图表信息问题

合集下载

图表信息专题复习

图表信息专题复习

(2)若全校共有2700名学生,你估计这所学校有多少
名学生知道母亲的生日?
(3)通过对以上数据的分析,你有何感想?(用一句
话回答)
温馨提醒:
以统计图呈现信息,反映数据及其变化规 律,考查了我们读图、识图能力和分析数据、 处理数据的能力.
我们能否准确地阅读统计图表,获取有效 信息是解决此类试题的关键.
240 160
起点 0 5
20 30 35 时间(分)
根据图象你能得到哪些信息?
《新龟兔赛跑》大家说
路程 (米)
乌龟 兔子
240
100
起点 0
30 35 时间(分)
《由龟上兔图赛你跑可》以的提故出事什给么了问我题们吗什?么启发呢?
y(千米/时)
()
B
C
( )A
O 4 10
25
路程 (米)
乌龟 兔子
我们要学会借助图形本身的性质,结合 推理、计算,有时还通过图形变换的方法 来解决问题.
三、表格类
1.初三数学课本上,用“描点法”画二次函数 y ax2 bx c 的图象时,列了如下表格:
x … 2 1 0 1 2 …
y

6 1 2
4
2 1 2
2
2 1 …
2
根据表格上的信息回答问题:
1.图中的实线和虚线分别表示菲尔普斯,张琳与游泳
池一边的距离随游泳时间的变化而变化的图象,则从开始
到结束,他们相遇的次数为( D )
A.2次
B.3次
C.4次
D.5次
s(m)
90
O 30 60 90 120 150 180 t(s)
2.下列图形不能体现 y 是 x 的函数关系的是(C )

图表信息题

图表信息题

如图,l甲、l乙两条直线分别表示 甲走路与乙骑车(在同一条路上) 行走的路程S与时间t的关系,根 据此图,回答下列问题: 4)甲的速度为 km/h , 乙骑 车的速度为 km/h 5)甲行走的路程s(千米)与时间 t(小时)之间的函数关系式是
A
6)如果乙的自行车不出故障,则乙出发后经过 h与甲相遇,相遇后离乙的出发点 km,并在图中标出其相遇点。 相遇点为A
练习3
y(千米/时) (32 )
(1)在y轴( ) 内填入相应的数值;
(8 ) O 4 10 25 x(小时)
(2)沙尘暴从发生到结束,共经过了多少小时?
(2)沙尘暴从发生到结束,共经过了多少小时? (3)求出当x≥25时,风速y(千米/时)与时间 x(小时)之间的函数关系式。 /时) 解:(2)由题意得: y(千米B C(25,32) (32 ) 32÷1=32 (小时) ∴25+32=57(小时) ∴沙尘暴从发生到 (8 ) A (57,0) D 结束,共经过57小时
图表信息题概述
所谓图表信息题,是指将已知信息用图 象或表格形式给出的一类问题。它要求学生 从已知图象或表格中获取数据,去分析、解 决实际问题。
图表信息题是近两年以来,应用题设计 中的新题型,也是我省中考命题的新形式之 一。
1、已知一次函数的图象如图所示:
1 (1)求出此一次函数的解析式;y= x+2 2 (2)观察图象,当x >-4 时,y> 0; 当x =-4 时,y=0;当x <-4 时,y<0;
某气象研究中心观测一场沙尘暴从发生到结 束的全过程,开始时风速平均每小时增加2 千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平 均每小时增加4千米/时,一段时间,风速保持不变,当沙 尘暴遇到绿色植被区时 ,其风速平均每小时减少1千米/时, 最终停止,结合风速y与时间x的图象如图,回答下列问题:

图表信息题

图表信息题

图表性息题图表性息题是指通过图形、图象或图表及一定的文字说明来提供问题情景的一类试题,它是近几年全国各省市中考所展示的一种新题型,考查形式有选择题、填空题、解答题,这是今后命题的热点。

解答图表性息题的关键是读懂图表所提供的信息,正确理解各个量的含义,进而建立正确的数学模型,这种题型由于命题广泛,应用的知识也很多,主要有:(1)方程和方程组;(2)不等式和不等式组;(3)函数;(4)统计的有关知识及概率;图表性息题的分类:(1)表格信息问题;(2)图象信息问题;(3)图形语言信息问题;专项精练:1、如图1,边长为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内除去小正方形部分的面积为S(阴影部分),则S与t的大致图象为图2中的()。

