (D )[ 3,+∞](8)如图,正方体1111ABCD A B C D -的棱长为2,动点E 、F 在棱11A B 上,动点P ,Q 分别在棱AD ,CD 上,若EF=1,1A E=x ,DQ=y ,D P=z (x y z 、、大于零),则四面体PEFQ 的体积 (A)与x y z 、、都有关 (B)与x 有关,与y 、z 无关 (C)与y 有关,与x ,z 无关 (D)与z 有关,与x ,y 无关第II 卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分。

2010年全国统一高考数学试卷(理科)(新课标)及解析

2010年全国统一高考数学试卷(理科)(新课标)及解析

2010年全国统一高考数学试卷(理科)(新课标)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}2.(5分)已知复数,是z的共轭复数,则=()A.B.C.1 D.23.(5分)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣24.(5分)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P 0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.5.(5分)已知命题p1:函数y=2x﹣2﹣x在R为增函数,p2:函数y=2x+2﹣x在R为减函数,则在命题q:p1∨p2,q2:p1∧p2,q3:(¬p1)∨1p2和q4:p1∧(¬p2)中,真命题是()A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q46.(5分)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X 的数学期望为()A.100 B.200 C.300 D.4007.(5分)如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.8.(5分)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4} C.{x|x<0或x>6} D.{x|x<﹣2或x>2}9.(5分)若,α是第三象限的角,则=()A.B.C.2 D.﹣210.(5分)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B. C.D.5πa211.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)12.(5分)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A. B. C. D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…x N和y1,y2,…y N,由此得到N个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N 1,那么由随机模拟方案可得积分的近似值为.14.(5分)正视图为一个三角形的几何体可以是(写出三种)15.(5分)过点A(4,1)的圆C与直线x﹣y=1相切于点B(2,1),则圆C的方程为.16.(5分)在△ABC中,D为边BC上一点,BD=DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.三、解答题(共8小题,满分90分)17.(12分)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.18.(12分)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点(1)证明:PE⊥BC(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.19.(12分)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:20.(12分)设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.21.(12分)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.23.(10分)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.24.(10分)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.2010年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•宁夏)已知集合A={x∈R||x|≤2}},,则A∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【分析】先化简集合A和B,注意集合B中的元素是整数,再根据两个集合的交集的意义求解.【解答】解:A={x∈R||x|≤2,}={x∈R|﹣2≤x≤2},故A∩B={0,1,2}.应选D.2.(5分)(2010•宁夏)已知复数,是z的共轭复数,则=()A.B.C.1 D.2【分析】因为,所以先求|z|再求的值.【解答】解:由可得.另解:故选A.3.(5分)(2010•宁夏)曲线y=在点(﹣1,﹣1)处的切线方程为()A.y=2x+1 B.y=2x﹣1 C.y=﹣2x﹣3 D.y=﹣2x﹣2【分析】欲求在点(﹣1,﹣1)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=﹣1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=,∴y′=,所以k=y′|x=﹣1=2,得切线的斜率为2,所以k=2;所以曲线y=f(x)在点(﹣1,﹣1)处的切线方程为:y+1=2×(x+1),即y=2x+1.故选A.4.(5分)(2010•新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P 0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故应选C.5.(5分)(2010•宁夏)已知命题p1:函数y=2x﹣2﹣x在R为增函数,p2:函数y=2x+2﹣x在R为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命题是()A.q1,q3 B.q2,q3 C.q1,q4 D.q2,q4【分析】先判断命题p1是真命题,P2是假命题,故p1∨p2为真命题,(﹣p2)为真命题,p1∧(﹣p2)为真命题.【解答】解:易知p1是真命题,而对p2:y′=2x ln2﹣ln2=ln2(),当x∈[0,+∞)时,,又ln2>0,所以y′≥0,函数单调递增;同理得当x∈(﹣∞,0)时,函数单调递减,故p2是假命题.由此可知,q1真,q2假,q3假,q4真.故选C.6.(5分)(2010•宁夏)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100 B.200 C.300 D.400【分析】首先分析题目已知某种种子每粒发芽的概率都为0.9,现播种了1000粒,即不发芽率为0.1,故没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).又没发芽的补种2个,故补种的种子数记为X=2ξ,根据二项分布的期望公式即可求出结果.【解答】解:由题意可知播种了1000粒,没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).而每粒需再补种2粒,补种的种子数记为X故X=2ξ,则EX=2Eξ=2×1000×0.1=200.故选B.7.(5分)(2010•新课标)如果执行右面的框图,输入N=5,则输出的数等于()A.B.C.D.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选D.8.(5分)(2010•新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4} C.{x|x<0或x>6}D.{x|x<﹣2或x>2}【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f (|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x ﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.9.(5分)(2010•宁夏)若,α是第三象限的角,则=()A.B.C.2 D.﹣2【分析】将欲求式中的正切化成正余弦,还要注意条件中的角α与待求式中角的差别,注意消除它们之间的不同.【解答】解:由,α是第三象限的角,∴可得,则,应选A.10.(5分)(2010•宁夏)设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B. C.D.5πa2【分析】由题意可知上下底面中心连线的中点就是球心,求出球的半径,即可求出球的表面积.【解答】解:根据题意条件可知三棱柱是棱长都为a的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为,球的表面积为,故选B.11.(5分)(2010•新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选C.12.(5分)(2010•宁夏)已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A. B. C. D.【分析】已知条件易得直线l的斜率为1,设双曲线方程,及A,B 点坐标代入方程联立相减得x1+x2=﹣24,根据=,可求得a 和b的关系,再根据c=3,求得a和b,进而可得答案.【解答】解:由已知条件易得直线l的斜率为k=k PN=1,设双曲线方程为,A(x1,y1),B(x2,y2),则有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得=,从而==1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选B.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•宁夏)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…x N和y1,y2,…y N,由此得到N个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N1,那么由随机模拟方案可得积分的近似值为.【分析】要求∫f(x)dx的近似值,利用几何概型求概率,结合点数比即可得.【解答】解:由题意可知得,故积分的近似值为.故答案为:.14.(5分)(2010•宁夏)正视图为一个三角形的几何体可以是三棱锥、三棱柱、圆锥(其他正确答案同样给分)(写出三种)【分析】三棱锥一个侧面的在正视图为一条线段的情形;圆锥;四棱锥有两个侧面在正视图为线段的情形,即可回答本题.【解答】解:正视图为一个三角形的几何体可以是三棱锥、三棱柱(放倒的情形)、圆锥、四棱锥等等.故答案为:三棱锥、圆锥、三棱柱.15.(5分)(2010•宁夏)过点A(4,1)的圆C与直线x﹣y=1相切于点B(2,1),则圆C的方程为(x﹣3)2+y2=2.【分析】设圆的标准方程,再用过点A(4,1),过B,两点坐标适合方程,圆和直线相切,圆心到直线的距离等于半径,求得圆的方程.【解答】解:设圆的方程为(x﹣a)2+(y﹣b)2=r2,则,解得,故所求圆的方程为(x﹣3)2+y2=2.故答案为:(x﹣3)2+y2=2.16.(5分)(2010•宁夏)在△ABC中,D为边BC上一点,BD=DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=60°.【分析】先根据三角形的面积公式利用△ADC的面积求得DC,进而根据三角形ABC的面积求得BD和BC,进而根据余弦定理求得AB.最后在三角形ABC中利用余弦定理求得cos∠BAC,求得∠BAC的值.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°=,,则=.故∠BAC=60°.三、解答题(共8小题,满分90分)17.(12分)(2010•宁夏)设数列满足a1=2,a n+1﹣a n=3•22n﹣1(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n项和S n.【分析】(Ⅰ)由题意得a n+1=[(a n+1﹣a n)+(a n﹣a n﹣1)+…+(a2﹣a1)]+a1=3(22n﹣1+22n﹣3+…+2)+2=22(n+1)﹣1.由此可知数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25++n•22n﹣1,由此入手可知答案.【解答】解:(Ⅰ)由已知,当n≥1时,a n+1=[(a n+1﹣a n)+(a n﹣a n)+…+(a2﹣a1)]+a1﹣1=3(22n﹣1+22n﹣3+…+2)+2=3×+2=22(n+1)﹣1.而a1=2,所以数列{a n}的通项公式为a n=22n﹣1.(Ⅱ)由b n=na n=n•22n﹣1知S n=1•2+2•23+3•25+…+n•22n﹣1①从而22S n=1•23+2•25+…+n•22n+1②①﹣②得(1﹣22)•S n=2+23+25+…+22n﹣1﹣n•22n+1.即.18.(12分)(2010•宁夏)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点(1)证明:PE⊥BC(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.【分析】以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系.(1)表示,,计算,就证明PE⊥BC.(2)∠APB=∠ADB=60°,求出C,P的坐标,再求平面PEH的法向量,求向量,然后求与面PEH的法向量的数量积,可求直线PA与平面PEH所成角的正弦值.【解答】解:以H为原点,HA,HB,HP分别为x,y,z轴,线段HA 的长为单位长,建立空间直角坐标系如图,则A(1,0,0),B(0,1,0)(Ⅰ)设C(m,0,0),P(0,0,n)(m<0,n>0)则.可得.因为所以PE⊥BC.(Ⅱ)由已知条件可得m=,n=1,故C(﹣),设=(x,y,z)为平面PEH的法向量则即因此可以取,由,可得所以直线PA与平面PEH所成角的正弦值为.19.(12分)(2010•新课标)为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:【分析】(1)由列联表可知调查的500位老年人中有40+30=70位需要志愿者提供帮助,两个数据求比值得到该地区老年人中需要帮助的老年人的比例的估算值.(2)根据列联表所给的数据,代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进行比较,看出有多大把握说该地区的老年人是否需要帮助与性别有关.(3)从样本数据老年人中需要帮助的比例有明显差异,调查时,可以先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.【解答】解:(1)∵调查的500位老年人中有40+30=70位需要志愿者提供帮助,∴该地区老年人中需要帮助的老年人的比例的估算值为.(2)根据列联表所给的数据,代入随机变量的观测值公式,.∵9.967>6.635,∴有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.20.(12分)(2010•宁夏)设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程.【分析】(I)根据椭圆的定义可知|AF2|+|BF2|+|AB|=4a,进而根据|AF2|,|AB|,|BF2|成等差数表示出|AB|,进而可知直线l的方程,设A(x1,y1),B(x2,y2),代入直线和椭圆方程,联立消去y,根据韦达定理表示出x1+x2和x1x2进而根据,求得a和b的关系,进而求得a和c的关系,离心率可得.(II)设AB的中点为N(x0,y0),根据(1)则可分别表示出x0和y0,根据|PA|=|PB|,推知直线PN的斜率,根据求得c,进而求得a和b,椭圆的方程可得.【解答】解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得,l的方程为y=x+c,其中.设A(x1,y1),B(x2,y2),则A、B两点坐标满足方程组化简的(a2+b2)x2+2a2cx+a2(c2﹣b2)=0则因为直线AB斜率为1,|AB|=|x 1﹣x2|=,得,故a2=2b2所以E的离心率(II)设AB的中点为N(x0,y0),由(I)知,.由|PA|=|PB|,得k PN=﹣1,即得c=3,从而故椭圆E的方程为.21.(12分)(2010•宁夏)设函数f(x)=e x﹣1﹣x﹣ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a的取值范围.【分析】(1)先对函数f(x)求导,导函数大于0时原函数单调递增,导函数小于0时原函数单调递减.(2)根据e x≥1+x可得不等式f′(x)≥x﹣2ax=(1﹣2a)x,从而可知当1﹣2a≥0,即时,f′(x)≥0判断出函数f(x)的单调性,得到答案.【解答】解:(1)a=0时,f(x)=e x﹣1﹣x,f′(x)=e x﹣1.当x∈(﹣∞,0)时,f'(x)<0;当x∈(0,+∞)时,f'(x)>0.故f(x)在(﹣∞,0)单调减少,在(0,+∞)单调增加(II)f′(x)=e x﹣1﹣2ax由(I)知e x≥1+x,当且仅当x=0时等号成立.故f′(x)≥x﹣2ax=(1﹣2a)x,从而当1﹣2a≥0,即时,f′(x)≥0(x≥0),而f(0)=0,于是当x≥0时,f(x)≥0.由e x>1+x(x≠0)可得e﹣x>1﹣x(x≠0).从而当时,f′(x)<e x﹣1+2a(e﹣x﹣1)=e﹣x(e x﹣1)(e x﹣2a),故当x∈(0,ln2a)时,f'(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f(x)<0.综合得a的取值范围为.22.(10分)(2010•新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC 是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)23.(10分)(2010•新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为xsinα﹣ycosα﹣sinα=0①.则OA的方程为xcosα+ysinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.24.(10分)(2010•新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).。

