一元线性回归

合集下载

一元线性回归模型(计量经济学)

一元线性回归模型(计量经济学)

总体回归函数说明被解释变量Y的平均状 态(总体条件期望)随解释变量X变化的 规律。至于具体的函数形式,则由所考 察的总体的特征和经济理论来决定。
在例2.1中,将居民消费支出看成是其可 支配收入的线性函数时,该总体回归函
数为: E (Y |X i)01 X i
它是一个线性函数。其中,0,1是未知
第二章 经典单方程计量经济学模型: 一元线性回归模型
§2.1 回归分析概述 §2.2 一元线性回归模型的基本假设 §2.3 一元线性回归模型的参数估计 §2.4 一元线性回归模型的统计检验 §2.5 一元线性回归模型的预测 §2.6 一元线性回归建模实例
§2.1 回归分析概述
一、变量间的关系及回归分析的基本概念 二、总体回归函数 三、随机扰动项 四、样本回归函数
1430 1650 1870 2112
1485 1716 1947 2200
2002
2420 4950 11495 16445 19305 23870 25025 21450 21285 15510
一个抽样
由于调查的完备性,给定收入水平X的消费 支出Y的分布是确定的。即以X的给定值为条 件的Y的分布是已知的,如 P(Y=561 | X = 800) =1/4。 进而,给定某收入Xi,可得消费支出Y的条 件均值,如 E(Y | X = 800) =605。 这样,可依次求出所有不同可支配收入水平 下相应家庭消费支出的条件概率和条件均值 ,见表2.1.2.
相关分析主要研究随机变量间的相关形式 及相关程度。变量间的相关程度可通过计 算相关系数来考察。
具有相关关系的变量有时存在因果关系,
这时,我们可以通过回归分析来研究它们
之间的具体依存关系。
课堂思考题

第二章 一元线性回归

第二章 一元线性回归

n ei 0 i 1 n xe 0 i i i 1
经整理后,得正规方程组
n n ˆ ˆ n ( x ) 0 i 1 yi i 1 i 1 n n n ( x ) ˆ ( x 2 ) ˆ xy i 0 i 1 i i i 1 i 1 i 1
y ˆ i 0 1xi ˆi 之间残差的平方和最小。 使观测值 y i 和拟合值 y
ei y i y ˆi
n
称为yi的残差
ˆ , ˆ ) ˆ ˆ x )2 Q( ( y i 0 1i 0 1
i 1
min ( yi 0 1 xi ) 2
i
xi x
2 ( x x ) i i 1 n
yi
2 .3 最小二乘估计的性质
二、无偏性
ˆ ) E ( 1
i 1 n
n
xi x
2 ( x x ) j j 1 n
其中用到
E ( yi )
( x x) 0 (xi x) xi (xi x)2
二、用统计软件计算
1.例2.1 用Excel软件计算
什么是P 值?(P-value)
• P 值即显著性概率值 ,Significence Probability Value

是当原假设为真时所得到的样本观察结果或更极端情况 出现的概率。
P值与t值: P t t值 P值



它是用此样本拒绝原假设所犯弃真错误的真实概率,被 称为观察到的(或实测的)显著性水平。P值也可以理解为 在零假设正确的情况下,利用观测数据得到与零假设相 一致的结果的概率。
2 .1 一元线性回归模型

