教案一元线性回归
高中三年级上学期数学《一元线性回归模型应用(一)》教学设计

8.2.3 一元线性回归模型的应用(一)教学设计最新课标(1)结合具体实例,了解一元线性回归模型的含义,了解模型参数的统计意义,了解最小二乘原理,掌握一元线性回归模型参数的最小二乘估计方法,会使用相关的统计软件.(2)针对实际问题,会用一元线性回归模型进行预测.[教材要点]要点一 一元线性回归模型我们称⎩⎪⎨⎪⎧Y =bx +a +e E (e )=0,D (e )=σ2 为Y 关于x 的一元线性回归模型,其中,Y 称为因变量或响应变量,x 称为自变量或解释变量;a 和b 为模型的未知参数,a 称为________参数,b 称为________参数;e 是Y 与bx +a 之间的随机误差.要点二 一元线性回归模型参数的最小二乘估计1.经验回归方程:将y ^ =________称为Y 关于x 的经验回归方程,也称经验回归函数或经验回归公式,其图形称为________________.这种求经验回归方程的方法叫做最小二乘法,求得的b ^ ,a ^ 叫做b ,a 的最小二乘估计,其中⎩⎪⎪⎨⎪⎪⎧b ^=∑i =1n (x i -x -)(y i -y -)∑i =1n (x i -x -)2,a ^=y --b ^x -. 2.残差:对于响应变量Y ,通过观测得到的数据称为观测值,通过经验回归方程得到的y ^称为预测值,观测值减去预测值称为残差.3.用决定系数R 2决定模型的拟合效果:R 2=1-∑i =1n (y i -y ^i )2∑i =1n (y i -y -)2.R 2越大,表示残差平方和越小,即模型的拟合效果越好;R 2越小,表示残差平方和越大,即模型的拟合效果越差. 教学目标:1.能通过具体实例说明一元线性回归模型修改的依据与方法.2.通过对具体问题的进一步分析,能将某些非线性回归问题转化为线性回归问题并加以解决,提高数学运算能力.3.能通过实例说明决定系数R2的意义和作用,提高数据分析能力。
《一元线性回归方程》教学设计

《一元线性回归模型参数的最小二乘估计》教学设计一、 教学内容解析1. “一元线性回归模型参数的最小二乘估计”是人民教育出版社A 版《普通高中教科书选择性必修第三册》第8章“成对数据的统计分析”第2节的内容,是统计思想方法在实际生活中的典型应用案例。
本节内容渗透了数学建模与转化化归的数学思想方法,在具体方法上有观察法、主元、消元等。
本节课的教学重点是一元线性回归模型参数的最小二乘估计和利用残差分析进行数据曲线拟合程度分析。
2 . 本节内容是在学习了“一元线性回归模型”的基础上,继续对一元线性回归模型参数进行估计,并对模型的刻画效果进行检验,是后续非线性回归模型学习的基础。
因此本节内容可以看作一元线性回归模型的下位学习,非线性回归模型的上位学习。
3.本节教学过程呈现了发现问题、提出问题、分析问题、解决问题的特点。
在学习过程中让学生体会最小二乘的思想,积累数据分析的经验。
围绕“人的年龄与脂肪含量的关系”这个案例,完整呈现了从直观寻找与散点整体接近的直线,到用竖直距离i i y bx a --刻画散点与直线的“距离”,再到用()21n i i i Q y bx a ==--∑定量刻画整体接近的程度,最后得到参数估计的数学化过程。
对建立的模型进行应用是利用数学建模解决实际问题的一个重要环节,教学中通过“人的年龄与脂肪含量的关系”这个案例,利用经验回归方程进行预测,并对结果进行合理解释,进而进一步介绍残差分析的方法,据此对模型进行评价和改进。
二、教学目标设置统计学习不应只是记住一些概念、公式或方法实施的操作步骤,更重要的是了解概念和方法产生的必要性,以及方法的合理性,了解统计研究问题的思路和特点,进而学会用统计的眼光看问题,培养数据分析素养。
依据“课程目标——单元目标——课堂教学目标”设置本节课的教学目标如下:1.通过小组合作探究问题:“从直观感知与散点在整体上最接近的直线”,学生了解解决这一问题的各种思路,并能判断可行性。
一元线性回归案例教学设计人教课标版(实用教案设计)