2010年浙江高考数学理科卷带详解

2010年浙江高考数学理科卷带详解

2010年普通高等学校招生全国统一考试(浙江卷)理科数学一. 选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四项中,只有一项是符合题目要求的.1.设{4}P x x =<,2{4}Q x x =<,则 ( ) A .P Q ⊆ B .Q P ⊆ C .p Q ⊆R ð D .Q P ⊆R ð 【测量目标】集合间的关系.【考查方式】给出两集合,求集合间的关系. 【难易程度】容易 【参考答案】B 【试题解析】P ={x 4x <},{}{}2422Q x x x x =<=-<<,Q P ∴⊆,故B 正确.2.某程序框图如图所示,若输出的S =57,则判断框内为 ( ) A . k >4? B .k >5? C . k >6? D .k >7?第2题图【测量目标】循环结构的程序框图.【考查方式】给出循环结构的程序框图,根据输出结果,求出所缺条件. 【难易程度】容易 【参考答案】A【试题解析】程序在运行过程中变量值变化如下表: k s 是否继续循环 循环前 1 1第一圈 2 4 是 第二圈 3 11 是 第三圈 4 26 是 第四圈 5 57 否故退出循环的条件应为k >4.故选答案A.3.设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S = ( ) A .11 B .5 C .8- D .11- 【测量目标】等比数列的通项公式与等比数列前n 项和公式.【考查方式】给出等比数列两项之间的关系式,求出公比,根据等比数列前n 项和公式求解. 【难易程度】容易 【参考答案】D【试题解析】由2580a a +=,设公比为q ,将该式转化为08322=+q a a ,解得q =-2,所以55221111S q S q-==--.故选A. 4.设π02x <<,则“2sin 1x x <”是“sin 1x x <”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【测量目标】充分、必要条件.【考查方式】给出两不等式,判断两者之间的关系. 【难易程度】容易 【参考答案】B【试题解析】因为0<x <2π,所以0<sin 1x <,故2sin sin x x x x <,结合x sin 2x 与x sin x 的取值范围相同,可知“2sin 1x x <”是“sin 1x x <”的必要而不充分条件.5.对任意复数()i ,z x y x y =+∈R ,i 为虚数单位,则下列结论正确的是 ( ) A .2z z y -= B .222z x y =+ C .2z z x -… D .z x y +…【测量目标】复数代数形式的四则运算,共轭复数. 【考查方式】根据复数代数形式的四则运算及共轭复数的概念判断. 【难易程度】容易 【参考答案】D【试题解析】可对选项逐个检查,A 项,2z z y -…,故A 错,B 项,2222i z x y xy =-+,故B 错,C 项,2z z y -…,故C 错,故选D .6.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 ( ) A .若l m ⊥,m α⊂,则l α⊥ B .若l α⊥,l m ∥,则m α⊥ C .若l α∥,m α⊂,则l m ∥ D .若l α∥,m α∥,则l m ∥ 【测量目标】线面平行与垂直的判定.【考查方式】给出两条直线与平面,根据线面平行与垂直的定理判断位置关系. 【难易程度】容易 【参考答案】B【试题解析】A :根据线面垂直的判定定理,要垂直平面内两条相交直线才行,不正确; C :lα,,m α⊂则lm 或两线异面,故不正确;D :平行于同一平面的两直线可能平行、异面、相交,故不正确;B :由线面垂直的性质可知:平行线中的一条垂直于这个平面则另一条也垂直这个平面,故正确.7.若实数x ,y 满足不等式组330,230,10x y x y x my +-⎧⎪--⎨⎪-+⎩………,且x y +的最大值为9,则实数m =( )A .2-B .1-C .1D .2 【测量目标】二元线性规划求目标函数的最值.【考查方式】给出不等式组,给出目标函数的最大值,逆向求出系数大小. 【难易程度】中等 【参考答案】C【试题解析】先根据约束条件画出可行域,设z x y =+,将最大值转化为y 轴上的截距,当直线z x y =+经过直线230x y --=的交点A (4,5)时,z 值最大,将m 等价为斜率的倒数,数形结合,将点A 的坐标代入10x my -+=得1m =,故选C.第7题图8.设1F 、2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点.若在双曲线右支上存在点P ,满足212PF F F =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的渐近线方程为 ( ) A .340x y ±= B .350x y ±= C .430x y ±= D .540x y ±= 【测量目标】双曲线的简单几何性质.【考查方式】给出双曲线上一点与两焦点距离的关系,根据双曲线的性质求解其渐近线方程. 【难易程度】中等 【参考答案】C【试题解析】依题意212PF F F =,可知三角形21PF F 是一个等腰三角形,2F 在直线1PF 的投影是其中点,由勾股定理可知14PF b ==.(步骤1) 根据双曲线定义可知422b c a -=,整理得2c b a =-,代入222c a b =+整理得2340b ab -=,求得43b a =,∴双曲线渐近线方程为430x y ±=.故选C. (步骤2)9.设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是 ( ) A .[]4,2-- B .[]2,0- C .[]0,2 D .[]2,4 【测量目标】函数零点的求解与判断,三角函数图象的变换.【考查方式】给出函数解析式求零点,将其转化为一元一次函数与三角函数图象的交点问题求解.【难易程度】中等【参考答案】A【试题解析】在同一坐标系中画出()4sin(21)g x x =+与()h x x =的图象,由图可知()4sin(21)g x x =+与()h x x =的图象在区间[]4,2--上无交点,由图可知函数()4sin(21)f x x x =+-在区间[]4,2--上没有零点.故选A.第9题图10.设函数的集合211()log (),0,,1;1,0,122P f x x a b a b ⎧⎫==++=-=-⎨⎬⎩⎭,平面上点的集合11(,),0,,1;1,0,122Q x y x y ⎧⎫==-=-⎨⎬⎩⎭,则在同一直角坐标系中,P 中函数()f x 的图象恰好..经过Q 中两个点的函数的个数是 ( ) A .4 B .6 C .8 D .10 【测量目标】集合的基本运算,对数函数的图象与性质.【考查方式】给出一个函数集合与一个点集,判断两集合的交集个数. 【难易程度】较难 【参考答案】B【试题解析】将数据代入验证知:当a =0,b =0;a =0,b =1;a =21,b =0; a =21,b =1;a =1,b =-1;a =1,b =1时满足题意,故答案选B.二、填空题:本大题共7小题,每小题4分,共28分.11.函数2π()sin(2)4f x x x =--的最小正周期是__________________ . 【测量目标】两角和与差的正弦,三角函数的周期性.【考查方式】给出三角函数解析式,利用两角和与差的正弦将其化为同名三角函数再求周期. 【难易程度】中等 【参考答案】π【试题解析】 2π()sin(2)4f x x x =--=2πsin(2)2sin )4x x -+-(步骤1)=πsin(2)24x x -+πsin(2)4x +2) 2ω=,故最小正周期为πT =,故答案为:π.12.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是___________3cm .第12题图【测量目标】平面图形的直观图与三视图,柱、锥、台的体积.【考查方式】给出三视图,判断空间几何体的直观图,判断其构成,在根据体积公式求解. 【难易程度】容易【参考答案】144【试题解析】图为一四棱台和长方体的组合体的三视图,由公式计算得体积为13(166********⨯⨯++⨯=,故答案为:144. 14.设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上, 则B 到该抛物线准线的距离为_____________. 【测量目标】抛物线的定义,抛物线的简单几何性质.【考查方式】利用抛物线的定义求出p ,根据抛物线的性质求出B 到准线的距离. 【难易程度】容易【参考答案】4【试题解析】依题意可知F 坐标为(,0)2p ,B ∴的坐标为(,1)4p代入抛物线方程得212p =,解得p =,∴抛物线准线方程为2x =-,所以点B 到抛物线准线的距离为14.设112,,(2)(3)23n nn n x x ∈+-+N …2012n n a a x a x a x =+++⋅⋅⋅+,将(0)k a kn 剟的最小值记为n T ,则2345335511110,,0,,,,2323n T T T T T ==-==-⋅⋅⋅⋅⋅⋅其中n T =__________________ . 【测量目标】合情推理.【考查方式】给出前几项,归纳推理出第n 项,考查学生的推理能力. 【难易程度】中等【参考答案】011,23nn n n ⎧⎪⎨-⎪⎩,为偶数为奇数 【试题解析】根据n T 的定义,列出n T 的前几项:01233345556011162301123011230T T T T T T T ===-==-==-=由此规律,我们可以判断:011,23n n n n T n ⎧⎪=⎨-⎪⎩,为偶数为奇数 故答案:011,23n nn n ⎧⎪⎨-⎪⎩,为偶数为奇数. 15.设1,a d 为实数,首项为1a ,公差为d 的等差数列{}n a 的前n 项和为n S ,满足56150S S +=,则d 的取值范围是__________________ .【测量目标】等差数列前n 项和.【考查方式】给出关于等差数列前n 项和的等式,求出公差的范围. 【难易程度】中等【参考答案】(),22,⎡-∞-+∞⎣【试题解析】因为56150S S +=,所以11(510)(615)150a d a d +++=,整理得2211291010a a d d +++=,(步骤1) 此方程可看作关于1a 的一元二次方程,它一定有根,故有222(9)42(101)80,d d d ∆=-⨯⨯+=-…整理得28d …,解得d …或d -…,则d的取值范围是(),22,⎡-∞-+∞⎣,故答案为:(),22,⎡-∞-+∞⎣.(步骤2)16.已知平面向量,(,)≠≠0αβααβ满足1=β,且a 与-βα的夹角为120,则α的取值范围是__________________ .【测量目标】平面向量线性运算、平面向量在平面几何中的应用和正弦定理.【考查方式】根据平面向量的三角形法则判断两向量的夹角,再利用正弦定理求解. 【难易程度】中等 【参考答案】 【试题解析】如图,设,OA OB ==αβ,则AB =-βα,∵a 与-βα的夹角为120,即OA 与AB 的夹角为120,∴60OAB ∠=.由正弦定理可得:sin sin OA OB BA=,即sin sin BA=αβ,(步骤1)∴sin sin sin sin 60BB B A===βα,∵0120B <<,∴sin (0,1]B ∈,∴(0,3∈α. (步骤2)第16题图17.