第15讲 一元线性回归分析

第15讲 一元线性回归分析

n
i 1
2
2 2 ˆ ˆ 2b yi y xi x b xi x i 1 i 1
i 1
n
i 1
n
ˆS /S ˆ b ˆ2 S S bS ˆ . b S yy 2bS xy xx xy xx yy xy
例2 求例1中误差方差的无偏估计。
采用最小二乘法估计参数a和b,并不需要事先知道Y与x之间 一定具有相关关系,即使是平面图上一堆完全杂乱无章的散 点,也可以用公式求出回归方程。因此μ(x)是否为x的线性函 数,一要根据专业知识和实践来判断,二要根据实际观察得 到的数据用假设检验方法来判断。
即要检验假设 H0 : b 0, H1 : b 0, 若原假设被拒绝,说明回归效果是显著的,否则, 若接受原假设,说明Y与x不是线性关系,回归方程 无意义。回归效果不显著的原因可能有以下几种:
将每对观察值( xi , yi )在直角坐标系中描出它相应的点 (称为散点图),可以粗略看出 ( x)的形式。
基本思想
(x, Y)
回归分析 回归方程
采集样本信息 ( xi, yi )
散点图
回归方程参数估计、显著性检验
对现实进行预测与控制
一元回归分析:只有一个自变量的回归分析 多元回归分析:多于一个自变量的回归分析

x1 x2 x3
xi
xn
整理得 na ( xi )b yi ,
( xi )a ( xi )b xi yi .——正规方程组
2 i 1 i 1 i 1
n
i 1
n
i 1
n
na ( xi )b yi ,
i 1 i 1
n
n

第三节 一元线性回

第三节 一元线性回
• (1)提出假设: H 0 : β1 = 0; H1 : β1 ≠ 0 • (2)确定显著性水平 α 。 • 根据自由度和给定的显著性水平,查t分布表的理 论临界值 tα / 2 (n − 2) 。 • (3)计算回归系数的t值。 • (4)决策。 • t ˆ > tα / 2 (n − 2) 则拒绝 H 0 ,接受 H1,
1
1、回归系数的显著性检验
• 估计量 S 2 来代替。 ˆ • 但样本为小样本时,回归系数估计量 β1 的标准 化变换值服从t分布,即:
σ 2 是未知的,要用其无偏 一般来说,总体方差
tβˆ =
1
ˆ β1 − β1 Sβˆ
1
~ t (n − 2)
• 式中n为样本容量,n-2为自由度。 •
回归系数显著性检验步骤:
(二)一元线性回归分析的特点 二 一元线性回归分析的特点
• 1、在两个变量之间,必须根据研究目的具体确定哪个 是自变量,哪个是因变量。相关分析不必确定两个变量中 哪个是自变量,哪个是因变量。 2、计算相关系数时,要求相关的两个变量都是随机的; 但是,在回归分析中因变量是随机的,而自变量不是随机 的变量。 3、在没有明显的因果关系的两个变量与y之间,可以 3 y 求得两个回归方程。 4、回归方程的主要作用在于:给出自变量的数值来估 计因变量的可能值。一个回归方程只能做出一种推算,推 算的结果表明变量之间的具体的变动关系。 5、直线回归方程中,自变量的系数称回归系数。回归 系数的符号为正,表示正相关;为负则表示负相关。
ˆ β1 =
n∑ xi yi − ∑ xi ∑ yi n∑ x − (∑ xi )
2 i 2
ˆ ˆ β 0 = yi − β1 xi
(一)参数 β 0 , β 1 的最小二乘估计

计量经济学第二篇一元线性回归模型

计量经济学第二篇一元线性回归模型

第二章 一元线性回归模型2.1 一元线性回归模型的基本假定有一元线性回归模型(统计模型)如下, y t = β0 + β1 x t + u t上式表示变量y t 和x t 之间的真实关系。

其中y t 称被解释变量(因变量),x t 称解释变量(自变量),u t 称随机误差项,β0称常数项,β1称回归系数(通常未知)。

上模型可以分为两部分。

(1)回归函数部分,E(y t ) = β0 + β1 x t ,(2)随机部分,u t 。

图2.1 真实的回归直线这种模型可以赋予各种实际意义,居民收入与支出的关系;商品价格与供给量的关系;企业产量与库存的关系;身高与体重的关系等。

以收入与支出的关系为例。

假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。

但实际上数据来自各个家庭,来自同一收入水平的家庭,受其他条件的影响,如家庭子女的多少、消费习惯等等,其出也不尽相同。

所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。

“线性”一词在这里有两重含义。

它一方面指被解释变量Y 与解释变量X 之间为线性关系,即另一方面也指被解释变量与参数0β、1β之间的线性关系,即。

1ty x β∂=∂,221ty β∂=∂0 ,1ty β∂=∂,2200ty β∂=∂2.1.2 随机误差项的性质随机误差项u t 中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。