2、某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?3、观察市统计局公布的“十五”时期重庆市农村居民人均收入每年比上一年增长率的统计图,下列说法正确的是()。

A.2003年农村居民人均收入底于2002年;B.农村居民人均收入比上一年增长率低于9%的有2年;C.农村居民人均收入最多是2004年;D.农村居民人均收入每年比上一年的增长率有大有小,但农村居民人均收入在持续增加;4、如图,圆柱形开口杯底部固定在长方形水池底,向水池匀速注入水(倒在杯外),水池中水面高度是h,注水时间为t,则h与t之间的关系大致为图()。

5、免交农业税,大大提高了农民的生产积极性,镇政府引导农民对生产的土特产进行加工后,春节期间,这三种不同的包装的土特产都销售了1200千克,那么本次销售中,这三种包装的土特产获得利润最大的是()。

A.甲 B 乙 C 丙 D 不能确定6、如图,边长为a的大正方形中一个边长为b的小正方形,小明将图(1)的阴影部分拼成了一个矩形,如图(2),这一过程可以验证()。

中考数学冲刺:图表信息型问题--知识讲解(基础)(附答案)

中考数学冲刺:图表信息型问题--知识讲解(基础)(附答案)

中考冲刺:图表信息型问题—知识讲解(基础)【中考展望】图表信息题是指通过图形、图象或图表及一定的文字说明来提供问题情景的一类试题,它是近几年全国各省市中考所展示的一种新题型,这类试题形式多样,取材广泛,可增加试题的灵活性和趣味性,其发展前景非常广阔.用好题中提供的信息,有利于提高学生分析、解决简单实际问题的能力,同时也是培养现代公民素质的一条重要途径.【方法点拨】1.图象信息题题型特点:这类题是中考试卷中出现频率较高的题型之一,它是通过图象呈现问题中两个变量之间的数量关系,主要考查学生对函数思想和数形结合思想的掌握程度.解题策略:解答这类问题,在弄清题意的基础上,弄清两坐标轴所代表的含义,并对图象的形状、位置、发展变化趋势等捕捉提炼有效信息,解决相关问题.2.图表信息题图表信息题是指通过图表的形式提供信息,这些信息一般以数据形式居多,其主要考查学生对图表数据的分析、比较、判断和结论的归纳能力,要求学生有较强的定量分析和定性概括能力.【典型例题】类型一、图象信息题1.容积率t是指在房地产开发中建筑面积与用地面积之比,即MtS建筑面积用地面积,为充用地面积分利用土地资源,更好地解决人们的住房需求,并适当的控制建筑物的高度,一般容积率t不小于1且不大于8.一房地产开发商在开发某小区时,结合往年开发经验知,建筑面积M(m2)与容积率t的关系可近似地用如图(1)中的线段l来表示;1 m2建筑面积上的资金投入Q(万元)与容积率t的关系可近似地用如图(2)中的一段抛物线c来表示.(1)试求图(1)中线段l的函数关系式,并求出开发该小区的用地面积;(2)求出图(2)中抛物线段c的函数关系式.【思路点拨】(1)因为图象过点(2,28000)和(6,80000),所以易求l的表达式,注意t的取值范围,当t=1时,S用地面积=M建筑面积;(2)根据图象经过点(1,0.18)和(4,0.09)且(4,0.09)为顶点可求c的函数关系式.【答案与解析】解:(1)设M =kt+b ,由图象上两点的坐标(2,28000)、(6,80000),可求得是k =13000,b =2000.所以线段l 的函数关系式为: M =13000t+2000(1≤t ≤8).由M t S =建筑面积用地面积知,当t =1时,S M =用地面积建筑面积.把t =1代入M =13000t+2000中,可得 M =15000.即开发该小区的用地面积是15 000 m 2.(2)根据图象特征可设抛物线段c 的函数关系式为Q =a(t-4)2+0.09,把点(1,0.18)的坐标代入,可求得1100a =. 所以219(4)100100Q t =-+2121(18)100254t t t =-+≤≤.【总结升华】图象信息题一般需要先由图象提供的条件确定出相应的函数关系式,然后再运用函数的性质解决问题,因而可以有效考查对函数思想和数形结合思想方法的掌握和应用情况.举一反三:【变式】甲、乙两人骑自行车前往A 地,他们距A 地的路程s(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式(任写一个). (3)在什么时间段内乙比甲离A 地更近? 【答案】 解:(1)50202.5v ==甲(km/h), 60302v ==乙(km/h).(2)5020s t =-甲或6030s t =-乙(答对一个即可); (3)1<t <2.5.2.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离为S (km )和行驶时间t (h )之间的函数关系的图象如图所示,根据图中提供的信息,回答下列问题:(1)甲乙两个同学都骑了 (km ).(2)图中P 点的实际意义是 . (3)整个过程中甲的平均速度是 . 【思路点拨】利用函数图象,结合问题可得出甲乙两个同学骑车距离,甲的平均速度等. 【答案与解析】 解:(1利用图象可得:s 为18千米,即甲乙两个同学都骑了18千米, (2)图中P 点的实际意义是:甲,乙相遇,此时乙出发了0.5小时, (3)整个过程中甲的平均速度是 18÷2.5=7.2千米每小时. 故填:(1)18 ;(2)乙出发0.5小时后追上甲,(3)7.2km/h . 【总结升华】此题主要考查了利用函数图象得出正确的信息,题目解决的是实际问题,比较典型. 举一反三:【高清课堂:图表信息型问题 例2】【变式】为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:(1)若某用户六月份用水量为18吨,求其应缴纳的水费;(2)记该户六月份用水量为x 吨,缴纳水费y 元,试列出y 关于x 的函数式;(3)若该用户六月份用水量为40吨,缴纳消费y 元的取值范围为70≤y ≤90,试求m 的取值范围. 【答案】解:(1)六月份应缴纳的水费为:1.5102831⨯+⨯=(元) (2)当010x ≤≤时, 1.5y x =当10x m <≤时,152(10)25y x x =+-=-当x m >时,152(10)3()35y m x m x m =+-+-=--。