有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、 “台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复. 若上午不测“握 力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人. 则不同的安排方式共 有______________种(用数字作答). 【测量目标】排列组合及其应用.【考查方式】通过实际生活的实例,求出不同的安排方式. 【难易程度】较难 【参考答案】264【试题解析】先安排4位同学参加上午的“身高与体重”、“立定跳远”、“肺活量”、 “台阶”测试,共有44A 种不同安排方式;(步骤1) 接下来安排下午的“身高与体重”、“立定跳远”、“肺活量”、“握力”测试,假设A B C 、、同学上午分别安排的是“身高与体重”、“立定跳远”、“肺活量”测试,若D 同学选择“握力”测试,安排A B C 、、同学分别交叉测试,有2种;(步骤2) 若D 同学选择“身高与体重”、“立定跳远”、“肺活量”测试中的1种,有13A 种方式,安排A B C 、、同学进行测试有3种;根据计数原理共有安排方式的种数为4143A (2A 3)264+⨯=.(步骤3)三、解答题:本大题共5小题.共72分.解答应写出文字说明、证明过程或演算步骤. 18.(本题满分l4分)在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,已知1cos 24C =- (Ⅰ)求sin C 的值;(Ⅱ)当a =2,2sin sin A C =时,求b 及c 的长. 【测量目标】二倍角,正弦定理,余弦定理.【考查方式】给出二倍角化简求解;给出两角正弦值之间的关系及三角形一边,结合正弦定理求一条边长,再应用余弦定理求另一边.【难易程度】中等【试题解析】(Ⅰ)因为21cos 212sin 4C C =-=-,及0πC <<,所以sin C =.(步骤1)(Ⅱ)当2a =,2sin sin A C =时,由正弦定理sin sin a cA C=,得4c =,(步骤2)由21cos 22cos 14C C =-=-,及0<πC <得cos C =.由余弦定理2222cos c a b ab C =+-,得2120b -=.解得b =所以4b c ⎧=⎪⎨=⎪⎩4b c ⎧=⎪⎨=⎪⎩.(步骤3) 19.(本题满分l4分)如图,一个小球从M 处投入,通过管道自上而下落A 或B 或C .已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A ,B ,C ,则分别设为l ,2,3等奖. (I )已知获得l ,2,3等奖的折扣率分别为50%,70%,90%.记随机变量ξ为获得k (k =1,2,3)等奖的折扣率,求随机变量ξ的分布列及期望E ξ;(II)若有3人次(投入l 球为l 人次)参加促销活动,记随机变量η为获得1等奖或2等奖的人次,求(2)P η=.第19题图【测量目标】离散型随机变量的分布列与期望,二项分布.【考查方式】结合实际问题,列出随机变量求其分布列,由公式求期望;判断二项分布,求概率.【难易程度】中等【试题解析】(Ⅰ)由题意得ξ的分布列为则337350%70%90%168164E ξ=⨯+⨯+⨯=.(步骤1) (Ⅱ)由(Ⅰ)可知,获得1等奖或2等奖的概率为316+38=916.由题意得9~(3,)16η.则223991701(2)C ()(1)16164096P η==-=.(步骤2)20.(本题满分15分)如图,在矩形ABCD 中,点,E F 分别在线段,AB AD 上,243AE EB AF FD ====.沿直线EF 将AEF △翻折成A EF '△,使平面A EF '⊥平面BEF .(Ⅰ)求二面角A FD C '--的余弦值;(Ⅱ)点,M N 分别在线段,FD BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C 与A '重合,求线段FM 的长.第20题图【测量目标】二面角,平面图形的折叠问题,空间向量的应用.【考查方式】根据条件建立空间直角坐标系设向量求解;由空间线面垂直判定找出二面角求解.【难易程度】较难【试题解析】(Ⅰ)取线段EF 的中点H ,连结A H ',因为A E '=A F '及H 是EF 的中点,所以A H EF '⊥,又因为平面A EF '⊥平面BEF .如图建立空间直角坐标系A xyz -则(22A ',,(1080)C ,,,(400)F ,,,(1000)D ,,.故(22FA '=-,u u u r ,(6,0,0)FD =uu u r . (步骤1)设(,,)x y z =n 为平面A FD '的一个法向量,所以220,60x y x ⎧-++=⎪⎨=⎪⎩,取z =,则(0,=-n .又平面BEF 的一个法向量(0,0,1)=m ,故3cos ,3〈〉==n m n m n m .所以二面角的余弦值为3. (步骤2)第20题图 (1)(Ⅱ)设,FM x =则(4,0,0)M x +,因为翻折后,C 与A '重合,所以CM A M '=,故 222222(6)80=22x x -++--++()(,得214x =, 经检验,此时点N 在线段BC 上,所以214FM =. (步骤3) 方法二:(Ⅰ)取线段EF 的中点H ,AF 的中点G ,连结,,A G A H GH ''. 因为A E '=A F '及H 是EF 的中点,所以A H EF '⊥又因为平面A EF '⊥平面BEF ,所以A H '⊥平面BEF ,(步骤1) 又AF ⊂平面BEF ,故A H '⊥AF ,又因为G 、H 是AF 、EF 的中点,易知GH AB ∥,所以GH ⊥AF ,于是AF ⊥面A GH ', 所以A GH '∠为二面角A DF C '--的平面角, (步骤2)在Rt A GH '△中,A H '=,GH =2,A G '=所以cos 3A GH '∠=.故二面角A DF C '--的余弦值为3. (步骤3) (Ⅱ)设FM x =,因为翻折后,C 与A '重合,所以CM A M '=,而222228(6)CM DC DM x =+=+-,222222A M A H MH A H MG GH '''=+=++22(2)4x =+++,22CM A M '=,∴214x =, 经检验,此时点N 在线段BC 上,所以214FM =. (步骤4)第20题图(2)21.(本题满分15分)已知1m >,直线2:02m l x my --=,椭圆222:1x C y m+=,12F F ,分别为椭圆C 的左、右焦点.(Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F △, 12BF F △的重心分别为,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.第21题图【测量目标】直线的方程,椭圆的简单几何性质,直线与椭圆的位置关系,圆锥曲线中的范围问题.【考查方式】给出直线与椭圆的含参方程,通过对两者之间的位置关系求解出参数;联立方程,根据点与圆的关系求解参数范围.【难易程度】较难【试题解析】(Ⅰ)因为直线:l 202m x my --=经过2F ,22m =,得22m =,又因为1m >,所以m =,故直线l 的方程为10x --=.(步骤1)(Ⅱ)设1122(,),(,)A x y B x y由222221m x my x y m ⎧=+⎪⎪⎨⎪+=⎪⎩,消去x 得,222104m y my ++-= 则由2228(1)804m m m ∆=--=-+>,知28m < 且有212121,282m m y y y y +=-=-.(步骤2)由于12(,0),(,0),F c F c -故O 为12F F 的中点,由2,2AG GO BH HO ==,可知1122(,),(,),3333x y x y G H 2221212()()99x x y y GH --=+ 设M 是GH 的中点,则1212(,)66x x y y M ++, 由题意可知2,MO GH <即222212121212()()4[()()]6699x x y y x x y y ++--+<+ 即12120x x y y +<,而2212121212()()22m m x x y y my my y y +=+++ 221(1()82m m =+-)(步骤3) 所以21082m -<,即24m <. 又因为1m >且0∆>,所以12m <<. 所以m 的取值范围是(1,2).(步骤4)22.(本题满分14分)已知a 是给定的实常数,设函数2()()()e xf x x a x b =-+,b ∈R ,x a =是()f x 的一个极大值点.(Ⅰ)求b 的取值范围;(Ⅱ)设123,,x x x 是()f x 的3个极值点,问是否存在实数b ,可找到4x ∈R ,使得1234,,,x x x x 的某种排列1234,,,i i i i x x x x (其中{}1234,,,i i i i ={}1,2,3,4)依次成等差数列?若存在,求所有的b 及相应的4x ;若不存在,说明理由.【测量目标】导数的运算,利用导数求函数的极值,等差数列的性质.【考查方式】给出函数解析式与极大值点,求参数的求参数的范围,间接考查了利用导数求 函数的极值;结合等差数列性质判断所求值. 【难易程度】较难【试题解析】(Ⅰ)2()e ()(3)2,x f x x a x a b x b ab a '⎡⎤=-+-++--⎣⎦令2()(3)2g x x a b x b ab a =+-++--,则22(3)4(2)(1)80,a b b ab a a b ∆=-+---=+-+>(步骤1)于是,假设12,x x 是()0g x =的两个实根,且12x x <.(1) 当1x a =或2x a =时,则x a =不是()f x 的极值点,此时不合题意. (2) 当1x a ≠且2x a ≠时,由于x a =是()f x 的极大值点,故12x a x <<. 即()0g a <即2(3)20a a b a b ab a +-++--< 所以b a <-所以b 的取值范围是()a -∞-,.(步骤2) (Ⅱ)由(Ⅰ)可知,假设存在b 及4x 满足题意,则 ⑴当21x a a x -=-时,则422x x a =-或412x x a =-, 于是1223a x x a b =+=--.即3b a =--.此时4223x x a a b =-=--+a a =+或4223x x a a b =-=--a a =-3)⑵当21x a a x -=-时,则212()x a a x -=-或122()a x x a -=-, ①若212()x a a x -=-,则242a x x +=,于是1232a x x =+=3(3)a b =-++,于是1a b +-=92--,此时242a x x +=2(3)3(3)4a ab a b +---++=3b =--a = (步骤4) ②若122()a x x a -=-,则242a x x +=于是2132a x x =+=3(3)a b =++,于是1a b +-=,此时42(3)3(3)13242a x a ab a b x b a ++---++===--=+(步骤5) 综上所述,存在b 满足题意,当3b a =--时,4x a =±当72b a +=--时,412x a +=+,当b a =-4x a =+.(步骤6)。