一元线性回归案例教学设计人教课标版(实用教案设计)教学目标- 了解一元线性回归的概念和基本原理- 掌握一元线性回归的计算方法和应用技巧- 学会通过实例分析和解决实际问题教学准备- 讲义:提供一元线性回归的讲义,明确概念和公式- 例题:准备适当数量的一元线性回归的实例题目- 计算工具:确保每个学生都有计算器或者电脑可以进行回归计算教学过程1. 引入(5分钟)- 通过一个实际场景,引入一元线性回归的概念和应用- 举例说明回归分析在实际问题中的作用和意义2. 概念讲解(10分钟)- 介绍一元线性回归的基本概念、公式和原理- 解释回归方程的含义和解释- 强调自变量和因变量之间的关系及其影响因素3. 计算方法(15分钟)- 演示一元线性回归的计算步骤和方法- 通过实例展示计算公式的具体应用- 解释残差和拟合优度的概念,说明其意义4. 实例分析(20分钟)- 提供多个一元线性回归的实例题目- 让学生依次进行回归计算和分析- 引导学生思考如何解释回归结果和给出建议5. 讨论与总结(10分钟)- 分享学生对实例分析的解答和思考- 引导学生讨论一元线性回归在其他实际问题中的应用- 总结一元线性回归的重要性和局限性教学扩展- 鼓励学生自行寻找更多的一元线性回归的实例进行分析和讨论- 引导学生了解多元线性回归的概念和应用,拓展研究内容教学评估- 布置作业:要求学生独立完成一元线性回归的实例分析报告- 考察学生对回归分析方法的理解和应用能力- 对学生的作业进行评分,并给予反馈和建议参考资料- 《数学必修3》人教课标版- 网络资源:一元线性回归的教学视频和学习资料。
一元线性回归方程教案

8.5一元线性回归案例湘教版选修2-3第8.5节【教学目标】(一) 知识与技能了解样本、样本容量、线性回归的概念,理解变量之间的相关系数的概念、相关系数、一元线性回归直线等概念。
(二) 过程与方法熟练利用公式求相关系数,掌握求一元线性回归直线方程 的方法,加深理解线性回归模型的意义。
判断变量间是否线性相关。
(三) 情感、态度与价值观培养学生分析问题、解决问题的能力,收集数据和处理数据的能力。
【教材分析】1. 教学重点:让学生了解线性回归的基本思想和方法。
2. 教学难点:掌握建立回归模型的基本步骤。
3. 变量间的关系:函数关系:自变量x 确定y 唯一确定;(确定关系)相关关系:当自变量一定时,因变量的取值带有一定的随机性的两个变量之间的关系称为相关关系 。
例如:在水稻产量与施肥量的关系中,施肥量是可控制变量,而水稻产量是随机变量。
因此只能说明水稻产量与施肥量是相关关系。
现实生活中相关关系大量存在,从某种意义上看,函数是一种理想的关系模型,而相关关系式一种更为一般的情况,因此更有研究相关关系的必要了。
4. 一元线性回归分析在具有相关关系的变量中如果因变量仅与一个变量有关,相应的统计分析成为一元回归分析;若与因变量与多个自变量有关,称为多元线性回归分析。
5. 线性相关性检验:(相关系数检验法)当 >0时,我们称其正相关; 当 <0时,我们称其负相关; 当 =0时,我们称其不相关。
.ˆ:a bx y l +=xy r xy r xy r212x nx ni i -∑=。
一元线性回归模型(教学设计)(人教A版2019选择性必修第三册)

8.2.1一元线性回归模型教学设计一、课时教学内容本节的主要内容是一元线性回归模型,它是线性回归分析的核心内容,也是后续研究两变量间的相关性有关问题的基础.通过散点图直观探究分析得出的直线拟合方式不同,拟合的效果就不同,它们与实际观测值均有一定的偏差.在经历用不同估算方法描述两个变量线性相关关系的过程中,解决用数学方法刻画从整体上看各观测点到拟合直线的距离最小的问题,让学生在此基础上了解更为科学的数据处理方式——最小二乘法,有助于他们更好地理解核心概念“经验回归直线”,并最终体现回归方法的应用价值.就统计学科而言,对不同的数据处理方法进行“优劣评价”是“假设检验”的萌芽.了解最小二乘法思想,将其与各种估算方法进行比较,体会它的相对科学性,既是统计学教学发展的需要,又是在体会此思想的过程中促进学生对核心概念进一步理解的需要.最小二乘法思想作为本节课的核心思想,由此得以体现,而回归思想和贯穿统计学科的随机思想,也是本节课需要渗透的.二、课时教学目标1.结合实例,了解一元线性回归模型的含义,了解模型参数的统计意义2.了解最小二乘原理,掌握一元线性回归模型参数的最小二乘估计方法.3.针对实际问题,会用一元线性回归模型进行预测.三、教学重点、难点1.教学重点:一元线性回归模型的基本思想,经验回归方程,最小二乘法.2.难点:回归模型与函数模型的区别,随机误差产生的原因与影响.四、教学过程设计环节一创设情境,引入课题问题1如何求经验回归方程?提示:求经验回归方程的一般步骤如下:(1)画出散点图,依据问题所给的数据在平面直角坐标系中描点,观察点的分布是否呈条状分布,即是否在一条直线附近,从而判断两变量是否具有线性相关关系;(2)当两变量具有线性相关关系时,求系数的最小二乘估计书",写出经验回归方程;(3)进行残差分析,分析模型的拟合效果,不合适时,分析错因,予以纠正.【师生互动】教师让学生举手回答问题,并及时给予纠正.【设计意图】复习上节课所学知识,为本节课解决与线性回归分析有关的实际问题做好铺垫。