中考第二轮专题复习—第三讲 图表信息型问题

中考第二轮专题复习—第三讲 图表信息型问题

☆◇☆中考数学中的图表信息型问题☆◇☆所谓图表信息问题,就是根据实际问题中所呈现出来的图像、图表信息,要求考生依据这些给出的信息通过整理、分析、加工等手段解决的一类问题,主要考查同学们识图看表的能力以及处理信息的能力.解答这类试题的关键是对图表信息认真分析、合理利用,按照题意要求,准确地输出信息.信息时代的到来,呼唤信息型的中考试题.由于此类问题命题背景广泛、蕴含知识丰富,突出对考生获取、整理与加工信息能力的考查,因而倍受命题者青睐,近年来在各地的中考试题中出现的频率越来越高.图象信息题是指由图象(表)来获取信息.从而达到解题目的的题型,这类问题来源广泛,形式灵活,突出对考生收集、整理和加工信息能力的考查.是近几年中考的热点.解图象信息题的关键是“识图”和“用图”.解这类题的一般步骤是:(1)观察图象,获取有效信息;(2)对已获信息进行加工、整理,理清各变量之间的关系;(3)选择适当的数学工具,通过建模解决问题.题型1此类题目一般以表格的形式出现,通过表格对数据进行收集、整理,得出与解题相关的信息,从而解决实际应用问题.题型2此类题目以图形、图象的形式出现,在图形的形式出现时,题型新颖,给出的形式有形象的人物及各自的语言表述,在活泼的氛围里,给出题目具体内容,在考查学生的建模能力,有时候用不等式,有时候用方程;在图象的形式出现时,有时用函数图象的形式出现,有时以统计图的形式出现,它要把所给的图象或图形的信息进行分类、提取加工,再合成。