2012年浙江省高考数学试卷(理科)答案与解析

2012年浙江省高考数学试卷(理科)答案与解析

2012年浙江省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•浙江)设集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},则A∩(∁R B)=()A.(1,4)B.(3,4)C.(1,3)D.(1,2)∪(3,4)2.(5分)(2012•浙江)已知i是虚数单位,则=()A.1﹣2i B.2﹣i C.2+i D.1+2i3.(5分)(2012•浙江)设a∈R,则“a=1”是“直线l1:ax+2y﹣1=0与直线l2:x+(a+1)y+4=0平行”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)(2012•浙江)把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是()A .B.C.D.5.(5分)(2012•浙江)设,是两个非零向量.则下列命题为真命题的是()A.若|+|=||﹣||,则⊥B.若⊥,则|+|=||﹣||C.若|+|=||﹣||,则存在实数λ,使得=λD.若存在实数λ,使得=λ,则|+|=||﹣||6.(5分)(2012•浙江)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种7.(5分)(2012•浙江)设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是()A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0C.若数列{S n}是递增数列,则对任意n∈N*,均有S n>0D.若对任意n∈N*,均有S n>0,则数列{S n}是递增数列8.(5分)(2012•浙江)如图,F1,F2分别是双曲线C:(a,b>0)的在左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交于点M.若|MF2|=|F1F2|,则C的离心()A.B.C.D.9.(5分)(2012•浙江)设a>0,b>0,下列命题中正确的是()A.若2a+2a=2b+3b,则a>b B.若2a+2a=2b+3b,则a<bC.若2a﹣2a=2b﹣3b,则a>b D.若2a﹣2a=2b﹣3b,则a<b10.(5分)(2012•浙江)已知矩形ABCD,AB=1,BC=.将△ABD沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中()A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)(2012•浙江)已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于cm3.12.(4分)(2012•浙江)若某程序框图如图所示,则该程序运行后输出的值是.13.(4分)(2012•浙江)设公比为q(q>0)的等比数列{a n}的前n项和为S n.若S2=3a2+2,S4=3a4+2,则q=.14.(4分)(2012•浙江)若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…a5为实数,则a3=.15.(4分)(2012•浙江)在△ABC中,M是BC的中点,AM=3,BC=10,则•=.16.(4分)(2012•浙江)定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=.17.(4分)(2012•浙江)设a∈R,若x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,则a=.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)(2012•浙江)在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=,sinB=C.(1)求tanC的值;(2)若a=,求△ABC的面积.19.(14分)(2012•浙江)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.(1)求X的分布列;(2)求X的数学期望E(X).20.(15分)(2012•浙江)如图,在四棱锥P﹣ABCD中,底面是边长为的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分别为PB,PD的中点.(1)证明:MN∥平面ABCD;(2)过点A作AQ⊥PC,垂足为点Q,求二面角A﹣MN﹣Q的平面角的余弦值.21.(15分)(2012•浙江)如图,椭圆C:=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为,不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.(Ⅰ)求椭圆C的方程;(Ⅱ)求△APB面积取最大值时直线l的方程.22.(14分)(2012•浙江)已知a>0,b∈R,函数f(x)=4ax3﹣2bx﹣a+b.(Ⅰ)证明:当0≤x≤1时,(i)函数f(x)的最大值为|2a﹣b|+a;(ii)f(x)+|2a﹣b|+a≥0;(Ⅱ)若﹣1≤f(x)≤1对x∈[0,1]恒成立,求a+b的取值范围.。