教学设计1:§8.2 一元线性回归模型及其应用

§8.2 一元线性回归模型及其应用教学目标1.结合实例,了解一元线性回归模型的含义,了解模型参数的统计意义.2.了解最小二乘原理,掌握一元线性回归模型参数的最小二乘估计方法.3.针对实际问题,会用一元线性回归模型进行预测. 教学知识梳理知识点一 一元线性回归模型称⎩⎪⎨⎪⎧Y =bx +a +e ,E (e )=0,D (e )=σ2为Y 关于x 的一元线性回归模型.其中Y 称为因变量或响应变量,x 称为自变量或解释变量,a 称为截距参数,b 称为斜率参数;e 是Y 与bx +a 之间的随机误差,如果e =0,那么Y 与x 之间的关系就可以用一元线性函数模型来描述. 知识点二 最小二乘法将y ^=b ^x +a ^称为Y 关于x 的经验回归方程,也称经验回归函数或经验回归公式,其图形称为经验回归直线,这种求经验回归方程的方法叫做最小二乘法,求得的b ^,a ^叫做b ,a 的最小二乘估计,其中b ^=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2,a ^=y -b ^x .思考1 经验回归方程一定过成对样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的某一点吗? 答案 不一定.思考2 点(x ,y )在经验回归直线上吗? 答案 在.知识点三 残差与残差分析 1.残差对于响应变量Y ,通过观测得到的数据称为观测值,通过经验回归方程得到的y ^称为预测值,观测值减去预测值称为残差. 2.残差分析残差是随机误差的估计结果,通过对残差的分析可以判断模型刻画数据的效果,以及判断原始数据中是否存在可疑数据等,这方面工作称为残差分析. 知识点四 对模型刻画数据效果的分析 1.残差图法在残差图中,如果残差比较均匀地集中在以横轴为对称轴的水平带状区域内,则说明经验回归方程较好地刻画了两个变量的关系. 2.残差平方和法残差平方和∑i =1n(y i -y ^i )2越小,模型的拟合效果越好.3.R 2法可以用R 2=1-∑i =1n(y i -y ^i )2∑i =1n(y i -y )2来比较两个模型的拟合效果,R 2越大,模型拟合效果越好,R 2越小,模型拟合效果越差.思考 利用经验回归方程求得的函数值一定是真实值吗? 答案 不一定,他只是真实值的一个预测估计值. 教学案例案例一 求经验回归方程例1.某商场经营一批进价是30元/台的小商品,在市场试验中发现,此商品的销售单价x (x 取整数)元与日销售量y 台之间有如下关系:(1)y 与x 是否具有线性相关关系?如果具有线性相关关系,求出经验回归直线方程.(方程的斜率保留一个有效数字)(2)设经营此商品的日销售利润为P 元,根据(1)写出P 关于x 的函数关系式,并预测当销售单价x 为多少元时,才能获得最大日销售利润.解:(1)散点图如图所示,从图中可以看出这些点大致分布在一条直线附近,因此两个变量线性相关.设经验回归直线为y ^=b ^x +a ^,由题知x =42.5,y =34, 则求得b ^=∑i =14(x i -x )(y i -y )∑i =14(x i -x )2=-370125≈-3. a ^=y -b ^x =34-(-3)×42.5=161.5. ∴y ^=-3x +161.5. (2)依题意有P =(-3x +161.5)(x -30) =-3x 2+251.5x -4 845=-3⎝⎛⎭⎫x -251.562+251.5212-4 845. ∴当x =251.56≈42时,P 有最大值,约为426.即预测销售单价为42元时,能获得最大日销售利润. 反思感悟 求经验回归方程可分如下四步来完成 (1)列:列表表示x i ,y i ,x 2i ,x i y i . (2)算:计算x ,y,∑i =1nx 2i ,∑i =1nx i y i . (3)代:代入公式计算a ^,b ^的值. (4)写:写出经验回归方程.