所以在经济问题上“控制其他因素不变”是不可能的。

随机误差项u t 正是计量模型与其它模型的区别所在,也是其优势所在,今后咱们的很多内容,都是围绕随机误差项u t 进行了。

回归模型的随机误差项中一般包括如下几项内容: (1)非重要解释变量的省略,(2)数学模型形式欠妥, (3)测量误差等,(4)随机误差(自然灾害、经济危机、人的偶然行为等)。

2.1.3 一元线性回归模型的基本假定通常线性回归函数E(y t ) = β0 + β1 x t 是观察不到的,利用样本得到的只是对E(y t ) =β0 + β1 x t 的估计,即对β0和β1的估计。

一元线性回归

一元线性回归

第六讲 一元线性回归在客观世界中, 普遍存在着变量之间的关系.数学的一个重要作用就是从数量上来揭示、表达和分析这些关系。

而变量之间关系, 一般可分为确定的和非确定的两类. 确定性关系可用函数关系表示, 而非确定性关系则不然.例如, 人的身高和体重的关系、人的血压和年龄的关系、某产品的广告投入与销售额间的关系等, 它们之间是有关联的,但是它们之间的关系又不能用普通函数来表示。

我们称这类非确定性关系为相关关系。

具有相关关系的变量虽然不具有确定的函数关系,但是可以借助函数关系来表示它们之间的统计规律,这种近似地表示它们之间的相关关系的函数被称为回归函数。

回归分析是研究两个或两个以上变量相关关系的一种重要的统计方法。

在实际中最简单的情形是由两个变量组成的关系。

考虑用下列模型表示)(x f Y =. 但是,由于两个变量之间不存在确定的函数关系,因此必须把随机波动考虑进去,故引入模型如下ε+=)(x f Y其中Y 是随机变量,x 是普通变量,ε是随机变量(称为随机误差)。

回归分析就是根据已得的试验结果以及以往的经验来建立统计模型,并研究变量间的相关关系,建立起变量之间关系的近似表达式,即经验公式,并由此对相应的变量进行预测和控制等。

本节主要介绍一元线性回归模型估计、检验以及相应的预测和控制等问题。

一、引例为了研究某一化学反应过程中温度x 对产品得率Y 的影响. 测得数据如下:89857874706661545145%/190180170160150140130120110100/i i y C x 温度温度试研究这些数据所蕴藏的规律性.二、一元线性回归模型一般地,当随机变量Y 与普通变量x 之间有线性关系时, 可设εββ++=x Y 10, (1)),,0(~2σεN 其中10,ββ为待定系数。

设),(,),,(),,(2211n n Y x Y x Y x 是取自总体),(Y x 的一组样本,而),(,),,(),,(2211n n y x y x y x 是该样本的观察值,在样本和它的观察值中的n x x x ,,,21 是取定的不完全相同的数值,而样本中的n Y Y Y ,,,21 在试验前为随机变量,在试验或观测后是具体的数值,一次抽样的结果可以取得n 对数据),(,),,(),,(2211n n y x y x y x ,则有i i i x y εββ++=10, n i ,,2,1 = (2)其中n εεε,,,21 相互独立。