2010年高考数学理科试题解析版(全国卷II)

2010年高考数学理科试题解析版(全国卷II)

2010年普通高等学校招生全国统一考试(全国卷II )(数学理)【教师简评】按照“保持整体稳定,推动改革创新,立足基础考查,突出能力立意”命题指导思想,本套试卷的总体印象是:题目以常规题为主,难度较前两年困难,得高分需要扎扎实实的数学功底.1.纵观试题,小题起步较低,难度缓缓上升,除了选择题11、12、16题有一定的难度之外,其他题目难度都比较平和.2.解答题中三角函数题较去年容易,立体几何难度和去年持平,数列题的难度较去年有所提升,由去年常见的递推数列题型转变为今年的数列求极限、数列不等式的证明,不易拿满分,概率题由去年背景是“人员调配”问题,转变为今年的与物理相关的电路问题,更体现了学科之间的联系.两道压轴题以解析几何和导数知识命制,和去年比较更有利于分步得分.3.要求考生有比较强的计算能力,例如立体几何问题,题目不难,但需要一定的计算技巧和能力.不管题目难度如何变化,“夯实双基(基础知识、基本方法)”,对大多数考生来说,是以不变应万变的硬道理.(1)复数231i i -⎛⎫= ⎪+⎝⎭(A )34i -- (B )34i -+ (C )34i - (D )34i + 【答案】A【命题意图】本试题主要考查复数的运算.【解析】231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. (2).函数1ln(1)(1)2x y x +-=>的反函数是(A ) 211(0)x y e x +=-> (B )211(0)x y e x +=+>(C )211(R )x y e x +=-∈ (D )211(R )x y ex +=+∈【答案】D【命题意图】本试题主要考察反函数的求法及指数函数与对数函数的互化。

【解析】由原函数解得,即,又;∴在反函数中,故选D.(3).若变量,x y 满足约束条件1,,325x y x x y -⎧⎪⎨⎪+⎩≥≥≤,则2z x y =+的最大值为(A )1 (B )2 (C )3 (D )4 【答案】C【命题意图】本试题主要考查简单的线性规划问题.【解析】可行域是由A (1,1),B(1,4),C(1,1)---构成的三角形,可知目标函数过C 时最大,最大值为3,故选C.(4).如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++= (A )14 (B )21 (C )28 (D )35 【答案】C【命题意图】本试题主要考查等差数列的基本公式和性质. 【解析】173454412747()312,4,7282a a a a a a a a a a a +++===∴+++===(5)不等式2601x x x --->的解集为(A ){}2,3x x x -<或> (B ){}213x x x -<,或<< (C ) {}213x x x -<<,或> (D ){}2113x x x -<<,或<<【答案】C【命题意图】本试题主要考察分式不等式与高次不等式的解法.【解析】利用数轴穿根法解得-2<x <1或x >3,故选C(6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【答案】B【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力.【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.(7)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像(A )向左平移4π个长度单位 (B )向右平移4π个长度单位(C )向左平移2π个长度单位 (D )向右平移2π个长度单位【答案】B【命题意图】本试题主要考查三角函数图像的平移.【解析】s i n (2)6y x π=+=sin 2()12x π+,sin(2)3y x π=-=sin 2()6x π=-,所以将s i n (2)6y x π=+的图像向右平移4π个长度单位得到sin(2)3y x π=-的图像,故选B.(8)A B C V 中,点D 在A B 上,C D 平方A C B ∠.若CB a =u u r,C A b =uur ,1a =,2b =,则C D =uuu r(A )1233a b +(B )2133a b +(C )3455a b +(D )4355a b +【答案】B【命题意图】本试题主要考查向量的基本运算,考查角平分线定理. 【解析】因为C D 平分A C B ∠,由角平分线定理得A D C A 2=D BC B1=,所以D 为AB 的三等分点,且22A D A B (C B C A )33==- ,所以2121C D C A +A D C B C A a b 3333==+=+,故选B.(9)已知正四棱锥S A B C D -中,SA =,那么当该棱锥的体积最大时,它的高为(A )1 (B (C )2 (D )3【答案】C【命题意图】本试题主要考察椎体的体积,考察告辞函数的最值问题.【解析】设底面边长为a ,则高所以体积,设,则,当y 取最值时,,解得a=0或a=4时,体积最大,此时,故选C.(10)若曲线12y x -=在点12,a a -⎛⎫⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a = (A )64 (B )32 (C )16 (D )8 【答案】A【命题意图】本试题主要考查求导法则、导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力.. 【解析】332211',22y xk a--=-∴=-,切线方程是13221()2y aax a ---=--,令0x =,1232y a-=,令0y =,3x a =,∴三角形的面积是121331822s a a -=⋅⋅=,解得64a =.故选A.(11)与正方体1111ABC D A B C D -的三条棱A B 、1C C 、11A D 所在直线的距离相等的点 (A )有且只有1个 (B )有且只有2个 (C )有且只有3个 (D )有无数个【答案】D【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M ,N ,Q ,连PM ,PN ,PQ ,由三垂线定理可得,PN ⊥PM ⊥;PQ ⊥AB ,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ ,即P 到三条棱AB 、CC 1、A 1D 1.所在直线的距离相等所以有无穷多点满足条件,故选D.(12)已知椭圆2222:1(0)x y C a b ab+=>>的离心率为2,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =(A )1 (B (C (D )2【答案】B【命题意图】本试题主要考察椭圆的性质与第二定义.【解析】设直线l 为椭圆的有准线,e 为离心率,过A ,B 分别作AA 1,BB 1垂直于l ,A 1,B 为垂足,过B 作BE 垂直于AA 1与E ,由第二定义得,,由,得,∴即k=,故选B.第Ⅱ卷注意事项:1.用0.5毫米的黑色字迹签字笔在答题卡上作答。