跟踪训练1.已知线性经验回归方程为=2-2.5x ,则x =25时,y 的估计值为________. 【答案】-60.5【解析】当x =25时,=2-2.5×25=-60.5,即y 的估计值为-60.5. 案例二 线性回归分析例2.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得经验回归方程y ^=b ^x +a ^中的b ^为9.4,据此模型预报广告费用为6万元时销售额为( ).A .63.6万元B .65.5万元C .67.7万元D .72.0万元【解析】∵a ^=y -b ^x =49+26+39+544-9.4×4+2+3+54=9.1,∴经验回归方程为y ^=9.4x +9.1.令x =6,得y ^=9.4×6+9.1=65.5(万元). 【答案】B反思感悟 刻画回归效果的三种方法(1)残差图法,残差点比较均匀地落在水平的带状区域内说明选用的模型比较合适. (2)残差平方和法:残差平方和∑i =1n(y i -y ^i )2越小,模型的拟合效果越好.(3)R 2法:R 2=1-∑i =1n(y i -y ^i )2∑i =1n(y i -y )2越接近1,表明模型的拟合效果越好.跟踪训练2.在一段时间内,某种商品的价格x 元和需求量y 件之间的一组数据为:且知x 与y 具有线性相关关系,求出y 对x 的经验回归直线方程,并说明拟合效果的好坏. 解:x =15×(14+16+18+20+22)=18,y =15×(12+10+7+5+3)=7.4,∑i =15x 2i =142+162+182+202+222=1 660, ∑i =15y 2i =122+102+72+52+32=327, ∑i =15x i y i =14×12+16×10+18×7+20×5+22×3=620,∴b ^=∑i =15x i y i -5x y∑i =15x 2i -5x2=620-5×18×7.41 660-5×182=-4640=-1.15. ∴a ^=7.4+1.15×18=28.1,∴经验回归直线方程为y ^=-1.15x +28.1. 列出残差表为:y i -y ^i 0 0.3 -0.4 -0.1 0.2 y i -y4.62.6-0.4-2.4-4.4∴∑i =15(y i -y ^i )2=0.3,∑i =15(y i -y )2=53.2,R 2=1-∑i =15(y i -y ^i )2∑i =15(y i -y )2≈0.994.故R 2≈0.994说明拟合效果较好. 案例三 非线性回归例3.有一个测量水流量的实验装置,测得试验数据如下表:i 1 2 3 4 5 6 7 水深h (厘米)0.71.12.54.98.110.213.5流量Q (升/分钟) 0.082 0.25 1.8 11.2 37.5 66.5 134根据表中数据,建立Q 与h 之间的经验回归方程. 解:由表中测得的数据可以作出散点图,如图.观察散点图中样本点的分布规律,可以判断样本点分布在某一条曲线附近,表示该曲线的函数模型是Q =m ·h n (m ,n 是正的常数).两边取常用对数, 则lg Q =lg m +n ·lg h ,令y =lg Q ,x =lg h ,那么y =nx +lg m ,即为线性函数模型y =bx +a 的形式(其中b =n ,a =lg m ).由下面的数据表,用最小二乘法可求得b ^≈2.509 7,a ^=-0.707 7,所以n ≈2.51,m ≈0.196. ih iQ ix i =lg h iy i =lg Q ix 2ix i y i10.70.082-0.154 9-1.086 20.0240.168 32 1.10.250.041 4-0.602 10.001 7-0.024 93 2.5 1.80.397 90.255 30.158 30.101 64 4.911.20.690 2 1.049 20.476 40.724 258.137.50.908 5 1.574 00.825 4 1.430 0 610.266.5 1.008 6 1.822 8 1.017 3 1.838 5 713.5134 1.130 3 2.127 1 1.277 6 2.404 3∑41251.332 4.022 5.140 1 3.780 7 6.642于是所求得的经验回归方程为Q=0.196·h2.51.