第四章 一元线性回归

第四章  一元线性回归
i 1
n
xi x
2 ( x x ) i i 1
n
( 0 1 xi ) 1
(4.28)
2 ˆ ( x x ) 0, ( x x ) x ( x x ) i i i 证得 1是 1 的无偏估计,其中用到 i ˆ 同理可证 是 0 的无偏估计。
2 (4.9) ˆ ˆ min ( y x ) ( y x ) ˆ ˆ i 0 1 i i 0 1 i Q( 0 , 1 ) ,
n
2
n
ˆ0 , ˆ1 就成为回归参数 0 , 1 的 • 依照(4.9)式求出的 最小二乘估计。称
xi x
i 1 i 1
其中 ( x
i 1
是 yi 的常数,所以 1 是 yi 的线性组合。同理可 以证明 0是 yi 的线性组合。 ˆ , ˆ 亦为 因为 y i 为随机变量,所以作为 yi 的线性组合, 0 1 随机变量,因此各自有其概率分布、均值、方差、标准差及两 者的协方差。
0
无偏估计的意义是。如果屡次变更数据,反复求 0 , 1 的 估计值,这两个估计值没有高估或低估的系统趋势,他们的 平均值将趋于 0 , 1 。 ˆ ˆ x ) x E y ˆi ) E ( E( y 0 1 i 0 1 i 进一步有, ,表明回归值 是 的无偏估计,也说明 与真实值 的平均值是相同的。
(4.2)
• 这里 E ( )表示 差。
的数学期望,var( )表示
的方
• 对(4.1)式两端求期望,得 E( y) 0 1 x (4.3) 称(4.3)式为回归方程。 • 一般情况下,我们所研究的某个实际 问题,获得的n组样本观测值

第三章 一元线性回归

第三章  一元线性回归

LOGO
三、一元线性回归模型中随机项的假定
( xi , yi ),i,j=1,2,3,…,n后,为了估计(3.1.5) 在给定样本观测值(样本值) 式的参数 0和 1 ,必须对随机项做出某些合理的假定。这些假定通常称 为古典假设。
假设1、解释变量X是确定性变量,不是随机变量; 假设2、随机误差项具有零均值、同方差和不序列相关性: E(i)=0 Var (i)=2 i=1,2, …,n i=1,2, …,n
ˆ i ) ( y i 0 1 xi ) 2 Q( 0,1) ( yi y
2 i 1 i 1 n n
(3.2.3)
ˆ , ˆ ,使式 所谓最小二乘法,就是寻找参数 0,,1 的估计值 0 1 ˆ , ˆ 满足: (3.2.3)定义的离差平方和最小,即寻找 0 1
y 1 x
2 y 0 2 x
LOGO
二是被解释变量x与参数 之间为线性关系,即参数 仅以一次方的 形式出现在模型之中。用数学语言表示为:
y 1 0
y 0 2 0
2
y x 1
2 y 0 2 1
在经济计量学中,我们更关心被解释变量y与参数
之间的线性关系。因
第三章 一元线性回归
3.1 一元线性回归模型 3.2 回归参数 0,1 的估计 3.3 最小二乘估计的性质 3.4 回归方程的显著性检验
3.5 预测和控制
LOGO
3.1 一元线性回归模型
一、回归模型的一般形式
1、变量间的关系 经济变量之间的关系,大体可分为两类:
(1)确定性关系或函数关系:变量之间有唯一确定性的函数关 系。其一般表现形式为:
对于总体回归模型,
y f ( x1, x2 ,, xk ) u
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12.9 一元线性回归以前我们所研究的函数关系是完全确定的,但在实际问题中,常常会遇到两个变量之间具有密切关系却又不能用一个确定的数学式子表达,这种非确定性的关系称为相关关系。

通过大量的试验和观察,用统计的方法找到试验结果的统计规律,这种方法称为回归分析。

一元回归分析是研究两个变量之间的相关关系的方法。

如果两个变量之间的关系是线性的,这就是一元线性回归问题。

一元线性回归问题主要分以下三个方面:(1)通过对大量试验数据的分析、处理,得到两个变量之间的经验公式即一元线性回归方程。

(2)对经验公式的可信程度进行检验,判断经验公式是否可信。

(3)利用已建立的经验公式,进行预测和控制。

12.9.1 一元线性回归方程 1.散点图与回归直线在一元线性回归分析里,主要是考察随机变量y 与普通变量x 之间的关系。

通过试验,可得到x 、y 的若干对实测数据,将这些数据在坐标系中描绘出来,所得到的图叫做散点图。

例1 在硝酸钠(NaNO 3)的溶解度试验中,测得在不同温度x (℃)下,溶解于100解 将每对观察值(x i ,y i )在直角坐标系中描出,得散点图如图12.11所示。