2009年浙江省高考数学试卷(理科)及答案

2009年浙江省高考数学试卷(理科)及答案

2009年浙江省高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)设U=R,A={x|x>0},B={x|x>1},则A∩∁U B=()A.{x|0≤x<1}B.{x|0<x≤1}C.{x|x<0}D.{x|x>1}2.(5分)已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)设复数z=1+i(i是虚数单位),则+z2=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i4.(5分)在二项式(x2﹣)5的展开式中,含x4的项的系数是()A.﹣10 B.10 C.﹣5 D.55.(5分)在三棱柱ABC﹣A1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是()A.30°B.45°C.60°D.90°6.(5分)某程序框图如图所示,该程序运行后输出的k的值是()A.4 B.5 C.6 D.77.(5分)设向量,满足:||=3,||=4,•=0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为()A.3 B.4 C.5 D.68.(5分)已知a是实数,则函数f(x)=1+asinax的图象不可能是()A.B.C.D.9.(5分)过双曲线﹣=1(a>0,b>0)的右顶点A作斜率为﹣1的直线,该直线与双曲线的两条渐近线的交点分别为B、C.若=,则双曲线的离心率是()A.B.C.D.10.(5分)定义A﹣B={x|x∈A且x∉B},若P={1,2,3,4},Q={2,5},则Q ﹣P=()A.P B.{5}C.{1,3,4}D.Q二、填空题(共7小题,每小题4分,满分28分)11.(4分)设等比数列{a n}的公比,前n项和为S n,则=.12.(4分)若某个几何体的三视图(单位:cm)如图所示,则该几何体的体积是cm3.13.(4分)若实数x,y 满足不等式组,则2x+3y的最小值是.14.(4分)某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如图:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量(单位:千瓦时)高峰电价(单位:元/千瓦时)低谷月用电量(单位:千瓦时)低谷电价(单位:元/千瓦时)50及以下的部分0.56850及以下的部分0.288超过50至200的部分0.598超过50至200的部分0.318超过200的部分0.668超过200的部分0.388若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为元(用数字作答)15.(4分)观察下列等式:观察下列等式:C+C=23﹣2,C+C+C=27+23,C+C+C+C=211﹣25,C+C+C+C+C=215+27,…由以上等式推测到一个一般结论:对于n∈N*,C+C+C+…+C=.16.(4分)甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法总数是.17.(4分)如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点,现将△AFD沿AF折起,使平面ABD⊥平面ABC,在平面ABD内过点D作DK⊥AB,K为垂足,设AK=t,则t的取值范围是.三、解答题(共5小题,满分72分)18.(14分)在△ABC中,角A、B、C所对应的边分别为a、b、c,且满足=,•=3.(Ⅰ)求△ABC的面积;(Ⅱ)若b+c=6,求a的值.19.(14分)在1,2,3…,9,这9个自然数中,任取3个数.(Ⅰ)求这3个数中,恰有一个是偶数的概率;(Ⅱ)记ξ为这三个数中两数相邻的组数,(例如:若取出的数1、2、3,则有两组相邻的数1、2和2、3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望Eξ.20.(14分)如图,平面PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E,F,O分别为PA,PB,AC的中点,AC=16,PA=PC=10.(Ⅰ)设G是OC的中点,证明:FG∥平面BOE;(Ⅱ)证明:在△ABO内存在一点M,使FM⊥平面BOE,并求点M到OA,OB 的距离.21.(15分)已知椭圆C1:(a>b>0)的右顶点A(1,0),过C1的焦点且垂直长轴的弦长为1.(Ⅰ)求椭圆C1的方程;(Ⅱ)设点P在抛物线C2:y=x2+h(h∈R)上,C2在点P处的切线与C1交于点M,N.当线段AP的中点与MN的中点的横坐标相等时,求h的最小值.22.(15分)已知函数f(x)=x3﹣(k2﹣k+1)x2+5x﹣2,g(x)=k2x2+kx+1,其中k∈R.(Ⅰ)设函数p(x)=f(x)+g(x).若p(x)在区间(0,3)上不单调,求k 的取值范围;(Ⅱ)设函数是否存在k,对任意给定的非零实数x1,存在惟一的非零实数x2(x2≠x1),使得q′(x2)=q′(x1)?若存在,求k的值;若不存在,请说明理由.2009年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2009•浙江)设U=R,A={x|x>0},B={x|x>1},则A∩∁U B=()A.{x|0≤x<1}B.{x|0<x≤1}C.{x|x<0}D.{x|x>1}【分析】欲求两个集合的交集,先得求集合C U B,再求它与A的交集即可.【解答】解:对于C U B={x|x≤1},因此A∩C U B={x|0<x≤1},故选B.2.(5分)(2009•浙江)已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】由“a>0且b>0”⇒“a+b>0且ab>0”,“a+b>0且ab>0”⇒“a>0且b >0”,知“a>0且b>0”是“a+b>0且ab>0”的充要条件.【解答】解:∵a,b是实数,∴“a>0且b>0”⇒“a+b>0且ab>0”,“a+b>0且ab>0”⇒“a>0且b>0”,∴“a>0且b>0”是“a+b>0且ab>0”的充要条件.故选C.3.(5分)(2009•浙江)设复数z=1+i(i是虚数单位),则+z2=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i【分析】把复数z代入表达式化简整理即可.【解答】解:对于,故选D.4.(5分)(2009•浙江)在二项式(x2﹣)5的展开式中,含x4的项的系数是()A.﹣10 B.10 C.﹣5 D.5【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为4求得.【解答】解:对于,对于10﹣3r=4,∴r=2,则x4的项的系数是C52(﹣1)2=10故选项为B5.(5分)(2009•浙江)在三棱柱ABC﹣A1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是()A.30°B.45°C.60°D.90°【分析】本题考查的知识点是线面夹角,由已知中侧棱垂直于底面,我们过D 点做BC的垂线,垂足为E,则DE⊥底面ABC,且E为BC中点,则E为A点在平面BB1C1C上投影,则∠ADE即为所求线面夹角,解三角形即可求解.【解答】解:如图,取BC中点E,连接DE、AE、AD,依题意知三棱柱为正三棱柱,易得AE⊥平面BB1C1C,故∠ADE为AD与平面BB1C1C所成的角.设各棱长为1,则AE=,DE=,tan∠ADE=,∴∠ADE=60°.故选C6.(5分)(2009•浙江)某程序框图如图所示,该程序运行后输出的k的值是()A.4 B.5 C.6 D.7【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是计算满足S=≥100的最小项数【解答】解:根据流程图所示的顺序,程序的运行过程中各变量值变化如下表:是否继续循环S K循环前/0 0第一圈是 1 1第二圈是 3 2第三圈是11 3第四圈是2059 4第五圈否∴最终输出结果k=4故答案为A7.(5分)(2009•浙江)设向量,满足:||=3,||=4,•=0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为()A.3 B.4 C.5 D.6【分析】先根据题设条件判断三角形为直角三角形,根据三边长求得内切圆的半径,进而看半径为1的圆内切于三角形时有三个公共点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,进而可得出答案.【解答】解:∵向量a•b=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.故选B8.(5分)(2009•浙江)已知a是实数,则函数f(x)=1+asinax的图象不可能是()A.B.C.D.【分析】函数f(x)=1+asinax的图象是一个正弦曲线型的图,其振幅为|a|,周期为,周期与振幅成反比,从这个方向观察四个图象.【解答】解:对于振幅大于1时,三角函数的周期为:,∵|a|>1,∴T<2π,而D符合要求,它的振幅大于1,但周期小于2π.对于选项A,a<1,T>2π,满足函数与图象的对应关系,故选D.9.(5分)(2009•浙江)过双曲线﹣=1(a>0,b>0)的右顶点A作斜率为﹣1的直线,该直线与双曲线的两条渐近线的交点分别为B、C.若=,则双曲线的离心率是()A.B.C.D.【分析】分别表示出直线l和两个渐近线的交点,进而表示出和,进而根据=求得a和b的关系,进而根据c2﹣a2=b2,求得a和c的关系,则离心率可得.【解答】解:直线l:y=﹣x+a与渐近线l1:bx﹣ay=0交于B(,),l与渐近线l2:bx+ay=0交于C(,),A(a,0),∴=(﹣,),=(,﹣),∵=,∴=,b=2a,∴c2﹣a2=4a2,∴e2==5,∴e=,故选C.10.(5分)(2009•浙江)定义A﹣B={x|x∈A且x∉B},若P={1,2,3,4},Q={2,5},则Q﹣P=()A.P B.{5}C.{1,3,4}D.Q【分析】理解新的运算,根据新定义A﹣B知道,新的集合A﹣B是由所有属于A但不属于B的元素组成.【解答】解:Q﹣P是由所有属于Q但不属于P的元素组成,所以Q﹣P={5}.故选B.二、填空题(共7小题,每小题4分,满分28分)11.(4分)(2009•浙江)设等比数列{a n}的公比,前n项和为S n,则=15.【分析】先通过等比数列的求和公式,表示出S4,得知a4=a1q3,进而把a1和q 代入约分化简可得到答案.【解答】解:对于,∴12.(4分)(2009•浙江)若某个几何体的三视图(单位:cm)如图所示,则该几何体的体积是18cm3.【分析】由图可知,图形由两个体积相同的长方体组成,求出其中一个体积即可.【解答】解:由图可知,底下的长方体底面长为3,宽为1,底面积为3×1=3,高为3,因此体积为3×3=9;上面的长方体底面是个正方形,边长为3,高为1,易知与下面的长方体体积相等,因此易得该几何体的体积为9×2=18.13.(4分)(2009•浙江)若实数x,y 满足不等式组,则2x+3y的最小值是4.【分析】先由约束条件画出可行域,再求出可行域各个角点的坐标,将坐标逐一代入目标函数,验证即得答案.