反思感悟非线性回归问题的处理方法(1)指数函数型y=e bx+a①函数y=e bx+a的图象,如图所示;②处理方法:两边取对数得ln y=ln e bx+a,即ln y=bx+a.令z=ln y,把原始数据(x,y)转化为(x,z),再根据线性回归模型的方法求出a,b.(2)对数函数型y=b ln x+a①函数y=b ln x+a的图象,如图所示;②处理方法:设x′=ln x,原方程可化为y=bx′+a,再根据线性回归模型的方法求出a,b.(3)y=bx2+a型处理方法:设x′=x2,原方程可化为y=bx′+a,再根据线性回归模型的方法求出a,b.跟踪训练3.在一次抽样调查中测得样本的5个样本点,数值如下表:x0.250.5124y1612521试建立y与x之间的经验回归方程.解:画出散点图如图所示.根据散点图可知y 与x 近似地呈反比例函数关系,设y =k x ,令t =1x,则y =kt ,原数据变为:由置换后的数值表作散点图如下:由散点图可以看出y 与t 呈近似的线性相关关系.列表如下:所以t =1.55,y =7.2.所以b ^=∑i =15t i y i -5t y∑i =15t 2i -5t 2≈4.134 4,a ^=y -b ^t ≈0.8.所以y ^=4.134 4t +0.8.所以y 与x 的经验回归方程是y ^=4.134 4x+0.8. 课堂小结 1.知识清单: (1)一元线性回归模型.(2)最小二乘法、经验回归方程的求法.(3)对模型刻画数据效果的分析:残差图法、残差平方和法和R 2法. 2.方法归纳:数形结合、转化化归.3.常见误区:不判断变量间是否具有线性相关关系,盲目求解经验回归方程致误. 当堂达标1.下表是x 和y 之间的一组数据,则y 关于x 的线性经验回归方程必过点( )A .(2,3) C .(2.5,4) D .(2.5,5)【答案】C【解析】线性经验回归方程必过样本点的中心(x ,y ),即(2.5,4),故选C. 2.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得经验回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为( ) A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元【答案】B【解析】样本点的中心是(3.5,42),则a ^=y -b ^x =42-9.4×3.5=9.1, 所以经验回归直线方程是y ^=9.4x +9.1,把x =6代入得y ^=65.5.3.若施化肥量x (kg)与小麦产量y (kg)之间的经验回归直线方程为y ^=250+4x ,当施化肥量为50 kg 时,预计小麦产量为________.【解析】将x =50代入经验回归方程得y ^=450 kg. 【答案】450 kg4.若对于变量y 与x 的10组统计数据的回归模型中,相关指数R 2=0.95,又知残差平方和为120.53,那么∑i =110(y i -y )2的值为______.【解析】依题意有0.95=1-120.53∑i =110(y i -y)2,所以∑i =110(y i -y )2=2 410.6. 【答案】2 410.65.某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应数据:x 2 4 5 6 8 y3040605070(1)画出散点图;(2)对两个变量进行相关性检验; (3)求经验回归直线方程. 解:(1)散点图如图所示.(2)计算各数据如下:i 1 2 3 4 5 x i 2 4 5 6 8 y i 30 40 60 50 70 x i y i60160300300560x =5,y =50,∑i =15x 2i =145,∑i =15y 2i =13 500,∑i =15x i y i =1 380 r =(145-5×52)(13 500-5×502)≈0.92,查得r 0.05=0.878,r >r 0.05, 故有95%的把握认为该产品的广告费支出与销售额之间具有线性相关关系.(3)b ^=∑i =15x i y i -5x -y-∑i =15x 2i -5x2=1 380-5×5×50145-5×52=6.5,a ^=y -b ^x =50-6.5×5=17.5,于是所求的经验回归直线方程是y ^=6.5x +17.5.。