从图12.11可看出,这些点虽不在一条直线上,但都在一条直线附近。

于是,很自然会想到用一条直线来近似地表示x 与y 之间的关系,这条直线的方程就叫做y 对x 的一元线性回归方程。

设这条直线的方程为yˆ=a+bx 其中a 、b 叫做回归系数(y ˆ表示直线上y 的值与实际值y i 不同)。

图12.11下面是怎样确定a 和b ,使直线总的看来最靠近这几个点。

2.最小二乘法与回归方程在一次试验中,取得n 对数据(x i ,y i ),其中y i 是随机变量y 对应于x i 的观察值。

我们所要求的直线应该是使所有︱y i -yˆ︱之和最小的一条直线,其中i y ˆ=a+bx i 。

由于绝对值在处理上比较麻烦,所以用平方和来代替,即要求a 、b 的值使Q=21)ˆ(i ni iyy-∑=最小。

利用多元函数求极值的方法求回归系数a ˆ、b ˆ,得⎪⎩⎪⎨⎧=-=xx xy L L b x b y a ˆˆˆ 其中 x =∑=ni i x n 11, y =∑=n i i y n 11,L xx =∑=-n i i x x 12)(=212x n x ni i -∑=L yy =∑=-ni iy y12)(=212y n y ni i-∑=,L xy =))((1y y x x n i i i --∑==y x n y x i ni i -∑=1从而得到一元线性回归方程yˆ=a ˆ+b ˆx 。

其中a ˆ,b ˆ称为参数a 、b 的最小二乘估计,上述方法叫做最小二乘估计法。

下面计算例1中y 对x 的一元线性回归方程。

这里n=9,(x i ,y i )由例1给出,计算出x =26,y =90.1444, L xx =29129x xi i-∑==10144-9×262=4060L yy =29129y yi i-∑==76218.17-9×90.14442=3083.9822L xy =y x yx ii i991-∑==24628.6-9×26×90.1444=3534.8bˆ=40468.3534=xy xy L L =0.8706 a ˆ=y -b ˆx =90.1444-0.8706×26=67.5078 故所求回归方程为 yˆ=67.5078+0.8706x 12.9.2 一元线性回归的相关性检验上面介绍了由试验数据求出回归方程的最小二乘法,但是在使用这种方法之前,并没有判定两个变量之间是否具有线性的相关关系。

因此,即使在平面上一些并不呈现线性关系的点之间,也照样可以求出一条回归直线,这显然毫无意义。

因此,我们要用假设检验的方法进行相关关系的检验,其方法如下:(1)假设H 0:y 与x 存在密切的线性相关关系。

(2)计算相关系数 r=yyxx xy L L L(3)给定α,根据自由度n -2,查项关系数表,求出临界值λ。

(4)作出判断:如果︱r ︱≥λ时,接受假设H 0,即认为在显著性水平α下,y 与x 的线性相关关系较显著;如果︱r ︱<λ时,则可认为在显著性水平α下,y 与x 的线性相关关系不显著,即拒绝假设H 0。

例2 检验例1中的y 与x 的线性关系是否显著?取水平α=0.05。

解 假设H 0:y 与x 存在密切的线性相关关系。

r=yyxx xy L L L =9822.308340608.3534⨯=0.9990α=0.05,n -2=7,查表得 λ=0.6666 ︱r ︱=0.9990>λ=0.6666所以接受假设H 0,即在水平α=0.05下认为y 与x 间的线性相关关系较显著。