【解答】解:如图即为满足不等式组的可行域,由图易得:当x=2,y=0时,2x+3y=4;当x=1,y=1时,2x+3y=5;当x=4,y=4时,2x+3y=20,因此,当x=2,y=0时,2x+3y有最小值4.故答案为414.(4分)(2009•浙江)某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如图:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量(单位:千瓦高峰电价(单位:元/千瓦时)低谷月用电量(单位:千瓦低谷电价(单位:时)时)元/千瓦时)50及以下的部分0.56850及以下的部分0.288超过50至200的部分0.598超过50至200的部分0.318超过200的部分0.668超过200的部分0.388若某家庭5月份的高峰时间段用电量为200千瓦时,低谷时间段用电量为100千瓦时,则按这种计费方式该家庭本月应付的电费为148.4元(用数字作答)【分析】先计算出高峰时间段用电的电费,和低谷时间段用电的电费,然后把这两个电费相加.【解答】解:高峰时间段用电的电费为50×0.568+150×0.598=28.4+89.7=118.1 (元),低谷时间段用电的电费为50×0.288+50×0.318=14.4+15.9=30.3 (元),本月的总电费为118.1+30.3=148.4 (元),故答案为:148.4.15.(4分)(2009•浙江)观察下列等式:观察下列等式:C+C=23﹣2,C +C +C=27+23,C+C+C+C=211﹣25,C+C+C+C+C=215+27,…由以上等式推测到一个一般结论:对于n∈N*,C+C+C+…+C=24n﹣1+(﹣1)n22n﹣1.【分析】通过观察类比推理方法结论由二项构成,第二项前有(﹣1)n,二项指数分别为24n﹣1,22n﹣1【解答】解:结论由二项构成,第二项前有(﹣1)n,二项指数分别为24n﹣1,22n﹣1,因此对于n∈N*,C4n+11+C4n+15+C4n+19+…+C4n+14n+1=24n﹣1+(﹣1)n22n﹣1.故答案为24n﹣1+(﹣1)n22n﹣116.(4分)(2009•浙江)甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法总数是336.【分析】由题意知本题需要分组解决,共有两种情况,对于7个台阶上每一个只站一人,若有一个台阶有2人另一个是1人,根据分类计数原理得到结果.【解答】解:由题意知本题需要分组解决,∵对于7个台阶上每一个只站一人有A73种;若有一个台阶有2人另一个是1人共有C31A72种,∴根据分类计数原理知共有不同的站法种数是A73+C31A72=336种.故答案为:336.17.(4分)(2009•浙江)如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点,现将△AFD沿AF折起,使平面ABD⊥平面ABC,在平面ABD内过点D作DK⊥AB,K为垂足,设AK=t,则t的取值范围是(,1).【分析】此题的破解可采用二个极端位置法,即对于F位于DC的中点时与随着F点到C点时,分别求出此两个位置的t值即可得到所求的答案【解答】解:此题的破解可采用二个极端位置法,即对于F位于DC的中点时,可得t=1,随着F点到C点时,当C与F无限接近,不妨令二者重合,此时有CD=2因CB⊥AB,CB⊥DK,∴CB⊥平面ADB,即有CB⊥BD,对于CD=2,BC=1,在直角三角形CBD中,得BD=,又AD=1,AB=2,再由勾股定理可得∠BDA是直角,因此有AD⊥BD再由DK⊥AB,可得三角形ADB和三角形AKD相似,可得t=,因此t的取值的范围是(,1)故答案为(,1)三、解答题(共5小题,满分72分)18.(14分)(2009•浙江)在△ABC中,角A、B、C所对应的边分别为a、b、c,且满足=,•=3.(Ⅰ)求△ABC的面积;(Ⅱ)若b+c=6,求a的值.【分析】(Ⅰ)利用二倍角公式利用=求得cosA,进而求得sinA,进而根据求得bc的值,进而根据三角形面积公式求得答案.(Ⅱ)根据bc和b+c的值求得b和c,进而根据余弦定理求得a的值.【解答】解:(Ⅰ)因为,∴,又由,得bccosA=3,∴bc=5,∴(Ⅱ)对于bc=5,又b+c=6,∴b=5,c=1或b=1,c=5,由余弦定理得a2=b2+c2﹣2bccosA=20,∴19.(14分)(2009•浙江)在1,2,3…,9,这9个自然数中,任取3个数.(Ⅰ)求这3个数中,恰有一个是偶数的概率;(Ⅱ)记ξ为这三个数中两数相邻的组数,(例如:若取出的数1、2、3,则有两组相邻的数1、2和2、3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望Eξ.【分析】(I)由题意知本题是一个古典概型,试验发生包含的所有事件是从9个数字中选3个,而满足条件的事件是3个数恰有一个是偶数,即有一个偶数和两个奇数.根据概率公式得到结果.(2)随机变量ξ为这三个数中两数相邻的组数,则ξ的取值为0,1,2,当变量为0时表示不包含相邻的数,结合变量对应的事件写出概率和分布列,算出期望.【解答】解:(I)由题意知本题是一个古典概型,试验发生包含的所有事件是C93,而满足条件的事件是3个数恰有一个是偶数共有C41C52记“这3个数恰有一个是偶数”为事件A,∴;(II)随机变量ξ为这三个数中两数相邻的组数,则ξ的取值为0,1,2,当变量为0时表示不包含相邻的数P(ξ=0)=,P(ξ=1)=,P(ξ=2)=∴ξ的分布列为ξ012p∴ξ的数学期望为.20.(14分)(2009•浙江)如图,平面PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E,F,O分别为PA,PB,AC的中点,AC=16,PA=PC=10.(Ⅰ)设G是OC的中点,证明:FG∥平面BOE;(Ⅱ)证明:在△ABO内存在一点M,使FM⊥平面BOE,并求点M到OA,OB 的距离.【分析】由于PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,O为AC的中点,AC=16,PA=PC=10,所以PO、OB、OC是两两垂直的三条直线,因此可以考虑用空间向量解决:连接OP,以O为坐标原点,分别以OB、OC、OP所在直线为x轴,y轴,z轴,建立空间直角坐标系O﹣xyz,对于(I),只需证明向量FG与平面BOE的一个法向量垂直即可,而根据坐标,平面的一个法向量可求,从而得证;对于(II),在第一问的基础上,课设点M的坐标,利用FM⊥平面BOE求出M 的坐标,而其道OA、OB的距离就是点M 横纵坐标的绝对值.【解答】证明:(I)如图,连接OP,以O为坐标原点,分别以OB、OC、OP所在直线为x轴,y轴,z轴,建立空间直角坐标系O﹣xyz,则O(0,0,0),A(0,﹣8,0),B(8,0,0),C(0,8,0),P(0,0,6),E(0,﹣4,3),F(4,0,3),(3分)由题意得,G(0,4,0),因,因此平面BOE的法向量为,)得,又直线FG不在平面BOE内,因此有FG∥平面BOE.(6分)(II)设点M的坐标为(x0,y0,0),则,因为FM⊥平面BOE,所以有,因此有,即点M的坐标为(8分)在平面直角坐标系xoy中,△AOB的内部区域满足不等式组,经检验,点M的坐标满足上述不等式组,所以在△ABO内存在一点M,使FM⊥平面BOE,由点M的坐标得点M到OA,OB的距离为.(12分)21.(15分)(2009•浙江)已知椭圆C1:(a>b>0)的右顶点A(1,0),过C1的焦点且垂直长轴的弦长为1.(Ⅰ)求椭圆C1的方程;(Ⅱ)设点P在抛物线C2:y=x2+h(h∈R)上,C2在点P处的切线与C1交于点M,N.当线段AP的中点与MN的中点的横坐标相等时,求h的最小值.【分析】(I)根据题意,求出a,b的值,然后得出椭圆的方程.(II)设出M,N,P的坐标,将直线代入椭圆,联立方程组,根据△判断最值即可.【解答】解:(I)由题意得,∴,所求的椭圆方程为,(II)不妨设M(x1,y1),N(x2,y2),P(t,t2+h),则抛物线C2在点P处的切线斜率为y'|x=t=2t,直线MN的方程为y=2tx﹣t2+h,将上式代入椭圆C1的方程中,得4x2+(2tx﹣t2+h)2﹣4=0,即4(1+t2)x2﹣4t(t2﹣h)x+(t2﹣h)2﹣4=0,因为直线MN与椭圆C1有两个不同的交点,所以有△1=16[﹣t4+2(h+2)t2﹣h2+4]>0,设线段MN的中点的横坐标是x3,则,设线段PA的中点的横坐标是x4,则,由题意得x3=x4,即有t2+(1+h)t+1=0,其中的△2=(1+h)2﹣4≥0,∴h≥1或h≤﹣3;当h≤﹣3时有h+2<0,4﹣h2<0,因此不等式△1=16[﹣t4+2(h+2)t2﹣h2+4]>0不成立;因此h≥1,当h=1时代入方程t2+(1+h)t+1=0得t=﹣1,将h=1,t=﹣1代入不等式△1=16[﹣t4+2(h+2)t2﹣h2+4]>0成立,因此h的最小值为1.22.(15分)(2009•浙江)已知函数f(x)=x3﹣(k2﹣k+1)x2+5x﹣2,g(x)=k2x2+kx+1,其中k∈R.(Ⅰ)设函数p(x)=f(x)+g(x).若p(x)在区间(0,3)上不单调,求k 的取值范围;(Ⅱ)设函数是否存在k,对任意给定的非零实数x1,存在惟一的非零实数x2(x2≠x1),使得q′(x2)=q′(x1)?若存在,求k的值;若不存在,请说明理由.【分析】(I)因P(x)=f(x)+g(x)=x3+(k﹣1)x2+(k+5)x﹣1,先求导数:p′(x),因p(x)在区间(0,3)上不单调,得到p′(x)=0在(0,3)上有实数解,且无重根,再利用分离参数的方法得出,最后再利用导数求出此函数的值域即可;(II)先根据题意得出当k=0时不合题意,因此k≠0,下面讨论k≠0的情形,分类讨论:(ⅰ)当x1>0时,(ⅱ)当x1<0时,最后综合(ⅰ)(ⅱ)即可得出k值.【解答】解析:(I)因P(x)=f(x)+g(x)=x3+(k﹣1)x2+(k+5)x﹣1,p′(x)=3x2+2(k﹣1)x+(k+5),因p(x)在区间(0,3)上不单调,所以p′(x)=0在(0,3)上有实数解,且无重根,由p′(x)=0得k(2x+1)=﹣(3x2﹣2x+5),∴,令t=2x+1,有t∈(1,7),记,则h(t)在(1,3]上单调递减,在[3,7)上单调递增,所以有h(t)∈[6,10),于是,得k∈(﹣5,﹣2],而当k=﹣2时有p′(x)=0在(0,3)上有两个相等的实根x=1,故舍去,所以k∈(﹣5,﹣2);(II)当x<0时有q′(x)=f′(x)=3x2﹣2(k2﹣k+1)x+5;当x>0时有q′(x)=g′(x)=2k2x+k,因为当k=0时不合题意,因此k≠0,下面讨论k≠0的情形,记A=(k,+∞),B=(5,+∞)(ⅰ)当x1>0时,q′(x)在(0,+∞)上单调递增,所以要使q′(x2)=q′(x1)成立,只能x2<0且A⊆B,因此有k≥5,(ⅱ)当x1<0时,q′(x)在(﹣∞,0)上单调递减,所以要使q′(x2)=q′(x1)成立,只能x2>0且A⊆B,因此k≤5,综合(ⅰ)(ⅱ)k=5;当k=5时A=B,则∀x1<0,q′(x1)∈B=A,即∃x2>0,使得q′(x2)=q′(x1)成立,因为q′(x)在(0,+∞)上单调递增,所以x2的值是唯一的;同理,∀x1<0,即存在唯一的非零实数x2(x2≠x1),要使q′(x2)=q′(x1)成立,所以k=5满足题意.。