一元线性回归案例教案设计人教课标版(实用教学设计)

一元线性回归案例教案设计人教课标版(实用教学设计)引言教案的目的是帮助学生理解并掌握一元线性回归的基本概念和应用。
本教案设计适用于人教课标版教材,旨在提供实用的教学设计方案。
教学目标- 让学生了解一元线性回归的定义和基本原理。
- 培养学生使用一元线性回归进行数据分析和预测的能力。
- 培养学生运用一元线性回归解决实际问题的能力。
教学内容1. 一元线性回归的概念和原理- 引导学生了解线性回归的基本概念,并重点介绍一元线性回归。
- 讲解一元线性回归的原理和数学表达式。
- 实际案例分析,让学生明确一元线性回归的实际应用。
2. 数据集收集和处理- 引导学生研究如何收集适用于一元线性回归的数据集。
- 教授数据处理和清洗的方法,确保数据的准确性和可靠性。
3. 模型建立和拟合- 讲解如何建立一元线性回归模型。
- 引导学生研究如何进行模型参数拟合,并解读拟合结果。
4. 数据分析和预测- 使用建立好的一元线性回归模型,进行数据分析和预测。
- 引导学生分析预测结果,并讨论模型的准确性和可靠性。
5. 实际问题解决- 引导学生应用一元线性回归解决实际问题。
- 带领学生思考如何调整模型参数以获得更好的结果。
教学方法与手段- 课堂讲授:通过讲解基本概念、原理和方法,帮助学生建立知识框架。
- 案例分析:通过实际案例分析,让学生了解一元线性回归的实际应用。
- 数据实践:引导学生收集数据集并进行分析和预测,让学生亲身体验一元线性回归的过程。
教学评价与反馈- 课堂小测验:通过布置小测验,检查学生对一元线性回归的理解和能力。
- 学生作业:布置作业,让学生运用一元线性回归解决实际问题,并提交报告。
- 教师评价与反馈:根据学生的表现和作业报告,评价学生的理解和能力,并提供反馈建议。
结束语通过本教学设计,学生能够全面了解一元线性回归的概念、原理和应用,并具备运用一元线性回归解决实际问题的能力。
希望本设计能为教师提供实用的教学指导,帮助学生取得良好的学习效果。
一元线性回归模型教学设计

一元线性回归模型教学设计一、教学目标通过本次教学,学生应该能够:1. 了解一元线性回归模型的基本概念和原理;2. 掌握一元线性回归模型的建立和求解方法;3. 能够运用一元线性回归模型解决实际问题;4. 培养学生的数据分析和模型建立能力。
二、教学内容1. 介绍一元线性回归模型的基本概念- 线性回归模型的基本思想- 回归方程和回归线的含义- 最小二乘法的原理2. 一元线性回归模型的建立和求解方法- 数据收集和变量选择- 模型建立和参数估计- 残差分析和模型检验3. 运用一元线性回归模型解决实际问题- 实际问题的建模方法- 数据处理和分析方法- 结果解释和模型评价三、教学过程1. 导入引入案例通过一个实际案例来引入一元线性回归模型的概念和应用,例如预测房价与房屋面积的关系。
2. 概念讲解- 介绍线性回归模型的基本思想和原理,以及回归方程和回归线的含义;- 解释最小二乘法的原理及其在一元线性回归模型中的应用。
3. 模型建立和参数估计- 数据收集和变量选择:讲解数据收集的方法和重要性,以及对自变量的选择;- 模型建立和参数估计:讲解如何建立一元线性回归模型并通过最小二乘法来估计模型的参数。
4. 残差分析和模型检验- 残差分析:讲解残差的概念及其在回归模型中的含义;- 模型检验:讲解常用的模型检验方法,如回归系数的显著性检验、模型拟合优度检验等。
5. 实际问题的建模和解决- 介绍实际问题的建模方法和步骤,包括数据处理、模型选择和参数估计;- 使用实际数据进行模型的建立和求解,分析结果并给出合理解释。
6. 教学案例练习提供多个一元线性回归的教学案例,供学生进行实践操作和分析讨论。
7. 总结归纳小结一元线性回归模型的基本概念、建立方法和应用步骤,提醒学生需要注意的问题和要点。
四、教学手段教学手段可以采用多种形式,如讲解、示范、案例分析、课堂练习、小组讨论等,通过多种形式的互动与合作,达到知识的传授和能力的培养。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[情境引入]前面我们学习了统计中分析大量数据的方法,如制作频率分布表和频率直方图,以及总体中平均值、极差、方差和标准差的应用,这些都能帮助我们可以很好地理解总体中的情况,但有时大量的数据之间也有一定的关系,那我们如何来分析数据与数据间的联系呢?