例1、某次时装表演会预算中,票价定为每张100元,容纳观众人数不超过2000人,毛利润y(百元)关于观众人数x(百人)之间的函数图象如图2-1-3所示,当观众人数超过1000人时,表演会组织者需向保险公司缴纳定额平安保险费5000元(不列人成本费用人请解答下列问题:(1)求当观众人数不超过1000人时,毛利润y关于观众人数的函数解析式和成本费用S(百元)关于观众人数x的函数解析式;(2)若要使这次表演会获得36000.元的毛利润,那么需售出多少张门票?需支付成本费用多少元?注:当观众人数不超过1000人时,表演会的毛利润一门票收人一成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入-成本费用-平安保险费.解:(1)由图2-1-3知,当 0≤x ≤10与10<x ≤20时,y 都是x 的一次函数.当0≤x ≤10时,设y 关于x 的函数解析式为y =kx +b ,把点(0,-100),(10,400)代入函数解析式,得10050 10400100b k k b b =-=⎧⎧⎨⎨+==-⎩⎩,解得:所以y =50x -100(0≤x ≤10),S =100x -(50x -100)=50x +100(0≤x ≤10)(2)当10<x ≤20时,由题意,知 50x -100=360.所以x =9.2,S =50x +100 =50×9.2+100=560.当10<x ≤2 0时,设y =mx +n .把点(10,350)(20,850)代入函数解析式,得1035050 20850150m n m m n n +==⎧⎧⎨⎨+==-⎩⎩,解得:所以y =50x -150(10<x ≤20),S =100x -(50x -150)-50=50x +100(10<x ≤20)当y =360时,50x -150=360,解得x =10.2.所以S =50×10.2+100=610.答:需售门票 920张或 1020张,相应地需支付成本费用分别为56000元或 61000元. 点拨:正确理解题意,注意单位的统一.例2、(07无锡)某人从甲地出发,骑摩托车去乙地,途中因车出现故障而停车修理,到达乙地时正好用了2小时,已知摩托车行驶的路程(S 千米)与行驶的时间t (小时)之间的函数关系由如图6—1的图象ABCD 给出,若这辆摩托车平均每行驶100千米的耗油量为2升,根据图中给出的信息,从甲地到乙地,这辆摩托车共耗油升.分析:由题意知,摩托车的耗油量与从甲地到乙地所用时间无关,而只与所行驶的路程有关;而由图像可以得到信息,从甲地到乙地的路程为45千米.故耗油量应为45100×2=0.9(升).解:0.9升.说明:本题中摩托车的耗油量与所用时间无关,故从甲地到乙地的行驶时间2小时则属于过剩信息,在解题中要学会合理地排除.时)例3、某村实行合作医疗制度,村委会规定:(一)每位村民年初缴纳合作医疗基金a 元;设一位村民当年治病花费的医疗费为x 元,他个人实际承担的医疗费用(包括医疗费中个人承担的部分和缴纳的合作医疗基金)为y 元.(1)当0≤x≤b 时,y =a ;当b <x≤5000时,y=(用含有a 、b 、c 、x 的式子表示).(2)下表是该村4位村民2001年治疗花费的医疗费和个人实际承担的费用,根据表(3)村民个人一年最多承担医疗费用多少元? (2002年威海市中考试题) 分析:解决本题的关键是要能看懂表格,从第一个表格中我们不难得到如下信息:村民个人实际承担的费用是由两部分组成的,其一是合作医疗基金a ;其二是超过b 元不超过5000元部分的c%.由此,很容易写出用a 、b 、c 、x 表示y 的关系式.从第二个表格中可以看出,村民甲、乙两人的治疗花费的医疗费不同,但个人承担的费用却相同,这说明他们实际上承担的是合作医疗基金,由此可以得出a=30.进而将丙、丁两人的x 、y 具体值代入所列出的关系式中,构成方程组,从而可求出a 、b 、c 的值.而第3小问其实就是求所得到的函数式的最大值,由一次函数的性质可知,当x=5000时取最大值.解:(1)y =(x -b )c%+a ;(2)甲、乙两人花费的医疗费不同,但实际承担的费用相同(都是30元),说明他们两人花费的医疗费都不超过b 元,因此,他们实际承担的费用就是缴纳的合作医疗基金,即a =30.丙、丁两人实际承担的医疗费用超过了30元,说明他们一年得医疗费超过了b 元,但不足5000元,所以⎩⎨⎧=+-=+-830%)150(,5030%)90(c b c b 解得 ⎩⎨⎧==.50,50c b ∴ 当b <x ≤5000时,y =(x -50)50%+30, 即 152y x =+. (3)将x =5000代入,得 y =5000×0.5+5=2505,∴ 村民个人一年最多承担医疗费2505元.说明:本题就其实质来说是一个应用分段函数解决的实际问题,关键是要能根据表格中提供的信息,搞清个人实际所承担的医疗费用,同时要对第二个表格中所反映出的信息进行分析,搞清四位村民所花费的医疗费x 所在的范围,从而确定是否代入所列出的关系式去求解,而不能盲目行事。