2010年高考新课标全国卷理科数学试题(附答案)

2010年高考新课标全国卷理科数学试题(附答案)

2010年普通高等学校招生全国统一考试(新课标全国卷)理科数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符 合题目要求的。

(1)已知集合A{xR|x |2}},B{xZ|x4},则AB(A)(0,2)(B)[0,2](C){0,2](D){0,1,2} (2)已知复数 z3i2 (13i) ,z 是z 的共轭复数,则zz=(A)1 4(B)1 2(C)1(D)2x在点(1,1)处的切线方程为 (3)曲线yx2(A)y2x1(B)y2x1(C)y2x3(D)y2x2(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为d 2 tOπ 4ABCD(5)已知命题xxp :函数y22在R 为增函数, 1xxp :函数y22在R 为减函数, 2则在命题 q :p 1p 2,q 2:p 1p 2,q 3:p 1p 2和q 4:p 1p 2中,真命1 题是(A ) q ,1 q (B ) 3 q , 2 q (C ) 3 q , 1 q (D ) 4q , 2 q4(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再 补种2粒,补种的种子数记为X ,则X 的数学期望为 开始 (A)100(B )200 输入N (C)300(D )400k=1,S=0 (7)如果执行右面的框图,输入N5,则输出的数等于(A) 5 4 (B )4 5(C) 6 5 (D )5 61S=S+k(k+1) k<N 否 输出Sk=k+1 是(8)设偶函数f(x)满足 3 f(x)x8(x0),结束则{x|f(x 2)0}(A){x |x2或x4}(B){x |x0或x4} (C){x |x0或x6}(D){x |x2或x2}(9)若cos 45 ,是第三象限的角,则 1tan 1tan2 2(A)1 2(B)1 2(C)2(D)2(10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为(A) 2 a(B)7 3 2 a(C)11 3 2 a(D)2 5a|lgx|,0x10,(11)已知函数 f x ()12x6,x10.若a,b,c 互不相等,且f(a)f(b)f(c),则abc 的取值范围是(A)(1,10)(B)(5,6)(C)(10,12)(D)(20,24)(12)已知双曲线E 的中心为原点,P(3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (12,15),则E 的方程式为(A) 22 xy 36 1 (B) 22 xy 45 1 (C) 22 xy 63 1 (D) 22 xy 541第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都 必须做答,第(22)题~第(24)题为选考题,考试求做答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中函数
f
(x)
的图象恰.好.经
过 Q 中两个点的函数的个数是
(A)4
(B)6
(C)8
(D)10
非选择题部分(共 100 分)
注意事项: 1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。 2.在答题纸上作图,可先使用 2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。
二、填空题:本大题共 7 小题,每小题 4 分,共 28 分。
(A)[-4,-2]
(B)[-2,0]
(C)[0,2]
(D)[2,4]
第 2 页 共 11 页
糖果工作室 原创 欢迎下载!
10 . 设 函 数 的 集 合
P
{f
(x)
log 2 (x
a)
b
|
a
1 ,0, 3
1 ,1;b 2
1,0,1}
,平面上点的集合
Q
{( x,
y)
|
x
1 2
,0,
1 2
,1;
y
1,0,1} ,则在同一直角坐标系中,P
1(a
0,b
0) 的左、右焦点。若在双曲线右支上存在点 P,满

| PF2 || F1 F2 | ,且 F2 到直线 PF1 的距离等于双曲线的实轴长,则该双曲的渐近线方程为 (A) 3x 4 y 0 (B) 3x 5 y 0 (C) 4x 3y 0 (D) 5x 4 y 0
9.设函数 f (x) 4 sin(2x 1) x ,则在下列区间中函数 f (x) 不.存在零点的是
选择题部分(共 50 分)
注意事项:
1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和
答题纸规定的位置上。
2.每小题选出答案后,用 2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦
干净后,再选涂其他答案标号。不能答在试题卷上。
参考公式
如果事件 A, B 互斥 ,那么 P(A B) P(A) P(B) 如果事件 A, B 相互独立,那么 P(A B) P(A) P(B)
1.设 P {x | x 4}, Q {x | x 2 4}
(A) P Q
(B) Q P
(C) P CRQ (D) Q CR P
2.某程序框图如图所示,若输出的 S=57,则判断框内为
(A) k 4 ?
(B) k 5?
(C) k 6 ?
(D) k 7 ?
3.设 Sn 为等比数列{an } 的前 n 项和, 8a2
糖果工作室 原创 欢迎下载!
绝密★考试结束前
2010 年普通高等学校招生全国统一考试(浙江卷)
数学(理科)
本试题卷分选择题和非选择题两部分。全卷共 5 页,选择题部分 1 至 3 页,非选择题部分 4 至 5 页。满分 150 分,考试时间 120 分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
(A) | z z | 2 y (B) z 2 x 2 y 2 (C)| z z | 2x (D)| z || x | | y |
6.设 l, m 是两条不同的直线, 是一个平面,则下列命题正确的是
(A)若 l m, m ,则l
(B)若 l ,l // m,则m
(C)若 l // , m ,则l // m
(D)若 l // , m // ,则l // m
x 3y 3 0, 7.若实数 x, y 满足不等式组 2x y 3 0, 且 x y 的最大值为 9,则实数 m
x my 1 0,
(A)-2
(B)-1
(C)1
(D)2
x2 8.设 F1,F2 分别为双曲线 a 2
y2 b2
台体的体积公式
V
1 3
h(S1
S1S2 S2 )
其中 S1 , S2 分别表示台体的上、下面积, h 表
S 4 R2
球的体积公式
V 4R3 3
其中 R积公式V Sh
第 1 页 共 11 页
糖果工作室 原创 欢迎下载!
一、 选择题:本大题共 10 小题,每小题 5 分,共 50 分。在每小题给出的四个选项中,只有一项是 符合题目要求的。
其中 S 表示柱体的底面积, h 表示柱体
的高
锥体的体积公式 V 1 Sh 其中 S 表示 3
锥体的底面积, h 表示锥体的高
球的表面积公式
如果事件 A 在一次试验中发生的概率为 P ,那
么 n 次独立重复试验中事件 A 恰好发生 k 次
的概率
Pn (k ) Cnk pk (1 p)nk (k 0,1, 2,..., n)
a5
0 ,则 S5 S2
(A)11
(B)5
(C)-8
(D)-11
4.设 0 x ,则“ x sin 2 x 1 ”是“ x sin x 1 ”的 2
(A)充分而不必不必要条件
(B)必要而不充分条件
(C)充分必要条件
(D)既不充分也不必要条件
5.对任意复数 z x yi(x, y R), i 为虚数单位,则下列结论正确的是
午不测“台阶,其余项目上、下午都各测试一人,则不同的安排方式共有种
(用
数字作答)。
三、解答题:本大题共 5 小题,共 72 分。解答应写出文字说明、证明过程或演算步骤。

14.设 n
2, n
N , (2x
1)n 2
(3x
1)n 3
= a0
a1 x
a2 x2
an x n ,将 ak
(0
k
n)
的最小值记
为 Tn ,则 T2
0, T3
1 23
1 33
, T4
0, T5
1 25
1 35
,,Tn , 其 Tn

15.设 a1, d 为实数,首项为 a1 ,公差为 d 的等差数列 an 的前 n 项和为 Sn ,满足 S5 S6 15 0 则
d 的取值范围是

16.已知平面向量 a, (a 0, a ) 满足 1,且a与 a 的夹角为 120°则 a 的取值范围是 。
17.有 4 位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”
五个项目的测试,每位同学上、下午各测试一个项目,且不重复,若上午不测“握力”项目,下
11.函数 f (x) sin(2x ) 2 2 sin 2 x 的最小正周期是

4
12.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积

cm3.
13.设抛物线 y 2 2 px( p 0) 的焦点为 F,点 A(0,2) 。若线段 FA 的
中点 B 在抛物线上,则 B 到该抛物线准线的距离为
相关文档
最新文档