[导入新知],我们首先来看这几个问题 (1)圆的面积S 与该圆的半径r 之间的关系 (2)正方形面积S 与边长x 之间的关系 (3 )人的身高不能确定体重,但平均说来“身高者,体也重”.那么身高和体重具有什么关系? (4)类似的情况是否也有一定的关系?
a 蔬菜的产量y 与所施的氮肥量x
b 某天冷饮销量y 与当天最高气温t
在这些相互的关系中,有些我们能够找到非常精确的式子来表达,而有些我们只能借助于常识判断它们之间有联系,那数学上把(1)(2)两种称为确定性关系,把(3)(4)两种非确定性关系称为相关关系。
像身高与体重的相关关系,我们也能判断出 体重≈身高−105 这个式子是如何得来的呢?在大量的身高与体重数据中,我们经分析可以发现两者有一个大体的标准体重的计算式,这个式子可以帮助我们预估某人的体重值,那为何是减去105这数呢?数学上正是通过回归分析来寻求一公式描述变量间的相关关系。
在回归分析中最简单、最常用的为一元线性分析。
例1 某小卖部为了了解热茶销售量与最低气温之间的关系,随机统计并制作了某6天的热茶销售量与当天最低气温的对照表:
⑴观察表中数据的变化趋势. ⑵在直角坐标系内作出图象.
在图中我们看出散点的分布如一条直线,那如何确定最贴近实际情况的直线呢,假设直线方程为y=bx+a ,实际点与直线上的点的差别用方差表示为
W(a,b)=(26b+a-20)2+(18b+a-24)2+(13b+a-34)2 + (10b+a-38)2+ (4b+a-50)2+(- b+a-64)2 =1288b 2+6a 2+140ab-3820b-460a+10172
若差别小,直线越接近实际,那如何求W (a ,b )最小值呢?运用最小二乘法的基本原理,在含两个未知数的关系中,我们可以把其中一个看成常数,求另一个数的最小值,以此求算总体的最小值情况。
a 为常数 ,b=-(140a-3820)/2572
b 为常数, a=-(140b-460)/12
联立方程解得 a=57.6 b=-1.65
最佳直线的方程即为 y=-1.65x+57.6
这条直线就称为回归直线,用直线表达的两变量间的相关关系称为一元线性关系。
为了简化计算的难度,数学家们直接总结了求a 与b 的公式
由公式我们可以更加方便地求算回归直线方程。
例2
试写出解:
x (平均)=16/3 y(平均)=149/3 x(平均)*y (平均)=2384/9 x i y i(总和)=1770 x i 2(总和)=194 n=6
得 b=7.743 a=8.371 y=7.743x+8.371
【小结】求回归直线方程的步骤:
∑i
i
y
x ⑵计算x i 与y i 的积,求
∑2
i x ⑶计算 ;
⑹写出回归方程 .
⑷将结果代入公式求 a ;
⑴计算平均数 与 ; x y ⑸用 求 b ; x
a y
b -=x
b y a x n x
y
x n y
x b n
i i
n
i i
i
-=--=
∑∑==,
1
2
21。