2014中考数学总复习专题5图表信息问题

2014中考数学总复习专题5图表信息问题

专题突破区
专题视点· 考向解读
重点解析
真题演练
【思路点拨】 (1)由图象知路程与时间的关系是一次函数关系, 函数图象与横轴 交点横坐标的值即是师生回到学校的时间. (2)由题意知三轮车出发, 到达的时间 和路程. 在题图可直接画出其离校路程 s 与时间 t的图象. (3)分情况进行求解. 【自主解答】 ( 1) 设师生返校时的函数解析式为 s= kt + b, 把( 12, 8) 、( 13, 3) 代入得,
专题视点· 考向解读
重点解析
真题演练
专题五
图表信息问题
专题视点·考向解读
图表信息问题是通过图象、图形或表格及一定的文字说明等形式给出信息的一种常 见题型, 以立意新颖, 形式多样, 取材广泛为特点, 此类型问题可分为表格类信息题, 函数图象 信息题、图形语言信息题和统计图表信息题四种类型 . 解决图表信息问题的一般步骤: 1. “识图表”: ( 1) 先整体阅读, 对图表资料有一个整体了解, 进而搜索有效信息; ( 2) 关注数据 变化; ( 3) 注意图表细节的提示作用. 2. “用图表”: 通过认真阅读、观察、分析图表, 获取信息. 根据信息中数据或图形特征, 找出数量关系或弄清函数的对应关系. 3. “建模型”: 在正确理解各变量之间关系的基础上, 建立合理的数学模型, 解决问题.
专题突破区
专题视点· 考向解读
重点解析
真题演练
专题考点 0 2 函数图象信息题
图象信息题是指给出图象及一定的文字说明, 借此来从中捕捉信息进行计 算或推理的一类题. 解题的关键是要善于从图象的形状、位置、特殊点、发展 变化趋势等有关信息中提取数量信息, 建立等量( 函数) 关系式.
专题突破区

苏科版(2024新版)七年级数学上册第四章专题课件:一元一次方程中的图表信息题

苏科版(2024新版)七年级数学上册第四章专题课件:一元一次方程中的图表信息题

类型四 分段计费问题
4.(2024江苏苏州张家港期末)某城市“一户一表”居民用电 实行阶梯电价,具体收费标准如下.
一户居民一个月的用电量 (单位:千瓦时)
第1档 不超过180千瓦时的部分
第2档
超过180千瓦时的部分
电价 (单位:元/千瓦时)
0.5 0.6
(1)若该市某户居民12月用电量为200千瓦时,则该户居民应
8
5
13
2 B 6 321 8
3
5
11
3 C 6 312 9
x
5
10
4 D 6 006 1
1
0
0
备注
积分=胜场积分+平场积分+负场积分
(1)表格中x的值为ቤተ መጻሕፍቲ ባይዱ
,本次足球小组赛胜一场积
分,平一场积
分,负一场积
分.
(2)该比赛参加第一阶段小组赛6场比赛的奖金分配方案为
每支球队都可以获得参赛奖金1 200万元.另外,小组赛中每
类型二 月历问题
2.你对生活中常见的月历了解吗?月历中存在许多数字奥秘, 你知道吗?







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
(1)在如图所示的月历中,横行、竖列上相邻的两数之间有什 么关系? (2)如果告诉你一竖列上连续三个数的和为72,你能知道是哪 几天吗? (3)如果用一个正方形框住的2×2个数的和为56,那么被框住 的四天你知道分别是几号吗?