12.9.3 预测与控制在求出随机变量y 与变量x 的一元线性回归方程,并通过相关性检验后,便能用回归方程进行预测和控制。

1.预测(1)点预测:对给定的x=x 0,根据回归方程求得0ˆy =a ˆ+bx 0,作为y 0的预测值,这种方法叫做点预测。

(2)区间预测:区间预测就是对给定的x=x 0,利用区间估计的方法求出y 0的置信区间。

对给定的x=x 0,由回归方程可计算一个回归值0ˆy=a ˆ+b x 0 设在x=x 0的一次观察值为y 0,记ε0= y 0—0ˆy εi =y i —i y ˆ (i=1,2,…,n) 其中y i 为对应x i 的观察值,i yˆ为对应x i 的回归值。

一般地(特别当n 很大时)ε0与ε1,ε2,…,εn 相互独立,而且服从同一正态分布N (0,σ2)。

可以证明,统计量2ˆσ=22-=n QS y 是σ2的无偏估计量,其中Q==∑=n i i12ε21)ˆ(ini i y y -∑== L yy -b ˆL xy 。

从而可近似地认为yS y y 00ˆ-~N (0,1) 于是,我们得到y 0的95%预测区间为 (0ˆy -1.96S y ,0ˆy +1.96S y ),y 0的99%预测区间为 (0ˆy-2.58S y ,0ˆy +2.58S y ) 上述预测区间在n 较大且(x 0-x )较小时适用。

与x 的线性回归方程。

(2)预测当含碳量为0.15%时,抗拉强度的变化区间(取置信水平为0.95)。

解 由数据计算得 x =0.134, y =46.929; L xx =0.2899-14×0.1342=0.0401, L xy =91.909-14×0.134×46.929=4.1526, L yy =31295.60-14×46.9292=463.5286。

(1)现在计算相关系数 r=5286.4630401.01526.4⨯=0.963查相关系数表,当α=0.05,n -2=14-2=12时,临界值λ=0.532因为︱r ︱>λ,所以抗拉强度y 与含碳量x 之间线性相关关系较显著。

下面求a 及b 的估计值: b ˆ=0401.01526.4=xy xy L L =103.56 aˆ=y -b ˆx =46.929-103.56×0.134=33.05所以,所求的线性回归方称为 yˆ=33.05+103.05x (2)当x 0=0.15时,0ˆy=33.05+103.56×0.15=48.5842141526.456.1035286.463-⨯-=y S =1.670所以,y 的95%预测区间为 (48.524-1.96×1.670,48.524+1.96×1.670) 即 (45.31,51.86)2.控制控制是预测的反问题,就是如何控制x 值使y 落在指定范围内,也就是给定y 的变化范围求x 的变化范围。

如果希望y 在区间(y 1,y 2)内取值(y 1与y 2已知),则x 的控制区间的两个端点x 1、x 2可由下述方程解出⎪⎩⎪⎨⎧++=-+=y yS x b ay S x b a y 3ˆˆ3ˆˆ2211 当回归系数b ˆ>0时,控制区间为(x 1,x 2);当b ˆ<0时,控制区间为(x 2,x 1)。

应当指出下面两点:(1)y 的取值范围一般仅限于在已试验过的y 的变化范围之内,不能任意外推; (2)对y 的指定区间(y 1,y 2)不能任意小,按上面的方程组计算时,y 1、y 2必须满足y 2-y 1>6S y 时,所求的x 的控制区间才有意义。

例4 在例3中,如果要求抗拉强度y 在41.5~54之间,问含碳量x (%)应如何控制? 解 依题意 y 1=41.5,y 2=54,由方程组⎪⎩⎪⎨⎧++=-+=y yS x b a y S x b a y 3ˆˆ3ˆˆ2211得⎩⎨⎧⨯++=⨯-+=670.1356.10305.3354670.1356.10305.335.4121x x 解方程组得x 1=0.1300,x 2=0.1539因bˆ=103.56>0,所以x 的控制区间为(0.1300%,0.1539% )课堂练习:p221. 1. 小结:要了解一元线性回归方程的有关内容,重点是掌握一元线性回归的相关性检验,尤其是解决实际问题的具体方法,另外能用回归方程进行预测和控制。

相关文档
最新文档