中考数学第二轮复习:图表信息问题

中考数学第二轮复习:图表信息问题
专题二 图表信息问题
1
专 题 解 读
2
考情透析 图表信息题是中考常考的一种新题型,它是通过图象、 图形及表格等形式给出信息,通过认真阅读、观察、 分析、加工、处理等手段解决的一类实际问题.主要 考查同学们的读图、识图、用图能力,以及分析问题、 解决问题的能力.图表信息问题往往和“方程(组)、不 等式(组)、函数、统计与概率”等知识结合考查.
11
二、表格信息题
以表格的形式给出数据信息是这类信息题的特征,分析表中的数据,能从表
格中发现两个量之间存在规律,归纳出相应的关系式是解决此类问题的关键.
12
【例题2】 (2012· 浙江台州)某汽车在刹车后行驶的距离s(单
位:米)与时间t(单位:秒)之间的关系的部分数据如下表:
时间t(秒) 行驶距离s(米)
4
专 题 突 破
5
一、图象信息题
此类题目主要是运用函数图象(一次函数、二次函数、反比例函数的 图象等)表示物体的变化规律(体现在两个变量之间的数量关系),考查
数形结合的思想和函数建模能力.解答时往往根据图象的形状、位置、 变化趋势等信息来判断、分析、解决问题.
6
【例题1】 (2012· 浙江义乌)周末,小明骑自行车从家里出
10
(3)设从家到乙地的路程为m km,
则点 E(x1,m),点 C(x2,m),分别代 入 y=60x-80,y=20x-10, m+80 m+10 得:x1= , x2 = . 60 20 10 1 ∵x2-x1= = , 60 6 m+10 m+80 1 ∴ - = , 20 60 6 解得:m=30. ∴从家到乙地的路程为 30 km.
14
分析 (1)描点作图即可. (2)首先判断函数为二次函数.用待定系数法,由 所给的任意三点即可求出函数解析式. (3)①将函数解析式表示成顶点式(或用公式求), 即可求得答案.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级二轮专题复习材料
专题十六:图表信息问题
【近3年临沂市中考试题】
1、(2014年T21.本小题满分7分)
随着人民生活水平的提高,购买老年代步车的人越来越多.这些老年代步车却成为交通安全的一大隐患.针对这种现象,某校数学兴趣小组在《老年代步车现象的调查报告》中就“你认为对老年代步车最有效的的管理措施”随机对某社区部分居民进行了问卷调查,其中调查问卷设置以下选项(只选一项):A:加强交通法规学习;B:实行牌照管理;C:加大交通违法处罚力度;D:纳入机动车管理;E:分时间分路段限行.
调查数据的部分统计结果如下表:
(1)根据上述统计表中的数据可得m =_______,n =______,a =________;
(2)在答题卡中,补全条形统计图;
(3)该社区有居民2600人,根据上述调查结果,请你估计选择“D:纳入机动车管理”的居民约有多少人?
2、(2015年T21本小题满分7分)“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).
请你根据图中提供的信息,解答下列问题:
(1)补全条形统计图;
(2)估计该市这一年(365天)空气质量达到“优”和“良”的总天数;
(3)计算随机选取这一年内的某一天,空气质量是“优”的概率.
3.(2016年T21 本小题满分6分)为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表:
频数分布表
(1)填空:a=,b=;
(2)补全频数分布直方图;
(3)该校九年级共有600名学生,估计身高不低于165cm的学生大约有多少人?
4、(2014年T24本小题满分9分)24.(本小题满分9分)
某景区的三个景点A,B,C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,
乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C. 甲、乙两人离开景点A
后的路程S(米)关于时间t(分钟)的函数图象如图所示.根据以上信息回答下列问题:
(1)乙出发后多长时间与甲相遇?
(2)要使甲到达景点C时,乙与C的路程不超过400米,则乙从景点B步行到景点C的速
度至少为多少?
(结果精确到0.1米/分钟)
【中考集锦】
1.(2016山东济宁第17题)2016年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.
请根据图1、图2解答下列问题:
(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.2.(2016湖南永州第22题)二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:
(1)在这次问卷调查中一共抽取了名学生,a=%;
(2)请补全条形统计图;
(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为度;
(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.
3. (2016湖南娄底第21题)在2016CCTV 英语风采大赛中,娄底市参赛选手表现突出,成绩均不低于60分.为了更好地了解娄底赛区的成绩分布情况,随机抽取利了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行了整理,得到如图的两幅不完整的统计图表: 根据所给信息,解答下列问题:
(1)在表中的频数分布表中,m= ,n= .
0.40
(2)请补全图中的频数分布直方图.
(3)按规定,成绩在80分以上(包括80分)的选手进入决赛.若娄底市共有4000人参数,请估计约有多少人进入决赛?
4. (2016湖北黄石第21题)(本小题满分8分)为了解某市初三学生的体育测试成绩和课外体育锻炼时间的情况,现从全市初三学生体育测试成绩中随机抽取120名学生的体育测试成绩作为样本.体育成绩分为四个等次:优秀、良好、及格、不及格. (1)试求样本扇形图中体育成绩“良好”所对扇形圆心角的度数;
(2)统计样本中体育成绩“优秀”和“良好”学生课外体育锻炼时间表(如图表所示),请将图表填写完整(记学生课外体育锻炼时间为x 小时);
(3)全市初三学生中有14400人的体育测试成绩为“优秀”和“良好”,请估计这些学生中课外体育锻炼时间不少于4小时的学生人数.
5、(2016江苏省无锡市)某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB 所示.
(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式;
(2)分别求该公司3月,4月的利润;
(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)6、(2016云南省第22题)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.
(1)求y与x的函数解析式(也称关系式)
(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.。

相关文档
最新文档